Model Generation from Constrained Free Variable
Tableaux

Jan van Eijck*

CWTI and ILLC, Amsterdam, Uil-OTS, Utrecht; jve@cwi.nl

Abstract. The tableau substitution rule in free variable tableau reasoning is destruc-
tive, for in general, T has consequences that T'o lacks. We show how this destructive
feature can be eliminated in favour of a set-up that replaces tableau substitution with
the generation and incremental merge of variable constraints on tableau branches. The
approach differs from other constraint based techniques in tableau reasoning in that
we constrain tableau branches rather than clauses, and use disunification constraints
rather than unification constraints. We prove soundness and completeness, with the
completeness proof based on a new way to generate models from open tableaux.

1 Basic Definitions

Language. Let X be a first order signature, and Fgy, an infinite set of skolem func-
tions, with Fy, N Fs; = (. Call the extended signature X*. If v ranges over variables,
f over function symbols and P over predicate symbols, then the extended language
L+ is given by:

ti=wv| f(t1,...,t,) where f n-ary
Su=T|L|lvumti A ANv,=t, | STAS,
Cuo=T|L|lvygtyV---Vu, %t, | CLVCs
¢pu=T|L|P(t,...,t,) where P n-ary | =¢ |
GLA A | BV -V | Voo | T

An expression of the form S is called a substitution expression, an expression of the
form C a variable constraint. The definitions of literals and clauses are as usual.

Substitutions. A substitution o is a function V' — T« that makes only a finite
number of changes, i.e., o has the property that dom (¢) = {v € V | vo # v} is
finite. We use € for the substitution with domain () (the identity substitution), and
we represent a substitution ¢ in the standard way, as a list

{v1 = vio, ... 0 = Vo),

where {v1,...,v,} is dom (o). Alternatively, substitutions can be viewed as conjunc-
tions of equalities, i.e., o corresponds to the conjunction v; = vi0 A --- A v, = v,0.
We can interpret such conjunctions in the initial term algebra T(X*) (the algebra
of all closed X* terms), by means of:

[o] .= {a € VT(5*) | T(Z*) =a 0}

* Many thanks to the members of the Dynamo team: Balder ten Cate, Juan Heguiabehere and
Breanndan O Nuallain.

It is not hard to see that this gives: [¢] = [T] = VT(X*), and [o A p] = [o] N [p]. If
o, p are substitutions, then o < p if p is less general than o, i.e., if there is a 6 with
o = pf. Note that o < p iff [o] C [p].! The relation < is a pre-order (transitive and
reflexive), and its poset reflection is a partial order. For this, put o ~ p if 0 < p and
p = o, and consider substitutions modulo renaming. This immediately gives: ¢ ~ p
i [o] = [o]-

The interpretations of substitution expressions in the initial term algebra under
C form a meet semi-lattice, with conjunction interpreted as N (lattice meet), i.e.,
we have [S1 A So] = [S1] N [Se]. If [S1 A S2] = [L] = 0 we say that S; and Sy do
not unify. In the other case, S; A S is (interpreted as) a most general unifier for Sy
and Sy. We get that [T] (or [€]), the set of all variable maps in the ground term
algebra, is the top of the lattice, and [L] = @ its bottom.

Variable Constraints. From a substitution o, derive a variable constraint @ by com-
plementation, as follows:

qQl

=\/{v #0() | v € dom (0)}.

E.g., the complement 7 of 0 = {z +— a,y — b} is x Z a Vy % b. Note that e = L.

The interpretations of variable constraints in the initial term algebra under C
form a join semi-lattice, with disjunction interpreted as U (lattice join), i.e., we have
[C1VCs] = [C1]U[C2]. Again, the set of all variable maps in the ground term algebra
is the top of the semi-lattice, and [L] = () its bottom. If [C; V Co] = [T] = VT(X*)
we say that Cy and Cy merge, or that Cy V Cy is universally satisfiable. We get
that [L] (or [€]) equals @, so € only merges with T. Call two constraints C; and Cs
equivalent if [C1] = [C2].

Tableauzx, Closed and Open Branches. A tableau over X is a finitely branching tree
with nodes labeled by L+ literals, or by variable constraints. A branch in a tableau
T is a maximal path in T. A branch B in a tableau T is closed if 1 occurs on
B, otherwise B is open. To explain how a tableau for a set @ of Ly« formulas is
constructed we assume the usual Smullyan [8] typology:

o ~r Ay, Oy B > BI,---aﬂn
qsl/\/\qsn ~ ¢17"'7¢TL ¢1VV¢n ~ ¢1»-"a¢n
(P1 Ve Vp) ~ =i, (1 A Adn) ~ 2,

—¢ ~ ¢ b= ~ g,
Yoo~ m 0 ~ 0
Vup(v) ~ $(v) —Vud(v) ~ =g (v)
~Fvd(v) ~ —¢(v) Fvg(v) ~ ¢(v)
The formulas decompose as follows: to decompose an « formula on a branch, extend
the branch with a4, ..., ay,; to decompose a § formula on a branch, grow n new leafs

! We write < for ‘less general than’ rather than the other way around, to get this natural corre-
spondence with interpretations in the initial term model.

B,y Bn; to decompose a v formula, extend the branch with y(w), where w is a
variable that is fresh to the tableau; to decompose a § formula, extend the branch
with d1 (skog(v1,...,vy,)), where vy,...,v, are the free variables in ¢, and skogs is a
skolem function for 4. See [5].

Initialization. Put T at the root node of the tableau.

Ezpansion. Branches of a tableau for a set of formulas @ are expanded according to
the Smullyan decomposition recipe.

Rigid Variables. The rigid variables of a branch are defined in terms of the rigid
variables of a node. The root node R has r(R) = (). The nodes that are created by
an «,y or 0 rule have the same rigid variables as their parent node. If an application
of a (8 rule creates daughter nodes Ny, ..., N, then r(NV;) is given by:

r(N;) :=r(N)U
(var (5;) N U{var (Bj) | 1 <j <mn,i#j, 0B occurs on an open branch }).

The set of rigid variables of a branch B is the rigid variable set at the end node of
B if B is finite, or the set |y pg r(N) otherwise. This definition is extended to sets
of branches in an obvious way.

Constraint Generation. Here comes the new element:
L, L'
a)
where I and I/ are literals with opposite sign on the current branch, and 6 is the
restriction to the rigid variables of the current node of a most general substitution o

with Lo = L'o, where o has the property that it does not rename any rigid variables
of the branch.

Remark. Tt is convenient to use substitions o in the constraint generation rule that
do not rename any rigid branch variables. Suppose Pz is a positive literal on a
branch, with z rigid, and suppose that y is not rigid on the branch. Then a match
with =Py can rename either x or y. If x is renamed, a constraint = % y is generated.
If y is renamed, the constraint | is generated, because we can take the constraint
based on €, the restriction of the unifying substitution {y — =} of Pz, —~Py to the
rigid variables on the branch. This closes the branch without further ado.

Locked Variables. A rigid variable v is locked in a tableau if there is a tableau subtree
T with

— v1(v) at the root of T,

— T has different open branches B, B’, with constraints C' on B, C' on B’, and
withvste Cv#t €', tandt' different,

— the part of B starting at C' does not contain ~y; (w) for any w.

A locked variable is freed by a reapplication of an appropriate 7 rule, either to B or
to B’, in such a way that this does not generate an alphabetic variant of T'.

Computation Rules; Fairness A tableau computation rule F' is a function that for
any tableau T for @ computes the next rule to be applied to T'. This defines a partial
order on the set of tableaux for @, with the successor of T given by F'. Then there
is a (possibly infinite) sequence of tableaux for @ starting from the initial tableau,
and with supremum T,. A computation rule F is fair if the following holds for all
branches B in T :

1. All formulas of type a, 3,7, occurring on B or in @ were used to expand B,

2. All locked variables occurring on B were freed by a reapplication of an appro-
priate 7 rule (either to B or to the other branch involved in the lock).

Note that it is thanks to the presence of constraints that we can restrict repetition
of the v rule, and that infinite expansion of v formulas is not required in general. (If
the v rule reapplication that frees a locked variable creates an alphabetic variant,
the reapplication is spurious.)

Variable Constraint Reduction. To check a tableau consisting of n branches for
closure, we apply constraint merge for closure, to be defined in terms of joins of
variable constraints. Computing joins of variable constraints is nothing but syntactic
term unification under a different guise. It is clear that 7V p reduces to T iff o and
p do not unify. Moreover, we have that @ V p reduces to T iff 7 V p is universally
satisfiable:

Theorem 1. 7V p reduces to T iff [c Vo] =[T].

Constraint Merge for Closure Check. 1If By,..., B, are tableau branches, and for
all i € [1..n], 7; is a constraint on B;, then the Constraint Merge for Closure Check
goes like this:

U_la yOn

closure by: 01/\---/\(7,201\/”'\/0” 7T
The idea of constraint merge for closure is that if the disjunction of & and p is not
universally satisfiable, then this means there exists an assignment that satisfies both
o and p, which means in turn that ¢ and p can be unified, and that (a substitution
corresponding to) o A p closes both branches. Next, we try to extend the substitution
o A p to a closing substitution for other branches, until we get at a substitution that
closes the whole tableau.

Open and Closed Tableauz. A tableau is open if one of the following two conditions
holds, otherwise it is closed:

— some branch in the tableau carries no constraint,

— all branches in the tableau carry constraints, but all ways of picking constraints
from different branches and merge them yield T (if one picks an &; on each B;,
then always a7 V---Va, =T).

Tableau Bundles; Herbrand Universes for Open Tableauz. A pair of different branches
in a tableau is connected if some variable distributes over the two branches (i.e., some
rigid variable occurs on both branches). Since connectedness is symmetric, the re-
flexive transitive closure of this relation is an equivalence. A tableau bundle is an
equivalence class of connected® branches. We will consider term models built from
Herbrand universes of ground terms. The Herbrand universe of a bundle B in a
tableau is the set of terms built from the skolem constants and functions that occur
in B, or, if no skolem constants are present, the set of terms built from the constant
c and the skolem functions that occur in B. If B contains no skolem functions and
B is finite, the Herbrand universe of B is finite; if B contains skolem functions it
is infinite. The models over such a Herbrand universe are completely specified by a
set of ground positive literals. We use Hy for the Herbrand universe of B, and we
call a variable map o with dom (¢) = vars(B) and rng (o) € Hg a grounding for B
in Hg, and a ground instance of a clause under a grounding for B in Hyg an Hp
instance. Note that a grounding need not be a substitution, as the set vars(B) may
be infinite.

2 Examples

Uppercase characters are used for predicates, z,y, z, u, ... for variables, a, b, c, ... for
individual constants (skolem constants), f,g... for skolem functions.

Fig. 1. Refutation Proof Example.

Vzzy(Rry A Ryz = Rzrz),Yu~Ruu, Jvw(Rvw A Rwv)
Rab, Rba

Rxzy A Ryz = Rxz

—(Rzy A Ryz) Rxz

- Rxy - Ryz —Ruu
rEaVyZb y#aVzgb
rEbVy#a y#bVzsa

Refutation Proof Example 1. To prove that every transitive and irreflexive relation
is asymmetric, we refute the following conjunction:

Vzzy(Rry A Ryz = Rrz) A Yu-Ruu A Jvw(Rvw A Ruwv).

The tableau is given in Fig. 1. On the rightmost branch, we take care to use the
constraint based on the substitution {u +— z,u — y} that does not rename the rigid
variables z,y. This immediately leads to the constraint € = 1, for u is not a rigid
variable of the branch.

Constraint merge of z 2 aVy % bVy % aVz % b yields T, and so does constraint
merge of t 2 bVy % aVy#bVz%a,so these combinations will never lead to a
refutation of universal satisfiability. Constraint merge of z %6 aVy £ bVy £ bVz % a
yields the constraint £ 22 a Vy % bV z % a. Constraint merge of z 2 bVy £ aVy %
aV z % b yields the constraint z 2 bVy % aV z % b. Both of these yield a non-trivial
constraint when merged with L. Thus, the substitutions {z — a,y — b,z — a},
{z — b,y — a,z — b} close the tableau.

Fig. 2. Another Refutation Proof Example.

Vzy(Szy V Syz), Izu(=Szu A =Suz)

=Sab A =Sba
—Sab, ~Sba
Sty V Syx
Szy Syx
rEaVy#b ygavrgb
r#bVyRa y#EbVr#a

Refutation Proof Example 2. A tableau for the sentence
Vay(Szy V Syx) A Jzu(—=Szu A ~Suz)
is given in Fig. 2. The constraint merges that lead to non-trivial constraints, and

thus to closing substitutions, are: z Z aVy £ bVy £ bV % acand z %£bVyz
aVykaVzxkb.

Closure Through Reapplication of v Rule. In Figure 3, a case is shown where reap-
plication of a « rule is crucial to achieve closure.

Model Generation Example. Consider a tableau for the sentence

Vzy(Rzy V Szy) A —3JzRza A =FuSub,

Fig. 3. Closure Through Reapplication of a v Rule.

Ve Px,—PaV —-Pb

Y
y#a y#b
Pz
2 #a

Fig. 4. Model Generation Example.

Vzy(Rzy V Szy), —3zRza, ~IuSub

Rxy V Sxy
Rzy Szy
-Rza —Jub
|
r#zVya rEuVy#b

given in Fig. 4. This tableau does not close, for the disjunction of the two constraints
is universally satisfiable, as it witnessed by the fact that z £ 2Vy £ aVz £ uVy £ b
reduces to T.

Reapplication of the 7 rule to Vzy(Rzy V Szy) does give a subtree that is an
alphabetic variant of the tree we started out with, so such reapplications are spurious.

Other than that, there are no further rule applications, so we have an open
tableau. A model for the sentence is not generated by a single branch in this case,
as the two branches share constrained variables. The domain of a model generated
from this tableau is the set of closed terms of the tableau, i.e., the set {a,b}. The set
of groundings in this domain consists of 81 = {x — a,y — a}, 0, = {z — a,y — b},
03 = {z — b,y — a}, 04 = {x — b,y — b}. 01 satisfies only the right branch, so it
generates the fact Saa. 05 satisfies only the left branch, so it generates the fact Rab.
03 satisfies only the right branch, so it generates the fact Sba. Finally, 6, satisfies
only the left branch, so it generates the fact Rbb. The model is given by the set of
facts {Saa, Rab, Sba, Rbb}.

3 Soundness, Model Generation, Completeness

An assignment « in a model M meets a constraint 7 if M |=, @. Let [-]M give the
term interpretation in the model with respect to a. Then we have:

Theorem 2. M |=, @ iff there is a v € dom (o) with a(v) # [vo]M.

An assignment « satisfies a branch B of a tableau T in a model M if « meets all
constraints on B, and M |=, L for all positive literals L on B. Notation: M |=, B.
An assignment « satisfies a tableau T in a model M if « satisfies a branch of T.
Notation: M =, T. A tableau T is (universally) satisfiable if for some model M it
is the case that all assignments « for M satisfy T in M. Notation: M |=T.

Theorem 3 (Satisfiability). If & is a satisfiable first order sentence, then any
tableau for @ is satisfiable.

Proof. Let T be a tableau for @. Then either there is a finite tableau sequence
Ty,..., Ty, =T, or there is an infinite sequence T1,..., with T = |J°; T;. In any
case, T'; consists of a single node T, and T'; 1 is constructed from T'; by an appli-
cation of one of the tableau expansion rules, or by an application of the constraint
generation rule. To prove by induction on n that T is satisfiable, we have to check
that satisfiability is preserved by each of these steps, and by the process of taking
limits. The only non-standard case is that of constraint generation.

Take some M with M |= &. Assume that M |= T;, and T;y; is the result
of applying constraint generation to T';. Assume the branch to which Constraint
Generation is applied is B, the branch literals used in the rule are L, f,, the unifying
substitution is o, and the restriction of ¢ to the rigid branch variables is 6.

Consider an assignment « that satisfies T'; in M. In case « satisfies a branch
different from B then the new constraint § will not affect this, and o will satisfy
T;11 in M. Suppose, therefore, that « satisfies only B. We have to show that «
satisfies 0. Since L, T’ are on branch B, we know that M Fo Land M £, L.

Let assignment o be given by o/ (v) = [vo]M. We distinguish two cases. (1) If
M 4 Lo, then M = Ly and M = L', so o does not satisfy B. (2) If M (-, Lo,
then M [£y L, and M £, L', so again o does not satisfy B. In both cases, by the
universal satisfiability of T';, there has to be a B' with M =, B'. Since B is by
assumption the only branch with M |=, B, M £, B’. So there has to be a variable
v that is both on B and B’ with the property that a(v) # o(v). But this means
that v € dom (o) and v is rigid in T';. It follows that v € dom (0), and that « does
meet 6, i.e., M =4 6. O

Theorem 4 (Merge). If a tableau T closes by constraint merge, then T is not
universally satisfiable.

Proof. If T closes by constraint merge then there is a way to pick constraints o7,

.., On, one on each tableau branch, such that 7 V --- V &, does not reduce to T.
By Theorem 1, this means that &7 V --- V &, is not universally satisfiable in the
initial term algebra. It follows that &1 V --- V @, is not universally satisfiable in any
model. O

Theorem 5 (Soundness). If there is a tableau refutation for a sentence @, then
@ is unsatisfiable.

Proof. Immediate from the Satisfiability Theorem and the Merge Theorem. O

A variable map 0 meets a constraint @ if 6 € [g]. A variable map 6 is compatible
with a branch B if 8 meets all constraints @ on B. A variable map 6 is compatible
with a bundle B if 8 is compatible with at least one branch B of B.

Theorem 6 (Compatibility). If a tableau bundle B is open, then every variable
map 0 is compatible with B.

Proof. Assume B consists of branches B; (;>0). We have to show that every variable
map is compatible with at least one B;. Suppose 0 is a variable map that is not
compatible with any B € B. Then for each of the B; there is a constraint &; on B;
such that 6 € [o;]. Since variable maps modulo renaming form a complete lattice
under =, it follows that 6 < /\(i>0) 0;- Now any constraint is at finite distance from

the root of the tableau, so there has to be a finite set of constraints o7,...,7, with
Vi > 0 dj < n such that o occurs on B;. But then o7V --- V5, does not reduce to
T, and contradiction with the assumption that B is open. ad

Theorem 7 (Model Generation). Every open tableau is satisfiable.

Proof. Since in a Herbrand universe groundings play the role of assignments, all we
have to do to satisfy a tableau T in a Herbrand model is look at all the ground
instances of the tableau. To generate a model from an open tableau, proceed as
follows. Pick an open bundle B, and consider groundings for B in Hp.

— If there is an unconstrained B € B, the set of all Hp instances of the positive
literals along B constitutes a model for the tableau. It is clear that the model
satisfies the tableau.

— If all branches in B are constrained, then generate Hp instances from groundings
for B in Hp, as follows. For every grounding ¢ for B in Hp, we can pick, according
to the Compatibility Theorem, a branch B in B that is compatible with 6. Collect
the ground instances of the positive literals of B. The union, for all groundings
0, of the sets of ground positive literals collected from branches compatible with
0, constitutes a model for the tableau. Again, it is clear that the model satisfies
the tableau. O

Theorem 8 (Completeness). If a set of formulas ® is unsatisfiable, then there
exists a tableau refutation for @.

Proof. Immediate from the Model Generation Theorem. ad

4 Fair Computation

A tableau calculus is non-destructive if all tableaux that can be constructed with
the help of its rules from a given tableau T contain T as an initial subtree [5].
The usual versions of free variable tableaux are all destructive. Clearly, the present

calculus is non-destructive. A tableau calculus is proof confluent if every tableau for
an unsatisfiable set of formulas @ can be extended to a closed tableau [5]. Again, it is
clear that the present calculus is proof-confluent. Because of its non-destructiveness
and proof-confluence, fair computation with constrained tableaux is easy. The usual
fairness conditions for tableau expansion are replaced by more sophisticated ones in
terms of constraints (freeing of locked variables, cutting off rule applications that
lead to alphabetic variants). As the calculus is non-destructive, no backtracking is
ever needed in the merge check for closure.

5 Related Work

The standard reference for free variable reasoning in first order tableaux is [2], but
the idea to use free variables in theorem proving as placeholders to delay instan-
tiation is already present in Prawitz [7]. With the introduction of free variables in
tableaux, easy model generation from open tableaux got lost. Working with vari-
able constraints in the manner explained above restores this delightful property of
tableau reasoning.

The research for this paper was sparked off by a suggestion from [3] to do tableau
proof search by merging closing substitutions for tableau branches into a closing sub-
stitution for the whole tableau (see also [4]). From the model generation perspective,
this is turned around: the negations of the substitutions that close a branch can be
viewed as constraints on branch satisfiability. The perspective of the present paper
is worked out more fully in [9] in the context of hyper tableaux [1]. We are experi-
menting with implementations of constrained (hyper) tableau reasoning in Haskell
[6], with merge checks for closure performed on tableau branches represented as lazy
lists.

References

1. P. Baumgartner, P. Fréhlich, and I. Niemeld. Hyper tableaux. In Proceedings JELIA 96, Lecture
Notes in Artificial Intelligence. Springer, 1996.

2. M. Fitting. First-order Logic and Automated Theorem Proving; Second Edition. Springer Verlag,
Berlin, 1996.

3. Martin Giese. Proof search without backtracking using instance streams, position paper. In
Proc. Int. Workshop on First-Order Theorem Proving, St. Andrews, Scotland, 2000. Available
online at http://il2www.ira.uka.de/ key/doc/2000/giese00.ps.gz.

4. Martin Giese. Incremental closure of free variable tableaux. In IJCAR 2001 Proceedings, 2001.

5. R. Hahnle. Tableaux and related methods. In Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning. Elsevier Science Publishers, to appear, 2001.

6. S. Peyton Jones, J. Hughes, et al. Report on the programming language Haskell 98. Available
from the Haskell homepage: http://www.haskell.org, 1999.

7. D. Prawitz. An improved proof procedure. In J. Siekmann and G. Wrightson, editors, Automation
of Reasoning. Classical Papers in Computational Logic, pages 162-201. Springer, 1983. Originally
appeared in Theoria in 1960.

8. R. Smullyan. First-order logic. Springer, Berlin, 1968.

9. J. van Eijck. Constrained hyper tableaux. In Proceedings of CSL’01 (to appear), 2001. Electron-
ically available ast http://www.cwi.nl/~jve/papers/01/EijckO1b.ps.gz.

