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wi.nlAbstra
t. The tableau substitution rule in free variable tableau reasoning is destru
-tive, for in general, T has 
onsequen
es that T� la
ks. We show how this destru
tivefeature 
an be eliminated in favour of a set-up that repla
es tableau substitution withthe generation and in
remental merge of variable 
onstraints on tableau bran
hes. Theapproa
h di�ers from other 
onstraint based te
hniques in tableau reasoning in thatwe 
onstrain tableau bran
hes rather than 
lauses, and use disuni�
ation 
onstraintsrather than uni�
ation 
onstraints. We prove soundness and 
ompleteness, with the
ompleteness proof based on a new way to generate models from open tableaux.1 Basi
 De�nitionsLanguage. Let � be a �rst order signature, and Fsko an in�nite set of skolem fun
-tions, with Fsko\F� = ;. Call the extended signature ��. If v ranges over variables,f over fun
tion symbols and P over predi
ate symbols, then the extended languageL�� is given by: t ::= v j f(t1; : : : ; tn) where f n-aryS ::= > j ? j v1 � t1 ^ � � � ^ vn � tn j S1 ^ S2C ::= > j ? j v1 6� t1 _ � � � _ vn 6� tn j C1 _ C2� ::= > j ? j P (t1; : : : ; tn) where P n-ary j :� j�1 ^ � � � ^ �n j �1 _ � � � _ �n j 8v� j 9v�An expression of the form S is 
alled a substitution expression, an expression of theform C a variable 
onstraint. The de�nitions of literals and 
lauses are as usual.Substitutions. A substitution � is a fun
tion V ! T�� that makes only a �nitenumber of 
hanges, i.e., � has the property that dom (�) = fv 2 V j v� 6= vg is�nite. We use � for the substitution with domain ; (the identity substitution), andwe represent a substitution � in the standard way, as a listfv1 7! v1�; : : : ; vn 7! vn�g;where fv1; : : : ; vng is dom (�). Alternatively, substitutions 
an be viewed as 
onjun
-tions of equalities, i.e., � 
orresponds to the 
onjun
tion v1 � v1� ^ � � � ^ vn � vn�.We 
an interpret su
h 
onjun
tions in the initial term algebra T (��) (the algebraof all 
losed �� terms), by means of:[[�℄℄ := f� 2 V T (��) j T (��) j=� �g:? Many thanks to the members of the Dynamo team: Balder ten Cate, Juan Heguiabehere andBreannd�an �O Nuall�ain.



It is not hard to see that this gives: [[�℄℄ = [[>℄℄ = V T (��), and [[� ^ �℄℄ = [[�℄℄\ [[�℄℄. If�; � are substitutions, then � � � if � is less general than �, i.e., if there is a � with� = ��. Note that � � � i� [[�℄℄ � [[�℄℄.1 The relation � is a pre-order (transitive andre
exive), and its poset re
e
tion is a partial order. For this, put � � � if � � � and� � �, and 
onsider substitutions modulo renaming. This immediately gives: � � �i� [[�℄℄ = [[�℄℄.The interpretations of substitution expressions in the initial term algebra under� form a meet semi-latti
e, with 
onjun
tion interpreted as \ (latti
e meet), i.e.,we have [[S1 ^ S2℄℄ = [[S1℄℄ \ [[S2℄℄. If [[S1 ^ S2℄℄ = [[?℄℄ = ; we say that S1 and S2 donot unify. In the other 
ase, S1 ^ S2 is (interpreted as) a most general uni�er for S1and S2. We get that [[>℄℄ (or [[�℄℄), the set of all variable maps in the ground termalgebra, is the top of the latti
e, and [[?℄℄ = ; its bottom.Variable Constraints. From a substitution �, derive a variable 
onstraint � by 
om-plementation, as follows: � =_fv 6� �(v) j v 2 dom (�)g:E.g., the 
omplement � of � = fx 7! a; y 7! bg is x 6� a _ y 6� b. Note that � = ?.The interpretations of variable 
onstraints in the initial term algebra under �form a join semi-latti
e, with disjun
tion interpreted as [ (latti
e join), i.e., we have[[C1_C2℄℄ = [[C1℄℄[[[C2℄℄. Again, the set of all variable maps in the ground term algebrais the top of the semi-latti
e, and [[?℄℄ = ; its bottom. If [[C1 _C2℄℄ = [[>℄℄ = V T (��)we say that C1 and C2 merge, or that C1 _ C2 is universally satis�able. We getthat [[?℄℄ (or [[�℄℄) equals ;, so � only merges with >. Call two 
onstraints C1 and C2equivalent if [[C1℄℄ = [[C2℄℄.Tableaux, Closed and Open Bran
hes. A tableau over � is a �nitely bran
hing treewith nodes labeled by L�� literals, or by variable 
onstraints. A bran
h in a tableauT is a maximal path in T . A bran
h B in a tableau T is 
losed if ? o

urs onB, otherwise B is open. To explain how a tableau for a set � of L�� formulas is
onstru
ted we assume the usual Smullyan [8℄ typology:� ; �1; : : : ; �n�1 ^ � � � ^ �n ; �1; : : : ; �n:(�1 _ � � � _ �n); :�1; : : : ;:�n::� ; �:> ; ?:? ; >
� ; �1; : : : ; �n�1 _ � � � _ �n ; �1; : : : ; �n:(�1 ^ � � � ^ �n); :�1; : : : ;:�n�)  ; :�;  
 ; 
18v�(v) ; �(v):9v�(v); :�(v) Æ ; Æ1:8v�(v); :�(v)9v�(v) ; �(v)The formulas de
ompose as follows: to de
ompose an � formula on a bran
h, extendthe bran
h with �1; : : : ; �n; to de
ompose a � formula on a bran
h, grow n new leafs1 We write � for `less general than' rather than the other way around, to get this natural 
orre-sponden
e with interpretations in the initial term model.



�1; : : : ; �n; to de
ompose a 
 formula, extend the bran
h with 
(w), where w is avariable that is fresh to the tableau; to de
ompose a Æ formula, extend the bran
hwith Æ1(skoÆ(v1; : : : ; vn)), where v1; : : : ; vn are the free variables in Æ, and skoÆ is askolem fun
tion for Æ. See [5℄.Initialization. Put > at the root node of the tableau.Expansion. Bran
hes of a tableau for a set of formulas � are expanded a

ording tothe Smullyan de
omposition re
ipe.Rigid Variables. The rigid variables of a bran
h are de�ned in terms of the rigidvariables of a node. The root node R has r(R) = ;. The nodes that are 
reated byan �; 
 or Æ rule have the same rigid variables as their parent node. If an appli
ationof a � rule 
reates daughter nodes N1, . . . , Nn, then r(Ni) is given by:r(Ni) := r(N) [(var (�i) \[fvar (�j) j 1 � j � n; i 6= j; �i o

urs on an open bran
h g):The set of rigid variables of a bran
h B is the rigid variable set at the end node ofB if B is �nite, or the set SN2B r(N) otherwise. This de�nition is extended to setsof bran
hes in an obvious way.Constraint Generation. Here 
omes the new element:L; L0� ;where L and L0 are literals with opposite sign on the 
urrent bran
h, and � is therestri
tion to the rigid variables of the 
urrent node of a most general substitution �with L� = L0�, where � has the property that it does not rename any rigid variablesof the bran
h.Remark. It is 
onvenient to use substitions � in the 
onstraint generation rule thatdo not rename any rigid bran
h variables. Suppose Px is a positive literal on abran
h, with x rigid, and suppose that y is not rigid on the bran
h. Then a mat
hwith :Py 
an rename either x or y. If x is renamed, a 
onstraint x 6� y is generated.If y is renamed, the 
onstraint ? is generated, be
ause we 
an take the 
onstraintbased on �, the restri
tion of the unifying substitution fy 7! xg of Px;:Py to therigid variables on the bran
h. This 
loses the bran
h without further ado.Lo
ked Variables. A rigid variable v is lo
ked in a tableau if there is a tableau subtreeT with{ 
1(v) at the root of T ,{ T has di�erent open bran
hes B;B0, with 
onstraints C on B, C 0 on B0, andwith v 6� t 2 C; v 6� t0 2 C 0, t and t0 di�erent,{ the part of B starting at C does not 
ontain 
1(w) for any w.A lo
ked variable is freed by a reappli
ation of an appropriate 
 rule, either to B orto B0, in su
h a way that this does not generate an alphabeti
 variant of T .



Computation Rules; Fairness A tableau 
omputation rule F is a fun
tion that forany tableau T for � 
omputes the next rule to be applied to T . This de�nes a partialorder on the set of tableaux for �, with the su

essor of T given by F . Then thereis a (possibly in�nite) sequen
e of tableaux for � starting from the initial tableau,and with supremum T1. A 
omputation rule F is fair if the following holds for allbran
hes B in T1:1. All formulas of type �; �; 
; Æ o

urring on B or in � were used to expand B,2. All lo
ked variables o

urring on B were freed by a reappli
ation of an appro-priate 
 rule (either to B or to the other bran
h involved in the lo
k).Note that it is thanks to the presen
e of 
onstraints that we 
an restri
t repetitionof the 
 rule, and that in�nite expansion of 
 formulas is not required in general. (Ifthe 
 rule reappli
ation that frees a lo
ked variable 
reates an alphabeti
 variant,the reappli
ation is spurious.)Variable Constraint Redu
tion. To 
he
k a tableau 
onsisting of n bran
hes for
losure, we apply 
onstraint merge for 
losure, to be de�ned in terms of joins ofvariable 
onstraints. Computing joins of variable 
onstraints is nothing but synta
ti
term uni�
ation under a di�erent guise. It is 
lear that � _ � redu
es to > i� � and� do not unify. Moreover, we have that � _ � redu
es to > i� � _ � is universallysatis�able:Theorem 1. � _ � redu
es to > i� [[� _ �℄℄ = [[>℄℄.Constraint Merge for Closure Che
k. If B1; : : : ;Bn are tableau bran
hes, and forall i 2 [1::n℄, �i is a 
onstraint on Bi, then the Constraint Merge for Closure Che
kgoes like this: �1; � � � ; �n
losure by: �1 ^ � � � ^ �n�1 _ � � � _ �n 6� >:The idea of 
onstraint merge for 
losure is that if the disjun
tion of � and � is notuniversally satis�able, then this means there exists an assignment that satis�es both� and �, whi
h means in turn that � and � 
an be uni�ed, and that (a substitution
orresponding to) �^� 
loses both bran
hes. Next, we try to extend the substitution�^� to a 
losing substitution for other bran
hes, until we get at a substitution that
loses the whole tableau.Open and Closed Tableaux. A tableau is open if one of the following two 
onditionsholds, otherwise it is 
losed :{ some bran
h in the tableau 
arries no 
onstraint,{ all bran
hes in the tableau 
arry 
onstraints, but all ways of pi
king 
onstraintsfrom di�erent bran
hes and merge them yield > (if one pi
ks an �i on ea
h Bi,then always �1 _ � � � _ �n � >).



Tableau Bundles; Herbrand Universes for Open Tableaux. A pair of di�erent bran
hesin a tableau is 
onne
ted if some variable distributes over the two bran
hes (i.e., somerigid variable o

urs on both bran
hes). Sin
e 
onne
tedness is symmetri
, the re-
exive transitive 
losure of this relation is an equivalen
e. A tableau bundle is anequivalen
e 
lass of 
onne
ted� bran
hes. We will 
onsider term models built fromHerbrand universes of ground terms. The Herbrand universe of a bundle B in atableau is the set of terms built from the skolem 
onstants and fun
tions that o

urin B, or, if no skolem 
onstants are present, the set of terms built from the 
onstant
 and the skolem fun
tions that o

ur in B. If B 
ontains no skolem fun
tions andB is �nite, the Herbrand universe of B is �nite; if B 
ontains skolem fun
tions itis in�nite. The models over su
h a Herbrand universe are 
ompletely spe
i�ed by aset of ground positive literals. We use HB for the Herbrand universe of B, and we
all a variable map � with dom (�) = vars(B) and rng (�) � HB a grounding for Bin HB, and a ground instan
e of a 
lause under a grounding for B in HB an HBinstan
e. Note that a grounding need not be a substitution, as the set vars(B) maybe in�nite.2 ExamplesUpper
ase 
hara
ters are used for predi
ates, x; y; z; u; : : : for variables, a; b; 
; : : : forindividual 
onstants (skolem 
onstants), f; g : : : for skolem fun
tions.Fig. 1. Refutation Proof Example.8xzy(Rxy ^Ryz ) Rxz);8u:Ruu; 9vw(Rvw ^ Rwv)Rab;RbaRxy ^Ryz ) Rxz:(Rxy ^ Ryz):Rxyx 6� a _ y 6� bx 6� b _ y 6� a :Ryzy 6� a _ z 6� by 6� b _ z 6� a
Rxz:Ruu?

Refutation Proof Example 1. To prove that every transitive and irre
exive relationis asymmetri
, we refute the following 
onjun
tion:8xzy(Rxy ^Ryz ) Rxz) ^ 8u:Ruu ^ 9vw(Rvw ^Rwv):



The tableau is given in Fig. 1. On the rightmost bran
h, we take 
are to use the
onstraint based on the substitution fu 7! x; u 7! yg that does not rename the rigidvariables x; y. This immediately leads to the 
onstraint � = ?, for u is not a rigidvariable of the bran
h.Constraint merge of x 6� a_y 6� b_y 6� a_z 6� b yields >, and so does 
onstraintmerge of x 6� b _ y 6� a _ y 6� b _ z 6� a, so these 
ombinations will never lead to arefutation of universal satis�ability. Constraint merge of x 6� a_y 6� b_y 6� b_z 6� ayields the 
onstraint x 6� a_ y 6� b_ z 6� a. Constraint merge of x 6� b_ y 6� a_ y 6�a_z 6� b yields the 
onstraint x 6� b_y 6� a_z 6� b. Both of these yield a non-trivial
onstraint when merged with ?. Thus, the substitutions fx 7! a; y 7! b; z 7! ag,fx 7! b; y 7! a; z 7! bg 
lose the tableau.Fig. 2. Another Refutation Proof Example.8xy(Sxy _ Syx);9zu(:Szu ^ :Suz):Sab ^ :Sba:Sab;:SbaSxy _ SyxSxyx 6� a _ y 6� bx 6� b _ y 6� a Syxy 6� a _ x 6� by 6� b _ x 6� aRefutation Proof Example 2. A tableau for the senten
e8xy(Sxy _ Syx) ^ 9zu(:Szu ^ :Suz)is given in Fig. 2. The 
onstraint merges that lead to non-trivial 
onstraints, andthus to 
losing substitutions, are: x 6� a _ y 6� b _ y 6� b _ x 6� a and x 6� b _ y 6�a _ y 6� a _ x 6� b.Closure Through Reappli
ation of 
 Rule. In Figure 3, a 
ase is shown where reap-pli
ation of a 
 rule is 
ru
ial to a
hieve 
losure.Model Generation Example. Consider a tableau for the senten
e8xy(Rxy _ Sxy) ^ :9zRza ^ :9uSub;



Fig. 3. Closure Through Reappli
ation of a 
 Rule.8x Px;:Pa _ :PbPy:Pay 6� aPzz 6� a
:Pby 6� b

Fig. 4. Model Generation Example.8xy(Rxy _ Sxy);:9zRza;:9uSubRxy _ SxyRxy:Rzax 6� z _ y 6� a Sxy:Subx 6� u _ y 6� bgiven in Fig. 4. This tableau does not 
lose, for the disjun
tion of the two 
onstraintsis universally satis�able, as it witnessed by the fa
t that x 6� z_y 6� a_x 6� u_y 6� bredu
es to >.Reappli
ation of the 
 rule to 8xy(Rxy _ Sxy) does give a subtree that is analphabeti
 variant of the tree we started out with, so su
h reappli
ations are spurious.Other than that, there are no further rule appli
ations, so we have an opentableau. A model for the senten
e is not generated by a single bran
h in this 
ase,as the two bran
hes share 
onstrained variables. The domain of a model generatedfrom this tableau is the set of 
losed terms of the tableau, i.e., the set fa; bg. The setof groundings in this domain 
onsists of �1 = fx 7! a; y 7! ag, �2 = fx 7! a; y 7! bg,�3 = fx 7! b; y 7! ag, �4 = fx 7! b; y 7! bg. �1 satis�es only the right bran
h, so itgenerates the fa
t Saa. �2 satis�es only the left bran
h, so it generates the fa
t Rab.�3 satis�es only the right bran
h, so it generates the fa
t Sba. Finally, �4 satis�esonly the left bran
h, so it generates the fa
t Rbb. The model is given by the set offa
ts fSaa;Rab; Sba;Rbbg.



3 Soundness, Model Generation, CompletenessAn assignment � in a model M meets a 
onstraint � if M j=� �. Let [[�℄℄M� give theterm interpretation in the model with respe
t to �. Then we have:Theorem 2. M j=� � i� there is a v 2 dom (�) with �(v) 6= [[v�℄℄M� .An assignment � satis�es a bran
h B of a tableau T in a model M if � meets all
onstraints on B, andM j=� L for all positive literals L on B. Notation: M j=� B.An assignment � satis�es a tableau T in a model M if � satis�es a bran
h of T .Notation: M j=� T . A tableau T is (universally) satis�able if for some model M itis the 
ase that all assignments � for M satisfy T in M. Notation: M j= T .Theorem 3 (Satis�ability). If � is a satis�able �rst order senten
e, then anytableau for � is satis�able.Proof. Let T be a tableau for �. Then either there is a �nite tableau sequen
eT 1; : : : ;T n = T , or there is an in�nite sequen
e T 1; : : :, with T = S1i=1 T i. In any
ase, T 1 
onsists of a single node >, and T i+1 is 
onstru
ted from T i by an appli-
ation of one of the tableau expansion rules, or by an appli
ation of the 
onstraintgeneration rule. To prove by indu
tion on n that T is satis�able, we have to 
he
kthat satis�ability is preserved by ea
h of these steps, and by the pro
ess of takinglimits. The only non-standard 
ase is that of 
onstraint generation.Take some M with M j= �. Assume that M j= T i, and T i+1 is the resultof applying 
onstraint generation to T i. Assume the bran
h to whi
h ConstraintGeneration is applied isB, the bran
h literals used in the rule are L;L0, the unifyingsubstitution is �, and the restri
tion of � to the rigid bran
h variables is �.Consider an assignment � that satis�es T i in M. In 
ase � satis�es a bran
hdi�erent from B then the new 
onstraint � will not a�e
t this, and � will satisfyT i+1 in M. Suppose, therefore, that � satis�es only B. We have to show that �satis�es �. Sin
e L;L0 are on bran
h B, we know that M j=� L and M 6j=� L0.Let assignment �0 be given by �0(v) = [[v�℄℄M� . We distinguish two 
ases. (1) IfM j=� L�, thenM j=�0 L, andM j=�0 L0, so �0 does not satisfyB. (2) IfM 6j=� L�,thenM 6j=�0 L, andM 6j=�0 L0, so again �0 does not satisfy B. In both 
ases, by theuniversal satis�ability of T i, there has to be a B0 with M j=�0 B0. Sin
e B is byassumption the only bran
h withM j=� B,M 6j=� B0. So there has to be a variablev that is both on B and B0 with the property that �(v) 6= �0(v). But this meansthat v 2 dom (�) and v is rigid in T i. It follows that v 2 dom (�), and that � doesmeet �, i.e., M j=� �. utTheorem 4 (Merge). If a tableau T 
loses by 
onstraint merge, then T is notuniversally satis�able.Proof. If T 
loses by 
onstraint merge then there is a way to pi
k 
onstraints �1,. . . , �n, one on ea
h tableau bran
h, su
h that �1 _ � � � _ �n does not redu
e to >.By Theorem 1, this means that �1 _ � � � _ �n is not universally satis�able in theinitial term algebra. It follows that �1 _ � � � _ �n is not universally satis�able in anymodel. ut



Theorem 5 (Soundness). If there is a tableau refutation for a senten
e �, then� is unsatis�able.Proof. Immediate from the Satis�ability Theorem and the Merge Theorem. utA variable map � meets a 
onstraint � if � 2 [[�℄℄. A variable map � is 
ompatiblewith a bran
h B if � meets all 
onstraints � on B. A variable map � is 
ompatiblewith a bundle B if � is 
ompatible with at least one bran
h B of B.Theorem 6 (Compatibility). If a tableau bundle B is open, then every variablemap � is 
ompatible with B.Proof. Assume B 
onsists of bran
hes Bi (i�0). We have to show that every variablemap is 
ompatible with at least one Bi. Suppose � is a variable map that is not
ompatible with any B 2 B. Then for ea
h of the Bi there is a 
onstraint �i on Bisu
h that � 2 [[�i℄℄. Sin
e variable maps modulo renaming form a 
omplete latti
eunder �, it follows that � � V(i�0) �i. Now any 
onstraint is at �nite distan
e fromthe root of the tableau, so there has to be a �nite set of 
onstraints �1; : : : ; �n with8i � 0 9j � n su
h that �j o

urs on Bi. But then �1 _ � � � _ �n does not redu
e to>, and 
ontradi
tion with the assumption that B is open. utTheorem 7 (Model Generation). Every open tableau is satis�able.Proof. Sin
e in a Herbrand universe groundings play the role of assignments, all wehave to do to satisfy a tableau T in a Herbrand model is look at all the groundinstan
es of the tableau. To generate a model from an open tableau, pro
eed asfollows. Pi
k an open bundle B, and 
onsider groundings for B in HB.{ If there is an un
onstrained B 2 B, the set of all HB instan
es of the positiveliterals along B 
onstitutes a model for the tableau. It is 
lear that the modelsatis�es the tableau.{ If all bran
hes in B are 
onstrained, then generate HB instan
es from groundingsfor B inHB, as follows. For every grounding � for B inHB, we 
an pi
k, a

ordingto the Compatibility Theorem, a bran
hB in B that is 
ompatible with �. Colle
tthe ground instan
es of the positive literals of B. The union, for all groundings�, of the sets of ground positive literals 
olle
ted from bran
hes 
ompatible with�, 
onstitutes a model for the tableau. Again, it is 
lear that the model satis�esthe tableau. utTheorem 8 (Completeness). If a set of formulas � is unsatis�able, then thereexists a tableau refutation for �.Proof. Immediate from the Model Generation Theorem. ut4 Fair ComputationA tableau 
al
ulus is non-destru
tive if all tableaux that 
an be 
onstru
ted withthe help of its rules from a given tableau T 
ontain T as an initial subtree [5℄.The usual versions of free variable tableaux are all destru
tive. Clearly, the present




al
ulus is non-destru
tive. A tableau 
al
ulus is proof 
on
uent if every tableau foran unsatis�able set of formulas � 
an be extended to a 
losed tableau [5℄. Again, it is
lear that the present 
al
ulus is proof-
on
uent. Be
ause of its non-destru
tivenessand proof-
on
uen
e, fair 
omputation with 
onstrained tableaux is easy. The usualfairness 
onditions for tableau expansion are repla
ed by more sophisti
ated ones interms of 
onstraints (freeing of lo
ked variables, 
utting o� rule appli
ations thatlead to alphabeti
 variants). As the 
al
ulus is non-destru
tive, no ba
ktra
king isever needed in the merge 
he
k for 
losure.5 Related WorkThe standard referen
e for free variable reasoning in �rst order tableaux is [2℄, butthe idea to use free variables in theorem proving as pla
eholders to delay instan-tiation is already present in Prawitz [7℄. With the introdu
tion of free variables intableaux, easy model generation from open tableaux got lost. Working with vari-able 
onstraints in the manner explained above restores this delightful property oftableau reasoning.The resear
h for this paper was sparked o� by a suggestion from [3℄ to do tableauproof sear
h by merging 
losing substitutions for tableau bran
hes into a 
losing sub-stitution for the whole tableau (see also [4℄). From the model generation perspe
tive,this is turned around: the negations of the substitutions that 
lose a bran
h 
an beviewed as 
onstraints on bran
h satis�ability. The perspe
tive of the present paperis worked out more fully in [9℄ in the 
ontext of hyper tableaux [1℄. We are experi-menting with implementations of 
onstrained (hyper) tableau reasoning in Haskell[6℄, with merge 
he
ks for 
losure performed on tableau bran
hes represented as lazylists.Referen
es1. P. Baumgartner, P. Fr�ohli
h, and I. Niemel�a. Hyper tableaux. In Pro
eedings JELIA 96, Le
tureNotes in Arti�
ial Intelligen
e. Springer, 1996.2. M. Fitting. First-order Logi
 and Automated Theorem Proving; Se
ond Edition. Springer Verlag,Berlin, 1996.3. Martin Giese. Proof sear
h without ba
ktra
king using instan
e streams, position paper. InPro
. Int. Workshop on First-Order Theorem Proving, St. Andrews, S
otland, 2000. Availableonline at http://i12www.ira.uka.de/~key/do
/2000/giese00.ps.gz.4. Martin Giese. In
remental 
losure of free variable tableaux. In IJCAR 2001 Pro
eedings, 2001.5. R. H�ahnle. Tableaux and related methods. In Alan Robinson and Andrei Voronkov, editors,Handbook of Automated Reasoning. Elsevier S
ien
e Publishers, to appear, 2001.6. S. Peyton Jones, J. Hughes, et al. Report on the programming language Haskell 98. Availablefrom the Haskell homepage: http://www.haskell.org, 1999.7. D. Prawitz. An improved proof pro
edure. In J. Siekmann and G. Wrightson, editors, Automationof Reasoning. Classi
al Papers in Computational Logi
, pages 162{201. Springer, 1983. Originallyappeared in Theoria in 1960.8. R. Smullyan. First-order logi
. Springer, Berlin, 1968.9. J. van Eij
k. Constrained hyper tableaux. In Pro
eedings of CSL'01 (to appear), 2001. Ele
tron-i
ally available ast http://www.
wi.nl/~jve/papers/01/Eij
k01b.ps.gz.


