
Expressivity of extensions of dynamic first-order logic

Balder ten Cate1, Jan van Eijck2 and Juan Heguiabehere3

Abstract
Dynamic predicate logic (DPL), presented in [5] as a formalism for representing anaphoric
linking in natural language, can be viewed as a fragment of a well known formalism for
reasoning about imperative programming [6]. An interesting difference from other forms of
dynamic logic is that the distinction between formulas and programs gets dropped: DPL
formulas can be viewed as programs. In this paper we show that DPL is in fact the basis of
a hierarchy of formulas-as-programs languages.

1 Formulas-as-Programs in DPL and its Extensions

In this paper we investigate the landscape of extensions of DPL with the six operations ∪, ,̆ σ, σ̆, ∩, ∃∃. All
64 combinations are classified with respect to their expressive power. Extensions of DPL with ∩ (relation
intersection) and ∃∃ (local variable declaration) are studied in [8], while in [1], an extension of DPL with
∪ (relation union) and σ (simultaneous substitution) is axiomatized, and ω-completeness is proved for the
extension of DPL with ∪, σ and ∗ (Kleene star). In a dynamic setting, left-to-right substitutions σ have
right-to-left counterparts σ̆ (converse substitutions). For pre- and postcondition reasoning with extensions
of DPL, converse substitution and relation converse ˘ are attractive.

Some of these operators have been studied from a linguistic perspective. In particular, [4] discusses
potential linguistic applications of the ∪ and ∩ operator. The relevance of ∩ operator is mentioned there
for the analysis of plurals, and it is argued that ∪ is needed for a proper analysis of sequences such as: “A
professor or an assistant professor will attend the meeting of the university board. She will report to the
faculty.”

Unlike [5], we allow function symbols, so DPL terms are given by t ::= x | c | f(t1, . . . , tn). DPL
formulas are given by φ ::= ∃x | Rt1 . . . tn | t1 ≈ t2 | ¬φ | φ1;φ2. Terms are interpreted as usual. We use
tM,g for the interpretation of term t in model M under valuation g.

A substitution is a finite set of bindings x := t, with the usual conditions that no binding is trivial
(of the form x := x) and that every x in the set has at most one binding (substitutions are functional).
Examples are {x := f(x)} (“set new x equal to f -value of old x”), {x := y, y := x} (“swap values of x
and y”). If a substitution contains just a single binding we omit the curly brackets and write just the
assignment statement x := t. A converse substitution is a finite set of converse bindings (x := t)̆ , with
the same conditions as those for substitutions. An example is (x := f(x))̆ (“set old x equal to f -value of
new x”, or “look at all inputs g that differ from the output h only in x, and that satisfy f(g(x)) = h(x)”).

A variable state in a model M = 〈D, I〉 is a member of DVar, where Var is the set of variables of the
language. Letting g, h, k range over variable states, the interpretation of DPL and the extensions that we
study, in a model M = 〈D, I〉, is given by the following definition:

g[[∃x]]Mh iff h = gx
d for some d ∈ D

g[[Rt1 . . . tn]]Mh iff h = g and 〈tM,g
1 , . . . , tM,g

n 〉 ∈ RM

g[[t1 ≈ t2]]
Mh iff h = g and tM,g

1 = tM,g
2

g[[¬φ]]Mh iff h = g and there is no k such that g[[φ]]Mk

g[[φ;ψ]]Mh iff g[[φ]]Mk and k[[ψ]]Mh for some k ∈ DVar

g[[σ]]Mh iff h = gx1···xn
d1···dn

where {x1, . . . , xn} = dom(σ) and di = σ(xi)
M,g

g[[σ̆]]Mh iff g = hx1···xn
d1···dn

where {x1, . . . , xn} = dom(σ) and di = σ(xi)
M,h

g[[∃∃x(φ)]]Mh iff (gx
d )[[φ]]Mk and h = kx

g(x) for some d ∈ D, k ∈ DVar

g[[φ ∪ ψ]]Mh iff g[[φ]]Mh or g[[ψ]]Mh

g[[φ ∩ ψ]]Mh iff g[[φ]]Mh and g[[ψ]]Mh

g[[φ ]̆]Mh iff h[[φ]]Mg.
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With DPL we will denote the basic language. Extensions will be indicated with DPL(X), where X is a set
of operators. For instance, DPL(σ, )̆ denotes the extension of DPL with simultaneous substitutions and
converse.

2 The Lattices of DPL and DPL(∗) Extensions

The following figure represents the lattice of all possible combinations of DPL with operators from
{∪,∩, ,̆ σ, σ̆,∃∃} (union, intersection, converse, simultaneous substitution, converse substitution, hiding).
It indicates which operators can be defined in terms of which; the labels on the arrows indicate counterex-
amples to equal expressivity, i.e., formulas from the lower language that don’t have a counterpart in the
upper language.

DPL,DPL(̆ )

DPL(σ)
x:=f(x)

DPL(∪), DPL(∪, )̆

∃x∪∃y

DPL(σ̆)

(x:=f(x))˘

DPL(∪, σ)

∃x∪∃y

x:=f(x)

DPL(̆ , σ), DPL(̆ , σ̆)
DPL(σ, σ̆), DPL(̆ , σ, σ̆) x:=f(x)

(x:=f(x))˘

DPL(∪, σ̆)

∃x∪∃y

(x:=f(x))˘

DPL(∪, ,̆ σ), DPL(∪, ,̆ σ̆)
DPL(∪, σ, σ̆), DPL(∪, ,̆ σ, σ̆)

∃x∪∃y

x:=f(x)

(x:=f(x))˘

DPL(X ⊆ {∪,∩, ,̆ σ, σ̆,∃∃})
where X ∩ {∩,∃∃} 6= ∅

∃∃y(y=x;∃x;Rxy)

Note that all 64 combinations of the six operators are present in the diagram. The diagram makes
immediately clear which extensions of DPL are closed under converse: precisely those which are in the
same node of the lattice as the corresponding version of DPL with converse operator. Adding Kleene star
gives an isomorphic lattice for DPL(∗) and its extensions: none of the distinctions collapse because the
same counter-examples to equal expressivity still work. The justification of the lattices is in Section 5.

3 Expressivity and Programming Constructs

Most of the operators we consider for extending DPL have obvious uses in programming [2, 6]. Kleene
star allows the implementation of while loops.

∃s;∃i; s ≈ 0; i ≈ −1; (i 6≈ n; i := i+ 1; s := s+ b(i))∗; i ≈ n (1)

Program (1) computes the sum of the n + 1 elements of an array b and places the result in the variable
s. If the value for n is not known beforehand (at ‘compile time’), it is not possible to write an equivalent
program without the use of ∗.

(x ≈ 1; ∃y; y ≈ t1) ∪ (x ≈ 0;∃z; z ≈ t2) (2)

Nondeterminism (∪) allows conditional execution: program (2) changes the value of either y or z, depend-
ing on the value of x. This cannot be done without ∪ (or stronger operators like ∩ or ∃∃).

The ∃∃ operator allows for the declaration of local variables. Simultaneous substitution permits per-
forming certain computations without the use of auxiliary variables, and finally converse and converse
simultaneous substitution are useful for pre- and postcondition reasoning, as they allow us to define the
inverses of programs under certain conditions (Chapter 21 in [3]).



4 Left-to-Right and Right-to-Left Substitution

Because the semantics of DPL formulas is completely symmetric, performing a substitution in a DPL
formula can be done in two directions: left-to-right and right-to-left [8] (see also [7], where substitu-
tions for DPL with a stack semantics are studied). Left-to-right substitutions affect the left-free variable
occurrences, right-to-left substitutions the right-free (or ‘actively bound’) variable occurrences.

The substitution lemma for first order logic has the form M |=g σ(φ) iff M |=gσ φ, given an obvious
safety condition on σ, to the effect that no variables in the range of σ should get accidentally captured by
quantifiers in φ.

One would like to prove a left-to-right substitution lemma for DPL to the effect that g[[σ(φ)]]h iff
gσ[[φ]]h (suppressing the parameter M for readability). Viewing the substitution itself as a state change,
we can decompose this into g[[σ]]g′[[φ]]h. This uses g[[σ]]k iff k = gσ. Since, in general, σ is not expressible
in DPL, we need to extend the language with substitutions [1].

The right-to-left substitution lemma for DPL that one would like to prove says that g[[σ̆(φ)]]h iff g[[φ]]hσ.
Viewing the right-to-left substitution itself as a state change, we can decompose this into g[[φ]]h′[[σ̆]]h. This
uses k[[σ̆]]h iff k = hσ. Again, since in general σ̆ is not expressible in DPL, we have a motivation to extend
the language with converse substitutions.

Use ◦ for relational composition of substitution expressions, defined in the standard way. Note that
σ; ρ is equivalent to σ(ρ), which is in turn equivalent to ρ ◦ σ. E.g., x := x + 1; y := x is equivalent to
{x := x+ 1, y := x+ 1}.

Every DPL(∪, σ) formula can be written with ; associating to the right, as a list of predicates, quan-
tifications, negations, choices and substitutions, with a substitution ρ at the end (possibly the empty
substitution). Left-to-right substitution in DPL(∪, σ) is defined by:

σ(ρ) := ρ ◦ σ
σ(ρ;φ) := ρ ◦ σ;φ

σ(∃v;φ) := ∃v;σ′φ where σ′ = σ\{v := t | t ∈ T}
σ(P t̄;φ) := Pσt̄;σφ

σ(t1 ≈ t2;φ) := σt1 ≈ σt2;σφ

σ(¬(φ1);φ2) := ¬(σφ1);σφ2

σ((φ1 ∪ φ2);φ3) := σ(φ1;φ3) ∪ σ(φ2;φ3)

A term t is left-to-right free for v in φ if all variables in t are input-constrained in all positions of the
left-free occurrences of v in φ. A substitution σ is safe for φ if all bindings v := t of σ are such that t is
left-to-right free for v in φ. This allows us to prove:

Lemma 1 (Left-to-Right Substitution) If σ is safe for φ then g[[σ(φ)]]h iff gσ[[φ]]h.

Right-to-left substitution is defined in a symmetric fashion, now reading the formulas in a left-associative
manner, with a converse substitution at the front, and overloading the notation by also using ◦ for the
relational composition of converse substitutions (defined as one would expect, to get σ̆ ◦ ρ̆ = (ρ ◦ σ)̆ ):

σ̆(ρ̆) := σ̆ ◦ ρ̆
σ̆(φ; ρ̆) := φ; σ̆ ◦ ρ̆
σ̆(φ;∃v) := σ̆′φ;∃v where σ̆′ = σ̆\{(v := t)̆ | t ∈ T}
σ̆(φ;P t̄) := σ̆φ;Pσt̄

σ̆(φ; t1 ≈ t2) := σ̆φ;σt1 ≈ σt2

σ̆(φ1;¬(φ2)) := σ̆φ1;¬(σ̆φ2);

σ̆(φ1; (φ2 ∪ φ3)) := σ̆(φ1;φ2) ∪ σ̆(φ1;φ3)

A term t is right-to-left free for v in φ if all variables in t are output-constrained in all positions of the
right-free (actively bound) occurrences of v in φ. A converse substitution σ̆ is safe for φ if all converse
bindings (v := t)̆ of σ̆ are such that t is right-to-left free for v in φ. This allows us to prove:

Lemma 2 (Right-to-Left Substitution) If σ̆ is safe for φ then g[[σ̆(φ)]]h iff g[[φ]]hσ.



5 The Justification of the DPL Extension Lattices

This section contains the proofs of the theorems that justify the lattices of DPL and DPL(∗) extensions.
Many of the proofs are generalizations of, or adaptations of, proofs given in [8].

Theorem 1 DPL(∃∃ ) is equally expressive as DPL(∪,∩, ,̆ σ, σ̆,∃∃ ).
Proof: Let a formula φ be given, and let V be the set of variables occurring in φ. Furthermore, let
V ′ and V ′′ be sets of variables, such that V, V ′ and V ′′ are mutually disjoint and of equal cardinality.
Let V = {x1, . . . , xn}, V ′ = {x′1, . . . , x′n}, and V ′′ = {x′′1 , . . . x′′n}. The following function C translates a
formula from DPL(∪,∩, ,̆ σ, σ̆,∃∃ ) into a test from DPL.

C(∃y) =
V

x∈V \{y} x
′ ≈ x

C(Rt1 . . . tn) =
V

x∈V x
′ ≈ x;Rt1 . . . tn

C(t1 ≈ t2) =
V

x∈V x
′ ≈ x; t1 ≈ t2

C(¬φ) =
V

x∈V x
′ ≈ x;¬(∃x′1; . . . ;∃x′n;C(φ))

C(φ;ψ) = ¬¬(∃x′′1 ; . . . ;∃x′′n;C(φ)[x
′
1/x′′

1 ,...,x′
n/x′′

n];C(ψ)[x1/x′′
1 ,...,xn/x′′

n])
C(φ ∩ ψ) = C(φ);C(ψ)
C(φ ∪ ψ) = ¬(¬C(φ);¬C(ψ))

C(φ )̆ = C(φ)[x1/x′
1,...,xn/x′

n,x′
1/x1,...,x′

n/xn]

C(σ) =
V

x∈dom(σ) x
′ ≈ σ(x);

V
x∈V \dom(σ) x

′ ≈ x

C(σ̆) =
V

x∈dom(σ) x ≈ σ(x)[x1/x′
1,...,xn/x′

n];
V

x∈V \dom(σ) x
′ ≈ x

C(∃∃x.φ) = ¬¬(∃x;∃x′;C(φ));x′ ≈ x

Here,
V

is used as a shorthand for a long composition, which is non-ambiguous because the order of the
particular sentences involved doesn’t matter. By induction, it can be shown that every φ containing only
variables in V , is equivalent to ∃∃x′1 . . . x′n(C(φ);x1 := x′1; . . . xn := x′n). 2

Theorem 2 DPL(∗,∃∃ ) is equally expressive as DPL(∗,∪,∩, ,̆ σ, σ̆,∃∃ )
Proof: As the proof of Theorem 1, now adding the following clause to the definition of C.

C(φ∗) = ¬¬(∃x′′1 ; . . . ;∃x′′n; (C(φ)[x
′
i/x′′

i ];
V

x∈V x := x′′)∗;
V

x∈V x ≈ x′)

2

It follows immediately that every formula φ ∈ DPL(∪,∩, ,̆ σ, σ̆,∃∃ ) is equivalent to a first order logic
formula, in the sense that φ can be executed in M with input assignment g iff the first order translation
of φ is true in M under g.

Theorem 3 (Visser) DPL(∃∃ ) can be embedded into DPL(∩).
Proof: Let φ be of the form ∃∃x(ψ), and let {y1, . . . , yn} = B(φ)\{x}, where B(φ) are the blocking
variables of φ, i.e., the variables y such that φ contains an ∃y not in the scope of a negation [8]. Then φ
is equivalent to (∃x;ψ;∃x) ∩ (∃y1; . . . ;∃yn) 2

In a similar way, the following can be proved:

Theorem 4 DPL(∗,∃∃ ) can be embedded into DPL(∗,∩).

It is also easy to show that ∗ gets us beyond first order expressivity:

Theorem 5 The formula

¬(∃y; y ≈ 0; (∃z; z ≈ f(x);∃y; z ≈ f(y))∗;x ≈ y)

cannot be expressed in DPL(∪,∩, ,̆ σ, σ̆,∃∃ ).
Proof: On the natural numbers (interpreting f as the successor relation), this formula defines the odd
numbers. Oddness on the natural numbers cannot be captured in a first order formula with only successor.
2

Definition 1 A substitution {x1 := t1, . . . , xn := tn} is full if every xi occurs in some tj and every ti
contains some xj.



Examples of full substitutions are x := f(x) and {x := y, y := x}, while the substitution x := y is not full.
It is easy to see that full substitutions are closed under composition. Note that a substitution without
function symbols is full iff it is a renaming. Also, note that any formula of DPL(σ) or any of its extensions
can be transformed into a formula in the same language containing only full substitutions, by replacing
bindings of the form x := t, where t does not contain variables, by ∃x;x ≈ t.

Lemma 3 Every formula φ ∈ DPL(σ) is equivalent to a formula of one of the following forms (for some
ψ, x, χ, σ, where σ is full):

1. ¬¬χ;σ.

2. ψ;∃x;¬¬χ;σ.

Proof: First rewrite φ into a formula that contains only full substitutions. After that, the only non-trivial
case in the translation instruction is the case of τ ;ψ, where τ is full and ψ is of the first form, i.e., where
ψ is equivalent to ¬¬χ;σ, for some χ, σ, with σ full. In this case, τ ;ψ is equivalent to ¬¬(τ ;χ);σ ◦ τ ,
where σ ◦ τ is full because σ and τ are. 2

Theorem 6 (∃x ∪ ∃y) cannot be expressed in DPL(σ).
Proof: Suppose φ ∈ DPL(σ) is equivalent to (∃x∪∃y). Take a model with as domain the natural numbers,
and let R be the interpretation of φ. By Lemma 3, it follows that φ is equivalent to ψ;∃z;¬¬χ;σ, for some
formulas ψ, χ, some variable z and some full substitution σ (otherwise, φ would be deterministic). Two
cases can be distinguished.

1. z does not occur in σ. Without loss of generality, assume that z 6= x. Take any pair of assignments
g, h such that g 6= h and g ∼x h. Then gRh. Take any k 6= h such that k ∼z h. Then gRk, but g
and k differ with respect to two variables (x and z), which is in contradiction with the fact that φ is
equivalent to (∃x ∪ ∃y).

2. z occurs in σ. By the fact that there are no function symbols involved, and by the fact that σ is full,
there must be exactly one binding in σ of the form u := z. We can apply the same argument as
before, now using u instead of z, and again we arrive at a contradiction.

2

Since every substitution is equivalent to a DPL formula containing only full substitutions, and since every
full substitution without function symbols is a renaming, and therefore has a converse that is also a
renaming, we get:

Lemma 4 Every converse substitution containing no function symbols is equivalent to a formula in
DPL(σ).

This immediately gives:

Corollary 1 (∃x ∪ ∃y) cannot be expressed in DPL(σ, )̆.

By a straightforward induction we get:

Lemma 5 Every formula in DPL(σ,∪) is equivalent to a formula of the form φ1∪ . . .∪φn (n ≥ 1) where
each φi ∈ DPL(σ).

Theorem 7 (x := f(x))̆ cannot be expressed in DPL(σ,∪).
Proof: Suppose φ ∈ DPL(σ,∪) is equivalent to (x := f(x))̆ . By Lemma 5, we can assume that φ is
of the form φ1 ∪ . . . ∪ φn, where each φi ∈ DPL(σ). Consider the model with as domain {0, . . . , n}, and
where f is interpreted as the “successor modulo n+ 1” function.

Let us say that a relation R fixes a variable x if for ∀gh ∈ cod(R): g ∼x h implies that h = g.
Analyzing each φi, we can distinguish the following two cases.

• φi is equivalent to ¬¬χ;σ, with σ full. Then [[φi]] fixes x.

• φi is equivalent to ψ;∃y;¬¬χ;σ, again with σ full. If y occurs in σ, then let zi be the (unique)
variable such that σ contains a binding of the form zi := fk(y). If σ does not contain y then let
zi = y. Then it must be the case that [[φi]] fixes zi, for otherwise [[φi]] is not injective.



Thus, we have that every φi fixes some variable zi. Let {z1, . . . , zm} be all variables that are fixed by some
φi (where m ≤ n).

Consider all possible ways of assigning objects from the domain to the variables z1, . . . zm (assigning 0
to all other variables). This gives us (n+ 1)m assignments, each of which is in the co-domain of φ. Now,
of this space of assignments, each φi can cover only a small part: at most (n+ 1)m−1 (since one variable
is fixed). So, together, φ1, . . . , φn can cover at most n ∗ (n+ 1)m−1 = (n+ 1)m − (n+ 1)m−1 < (n+ 1)m

assignments, which means that some assignments are not in the co-domain of φ. This is in contradiction
with the fact that φ is equivalent to (x := f(x))̆ . 2

By symmetry, we get the following

Corollary 2 x := f(x) cannot be expressed in DPL(σ̆,∪).

Theorem 8 ∃∃ y(y ≈ x;∃x;Rxy) cannot be expressed in DPL(∪, σ, )̆.
Proof: The same proof as for Theorem 7 can be used. Assume a signature without function symbols. Let
the domain of the model be the set {0, . . . , n}. Let R be interpreted as “successor modulo n+ 1”. Then R
is interpreted in the same way as f was in the proof of Theorem 7. Notice that, under this interpretation,
∃∃ y(y ≈ x;∃x;Rxy) means the same as (x := f(x))̆ did in the proof of Theorem 7. It follows that
∃∃ y(y = x;∃x;Rxy) cannot be expressed in DPL(∪, σ). Since the signature contains no function symbols,
it follows by Lemma 4 that this formula cannot be expressed in DPL(∪, σ, )̆ either. 2

6 Conclusion and Future Work

Our study of extensions of DPL started from an observation about the process of substitution in a dynamic
setting. The substitution lemmas shed some further light on how variables are handled in DPL, and thus
indirectly on what the processes of anaphoric reference and anaphora resolution in natural language
analysis and variable declaration and variable use in programming have in common.

The formulas-as-programs languages that extend DPL hold promises for correctness reasoning and
program analysis. Tableau style reasoning for DPL(σ,∪, ∗) could be used for generating counterexamples
from incorrect programs. The formulas-as-programs perspective also simplifies the process of program
inversion. Gries’s example of the inversion of {x ≈ 3} x := 1 to {x ≈ 1} x := 3 involved a magical
transformation of a command into an assertion and vice versa. In the formulas-as-programs perspective
this becomes the mapping of x ≈ 3;∃x;x ≈ 1 to x ≈ 1;∃x;x ≈ 3, which is just a matter of two applications
of the inversion law (R ◦ S)̆ = S˘◦ R .̆ Inversion of substitutions can always be done by means of ,̆ but
sometimes σ̆ can again be written as a substitution: converses of renamings are themselves renamings,
(x := x+ 1)̆ is equivalent to x := x− 1, and so on. Further analysis of these matters is future work.
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