
Guarded Actions

Jan van Eijck
CWI and ILLC, Amsterdam, Uil-OTS, Utrecht

December 7, 2004

Abstract

Guarded actions are changes with preconditions acting as a guard. Guarded action mod-
els are multimodal Kripke models with the valuations replaced by guarded actions. Call
guarded action logic the result of adding product updates with guarded action models to
PDL (propositional dynamic logic). We show that guarded action logic reduces to PDL.

keywords Dynamic epistemic logic, logic of communication, logic of change, propositional
dynamic logic, program transformation.

ACM Classification (1998) E 4, F 4.1, H 1.1.

1 Introduction

It was shown in [6] how generic updating with finite epistemic actions can be axiomatized in
automata PDL [5, Chapter 10.3], and in [2] how generic updating with finite epistemic actions
can be axiomatized in PDL. Below we give a reduction of generic updating with finite guarded
action models to PDL.

2 PDL and Guarded Action Models

Let p range over a set of basic propositions P and let a range over a set of agents Ag. Then the
language LP,Ag of PDL over P,Ag is given by:

ϕ ::= > | p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ
π ::= a |?ϕ | π1;π2 | π1 ∪ π2 | π∗

Employ the usual abbreviations: ⊥ is shorthand for ¬>, ϕ1∨ϕ2 is shorthand for ¬(¬ϕ1∧¬ϕ2),
ϕ1 → ϕ2 is shorthand for ¬(ϕ1 ∧ ϕ2), ϕ1 ↔ ϕ2 is shorthand for (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1),
and 〈π〉ϕ is shorthand for ¬[π]¬ϕ. Also, if B ⊆ Ag and B is finite, use B as shorthand for
b1 ∪ b2 ∪ · · · . Under this convention, the general knowledge operator EBϕ takes the shape [B]ϕ,

1

while the common knowledge operator CBϕ appears as [B∗]ϕ, i.e., [B]ϕ expresses that it is
general knowledge among agents B that ϕ, and [B∗]ϕ expresses that it is common knowledge
among agents B that ϕ. In the special case where B = ∅, B turns out equivalent to ?⊥, the
program that always fails.

The semantics of LP,Ag is given relative to labelled transition systems M = (W,V,R), where

• W is a set of worlds (or states),

• V : W → P(P) is a valuation function,

• R = { a→⊆ W × W | a ∈ Ag} is a set of labelled transitions, i.e., binary relations on W ,
one for each label a.

Substitutions LP,Ag substitutions are functions of type LP,Ag → LP,Ag that distribute over
all language constructs, and that map all but a finite number of basic propositions to themselves.

LP,Ag substitutions can be represented as sets of bindings

{p1 7→ ϕ1, . . . , pn 7→ ϕn}

where all the pi are different, and where no ϕi is equal to pi. If σ is a LP,Ag substitution, then the
set {p ∈ P | σ(p) 6= p} is called its domain, notation dom(σ). Use ε for the identity substitution.
Let ΣP,Ag be the set of all LP,Ag substitutions.

If σ = {p1 7→ ϕ1, . . . , pn 7→ ϕn} is a LP,Ag substitution, we use ϕσ for σ(ϕ) and πσ for σ(π). We
can spell out ϕσ and πσ, as follows:

>σ = >

pσ =
{

σ(p) if p ∈ dom(σ),
p otherwise

(¬ϕ)σ = ¬ϕσ

(ϕ1 ∧ ϕ2)σ = ϕσ
1 ∧ ϕσ

2

([π]ϕ)σ = [πσ]ϕσ

aσ = a

Bσ = B

(?ϕ)σ = ?ϕσ

(π1;π2)σ = πσ
1 ;πσ

2

(π1 ∪ π2)σ = πσ
1 ∪ πσ

2

(π∗)σ = (πσ)∗.

If M = (W,V,R) is a LP,Ag model and σ is a LP,Ag substitution, then V σ
M is the valuation given

by λwλp ·w ∈ [[pσ]]M . In other words, V σ
M assigns to w the set of basic propositions p such that

pσ is true in world w in model M . For M = (W,V,R), call Mσ the model given by (W,V σ
M , R).

We can prove the following:

2

Lemma 1 (Substitution) For all LP,Ag models M , all LP,Ag formulas σ, all LP,Ag programs
π, all LP,Ag substitutions σ:

M |=w ϕσ iff Mσ |=w ϕ.

(w,w′) ∈ [[πσ]]M iff (w,w′) ∈ [[π]]M
σ
.

Proof. Simultaneous induction on the structure of ϕ and π. 2

[1] proposes to model epistemic actions as epistemic models, with valuations replaced by pre-
conditions. Here, we extend this to guarded action models.

Guarded action models for LP,Ag A guarded action model for LP,Ag is a quadruple A =
([s0, . . . , sn−1],pre, sub, T) where

• [s0, . . . , sn−1] is a finite list of action states,

• pre : {s0, . . . , sn−1} → LP,Ag assigns a precondition to each action state,

• sub : {s0, . . . , sn−1} → ΣP,Ag assigs a LP,Ag substitution to each action state,

• T : Ag → P({s0, . . . , sn−1}2) assigns an accessibility relation a→ to each agent a ∈ Ag.

A pair A = (A, s) with A a guarded action model and s ∈ {s0, . . . , sn−1} is a pointed guarded
action model. In a pointed guarded action model (A, s), s points to the action that actually
takes place.

Note that an action model in the sense of [1] can be viewed as the special case of a guarded
action model where sub assigns the empty substitution ε to every state.

Guarded actions can be executed in LP,Ag models by means of the following product construc-
tion:

Guarded Action Update Let a LP,Ag model M = (W,V,R), a world w ∈ W , and a pointed
guarded action model (A, s), with A = ([s0, . . . , sn−1],pre, sub, T), be given. Then the result of
executing (A, s) in (M, w) is the model (M⊗A, (w, s)), with M⊗A = (W ′, V ′, R′), where

W ′ = {(w, s) | s ∈ {s0, . . . , sn−1}, w ∈ [[pre(s)]]M}
V ′(w, s) = V

sub(s)
M (w)

R′(a) = {((w, s), (w′, s′)) | (w,w′) ∈ R(a), (s, s′) ∈ T (a)}.

The language of LP,Ag(GA) (LP,Ag with guarded actions) is given by extending the LP,Ag lan-
guage with update constructions [A, s]ϕ, where (A, s) is a pointed guarded action model. The
interpretation of [A, s]ϕ in M is given by:

[[[A, s]ϕ]]M = {w ∈ WM | if M |=w pre(s) then (w, s) ∈ [[ϕ]]M⊗A}.

3

Updating with multiple pointed guarded update actions is also possible. A multiple pointed
guarded action is a pair (A,S), with A a guarded action model, and S a subset of the state set
of A. Extend the language with updates [A,S]ϕ, and interpret this as follows:

[[[A,S]ϕ]]M = {w ∈ WM | ∀s ∈ S(if M |=w pre(s) then M⊗A |=(w,s) ϕ)}.

We have to check that the definition of updating with guarded action models is well behaved.
The following theorems state that it is, in the sense that it preserves epistemic model bisimulation
and guarded action model bisimulation.

Theorem 2 For all pointed LP,Ag models (M,w), (N, v), all pointed action models (A, s):

If M,w ↔ N, v then M ⊗A, (w, s) ↔ N ⊗A, (v, s).

Proof. Let R be a bisimulation witnessing M,w ↔ N, v. Then the relation C between
WM ×WA and WN ×WA given by (w, s)C(v, t) iff wRv and s = t is a bisimulation.

Suppose (w, s)C(v, t). Then wRv and s = t. The only non-trivial check is the check for
sameness of valuation. By wRv, w and v satisfy VM (w) = VN (s). By s = t, s and t have the
same substitution σ. By the fact that w and v are bisimilar, we have w ∈ [[ϕ]]M iff v ∈ [[ϕ]]N .
Thus, by VM (w) = VN (s) and the definition of V σ

M and V σ
N , we get V σ

M (w) = V σ
N (v). 2

A guarded action bisimulation is like an ordinary bisimulation, except for the fact that the
requirement of ‘same valuations’ is replaced by a requirement of ‘equivalent preconditions and
equivalent substitutions’.

Theorem 3 For all pointed LP,Ag models (M,w), all pointed action models (A, s) and (B, t):

If A, s ↔ B, t then M ⊗A, (w, s) ↔ M ⊗B, (w, t).

Proof. Let R be a bisimulation witnessing A, s ↔ B, t. Then the relation C between
WM ×WA and WM ×WB given by (w, s)C(v, t) iff w = v and sRt is a bisimulation.

Suppose (w, s)C(v, t). Then w = v and sRt. Again, the only non-trivial check is the check for
sameness of valuation. By sRt, the substitutions σ of s and τ of t are equivalent. By w = v,
VM (w) = VM (v). It follows that V σ

M (w) = V σ
M (v), i.e., (w, s) and (v, t) have the same valuation.

2

3 Program Transformation

We will now show how LP,Ag(GA) formulas can be reduced to LP,Ag formulas. The procedure
is identical to that for reducing update PDL to PDL from [2].

For every action model A with states s0, . . . , sn−1 we define a set of n2 program transformers

4

TA
i,j (0 ≤ i < n, 0 ≤ j < n), as follows:

TA
ij (a) =

{
?pre(si); a if si

a→ sj ,
?⊥ otherwise

TA
ij (?ϕ) =

{
?(pre(si) ∧ [A, si]ϕ) if i = j,
?⊥ otherwise

TA
ij (π1;π2) =

n−1⋃
k=0

(TA
ik(π1);TA

kj(π2))

TA
ij (π1 ∪ π2) = TA

ij (π1) ∪ TA
ij (π2)

TA
ij (π∗) = KA

ijn(π)

where KA
ijk(π) is a (transformed) program for all the π∗ paths from si to sj that can be traced

through A while avoiding a pass through intermediate states sk and higher.

KA
ijk(π) is defined by recursing on k, as follows:

KA
ij0(π) =

 ?> ∪ TA
ij (π) if i = j,

TA
ij (π) otherwise

KA
ij(k+1)(π) =



(KA
kkk(π))∗ if i = k = j,

(KA
kkk(π))∗;KA

kjk(π) if i = k 6= j,

KA
ikk(π); (KA

kkk(π))∗ if i 6= k = j,

KA
ijk(π) ∪ (KA

ikk(π); (KA
kkk(π))∗;KA

kjk(π)) otherwise (i 6= k 6= j).

Lemma 4 (Kleene Path) Suppose (w,w′) ∈ [[TA
ij (π)]]M iff there is a π path from (w, si) to

(w′, sj) in M ⊗ A. Then (w,w′) ∈ [[KA
ijn(π)]]M iff there is a π∗ path from (w, si) to (w′, sj) in

M⊗A.

Proof. As in [2]. 2

The Kleene path lemma allows us to prove the program transformation lemma:

Lemma 5 (Program Transformation) Assume A has n states s0, . . . , sn−1. Then:

M |=w [A, si][π]ϕ iff M |=w

n−1∧
j=0

[TA
ij (π)][A, sj]ϕ.

Proof. As in [2]. 2

5

4 Reduction Axioms for PDL with Guarded Actions

The program transformations can be used to translate LP,Ag(GA) to LP,Ag, as follows:

t(>) = >
t(p) = p

t(¬ϕ) = ¬t(ϕ)
t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2)

t([π]ϕ) = [r(π)]t(ϕ)
t([A, s]>) = >
t([A, s]p) = t(pre(s)) → psubA(s)

t([A, s]¬ϕ) = t(pre(s)) → ¬t([A, s]ϕ)
t([A, s](ϕ1 ∧ ϕ2) = t([A, s]ϕ1) ∧ t([A, s]ϕ2)

t([A, si][π]ϕ =
n−1∧
j=0

[TA
ij (r(π))]t([A, sj]ϕ)

t([A, s][A′, s′]ϕ = t([A, s]t([A′, s′]ϕ))

r(a) = a

r(?ϕ) = ?t(ϕ)
r(π1;π2) = r(π1); r(π2)

r(π1 ∪ π2) = r(π1) ∪ r(π2)
r(π∗) = (r(π))∗.

Note that the only difference between this translation and the translation from [2] is in the
clause for basic propositions, where the substitution comes into play.

The correctness of this translation follows from direct semantic inspection, using the program
transformation lemma for the translation of [A, si][π]ϕ formulas. The translation points the way
to appropriate reduction axioms, as follows.

Take all axioms and rules of PDL [8, 4, 7], plus the following reduction axioms:

[A, s]> ↔ >
[A, s]p ↔ (pre(s) → psubA(s))

[A, s]¬ϕ ↔ (pre(s) → ¬[A, s]ϕ)
[A, s](ϕ1 ∧ ϕ2) ↔ ([A, s]ϕ1 ∧ [A, s]ϕ2)

[A, si][π]ϕ ↔
n−1∧
j=0

[TA
ij (π)][A, sj]ϕ.

and necessitation for action model modalities. The reduction axiom for [A, s]p is new: it takes
the effect of the substitution into account. The reduction axioms for [A, s]¬ϕ and [A, s](ϕ1∧ϕ2)
are as in [6]. The final reduction axiom, based on program transformation, is as in [2].

6

If updates with multiple pointed action models are also in the language, we need the following
additional reduction axiom:

[A,S]ϕ ↔
∧
s∈S

[A, s]ϕ

Theorem 6 (Completeness of LP,Ag(GA)) If |= ϕ then ` ϕ.

Proof. The proof system for LP,Ag is complete, and every formula in the language of
LP,Ag(GA) is provably equivalent to a LP,Ag formula. 2

5 Examples

Opening a window Precondition for opening a window is that the window is closed. To
make this into an action that can be performed no matter what, modify it as follows:

• Check whether the window is closed or not.

• If it is open, then do nothing.

• If it is closed, then open it.

Assuming the action is visible for all (Alice, Bob and Carol), it is modelled as follows:

If the window is opened in secret, its action model looks as follows:

7

Many subtle variations on this action are possible. E.g., the window is in fact opened, while
everyone gets told that it was already open. Here is the corresponding action:

Fiddling with a window Fiddling with a window is the following composite action:

• Check whether the window is closed or not.

• If it is open, then close it.

• If it is closed, then open it.

If the fiddling is done in a way that is visible to all, then here is its action model:

If the fiddling is done in secret, its action model looks as follows:

8

Card exchanges in games Alice, Bob and Carol each hold one of cards Purple, Qaki (Khaki),
Red. The actual deal is: Alice holds Purple, Bob holds Qaki, Carol holds Red:

The exchange action is: Alice exchanges her Purple against Bob’s Qaki, showing their cards to
all.

9

The result of this update:

Now suppose the update is the exchange of the cards that Alice and Bob are holding, but without
showing the cards to Carol.

The result of this update in the initial situation:

6 Further Work

In [3], action emulation was identified as the appropriate structural equivalence on action models
for capturing the relation of having the same update effect. What is the appropriate structural
equivalence on guarded action models for capturing the relation of having the same update
effect?

10

References

[1] Baltag, A., Moss, L., and Solecki, S. The logic of public announcements, common
knowledge, and private suspicions. Tech. rep., Dept of Cognitive Science, Indiana University
and Dept of Computing, Oxford University, 2003.

[2] Eijck, J. v. Reducing dynamic epistemic logic to PDL by program transformation. CWI,
Amsterdam, www.cwi.nl:~/papers/04/delpdl/, 2004.

[3] Eijck, J. v., and Ruan, J. Action emulation. CWI, Amsterdam, www.cwi.nl:~/papers/
04/ae, 2004.

[4] Fischer, M. J., and Ladner, R. E. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences 18, 2 (1979), 194–211.

[5] Harel, D., Kozen, D., and Tiuryn, J. Dynamic Logic. Foundations of Computing. MIT
Press, Cambridge, Massachusetts, 2000.

[6] Kooi, B., and van Benthem, J. Reduction axioms for epistemic actions. In AiML-
2004: Advances in Modal Logic (2004), R. Schmidt, I. Pratt-Hartmann, M. Reynolds, and
H. Wansing, Eds., no. UMCS-04-9-1 in Technical Report Series, University of Manchester,
pp. 197–211.

[7] Parikh, R. The completeness of propositional dynamic logic. In Mathematical Foundations
of Computer Science 1978. Springer, 1978, pp. 403–415.

[8] Segerberg, K. A completeness theorem in the modal logic of programs. In Universal
Algebra and Applications, T. Traczyck, Ed. Polish Science Publications, 1982, pp. 36–46.

11

