Tableau Reasoning and
Programming with Dynamic First
Order Logic

Jan van Eijck, CWI and ILLC, Amsterdam, juve@cwi.nl
2,Juan Heguiabehere ILLC, Amsterdam, juanh@uwins.uva.nl

3,Breannddn O Nualldin ILLC, Amsterdam, bon@wins.uva.nl

Abstract

Dynamic First Order Logic (DFOL) results from interpreting quantification over a variable v as
change of valuation over the v position, conjunction as sequential composition, disjunction as non-
deterministic choice, and negation as (negated) test for continuation. We present a tableau style
calculus for DFOL with explicit (simultaneous) binding, prove its soundness and completeness, and
point out its relevance for programming with DFOL, for automated program analysis including loop
invariant detection, and for semantics of natural language. Next, we extend this to an infinitary
calculus for DFOL with iteration and connect up with other work in dynamic logic.

Keywords: Dynamic Logic, First Order Logic, Assertion Calculus, Tableau Reasoning

1 Introduction

The language we use and analyze in this paper consists of formulas that can be used
both for programming and for making assertions about programs. The only difference
between a program and an assertion is that an assertion is a program with its further
computational effect blocked off. In the notation we will introduce below: if ¢ is a
program, then ((¢)) is the assertion that the program ¢ can be executed. Execution
of ¢ will in general lead to a set of computed answer bindings, execution of ((¢)) to a
yes/no answer indicating success or failure of ¢.

Since the formulas of our language, DFOL, can be used for description and com-
putation alike, our calculus is both an execution mechanism for DFOL and a tool for
theorem proving in DFOL. One of the benefits of mixing calculation and assertion is
that the calculus can be put to use to automatically derive assertions about programs
for purposes of verification. And since DFOL has its roots in Natural Language pro-
cessing (just as Prolog does), we also see a future for our tool-set in a computational
semantics of natural language.

We start our enterprise by developing a theory of binding for DFOL that we then
put to use in a calculus for DFOL with explicit binding. The explicit bindings repre-
sent the intermediate results of calculation that get carried along in the computation
process. We illustrate with examples from standard first order reasoning, natural
language processing, imperative programming, and derivation of postconditions for
imperative programs.

L. J. of the IGPL, Vol. 0 No. 0, pp. 1-37 0000 1 @© Oxford University Press

2 Tableau Reasoning and Programming with Dynamic First Order Logic

Finally, we develop an infinitary calculus for DFOL plus iteration, with a complete-
ness proof. Details of the relationships with existing calculi are given below. The two
calculi that are the subject of this paper form the computation and inference en-
gine of a toy programming language for theorem proving and computing with DFOL,
Dynamo.

2 Dynamic First Order Logic

Dynamic First Order Logic results from interpreting quantification over v as change
of valuation over the v position, conjunction as sequential composition, disjunction as
nondeterministic choice, and negation as (negated) test for continuation. See Groe-
nendijk and Stokhof [18] for a presentation and Visser [33] for an in-depth analysis. A
sound and complete sequent style calculus for DFOL (without choice) was presented
in Van Eijck [14]. In this paper we present a calculus that also covers the choice op-
erator, and that is much closer to standard analytic tableau style reasoning for FOL
(see Smullyan [31] for a classical presentation, Fitting [15] for a textbook treatment
and connections with automated theorem proving, [19] for an excellent overview, and
[9] for an encyclopedic account).

For applications of DFOL to programming, the presence of the choice operation U in
the language is crucial: choice is the basis of ‘if then else’, and of all nondeterministic
programming constructs for exploring various avenues towards a solution. It can (and
has been) argued that the full expressive power of U is not necessary for applications of
DFOL to natural language semantics. In fact, the presentation of dynamic predicate
logic (DPL) in [18] does not cover U: in DPL, choice is handled in terms of negation
and conjunction, with the argument that natural language ‘or’ is externally static.
This means that an ‘or’ construction behaves like a test. The present calculus deals
with DFOL including choice.

A very convenient extension that we immediately add to DFOL is representation
of simultaneous binding. It is well known that bindings or substitutions are definable
in DFOL. Still we will consider them as operators in their own right, in the spirit of
Venema [32], where substitutions are studied as modal operators. Simultaneous bind-
ings can in general not be expressed in terms of single bindings without introducing
auxiliary variables. E.g., the swap of variables z and y in the simultaneous binding
l[y/z,z/y] can only be expressed as a sequence of single bindings at the expense of
availing ourselves of an extra variable z, as z := z;2 := y;y := 2. The dynamic
effect of this sequence of single bindings is not quite the same as that of [y/z, z/y],
for z := z;z := y;y := z changes the value of z, while [y/z,z/y] does not, and the
semantics of DFOL is sensitive to such subtle differences.

A first order signature ¥ is a pair (Ps, Fx), with Py a set of predicate constants
and Fy, a set of function constants. Let V' be an infinite set of variables, and let
a: (Ps UFs) — N be a function that assigns to every predicate or function symbol
its arity. The function symbols with arity 0 are the individual constants. The set Tx;
of terms over the signature is given in the familiar way, by ¢ := v | ft1 - - - t,,, where
v ranges over V and f over Fy, with a(f) = n. The sub-terms of a term are given as
usual. We will write sequences of terms t1,... ,t, as t.

A binding 6 is a function V' — Tx that makes only a finite number of changes,
i.e., 0 has the property that dom(f) = {v € V | 8(v) # v} is finite. See Apt [1] and

Tableau Reasoning and Programming with Dynamic First Order Logic 3

Doets [11] for lucid introductions to the subject of binding in the context of logic
programming. We will use rng() for {#(v) € Tx | 8(v) # v}, and var(rng(d)) for
U{var(@(v)) | v € dom(8)}, where var(t) is the set of variables occurring as a subterm
in t. An explicit form (or: a representation) for binding 6 is a sequence

[O(v1)/v1,- .. ,0(vs) [vn],

where {v1,...,v,} = dom(8), (i-e., 8(v;) # v;, for only the changes are listed), and
i # j implies v; # v; (i.e., each variable in the domain is mentioned only once).
We will use [] for the binding that changes nothing, i.e, [| is the only binding 6
with dom(f) = . We use 6, p, possibly with indices, as meta-variables ranging over
bindings. Representations for bindings are given, as usual, by:

0 == []|[t1/v1,--- ,tn/Vn) provided t; # v;, and v; = v; implies i = j.
We let o denote the syntactic operation of composition of binding representations:

Let 6 = [t1/v1,... ,tn/vn] and p = [r1 /w1, .. ,7m/wy] be binding representa-
tions. Then 6 o p is the result of removing from the sequence

[0(r1) /wi,. .. ,0(rm)/wm,t1/v1, .. tn V0]

the binding pairs 6(r;)/w; for which 6(r;) = w;, and the binding pairs t;/v;
for which v; € {w1,... ,wn}.

For example, [z/y] o [y/z] = [¢/2,2/y], [¢/2,y/x] o [2/] = [z/z].
We are now in a position to define the DFOL language Lx, over signature ¥. We
distinguish between DFOL units and DFOL formulas (or sequences).

DEeFINITION 2.1 (The DFOL language Lsx over signature)

t = w|ft
U == 6| |Pt|ti=ta]| ()| (1 Udo)

We will omit parentheses where it doesn’t create syntactic ambiguity, and allow the
usual abbreviations: we write L for —([]), =Pt for —(P%), t1 # ta for —(t; = t2),
@1 U ¢ for (¢1 U ¢2). Similarly, (¢ — 1)) abbreviates —(¢; =(v))), Yv(¢#) abbreviates
=(Jv; ~(¢)). A formula ¢ is a literal if ¢ is of the form P?# or =P, or of the form
t, =ty or t; # t5. The complement ¢ of a formula ¢ is given by: ¢ := ¢ if ¢ has the
form —(¢) and ¢ := —=(¢) otherwise. We abbreviate =—(¢) as ((¢)), and we will call
formulas of the form (¢)) block formulas.

We can think of formula ¢ as built up from units U by concatenation. For formula
induction arguments, it is sometimes convenient to read a unit U as the formula U; []
(recall that [] is the empty binding), thus using [] for the empty list formula. In other
words, we will silently add the [] at the end of a formula list when we need its presence
in recursive definitions or induction arguments on formula structure.

Given a first order model M = (D,I) for signature X, the semantics of DFOL
language Ly is given as a binary relation on the set VD, the set of all variable maps
(variable states, valuations) into the domain of the model. We impose the usual non-
empty domain constraint of FOL: any ¥ model M = (D,I) has D # . If s,u € VD,

4 Tableau Reasoning and Programming with Dynamic First Order Logic

we use § ~, u to indicate that s, u differ at most in their value for v, and s ~x u to
indicate that s, u differ at most in their values for the members of X. If s € VD and
v,v' € V, we use s[v'/v] for the valuation u given by u(v) = s(v'), and u(w) = s(w)
for all w € V with w # v. Also, if s and v are as before and d € D we use s[d/v] for
the valuation u given by u(v) = d, and u(w) = s(w) for all w € V' with w # v.

M [, Ptindicates that s satisfies the predicate Pt in M according to the standard
truth definition for classical first order logic. [t]J gives the denotation of ¢ in M
under s. If § is a binding and s a valuation (a member of VD), we will use s¢ for the
valuation u given by u(v) = [8(v)]X.

DEFINITION 2.2 (Semantics of DFOL)

SO iff u=s
SN s~y u
SJPM iff s=wand M =, Pt
st =to]Miff s =wand [t]M = [ta]M
s[()]M iff s =wu and there is no v’ with ,[¢]!
slgr U]yt iff [pu] or s[2]2"

s[U; 0]M iff there is a o with ([UJM and o [¢]M
Note that it follows from this definition that
S[(@)IM iff s = u and there is a u with ,[¢] M.

Thus, block formulas have their dynamic effects blocked off: double negation trans-
forms the semantic transition relation into a test.

We introduce a syntactic blocking operation on formulas as follows (= is used for
syntactic identity):

DEFINITION 2.3 (Blocking Operation on Formulas)

® = (9)
(30)2 = (J)
PHE = PP

(th=t) = t1 =t

g _ [(¢1Ug) ifd” =0¢1,0" =,
(p1Ud2)" = {«(ﬁiu(ﬁi» otherwise

. _ (U iUR=U¢P =,
(U; ¢)E| { (U;¢) otherwise.

E.g., (3z; Px)¥ = (3z; Pz)), and (—~(3z; Pz))® = —~(3z; Pz). By induction on for-
mula structure we get from Definitions 2.2 and 2.3 that the blocking operation makes
a formula into a test, in the following sense:

Tableau Reasoning and Programming with Dynamic First Order Logic 5

PROPOSITION 2.4
For all M and all valuations s,u for M, all Ly formulas ¢: ,[¢"]M iff s = u and
there is a u' with ;[¢]M.

The key relation we want to get to grips with in this paper is the dynamic entailment
relation that is due to [18]:

DEFINITION 2.5 (Entailment in DFOL)
¢ dynamically entails ¢, notation ¢ = ¢, & for all Ly models M, all valuations
s,u for M, if s[¢]M then there is a variable state u' for which ,[¥]M.

3 Binding in DFOL

Bindings 6 are lifted to (sequences of) terms and (sets of) formulas in the familiar
way:

DEeFINITION 3.1 (Binding in DFOL)

O(ft---tn) = [fO(tr)---6(tn)
O(ts, . b)) = (). 0(tn)
0(p) = 0Gop
0(p;¢) == (0op)¢
0(Fv;¢) = Fu;0'¢ where 8' =6\ {t/v|t e T}
0(Pt;¢) := POt;0¢
O(ts =t2;0) = Ot =06t2;0¢
0((prU2);d3) = 0(d1;h3) Ub(d2; ¢3)
0(=(¢1);¢2) = —(0¢1);6¢2
0({d1,... . 0n}) = {0(¢1),...,0(¢n)}

Note that it follows from this definition that

0((91)); p2) = (091)); 0.

Thus, binding distributes over block: this accounts for how ((---)) insulates dynamic
binding effects.!

The composition 8 - p of two bindings 6 and p has its usual meaning of ‘@ after p’,
which we get by means of 6 - p(v) := 8(p(v)). It can be proved in the usual way, by
induction on term structure, that the definition has the desired effect, in the sense
that for all ¢t € T, for all binding representations 8, p: (60 p)(t) = 8(p(t)) = (6 - p)(¢).

Here is an example of how to apply a binding to a formula:

[a/z)Pz; (Qz U Iz; ~Px); Sz
= Pa;la/z](Qz U 3z; -~Px); Sz
= Pa;([a/z]Qz; Sz U [a/z]3z; ~Px; Sx)
= Pa;(Qa; Sa;[a/z] U x; - Px; Sx)

10ur reasons, by the way, for preferring prefix notation for application of bindings over the more usual postfix
notation have to do with the fact that in the rules of our calculus bindings have an effect on formulas on their right.

6 Tableau Reasoning and Programming with Dynamic First Order Logic

The binding definition for DFOL fleshes out what has been called the ‘folklore idea in
dynamic logic’ (Van Benthem [7]) that syntactic binding [¢t/v] works semantically as
the program instruction v := ¢ (Goldblatt [17]), with semantics given by 4[v :=]
iff u = s[[t]M /v]. To see the connection, note that v := t can be viewed as DFOL
shorthand for Jv;v = ¢, on the assumption that v ¢ war(t). To generalize this to
the case where v € var(t) and to simultaneous binding, auxiliary variables must be
used. The fact that we have simultaneous binding represented in the language saves
us some bother about these.

In standard first order logic, sometimes it is not safe to apply a binding to a
formula, because it leads to accidental capture of free variables. The same applies
here. Applying binding [z/y] to Jz; Rzy is not safe, as it would lead to accidental
capture of the free variable y. The following definition defines safety of binding.

DEFINITION 3.2 (Binding 8 is safe for ¢)

0 is safe for p always

0 o p is safe for ¢

0 is safe for ¢

0 is safe for ¢

v ¢ var(rng ') and €' is safe for ¢

where §' = 6\{(v,t) |t € T}

0 is safe for ¢1 and 6 is safe for ¢o

0 is safe for ¢1; ¢3 and 6 is safe for ¢o; ¢3

0 is safe for p; ¢

0 is safe for Pt; ¢

0 is safe for t; = t9; ¢
0 is safe for Jv; ¢

0 is safe for —(¢1); ¢
0 is safe for (¢1 U ¢2); d3

1 110y

Note that there are ¢ with [not safe for ¢. E.g., [] is not safe for [y/z]3y; Rzxy,
because [y/z] is not safe for Jy; Rzy. The connection between syntactic binding and
semantic assignment is formally spelled out in the following;:

LeEMMA 3.3 (Binding Lemma for DFOL)

For all ¥ models M, all M-valuations s, u, all Ly formulas ¢, all bindings 6 that are
safe for ¢:

S[0010" ifE 5[6; 4"
PRrOOF. Induction on the structure of ¢. [|

Immediately from this we get the following;:

PropoOSITION 3.4
DFOL has greater expressive power than DFOL with quantification replaced by def-
inite assignment v = d.

ProOF. If ¢ is an Ly formula without quantifiers, every binding 6 is safe for ¢. By
the binding lemma for DFOL, ¢ is equivalent to an Ly formula without quantifiers
but with trailing bindings. It is not difficult to see that both satisfiability and validity
of quantifier free Ly formulas with binding trails is decidable. [|

In fact, the tableau system below constitutes a decision algorithm for satisfiability
or validity of quantifier free Ly, formulas, while the trailing bindings summarize the
finite changes made to input valuations.

Tableau Reasoning and Programming with Dynamic First Order Logic 7

A comparison of our definition of binding for DFOL with that of Visser [33] and
[34] reveals that Visser’s notion of binding follows a different intuition, namely that
binding in the empty formula yields the empty formula. We think our notion is more
truly dynamic, as is witnessed by the fact that it allows us to prove a binding lemma
in the presence of U, which Visser’s notion does not.

In the calculus we will need input(¢), the set of variables that have an input con-
straining occurrence in ¢ (with ¢ € Ls), Let var(?) be the variables occurring in
t.

DEFINITION 3.5 (Input constrained variables of Ly formulas)

input(9) = war(rng(d))
input(0; ¢) = war(rng(0)) U (input(4)\ dom(9))
input(3u; 9) = input($)\{v}
input(Pt; ¢) = war(t) U input(q)
input(ty = to2;) = wvar{ty,t2} U input(d)
input(—(p1); ¢2) = input(¢1) U input(d2)

input((d1 U ¢2); ¢3) = input(d1; d3) U input(dz; ¢3).

The following proposition (the DFOL counterpart to the finiteness lemma from
classical FOL) can be proved by induction on formula structure:

PROPOSITION 3.6
For all £y models M, all valuations s, s',u,u’ for M, all Ly formulas ¢:

s[]M and s ~y\input() s" imply Ju’ with 4 [¢]M.

4 Adaptation of Tableau Reasoning to a Dynamic Setting

In classical tableau theorem proving, when investigating whether ¢ logically implies
1), one systematically explores possibilities to make ¢ true and ¢ false. If all such
explorations fail, we conclude that v does indeed follow from ¢, if at least one explo-
ration succeeds we have the makings of a counterexample, which can be read off from
an open branch of a tableau in several ways (e.g., by making every fact on the true
side of the tableau branch true in the model, and all other facts false, or by making
every fact on the false side of the tableau false in the model, and all other facts true;
see [6]).

In the course of dealing with the original ¢ and ¥ we decompose them into parts,
so in general the data structure we deal with in classical tableau proving has the form
® o ¥, where @, ¥ are finite sets of formulas, with ® the formulas we are committed
to making true and ¥ the formulas we are committed to making false. Instead of
distinguishing between sets of true formulas ® and sets of false formulas ¥, we will
use one-sided tableaux, with the rule for every operator o matched by a —o rule.

The tableau rule for disjunction in classical logic illustrates this. A tableau splitting
rule like V has the node with the disjunction ¢ V ¥ above the two branches with the
disjuncts ¢ and 1. The rule V serves as the ‘left-hand side rule’, and is matched by
a rule -V for dealing with the ‘right-hand side’.

8 Tableau Reasoning and Programming with Dynamic First Order Logic

oV (¢ V)

® (|¢)

¢ 9 B
=(¢)

In the dynamic version of FOL, order matters: the sequencing operator ‘;’ is not

commutative in general. Suppose ® were to consist of dx; Px and - Pz. Then if we
read ® as Jdz; Px; ~ Pz, we should get a contradiction, but if we read ® as - Px;z; Px
then the formula has a model that contains both Ps and non-Ps.

Suppose ® were to consist of just 3z; Px; —(Qz U Sz). Then we can apply the —U
analogue of =V to @, but we should make sure that the results of this application,
=@z and =Sz, remain in the scope of dz; Px. In other words, the result should be:
Jdz; Px; —Qx; =Sz, with both =Qx and =Sz in the dynamic scope of the quantifier
Jz. In the tableau calculus to be presented, we will ensure that negation rules —o
take dynamic context into account, and that all formulas come with an appropriate
binding context, to be supplied by explicit bindings.

Local Bindings Versus Global Substitutions

We will only perform a binding 6 on ¢ when needed; rather than compute 8¢,
the tableau rules will store 8; ¢, and compute the binding in single steps as the need
arises. Tableau theorem proving can be viewed as a process of gradually building a
domain D and working out requirements to be imposed on that domain. The tableau
procedure that investigates whether ¢ dynamically implies ¢ will build a domain
with positive and negative facts. For this we employ an infinite set Fgko of skolem
functions, with Fyo N Fs = 0, plus a set of fresh variables X, with VN X = {.
Call the extended signature ¥*, and the extended language Lx+. Let Tx+ be the
terms of the extended language, and Ty. the terms of the extended language without
occurrences of members of X. Call these the frozen terms of Ly«, and bear in mind
that frozen terms, unlike ground terms, may contain occurrences of variables in V.
Call an Lx- literal frozen if it contains only frozen terms.

The variables in X will function as universal tableau variables [15]. Where the
bindings of the variables from V are local to a tableau branch, the bindings of the
variables from X are global to the whole tableau. Next to the (local) bindings for the
variables V' of Ly, we introduce (global) substitutions o for the fresh variables X in
Ly, and extend these to (sequences of) terms and (sets of) formulas in the manner
of Definition 3.1. A substitution o is a unifier of a set of (sequences of) terms T if T
contains a single term (sequence of terms). It is a most general unifier (MGU) of T
if o is a unifier of T, and for all unifiers p of T there is a 8 with o = 6 - p. Similarly
for formulas. Note that only unifiers for global substitutions (the term maps for the
global tableau variables from X') will ever be computed.

The definitions and results on binding extend to bindings with values in Tx+, and
to substitutions (domain C X, values in Tx-). Still, the global substitutions play
an altogether different role in the tableau construction process, so we use a different
notation for them, and write (representations for) global substitutions as

{21:1 = t1,...,Tn l—)tn}.

Tableau Reasoning and Programming with Dynamic First Order Logic 9

5 Tableaux for DFOL Formula Sets

If ¥ is a first order signature, a DFOL tableau over ¥ is a finitely branching tree with
nodes consisting of (sets of) Ly« formulas. A branch in a tableau T is a maximal
path in T'. We will follow custom in occasionally identifying a branch B with the set
of its formulas.

Let ® be a set of Ly, formulas. A DFOL tableau for ® is constructed by a (possibly
infinite) sequence of applications of the following rules:

Initialization The tree consisting of a single node [] is a tableau for ®.

Binding Composition Suppose T is a tableau for & and B a branch in T. Let
¢ € BU®, let 6;p occur in ¢, and let ¢' be the result of replacing #;p in ¢ by
6 o p. Then the tree T constructed from T by extending B by ¢’ is a tableau for
.

Expansion Suppose T is a tableau for & and B a branch in T'. Let ¢ € BU®. Then
the tree T' constructed from T by extending B according to one of the tableau
expansion rules, applied to ¢, is a tableau for ®.

Equality Replacement Suppose T is a tableau for & and B a branch in T'. Let
t1 =ty € BU®orty =t € BU®, and L(t3) € BU®, where L is a literal. Suppose
t1,t3 are unifiable with MGU o. Then T’ constructed from T by applying o to
all formulas in T', and extending branch o B with L(ots) is a tableau for ®.

Closure Suppose T is a tableau for ® and B a branch in T', and L, L' are literals in
BU®. If L, I are unifiable with MGU o then T" constructed from T by applying
o to all formulas in T is a tableau for ®.

Any tableau branch can be thought of as a database ® of formulas true on that
branch. Because our databases may contain (negated) identities, we need some pre-
liminaries in order to define closure of a tableau. When checking for closure, we
may consider the parameters from V occurring in literals along a tableau branch as
existentially quantified. Occurrence of Pv along branch B does not mean that ev-
erything has property P, but rather that the thing referred to as v has P. Thus, the
V-variables occurring in literals can be taken as names. We can freeze the parameters
from X by mapping them to fresh parameters from V. Applying a freezing substi-
tution to a tableau replaces references to ‘arbitrary objects’ @, y, ..., by ‘arbitrary
names.” What this means is that we can determine closure of a branch B in terms of
the congruence closure of the set of equalities occurring in a frozen image B of the
branch. See [5], Chapter 4, for what follows about congruence closures.

If @ is set of Ly« formulas without parameters from X, the congruence closure of @,
notation =g, is the smallest congruence on 7' that contains all the equalities in ®. In
general, ¢ will be infinite: if @ = bis an equality in @, and f is a one-placed function
symbol in the language, then ~¢ will contain fa = fb, ffa = ffb,fffa= fffb,....
Therefore, one uses congruence closure modulo some finite set instead.

Let S be the set of all sub-terms (not necessarily proper) of terms occurring in a
literal in ®. Then the congruence closure of @ modulo S, notation CCg(®), is the
finite set of equalities ~g N (S x S). We can decide whether ¢t = ¢’ in CCg(®); [5]
gives an algorithm for computing CCg(G), for finite sets of equalities G and terms S,
in polynomial time.

10 Tableau Reasoning and Programming with Dynamic First Order Logic

DEFINITION 5.1

t = t' is suspended in frozen Lx+ formula set ® if t = ¢' € CCg(®P), where S is the
set of all sub-terms of terms occurring in literals in ®. We extend this notation to
sequences: t & t' is suspended in ® if t; & ¢],... ,t, &t are suspended in .

A frozen Ly~ formula set ® is closed if either —(f) € ® (recall that L is an abbre-
viation for —([])), or for some f ~ ¢’ suspended in ® we have Pt € &, =Pt' € ®, or for
a pair of terms t1,ty with ¢; & t5 suspended in & we have t; # tz € P.

A tableau T is closed if there is a freezing substitution o of T' such that each of its
branches o B is closed.

6 Tableau Expansion Rules

Note that we can take the form of any Ly« formula to be 8; ¢, by prefixing or suffixing
[] as the need arises. The tableau rules have the effect that bindings get pushed from
left to right in the tableaux, and appear as computed results at the open end nodes.

Congunctive Type Here are the rules for formulas of conjunctive type (type « in the
Smullyan typology):

0; P|Z;¢ 0; t1 =ta; ¢ 0; t1 =125 ¢

Pot 0t1 = 6t 0t1 = 0t
6; ¢ 6o [6t:/v]; ¢ 6; ¢

where 0t; = v € V,i € {1,2} where 0t; ¢ V,i € {1,2}

=(0; (1 L|J¢2); $3) 0; (#1); o2
(65 é15 ¢3) (6; #1)
(65 ¢2; b3) 6; oo
0) _'(¢|1); ¢2
=(0; ¢1)
0; ¢2

Call the formula at the top node of a rule of this kind a and the formulas at the
leaves a1, as. To expand a tableau branch B by an « rule, extend B with both «;
and as.

Disjunctive Type The rules for formulas of disjunctive type (Smullyan’s type 8):

Tableau Reasoning and Programming with Dynamic First Order Logic 11

—(6; Pt; ¢) —(0; t1 =ta; ¢) 6; (¢1U¢2); ¢3
N N N

Pt —(6; ¢) 6ty # 6ty —(6; ¢) 6; d15 03 0;d2; 03

Call the formula at the top node of a rule of this kind 3, the formula at the left
leaf 31 and the formula at the right leaf 85. To expand a tableau branch B by an
rule, either extend B with (31 or with fa.

Universal Type Rule for universal formulas (Smullyan’s type 7):

—(6; 5||v; ¢)
—(0o[z/v]; ¢)

Here « is a universal variable taken from X that is new to the tableau. Call the
formula at the top node of a rule of this kind +(v), and the formula at the leaf v;. To
expand a tableau branch B by an v rule, extend B with ;.

Ezxistential Type Rule for existential formulas (Smullyan’s type 0):

0; Jv; ¢
|

6o [Ska;ﬂv;¢(wla R 3"'En)/v]7 ¢

Here xi,...,x, are the universal parameters upon which interpretation of Jv; ¢
depends, and skg,34;¢(21,.-. ,2pn) is a skolem constant that is new to the tableau
branch.?

By Proposition 3.6, {x1, ... ,x,} is a subset of input(d; Jv; ¢), or, since no members

of X occur in ¢ or in dom(6), a subset of X N input(6) = X N var(rng()). From this
set, we only need?

{Z1,...,xn} = X Noar(rng(@ | (input(p)\{v}))).

Call the formula at the top node of a rule of this kind d(v), and the formula at the
leaf 6;. To expand a tableau branch B by an § rule, extend B with d;.

21t is well-known that this can be optimized so that the choice of skolem constant only depends on 6; Jv; ¢.
3In an implementation, it may be more efficient to not bother about computing input(¢), and instead work with
{1,...,2n} := X Nvar(rng(h)).

12 Tableau Reasoning and Programming with Dynamic First Order Logic

Protected Versions of the Rules All of the rules above have protected versions, i.e.,
versions with the formula ¢ to which the rule applies of the form ™. The blocking
operator is inherited by all the daughter formulas. As an example, here are the
protected versions of one of the conjunctive and one of the disjunctive rules:

(6; Pt;)™ (0; (¢1 U ¢2); ¢3)™
/\

(PGE)S (0; 615 ¢3)" (65 ¢2; ¢3)™
(6;)

Applying Definition 2.3, we see that this boils down to the following:
((6; P|f;) ((W))

Pot 0; ¢1; ¢3 0; ¢2; ¢3
(6:6) (6; 615 93) (6; 62 $3))

The tableau calculus specifies guidelines for extending a tableau tree with new leaf
nodes. If one starts out from a single formula, at each stage only a finite number
of rules can be applied. Breadth first search will get us all the possible tableau
developments for a given initial formula, but this procedure is not an algorithm, for
tableau proof construction: as in the tableau systems for classical FOL, there is no
guarantee of termination.

7 Soundness of the Tableau Calculus

Valuations for ¥* models M = (D, I) are functions in VUX — D. Any such function
g can be viewed as a union sUh of a function s € V' — D and a function h € X — D
(take s =g | V and h = g [X). For satisfaction in ¥* models we use the notation
sun[#]X, to be understood in the obvious way. In terms of this we define the notion
that we need to account for the universal nature of the X variables.

DEFINITION 7.1

Let ¢ € L+, M = (D,I) a X* model, s,u € V — D.

Then Y[¢]M iff for every h: X — D thereisau:V UX — D with zun[¢]M. We
say: s universally satisfies ¢ in M.

For any tableau T we say that C(T') if there is an ¥* model M, a branch B of T
and a V valuation s for M such that every formula ¢ of B is universally satisfied by
s in M.

LEMMA 7.2
If s universally satisfies ¢ in M, and o is a substitution on X that is safe for ¢, then
s universally satisfies ¢ in M.

PROOF. If Y[¢]M then for every X valuation h in M there is a V U X valuation u in
M with ,up [[qﬁ]]uM Thus for every h in M there is a V U X valuation v in M with

sUhg I[QS]]uMa

and therefore for every h in M there is a V U X valuation u in M with

sun[o; ¢]]uM

Tableau Reasoning and Programming with Dynamic First Order Logic 13

Since o is safe for ¢ we have by the binding lemma that [o¢]™ = [o;¢]M, and it
follows that s universally satisfies o¢ in M. [|

With this, we can show that the tableau building rules preserve the C(T') relation.

LEMMA 7.3 (Tableau Expansion Lemma)

1. If tableau T for ® yields tableau T' by an application of binding composition,
then C(T) implies C(T").

2. If tableau T for & yields tableau T' by an application of a tableau expansion rule,
then C(T') implies C(T").

3. If tableau T for & yields tableau T" by an application of equality replacement,
then C(T') implies C(T").

4. Tf tableau T for & yields tableau T’ by an application of closure, then C(T') implies
Cc(T").

Proor. 1. Immediate from the fact that 6; p and 6 o p have the same interpretation.

2. All of the a and S rules are straightforward, except perhaps for the a equality
rules. The change of 8 to 8 o [0¢t;/v], where 0t; = v (i,j € {1,2},i # j,) reflects the
fact that 0t; = 0ty gives us the information to instantiate v.

The 7 rule. Assume —(6; 3v; @) is universally satisfied by s in M. We may assume
that 6 is safe for Jv; ¢. If € X, x fresh to the tableau, then 6 o [x/v] will be safe
for ¢, and —(0 o [x/v]; $) will be universally satisfied by s in M.

The 6 rule. Assume s universally satisfies #; Jv; ¢ in M. By induction on tableau
structure, dom(f) C V. Define a new model M’ where skg,5,,,4 is interpreted as the
function f : D™ — D given by f(di,... ,d,) := some d for which ¢ succeeds in M for
input state sg[dy/x1,... ,dn/Ty,d/v]. By the fact that s universally satisfies 8; Jv; ¢
in M and by the way we have picked xy,...,x,, such a d must exist. Then s will
universally satisfy 6 o [skg;30;¢4(21,. .. , Z5)/v]; ¢ in M', while universal satisfaction of
other formulas on the branch is not affected by the switch from M to M'.

3 and 4 follow immediately from Lemma 7.2. | |

THEOREM 7.4 (Soundness)
If ¢,9 € Ly, and the tableau for ¢; —(¢)) closes, then ¢ = 1.

ProOF. If the tableau for ¢; (1) closes, then by the Tableau Expansion Lemma,
there are no M, s such that ?[¢; ~(¢)]M. Since ¢,9 € Lx, there are no M, s,u with
s[@; 7 ()M, In other words, for every ¥ model M and every pair of variable states
s,u for M with ;[¢] there has to be a variable state u’ with ,,[¢)]. Thus, we have
¢ = ¢ in the sense of Definition 2.5.

8 Derived Principles

Universal Quantification Immediately from the definition of Yu(¢) we get:

9;Vv(<|751);¢2
(0 o[z /v]; $1))
0; p2

where € X new to the tableau

14 Tableau Reasoning and Programming with Dynamic First Order Logic

Blocks Detachment A sequence of blocks £(¢1);... ; £(dn), where +(¢;) is either
(#:)) or —=(¢;), yields the set of its components, by a series of applications of distribu-
tion of the empty substitution over block or negation. This is useful, as the formulas
+(¢1),---,x(Py,) can be processed in any order. In a schema:

i(¢1);--|- ;£ (én)

+(61)
+(6n)

Negation Splitting The following rules are admissible in the calculus:

(5 =(¥); x) =(¢; (¥); x)
/\ /\
(&9) —(dx) (=) —(¢5x)

Negation splitting can be viewed as the DFOL guise of a well known principle from
modal logic: O(AV B) — (©AVv OB). To see the connection, note that —(¢; =(); x)
is semantically equivalent to —(¢; —(v U =(x))), where —(¢;—---) behaves as a O
modality.

9 Examples

In the examples we will use vg,v1,... as 0-ary skolem terms for v, etcetera.
Syllogistic Reasoning Consider the syllogism:

Vz(Az — Bz),Vz(Bz — Cz) E Vz(Az — Cx).
This is an abbreviation of (9.1).
—(3z; Az; —Bz), —(3z; Bx; ~Cz) = —(3z; Az; -Cx) (9.1)
The DFOL tableau for this example, a tableau refutation of
—(3z; Az; - Bz); ~(3x; Bx; -~Cx); (Jz; Az; ~Cx))

is in Figure 1.
Dynamic Donkey Reasoning The hackneyed example for dynamic binding in natural
language, If a farmer owns a donkey, he beats it, has the following DFOL shape:

(3z; Jy; Fz; Dy; Oxy — Bzxy),
which is shorthand for:

=(3z; Jy; Fx; Dy; Oxy; ~Bzy).
Consider the natural language text in (9.2).

If a farmer owns a donkey, he beats it. A. is a farmer and owns a donkey. (9.2)

Tableau Reasoning and Programming with Dynamic First Order Logic 15

F1G. 1. DFOL Tableau for Syllogistic Reasoning (9.1).
—(3z; Az; = Bx); ~(3x; Bx; -Cx); (3x; Az; -Cx))

—(3z; Az; - Bzx)
—(3xz; Bx; -Cx)
(3z; Az; ~Cx))

([z1/z]; Az; =Cx))

A.fL'l
([z1/2]; ~Cx))

—|CIL'1
((E2VED))

~([x/z]; Az; - Bx)

w?m (/o) ~Ba)
{z— 21} Bz

—([y/=]; Bx; ~C)

-By —([y/z]; ~Cx)

{x—=z1,y—= a1} Cy
X

{1: = T,y I—).Z'l}
X

16 Tableau Reasoning and Programming with Dynamic First Order Logic

F1G. 2. Tableau for Dynamic Donkey Reasoning (9.2).
—(3=; Jy; Fx; Dy; Oxy; ~Bxy); Fa;3z; Dz; Oaz

=(32; Jy; Fz; Dy; Oxy; ~Bay)
Fa
dz; Dz; Oaz

[21/2]; Dz; Oaz

Dz1
Oaz

[21/7]

—([x/z,y/y]; Fx; Dy; Oxy; ~Bzy)

-~Fz ~([z/z,y/y]; Dy; Ozy; ~Bzy)
|
{z ~ a} -Dy ~([#/z,y/y]; Oy; ~Bry)
|
{z— a,xy 21} -Ozy -([z/z,y/y]; ~Bzy)
| |
{x—a,y— 21} Bxy

X ‘

{$ —=a,y '_)zl}

Figure 2 shows how to draw conclusions from the DFOL version of this text in a
DFOL tableau calculation.

The open tableau branch in Figure 2 yields the fact Baz;, plus the following further
information about z;: Dz;,Oaz;. This further information is useful to identify z; as
the donkey that Alfonso owns (or perhaps a donkey that Alfonso owns) that was
introduced in the text.

Open Tableau Branches, Partial Models, Reference Resolution An open tableau
branch for a DFOL formula ¢ may be viewed as a partial model for ¢, with just
enough information to verify the formula. For instance, the open branch in the
previous example does not specify whether donkey z; also beats Alfonso or not: Bz;a
is neither among the facts (true atoms) nor among the negated facts (false atoms) of
the branch.

In tableau branches involving equality there is also another kind of partiality in-

Tableau Reasoning and Programming with Dynamic First Order Logic 17

volved: the terms are proto-objects rather than genuine objects, in sense that they
have not yet ‘made up their minds’ about which individual they are: two terms t1, to
on a tableau that does not contain t; # t; may be interpreted as a single individu-
al. This is because the information about equality that the branch provides is also
partial. Also, variables from X (free tableau variables) can be resolved to any object
whatsoever.

The level of tableau style generation of partial models for discourse may be just the
right level for pronoun reference resolution (cf. the suggestion in [8]). Since reference
resolution is a processing step that links a pronoun to a suitable antecedent, what
about equating the suitable antecedents with the available terms of the branches in
a tableau? After all, reference resolution for pronouns is part of semantic processing,
so it has a more natural habitat at the level of processing NL representations than at
the level of mere representation of NL meaning.

Building on this idea, we (tentatively) introduce the following rule for pronoun
resolution:

Ppro —Ppro
Pt - Pt
t occurs on the branch t occurs on the branch

Of course, for a full account one would need rules to determine the salient terms for
pronoun resolution along a branch, but here we will just demonstrate the rule with a
tableau for the following piece of discourse.

Every farmer owns a donkey. Some farmer beats it. (9.3)

See Figure 3. Intuitively, in this tableau, the following happens. First, a term 27 in-
troduced for Some farmer. This leads to an unresolved fact ‘B(z1,it)’ in the database
of the partial model under construction. Later, the pronoun it is resolved to ‘the
donkey that z; owns’ generated from every farmer owns a donkey, and represented
in the database of the partial model as skj (z1)-

Here is another well-known example from the literature that is hard to crack in
a purely representational setting (a piece of evidence against the claim, by the way,
that ‘or’ in natural language is externally static):

John owns a motorbike or a car. It is in the garage. (9.4)
Again, in the tableau setting there is no problem: the tableau for (9.4) will have two
branches, and both of the branches will contain a suitable antecedent for it.
Reasoning about ‘<’ Consider example (9.5).

y < z;—~(Fz; Jy; 2 <). (9.5)

This is contradictory, for first two objects of different size are introduced, and next we
are told that all objects have the same size. The contradiction is derived as follows:

18 Tableau Reasoning and Programming with Dynamic First Order Logic

F1G. 3. Tableau for Donkey Reasoning with Pronoun Resolution (9.3).
Vz(Fxz — Jy; Dy; Oxy); 3z; Fz; B(z,it)

Vz(Fx — Jy; Dy; Oxy)
dz; Fz; B(z,it)

[21/2]; Fz; B(z,it)

le
[21/2]; B(2, t)

B(z,it)

=(3z; Fx; =(3y; Dy; Ozy))

—([z/z]; Fa; ~(3y; Dy; Ozy))

ﬁz‘?m ([z/=); 3y; Dy; Oxy))
{z ':: z1} ([z/z, ski(z)/y]; Dy; Ozy))
Dsk, (ZB)

([z/z,ski(z)/y]; Ozy))
O(z, ski(x))

B(Z1 y Skl (m))

{x - 21}

Tableau Reasoning and Programming with Dynamic First Order Logic 19

y < z;-(Fz; gy < y)
y<czx
=(3z;3y; 2 < y)
([x1 /2, @2 /y];2 < y)

"y < T2
{1~ y,z2 — z}
X

Computation of Answer Substitutions The following example illustrates how the
tableau calculus can be used to compute answer substitutions for a query.

r<dr=0Ux =2

<3
r=5Ux =2

TN

r=25 r =2

| |
[5/] [2/]

A combination with model checking or term rewriting (see [12]) can be used to get
rid of the left branch. Adding the relevant axioms for < would achieve the same. See
the next example.

More Reasoning about < Assume that 1,2,3, ... are shorthand for s0, ss0, sss0,
We derive a contradiction from the assumption that 4 < 2 together with two axioms
for <. See Figure 4, with arrows connecting the literals that effect closure.

Computation of Answer Substitutions, with Variable Reuse Figure 5 demonstrates
how the computed answer substitution stores the final value for z, under the renaming
z1. Because of the renaming, the database information for z; does not conflict with
that for z.

Closure by Equality Replacement This example illustrates closure by means of e-
quality replacement, in reasoning about Jz;dy;x # y;3x; ~(Jy;z # y). Note that
Z1,Y1, T2 serve as names for objects in the domain under construction. What the
argument boils down to is: if the name z2 applies to everything, then it cannot be
the case that there are two different objects x1,y1. See Figure 6.

The first application of equality replacement in Figure 6 unifies with z; and
concludes from zo = x,x7 # y; that 2 # y1. The second application of equality
replacement unifies y with y; and concludes from zs = y, x5 # y; that x5 # 5.

Loop Invariant Checking To check that z = y! is a loop invariant for y := y+1;z :=
T ¥y, assume it is not, and use the calculus to derive a contradiction with the definition
of I. Note that y := y+1;2 := z xy appears in our notation as [y +1/y]; [x *y/z]. See
Figure 7. A more detailed account would of course have to use the DFOL definitions

20 Tableau Reasoning and Programming with Dynamic First Order Logic

FiG. 4. More Reasoning about <.
—(3z;2 < 0);4 < 2;~(Fz; Jy; sz < sy;—x < y)
—(3z; 2z < 0)
4<2
=(3z; Jy; sz < sy; ~x < y)

ﬁ([w/$]|;:v <0)

-z <0
|

—([y/z, z/y]; sz < sy; "z < y)

sy < 52 (([y/w,z/[v];w <))

{y— 3,z 1}

y<z
X |
{y— 3,z 1}
|
3<1
|
~([y1/z, z1/y); 87 < sy; 7z < y)
sy < 821 (([yl/af,zl'/y];w <)
{yl'_)27z1’_>0} Y, <z
X
{y, — 2,21 — 0}
|
2<0
{z— 2}
X
of +, x and .

Loop Invariant Detection This time, we inspect the code [z * (y + 1)/z]; [y + 1/y]
starting from scratch. Since y is the variable that gets incremented, we may assume
that x depends on y via an unknown function f. Thus, we start in a situation where
fy = x. We check what has happened to this dependency after execution of the
code [z * (y + 1)/z]; [y + 1/y], by means of a tableau calculation for fy = z;[z * (y +
1)/z); [y+1/y]; fy = z. See Figure 8. The tableau shows that [z (y+1)/z]; [y +1/y]
is a loop for the factorial function.

Postcondition Reasoning for ‘If Then Else’ For another example of this, consider a

Tableau Reasoning and Programming with Dynamic First Order Logic 21

Fi1G. 5. Computation of Answer Substitutions, with Variable Reuse
z=0z=yUy=2;dx;2 =2
z=0
[0/z);z =yUy =2;3z;2 =2

[0/z];2 =y;3z;2 =2 [0/z];y =2;3z;2 =2
0=y 2=y
[0/2,0/y); Fz;2 = 2 [0/2,2/y]; 3w; x = 2
[#1/2,0/yl;z =2 [21/%,2/yl;z =2
I =2 Al =2
[21/%,0/y,2/ 2] [21/%,2/y,2/ 2]

loop through the following programming code:
i:=1i+ 1;if £ < a[i] then z := a[i] else skip. (9.6)

Assume we know that before the loop z is the maximum of array elements a[0] through
a[i]. Then our calculus allows us to derive a characterization of the value of z at the
end of the loop. Note that the loop code appears in DFOL under the following guise:

[i + 1/i]; (x < a[d]; [a[d]/z] U ~x < a[d]).

The situation of z at the start of the loop can be given by an identity z = m?, where
m is a two-placed function. To get a characterization of z at the end, we just put
X =z (X aconstant) at the end, and see what we get (Figure 9). What the leaf nodes
tell us is that in any case, X is the maximum of a[0],..,a[i + 1], and this maximum
gets computed in z.

10 Completeness

Completeness for this calculus can be proved by a variation on completeness proofs for
tableau calculi in classical FOL. First we define trace sets for DFOL as an analogue
to Hintikka sets for FOL. A trace set is a set of DFOL formulas satisfying the closure
conditions that can be read off from the tableau rules. Trace sets can be viewed as
blow-by-blow accounts of particular consistent DFOL computation paths (i.e., paths
that do not close).

DEeFINITION 10.1
A set ¥ of Ly« formulas is a trace set if the following hold:

22 Tableau Reasoning and Programming with Dynamic First Order Logic

FiG. 6. Reasoning With Equality
d;ys 2 # y;do;-Jysx £y

[1/z, 91 /y); 2 # y; o ~Fy; 2 #y

Z1 76 N
[z2/2,y1/y]; ~Fy; 0 # y

@2 /T, x /Yyl £y

.Z'zim

{1: — Z‘l}
T2 # 4

/T,y /Yl £y

T2 =Y

{y=u}
T2 75.71'2

F1G. 7. Loop Invariant Checking.
z=yhly+1/yl;lexy/aliz #y!

[y!/=); [y + 1/y]; [z x y/x];z # o!

[y!/z,y + 1/yl; [z *y/z];z # y!

[y +1/y,y! * (y + 1) /x];2 # y!

ylx(y+1)#@y+1)!

Tableau Reasoning and Programming with Dynamic First Order Logic 23

FiG. 8. Loop Invariant Detection.
fu=mzlzx(y+1)/alily+1/yli fy==

fy==z
[fy/z);[z* (y+1)/z];[y + 1yl fy ==z

[fy* @+ /zl[y+1/yl; fy =2

[fyx+1)/z,y+1/y; fy==x

fly+1)=fyx(y+1)
[fy*(y+1)/z,y +1/y]

F1a. 9. Postcondition Reasoning For (9.6).

z=m?;[i + 1/il;z < ali];[a[i]/z] U~z < a[il; X =z

[m?/z];[i + 1/i];z < a[i]; [ai]/z] U -z < a[i]; X =z

[m?/z,i + 1/i);z < ali]; [a[i]/z] Uz < ali; X ==

[m?/z,i+ 1/il;z < ali]; [ali]/«]; X = & U [m/z,i + 1/i];~z < ai; X =z
[m?/z,i+1/i];z < ali]; [ali]/z); X =z [m0/z,i + 1/i];~x < afi; X = x
mj < afi +1] -m{ <afi +1],[m?/z,i+1/i); X =z
[m? /i +1/i]; ali)/a): X = @ <afi + 1], [mq /2,1 +1/1]
-m? < afi+ 1]

i+ 1/i,ali+1]/2); X == X =mj
[m?/z,i+ 1/i]

X =ali +1]
[i +1/i,ali + 1]/2]

24 Tableau Reasoning and Programming with Dynamic First Order Logic

.—(0) ¢ T. B

.If ¢ € O, then ¢ ¢ T.

.1f 0; ¢ € U, then 8¢ € V.

.If @ € ¥ then all a; € P.

.If B € ¥ then at least one 3; € U.

If y(v) € U, then 71 (t) € U for all t € T, (all terms that do not contain variables
from X).

7.1f §(v) € ¥, then §;(t) € ¥ for some t € Ty (some term ¢ that does not contain

variables from X).

S O W

This definition is motivated by the Trace Lemma:

LEMMA 10.2 (Trace Lemma)
The elements of every trace set ¥ are simultaneously satisfiable.

PROOF. Define a canonical model My in the standard fashion, using congruence clo-
sure on the trace set ¥ over the set of terms occurring in ®, to get a suitable congru-
ence = on terms. Next, define a canonical valuation s¢ by means of s¢(v) := [v]= for
members of V and s¢(sk?) = [sk?]= for O-ary skolem terms. Verify that s, satisfies
every member of & in M. [|

To employ the lemma, we need the standard notion of a fair computation rule. A
computation rule is a function F' that for any set of formulas ® and any tableau T,
computes the next rule to be applied on T'. This defines a partial order on the set of
tableaux for ®, with the successor of T' given by F. Then there is a (possibly infinite)
sequence of tableaux for ® starting from the initial tableau, and with supremum T ..
A computation rule F' is fair if the following holds for all branches B in T':

1. All formulas of type a, 3,4 occurring on B or in & were used to expand B,
2. All formulas of type v occurring on B or in ¢ were used infinitely often to expand
B.
THEOREM 10.3 (Completeness)
For all ¢, € Lx: if ¢ |= ¢ then there is a tableau refutation of ¢; —(1)).

PROOF. Let Ty,... be a sequence of tableaux for ¢;—(¢)) constructed with a fair
computation rule, without closure rule applications, and with supremum 7T'.,. Define
a freezing map o on T in the standard fashion (see, e.g., [19]). In particular, let
(Br)r>0 be an enumeration of the branches of T, let (¢;)i>0 be an enumeration
of the type v formulas of T, and let x;;; be the variable introduced for the j-th
application of v formula ¢; along branch By. If (t;);>0 is an enumeration of all the
frozen terms of T, we can set oo (xijr) := t; for all 4,7,k > 0. Note that o is
not, strictly speaking, a substitution since dom(o) is not finite.

Suppose 0T« contains an open branch. Then from this branch we would get a
trace set, which in turn would give a canonical model and a canonical valuation for
¢; ~(¢), and contradiction with the assumption that ¢ |= 1. Therefore, oo T - must
be closed.

Since the tree T, is finitely branching and all formulas having an effect on closure
are at finite distance from the root, there is a finite T, with o, T, closed. Finally,
construct an MGU o for T',, on the basis of the part of o, that is actually used in
the closure of T',,, and we are done.

Tableau Reasoning and Programming with Dynamic First Order Logic 25

THEOREM 10.4 (Computation Theorem)

If ¢ is satisfiable, then all bindings 6 produced by open tableau branches B satisfy
s[¢]2!, where M is the canonical model constructed from B, and s the canonical
valuation.

PROOF. Let T,... be a sequence of tableaux for ¢ constructed with a fair compu-
tation rule, without closure rule applications, and with supremum T.,. Consider
0T o, where o, is the canonical freezing substitution. Then since ¢ is satisfiable,
0 T« will have open branches (By)r>o (the number need not be finite). It follows
from the format of the tableau expansion rules that every open branch will develop
one binding.

A binding € # [] occurs non-protected in a formula of the form 6;¢. Check that the
tableau expansion rules on formulas of the forms ((¢)) or =(¢) never yield (nontrivial)
non-protected bindings. Check that each application of an «a, 3,7 or § rule to a
formula with a non-protected binding extends a branch with exactly one non-protected
binding. It follows that every tableau branch By has a highest node where a formula
of the form @ appears. This 6 can be thought of as the result of pulling the initial
binding [] through the initial formula ¢. For every such By, and 6 there is a finite T,
with a branch By that already contains (a generalization of) 6.

It can be proved by induction on the length of By that ,[¢]}!, for M the canonical
model and s the canonical valuation for that branch. [|

Note that the computation theorem gives no recipe for generating all correct bind-
ings for a given ¢. Specifying appropriate computation rules for generating these
bindings for specific sets of DFOL formulas remains a topic for future research.

Variation: Using the Calculus with o Fized Model Computing with respect to a
fixed model is but a slight variation on the general scheme. The technique of using
tableau rules for model checking is well known. Assume that a model M = (D,) is
given. Then instead of storing ground predicates P8t (ground equalities 6t; = 6t,),
we check the model for M | POt (for [6t,]™ = [6t2]™), and close the branch if
the test fails, continue otherwise. Similarly, instead of storing ground predicates P8t
(ground equalities 6¢; = 0t2) under negation, we check the model for M [~ POt (for
[6t:]M # [6t2]™), and close the branch if the test fails, continue otherwise.

11 Adding Iteration

Let L3, be the language that results from extending Ly with formulas of the form ¢*.
The intended relational meaning of ¢* is that ¢ gets executed a finite (> 0) number
of times. This extension makes L5, into a full-fledged programming language, with
its assertion language built in for good measure.

The semantic clause for ¢* runs as follows:

s[o*1M iff either s=u
or dsy,...,8,(n > 1) with s|[¢]]?f, ,3n|[¢]]uM.

It is easy to see that it follows from this definition that:

s[¢*]4" iff either s = u or 3s; with [¢]} and , [¢*]". (11.1)

26 Tableau Reasoning and Programming with Dynamic First Order Logic

Note, however, that (11.1) is not equivalent to the definition of ;[¢*]M, for (11.1)
does not rule out infinite ¢ paths.

Let ¢™ be given by: ¢° := [] and ¢! := ¢;¢™. Now ¢* is equivalent to ‘for some
neN: .

What we will do in our calculus for DFOL* is take (11.1) as the cue to the star
rules. This will allow star computations to loop, which does not pose any problem,
given that we extend our notion of closure to ‘closure in the limit’ (see below).

The calculus for DFOL* has all expansion rules of the DFOL calculus, plus the
following o* and 8* rules.

a* expansion rule Call ¢* the star formula of the rule.

—(¢; 1|ﬁ*;x)
—(¢5x)
=(d9;9%;x)

B* expansion rule Call ¢* the star formula of the rule. The £* rule also has a
protected version.

&9 x
&5 x VR TSY

To see that the a* rule is sound, assume that s universally satisfies —(¢; ¥*; x) in
M = (D,I). By (11.1), this means that there is at least one h : X — D for which
there is no u with sun[¢; X]M and no u with sun[¢;9;4*; x]M. Thus, s universally
satisfies —(¢; x) and —(¢;;4*; x) in M.

For the B* rule, assume that s universally satisfies ¢;*; x in M. Then for every
h : X — D there are u,u’ with zup[]M and ,[vo*; x]M. Then, by (11.1), either
WIXIM or there is a uy with [¢]4! and 4, [¢7; x]2!. Thus, s universally satisfies
either ¢; x or ¢;;9*; x in M.

Closure in the Limit To deal with the inflationary nature of the a* and 8* rules
(the star formula of the rule reappears at a leaf node), we need a modification of our
notion of tableau closure. We allow closure in the limit, as follows.

DEFINITION 11.1
An infinite tableau branch closes in the limit if it contains an infinite star development,
i.e., an infinite number of a* or 8* applications to the same star formula.

Ezxample of Closure in the Limit We will give an example of an infinite star devel-
opment. Consider formula (11.2):

—Jw—(Fv;v = 05 (v # w;[v + 1/v])"; v = w). (11.2)

Tableau Reasoning and Programming with Dynamic First Order Logic 27

What (11.2) says is that there is no object w that cannot be reached in a finite number
of steps from v = 0, or in other words that the successor relation v — v+1, considered
as a graph, is well-founded. This is the Peano induction axiom: it characterizes the
natural numbers up to isomorphism. What it says is that any set A that contains 0
and is closed under successor contains all the natural numbers. The fact that Peano
induction is expressible as an L}, formula is evidence that £, has greater expressive
power than FOL. In FOL no single formula can express Peano induction: no formula
can distinguish the standard model (N, s) from the non-standard models. In a non-
standard model of the natural numbers it may take an infinite number of s-steps to
get from one natural number n to a larger number m.

The expressive power of Lx* is the same as that of quantified dynamic logic ([27,
17]). Arithmetical truth is undecidable, so there can be no finitary refutation system
for £3,. The finitary tableau system for Ly is evidence for the fact that DFOL validity
is recursively enumerable: all non-validities are detected by a finite tableau refutation.
This property is lost in the case of £3: the language is just too expressive to admit
of finitary tableau refutations.

Therefore, some tableau refutations must be infinitary, and the tableau development
for the negation of (11.2) is a case in point. Let us see what happens if we attempt to
refute the negation of (11.2). A successful refutation will identify the natural numbers
up to isomorphism. See Figure 10. This is indeed a successful refutation, for the tree
closes in the limit. But the refutation tree is infinite: it takes an infinite amount of
time to do all the checks.

THEOREM 11.2 (Soundness Theorem for £%)
The calculus for DFOL* is sound:

For all ¢,¢ € £%: if the tableau for ¢; = (1) closes then ¢ = 1.

The modified tableau method does not always give finite refutations. Still, it is a
very useful reasoning tool, more powerful than Hoare reasoning, and more practical
than the infinitary calculus for quantified dynamic logic developed in [16, 17]. Dy-
namic logic itself has been put to practical use, e.g. in KIV, a system for interactive
software verification [28]. It is our hope that the present calculus can be used to
further automate the software verification process.

Precondition/postcondition Reasoning For a further example of reasoning with the
calculus, consider formula (11.3). This gives an L3, version of Euclid’s GCD algorithm.

(z#y;(@>yz—y/z]Vy >5[y —z/y])" 52 = y. (11.3)

To do automated precondition-postcondition reasoning on this, we must find a trivial
correctness statement. Even if we don’t know what ged(z,y) is, we know that its
value should not change during the program. So putting gecd(z,y) equal to some
arbitrary value and see what happens would seem to be a good start. We will use the
correctness statement z = ged(zx,y). The statement that the result gets computed in
z can then take the form z = z. The program with these trivial correctness statements
included becomes:

z = ged(z,y);
(@ #y; (@ > g3 [z —y/al 2 = ged(@,y) Vy > 23]y — 2/y]; 2 = ged(z,9)))™; (114)
T=Yy;z2 =2

28 Tableau Reasoning and Programming with Dynamic First Order Logic

FiGc. 10. ‘Infinite Proof’ of the Peano Induction Axiom.
Jw-(Fv;v = 0; (v # 1|1); [v+1/v])*;v = w)
[w1/w]=(Jv;v = 0; (v 7|é w; v +1/v])%50 = w)
~([wr/w, 0/v]; (v # 1|U; [v+1/v])*v =w)
=([wy /w,0/v];v = w)
~([w1/w,0/v];v # w;[v + 1/r]; (v # wi[v+1/v])"5v = w)
0 ¢| w1
~([wr/w, 1/v]; (v # 1|U; [v+1/v])*5v = w)
=([wy /w, 1/v];v = w)

1/l # w0 w150 2)
1 75|'LU1
—([wy Jw, 2/v]; (v # 1|1); [v+1/v])*;50 = w)
=([wy fw, 2/v];v = w)
~([wi/w,2/v];v # w;i v+ 1/r]; (v # w;iv+1/v]))"50 = w)
27é|wl
=([wy /w, 3/v]; (v # 1|1); [v+1/v])*v=w)

—([wy fw,3/v];v = w)
~([wi/w,3/v];v # w;i v+ 1/r]; (v # w;iv+1/v]))"50 = w)
3 7é| w1
—([wy Jw, 4/v]; (v # 1|u; [v+1/v)*v =w)

—([wy fw,4/v];v = w)

s 41l # il + o sl 1) 2)
4 75| w1
—([wy Jw, 5/v]; (v # w; v+ 1/v])*;v = w)

X

Tableau Reasoning and Programming with Dynamic First Order Logic 29

We can now put the calculus to work. Abbreviating
(z #y;(x >y [z —y/alsz = ged(z,y) Uy > 23]y — /yl; 2 = ged(z,y)))"

as A*, we get:
z=ged(z,y); Az =y;z ==

[gcd(x,y)/Z]isv =Yz =1 [ged(z,y)/2); A; A% =y;2 =2
z =y, ged(z,y) =z r>y y>w
ged(z,y) = ged(z — y,y) ged(w,y) = ged(z,y —)
[ged(z,y) /2, — y/x]; A, [ged(z,y) /2,y — x/y]; A*;
T=yY;z ==z T=Y;2 =1

The second split is caused by an application of the rule for U. By the soundness
of the calculus any model satisfying the annotated program (11.4) will satisfy one of
the branches. This shows that if the program succeeds (computes an answer), the
following disjunction will be true:

(x =y Aged(z,y) =)
vV (z >y Aged(z,y) = ged(z —y,y) A §) (11.5)
vV (y >z Aged(z,y) = ged(z,y — z) A1),

where ¢ and ¢ abbreviate, respectively, [ged(z,y) /2,2 — y/z]; A*;2 = y;2 = x and
[ged(z,y) /2,y —x/y]; A*; 2 = y; z = z. From this it follows that the following weaker
disjunction is also true:

(z =y Aged(z,y) =)
V (z >y Aged(z,y) = ged(z —y,y)) (11.6)
V (y >z Aged(z,y) = ged(z,y — x))

Note that (11.6) looks remarkably like a functional program for GCD.

12 Completeness for DFOL*

The method of trace sets for proving completeness from Section 10 still applies. Trace
sets for DFOL* will have to satisfy the obvious extra conditions. In order to preserve
the correspondence between trace sets and open tableau branches, we must adapt the
definition of a fair computation rule. A computation rule F for £*y is fair if it is fair
for Ly, and in addition, the following holds for all branches B in T':

e All formulas of type a*, 8* occurring on B or in ® were used to expand B.

We can again prove a trace lemma for DFOL*, in the same manner as before: Again,
open branches in the supremum of a fair tableau sequence will correspond to trace
sets, and we can satisfy these trace sets in canonical models. The definition of trace
sets is extended as follows:

30 Tableau Reasoning and Programming with Dynamic First Order Logic

DEFINITION 12.1
A set ¥ of £3,. formulas is a x-trace set if the following hold:

¢ U is a trace set,

o If 3* € U then at least one 3] € U.

o If ¢;9p*;x € U, then there is some n > 0 with ¢;9™;x ¢ ¥ for all m > n.
Similarly for (¢;1*;x))-

e For all ¢,1, x it holds that —(¢;¢*;x) ¢ .

Note that the final two requirements are met thanks to our stipulation about closure
in the limit. In the same manner as before, we get:

THEOREM 12.2 (Completeness for £*)
For all ¢, € L£*: if ¢ |= 1) then the tableau for ¢; —(¢)) closes.

So we have a complete logic for DFOL*, but of course it comes at a price: we may
occasionally get in a refutation loop. However, as our tableau construction examples
illustrate, this does hardly affect the usefulness of the calculus.

13 Related Work

Comparison with tableau reasoning for (fragments of) FOL The present calculus for
DFOQOL can be viewed as a more dynamic version of tableau style reasoning for FOL
and for modal fragments of FOL. Instead of just checking for valid consequence and
constructing counterexamples from open tableau branches, our open tableau branches
yield computed answer bindings as an extra. The connection with tableau reasoning
for FOL is also evident in the proof method of our completeness theorems. Our
calculus can be used for FOL reasoning via the following translation of FOL into
DFOL:

(PH)* = Pt
o =
(pAY)* = ¢%¢°
(V) = ¢*Up*
(Fzg)* = ((Fx;¢°)

(Veg)® = —(3z;-¢°)

It is easy to check that for every FOL formula ¢ it holds that ¢* = ¢*7, i.e., all FOL
translations are DFOL tests. Moreover, the translation is adequate in the sense that
for every FOL formula ¢ over signature ¥, every 3¥-model M, every valuation s for
M it holds that M =, ¢ iff ;[¢°]M.

Connection with Logic Programming The close connection between tableau reason-
ing for DFOL and Logic Programming can be seen by developing a DFOL tableau
for the following formula set:

Vo A(ll, 7, x), VaVyVzVi(A(z, y, 2) = A([il«], y, [i|2])), -3z A([al[][]; [e|[]],).

This will give a tableau for the append relation, with a MGU substitution {z
[a|[blc|[]]]} that closes the tableau, where x is the universal tableau variable used in

Tableau Reasoning and Programming with Dynamic First Order Logic 31

the application of the v rule to —3zA([a|[b|[]], [¢|[]],z).- The example may serve as a
hint to the unifying perspective on logic programming and imperative programming
provided by tableau reasoning for DFOL. We hope to elaborate this theme in future
work.

Comparison with other Calculi for DFOL and for DRT The calculus developed in
[14] uses swap rules for moving quantifiers to the front of formulas. The key idea of the
present calculus is entirely different: encode dynamic binding in explicit bindings and
protect outside environments from dynamic side effects by means of block operations.
In a sense, the present calculus offers a full account of the phenomenon of local variable
use in DFOL.

Kohlhase [24] gives a tableau calculus for DRT (Discourse Representation Theory,
see [23]) that has essentially the same scope as the [14] calculus for DPL: the version
of DRT disjunction that is treated is externally static, and the DRT analogue of U is
not treated.

The Kohlhase calculus follows an old DRT tradition in relying on an implicit trans-
lation to standard FOL: see [29] for an earlier example of this. Kohlhase motivates
his calculus with the need for (minimal) model generation in dynamic NL seman-
tics. In order to make his calculus generate minimal models, he replaces the rule
for existential quantification by a ‘scratchpaper’ version (well-known from textbook
treatments of tableau reasoning; see [22] for further background, and for discussion of
non-monotonic consequence based on minimal models generated with this rule): first
try out if you can avoid closure with a term already available at the node. If all these
attempts result in closure, it does not follow from this that the information at the n-
ode is inconsistent, for it may just be that we have ‘overburdened’ the available terms
with demands. So in this case, and only in this case, introduce a new individual.

This ‘exhaustion of existing terms’ approach has the virtue that it generates ‘small’
models when they exist, whereas the more general procedure ‘always introduce a fresh
variable and postpone instantiation’ may generate infinite models where finite models
exist. Note, however, that the strategy only makes sense for a signature without
function symbols, and for a tableau calculus without free tableau variables.

Kohlhase discusses applications in NL processing, where it often makes sense to
construct a minimal model for a text, and where the assumption of minimality can
be used to facilitate issues of anaphora resolution and presupposition handling.

Comparison with Apt and Bezem’s Ezrecutable FOL Apt and Bezem present what
can be viewed as an exciting new mix of tableau style reasoning and model checking
for FOL. Our treatment of equality uses a generalization of a stratagem from their
[3]: in the context of a partial variable map 6, they call v = ¢ a 0 assignment if
v ¢ dom(6), and all variables occurring in ¢ are in dom(f). We generalize this on two
counts:

e Because our computation results are bindings (term maps) rather than maps to
objects in the domain of some model, we allow computation of non-ground terms
as values.

e Because our bindings are total, in our calculus execution of t; = t, atoms never
gives rise to an error condition.

It should be noted for the record that the first of these points is addressed in [2]. Apt
and Bezem present their work as an underpinning for Alma-0, a language that infuses

32 Tableau Reasoning and Programming with Dynamic First Order Logic

Modula style imperative programming with features from logic programming (see [4]).
In a similar way, the present calculus provides logical underpinnings for Dynamo, a
language for programming with an extension of DFOL. For a detailed comparison of
Alma-0 and Dynamo we refer the reader to [13].

Connection with WHILE, GCL It is easy to give an explicit binding semantics for
WHILE, the favorite toy language of imperative programming from the textbooks (see
e.g., [25]), or for GCL, the non-deterministic variation on this proposed by Dijkstra
(see, e.g. [10]). DFOL is in fact quite closely related to these, and it is not hard to see
that DFOL* has the same expressive power as GCL. Our tableau calculus for DFOL*
can therefore be regarded as an execution engine cum reasoning engine for WHILE
or GCL.

Connection with PDL, ()DL There is also a close connection between DFOL* on one
hand and propositional dynamic logic (PDL) and quantified dynamic logic (QDL) on
the other. QDL is a language proposed in [27] to analyze imperative programming,
and PDL is its propositional version. See [30, 26] for complete axiomatizations of
PDL, [17] for an exposition of both PDL and QDL, and for a complete (but infinitary)
axiomatization of QDL, [21] for an overview, and [20] for a a study of QDL and various
extensions. In PDL/QDL, programs are treated as modalities and assertions about
programs are formulas in which the programs occur as modal operators. Thus, if
A is a program, (A)¢ asserts that A has a successful termination ending in a state
satisfying ¢. As is well-known, this cannot be expressed without further ado in Hoare
logic.

The main difference between DFOL* and PDL/QDL is that in DFOL* the dis-
tinction between formulas and programs is abolished. Everything is a program, and
assertions about programs are test programs that are executed along the way, but
with their dynamic effects blocked. To express that A has a successful termination
ending in a ¢ state, we can just say (4;¢)). To check whether A has a successful
termination ending in a ¢ state, try to refute the statement by constructing a tableau
for =(4;).

To illustrate the connection with QDL and PDL, consider MIX, the first of the two
PDL axioms for x*:

[A7]¢ —= ¢ A [A][A%]9. (13.1)

Writing this with (A), -, A, V, and replacing —¢ by ¢, we get:

~(=(A%) 9 A (¢ V (A)(A%)9)). (13.2)

This has the following DFOL* counterpart:

~(=(4%;9); (¢ U (4; A% 9))). (13.3)

For a refutation proof of (13.3), we leave out the outermost negation.

Tableau Reasoning and Programming with Dynamic First Order Logic 33
(4% 9); (¢>|U (4; 45 ¢))

(4% ¢)
(pU (A|;A*;¢))
-

—(A; A*; 9)

/\
¢ (4; A% ¢)
X x
The tableau closes, so we have proved that (13.3) is a DFOL* theorem (and thus,
a DFOL* validity).

We will also derive the validity of the DFOL* counterpart to IND, the other PDL
axiom for *:

(@ A[A™)(d — [A]9) — [A"]8 (13.4)
Equivalently, this can be written with only (A), =, A, V, as follows:
(¢ A=(A") (P A (A)=¢) A (A")=¢). (13.5)
The DFOL* counterpart of (13.5) is:
(45 2(A%; ¢ A;29); A% =9). (13.6)

We will give a refutation proof of (13.6) in two stages. First, we show that (13.7) can
be refuted for any n > 0, and next, we use this for the proof of (13.6).

b; (A% d; A; —); A7 ¢ (13.7)

Here is the case of (13.7) with n = 0:

¢; (A% <1>;|A; —¢); ¢
)

—(A*; ¢; A;20)
)

X

Bearing in mind that A is a dynamic action and ¢ is a test, we can apply the rule of
Negation Splitting to formulas of the form —(A"; ¢; A; —¢), as follows:

(A" ¢; A; =)

(A%) (A" -g)

Note that —(A™; ¢; A; ~¢) can be derived from —(A*; ¢; A; —~¢) by n applications of
the o rule. Using this, we get the following refutation tableau for the case of (13.7)
withn =k + 1:

34 Tableau Reasoning and Programming with Dynamic First Order Logic

¢; (A% 5 A; =9); AL =g

é
—(A*; ¢; A;)
AR 6

|
i
—(AF; ¢ A; —g)
(A%=g) —(AFTL-g)

X X

The left-hand branch closes because of the refutation of ¢;—(A*;¢; A; ~¢); A*; =g,
which is given by the induction hypothesis.

Next, use these refutations of —¢, A;-¢, A2% ¢, ..., to prove (13.6) by means
of a refutation in the limit, as follows:

@; (A% 93 A;—g); A* -

¢
—(A*; ¢; A; =)
A" ¢
* K
AQ_'(ZS 2. A*.
- A% A%
AQ;_‘¢ A3: A*- ¢
X) 7_|
A3;—|¢

This closed tableau establishes (13.6) as a DFOL* theorem. That closure in the
limit is needed to establish the DFOL* induction principle is not surprising. The
DFOL * rules express that * computes a fix-point, while the fact that this fix-point
is a least fix-point is captured by the stipulation about closure in the limit. The
induction principle (13.6) hinges on the fact that * computes a least fix-point.

Goldblatt [16, 17] develops an infinitary proof system for QDL with the following
key rule of inference:

If ¢ — [A1; AZ]e is a theorem for every n € N, then ¢ — [A;; A3]y) is a theorem.
(13.8)

To see how this is related to the present calculus, assume that one attempts to refute
¢ — [A1; AS]W, or rather, its DFOL* counterpart —(¢; A1; A3; =), on the assumption
that for any n € N there exists a refutation of ¢; A;; A%; —p.

Tableau Reasoning and Programming with Dynamic First Order Logic 35

¢; Ay; A5;
Py 05 Av; Ag; Af;
75 Ao 5 A; Ay; A; A3~
93 b Ao Ao o 65 Avs Az Ay; Ag; Az 0

¢; Ar; As; Ag; Aos 1)
X

We can close off the ¢; A1; A%; —p branches by the assumption that there exist
refutations for these, for every n € N. The whole tableau gives an infinite 8* de-
velopment, and the infinite branch closes in the limit, so the tableau closes, thus
establishing that in the DFOL* calculus validity of —(¢; A;; A%; =) follows from the
fact that —(¢; A1; A%;) is valid for every n € N.

14 Conclusion

Starting out from an analysis of binding in dynamic FOL, we have given a tableau
calculus for reasoning with DFOL. The format for the calculus and the role of explicit
bindings for computing answers to queries were motivated by our search for logical
underpinnings for programming with (extensions of) DFOL. The DFOL tableau cal-
culus presented here constitutes the theoretical basis for Dynamo, a toy programming
language based on DFOL. The versions of Dynamo implemented so far implement
tableau reasoning for DFOL with respect to a fixed model: see [13].

To find the answer to a query, given a formula ¢ considered as Dynamo program
data, Dynamo essentially puts the tableau calculus to work on a formula ¢, all the
while checking predicates with respect to the fixed model of the natural numbers,
and storing values for variables from the inspection of equality statements. If the
tableau closes, this means that ¢ is inconsistent (with the information obtained from
testing on the natural numbers), and Dynamo reports ‘false’. If the tableau remains
open, Dynamo reports that ¢ is consistent (again with the information obtained from
inspecting predicates on the natural numbers), and lists the computed bindings for
the output variables at the end of the open branches. But the Dynamo engine also
works for general tableau reasoning, and for general queries. The literals collected
along the open branches together with the explicit bindings at the trail ends constitute
the computed answers.

Dynamo can be viewed as a combined engine for program execution and reasoning,.
We are currently working on an new implementation of Dynamo that takes the insights
reported above into account. The advantages of the combination of execution and
reasoning embodied in Dynamo should be evident from our examples of strongest
postcondition generation in Section 9. To our knowledge, this use of dynamic first
order logic for analyzing imperative programming by means of calculating trace sets is
new. We claim that our calculus opens the road to a more intuitive way of reasoning
about imperative programs, and we hope to develop automated reasoning tools for

36 Tableau Reasoning and Programming with Dynamic First Order Logic

program analysis based on it.

Finally, since natural language semantics is a key application area of dynamic varia-
tions on first order logic, we expect that both the calculus itself and its implementation
in the form of an improved execution mechanism for Dynamo also have a role to play
in a truly computational semantics for natural language.

Acknowledgments

The research for this paper was sponsored by Spinoza Logic In Action. Thanks to
Johan van Benthem, Balder ten Cate, Anne Kaldewaij, Fairouz Kamareddine, Michael
Kohlhase, Maarten Marx, Joachim Niehren, Kees Vermeulen, Albert Visser and Joe
Wells for stimulating discussion and helpful criticism. Two anonymous reviewers of
this journal made suggestions that prompted a complete overhaul of the presentation.
Proposition (3.4) was triggered by a question from Krzysztof Apt.

References

[1] K.R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

[2] K.R. Apt. A denotational semantics for first-order logic. In Proc. of the Computational Logic
Conference (CL2000), Notes in Artificial Intelligence 1861, pages 53-69. Springer, 2000.

[3] K.R. Apt and M. Bezem. Formulas as programs. In K.R. Apt, V. Marek, M. Truszczyski, and
D.S. Warren, editors, The Logic Programming Paradigm: a 25 Years Perspective, pages 75-107.
Springer Verlag, 1999. Paper available as http://xxx.lanl.gov/abs/cs.L0/9811017.

[4] K.R. Apt, J. Brunekreef, V. Partington, and A. Schaerf. Alma-0: An imperative language that
supports declarative programming. ACM Toplas, 20:1014-1066, 1998.

[5] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
[6] J. van Benthem. Partiality and nonmonotonicity in classical logic. Logique et Analyse, 29, 1986.
[7] J. van Benthem. Ezploring Logical Dynamics. CSLI & Folli, 1996.

[8] J. van Benthem and J. van Eijck. The dynamics of interpretation. Journal of Semantics,

1(1):3-20, 1982.
[9] M. D’Agostino, D.M. Gabbay, R. Héhnle, and J. Posegga, editors. Handbook of Tableau Methods.
Kluwer, Dordrecht, 1999.

[10] E.W Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics. Texts and Mono-
graphs in Computer Science. Springer-Verlag, 1990.

[11] H.C. Doets. From Logic to Logic Programming. MIT Press, Cambridge, Massachusetts, 1994.

[12] G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo. Technical Report 3400,
INRIA Rocquencourt, April 1998.

[13] J. van Eijck. Programming with dynamic predicate logic. Technical Report CT-1998-06, ILLC,
1998. Available from www.cwi.nl/~jve/dynamo.

[14] J. van Eijck. Axiomatising dynamic logics for anaphora. Journal of Language and Computation,
1:103-126, 1999.

[15] M. Fitting. First-order Logic and Automated Theorem Proving; Second Edition. Springer Verlag,
Berlin, 1996.

[16] R. Goldblatt. Aziomatising the Logic of Computer Programming. Springer, 1982.

[17] R. Goldblatt. Logics of Time and Computation, Second Edition, Revised and Ezpanded, vol-
ume 7 of CSLI Lecture Notes. CSLI, Stanford, 1992 (first edition 1987). Distributed by University
of Chicago Press.

[18] J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics and Philosophy, 14:39-100,
1991.

[19] R. Hihnle. Tableaux and related methods. In Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning. Elsevier Science Publishers, to appear, 2001.

Tableau Reasoning and Programming with Dynamic First Order Logic 37

[20] D. Harel. First-Order Dynamic Logic. Number 68 in Lecture Notes in Computer Science.
Springer, 1979.

[21] D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical
Logic, pages 497-604. Reidel, Dordrecht, 1984. Volume II.

[22] J. Hintikka. Model minimization — an alternative to circumscription. Journal of Automated
Reasoning, 4:1-13, 1988.

[23] H. Kamp. A theory of truth and semantic representation. In J. Groenendijk et al., editors,
Formal Methods in the Study of Language. Mathematisch Centrum, Amsterdam, 1981.

[24] M. Kohlhase. Model generation for Discoure Representation Theory. In ECAI Proceedings,
2000. Available from http://www.ags.uni-sb.de/"kohlhase/.

[25] H.R. Nielson and F. Nielson. Semantics with Applications. John Wiley and Sons, 1992.

[26] R. Parikh. The completeness of propositional dynamic logic. In Mathematical Foundations of
Computer Science 1978, pages 403—415. Springer, 1978.

[27] V. Pratt. Semantical considerations on Floyd—Hoare logic. Proceedings 17th IEEE Symposium
on Foundations of Computer Science, pages 109-121, 1976.

[28] W. Reif. The KIV-approach to software verification. In M. Broy and S. Jdhnichen, editors,
KORSO: Methods, Languages, and Tools for the Construction of Correct Software, Springer
LNCS 1009, pages 339-368, 1995.

[29] C. Sedogbo and M. Eytan. A tableau calculus for DRT. Logique et Analyse, 31:379-402, 1988.

[30] K. Segerberg. A completeness theorem in the modal logic of programs. In T. Traczyck, editor,
Universal Algebra and Applications, pages 36—46. Polish Science Publications, 1982.

[31] R. Smullyan. First-order logic. Springer, Berlin, 1968.

[32] Y. Venema. A modal logic of quantification and substitution. In L. Czirmaz, D.M. Gabbay, and
M. de Rijke, editors, Logic Colloguium ’92, Studies in Logic, Language and Computation, pages
293-309. CSLI and FOLLI, 1995.

[33] A. Visser. Contexts in dynamic predicate logic. Journal of Logic, Language and Information,
7(1):21-52, 1998.

[34] A. Visser. A note on substitution in dynamic semantics. Unpublished draft, Utrecht University,
2000.

Received Sept 8, 2000. Revised: December 9, 2000

