Normal Formsfor Characteristic Functions
on n-ary Relations

JAN VAN EIJCK, Centre for Mathematics and Computer Science (CWM),
Amsterdam and Uil-OTS, Utrecht, The Netherlands.
E-mail: Jan.van.Eijck@cwi.nl

Abstract

Functions of type (n) are characteristic functions on n-ary relations. Keenan established their importance for natural language
semantics, by showing that natural language has many examples of irreducible type (n) functions, i.e. functions of type (n)
that cannot be represented as compositions of unary functions. Keenan proposed some tests for reducibility, and Dekker
improved on these by proposing an invariance condition that characterizes the functions with areducible counterpart with the
same behaviour on product relations. The present paper generalizes the notion of reducibility (a quantifier is reducible if it
can be represented as a composition of quantifiers of lesser, but not necessarily unary, types), proposes a direct criterion for
reducibility, and establishes adiamond theorem and anormal form theorem for reduction. These results are then used to show
that every positive (n) function has a unique representation as a composition of positive irreducible functions, and to give an
algorithm for finding this representation. With these formal tools it can be established that natural language has examples of
n-ary quantificational expressions that cannot be reduced to any composition of quantifiers of lesser degree.

Keywords: Semantics of natural language, quantifier decomposition, Fregean versus non-Fregean quantifiers, polyadic quan-
tification, compositionality.

1 Introduction

Instead of analysing the sentence Every lawyer cheated a firm as arelation between the CN property
of being alawyer and the VP property of cheating firms (namely the relation of inclusion), it is also
possible to look at the complex expression Every lawyer ___a firm, and interpret that as a function
that takes a relation (a denotation of a transitive verb, such as cheated, defended) and produces a
truth value. Similarly, Every firm received a letter from some lawyer can be analysed as stating that
the set of firmsisincluded in the set of letters received from some lawyer, but it is also possible to
look at the complex expression Every firm ___a letter from some lawyer, and even at Every firm ___
aletter ___ some lawyer. The interpretation of Every firm ___a letter from some lawyer is again a
function from binary relations to truth values, the interpretation of Every firm ___a letter ___some
lawyer is afunction from ternary relationsto truth values.

This gives two ways to analyse Every lawyer ___a firm: as a composition of the interpretation
of Every lawyer with that of a firm, or, alternatively, as a function that classifies binary relations.
In this case, the first analysis seems preferable, but in many cases only the alternative analysis is
available. Consider Every lawyer cheated a different firm. This means that the relation of cheating,
when restricted to the set of pairs (I, f) with [ alawyer and f afirm, is an injective function. There
is no way to express this as a relation between an CN property (being a lawyer) and a VP property.
Intuitively, cheating a different firm does not express a property.

If three noun phrases are present, asin Every executive awarded himself a huge bonus, the question
arises how this should be analysed:

e As acomplex quantifier every executive ___ himself a huge bonus that combines with a ternary
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relation?

e As as composition of the interpretation of every executive with a complex quantifier for himself
a huge bonus?

e Asacompositition of a complex quantifier for every executive ___himself and a quantifier for a
huge bonus?

e Asacomposition of three quantifiersfor every executive, himself and a huge bonus?

In cases with four noun phrases there are even more possibilities. This paper will give afull charac-
terization of what is the simplest compositional analysisin every conceivable case.

2 Functions, types, lifting, decomposition

Following Keenan [5] we call a function from properties (unary relations) to truth values a type
(1) function, a function from binary relations to truth values a type (2) function, and, in general, a
function from n-ary relations to truth values a type (n) function. Note that atype (n) functionisin
fact a characteristic function on n-ary relations.

Let E bethe domain of discourse. Let e bethe type of an objectin E, and let ¢ be the type of truth
values.

Onthetypet, weuse T for truth and L for falsehood, and we allow the usual Boolean functions
for conjunction, disunction and negation. We write Apg asp A g, and similarly for disjunctions.

We will work with a higher order logic that alows higher order abstraction and application. Ex-
pressions and types look like this:

E = z|(B\Es) | Az E|Xz1,...,zn) E| (Er,...,Ey)

T = €|t|T1—>T2|T1X"'XTn.
These formation rules are constrained by a welltypedness criterion. We will use E :: T to express
that expression E hastypeT'. The welltypedness rules are;

Ei T, — Ty, Es:T;
(ElEQ) o T2

zaTy E:T,
)\x-E::Tl —>T2

xy 2Ty o zpuTy EoThy
Mz, ywn) B (Ty X X Ty) = Thaa

Ey Ty - E,:T,
(El,...,En) CZT1X"'XTn

Note the following:

e (1) abbreviatesthetype (e — t) — t,

e (2) abbreviatesthetype ((e x e) — t) — ¢,

e (n) abbreviatesthetype ((e x -+ x e) = t) = t.
N————

n times
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Usinge™ for (e x - - - X e), wecan say that (n) abbreviatesthetype (e” — t) — ¢t. Wewill use 1 for
N———
n times

functionsof types (e™ — t) — t (withn > 1) that yield truefor any argument, i.e. 1 isthe quantifier
AR.T. Similarly, 0 isthe quantifier \R. L (the quantifier that yields false for any argument).

If R :: €2 — t then R(a, ) hastypet, and Az - R(a, ) hastypee — t.

Sometimes set notation is more convenient than lambda notation. For example, P x () is more
readable than the equivalent lambda expression A(z,y) - (Pz A Qy). For this reason we will occa-
sionally switch back and forth between lambda notation and set notation: Az - R(a, x) corresponds
totheset {z | R(a,z)}. Also, characteristic functions will sometimes be applied to sets rather than
the corresponding lambda expressions. So if f hastype (e — ¢) — t, we will sometimes write
f({z | R(a,z)}) = T instead of f(Az - R(a,z)) = T to expressthat f classifiesthe set astrue.

We will occasionally omit application parentheses, using the convention that application asso-
ciatesto theleft. Thus, Ey E, E3 abbreviates ((Ey E») E3).

Abstraction over tuples can be used for currying and uncurrying of functions, as follows. If
R:e? —tandz e,y e, then:

ARMzAy - R(z,y) = (2 = t) = (e = e = 1).
Thisisthe currying operation. If R ::e > e —» tand z :: e, y :: e, then:
ARMN(z,y) - Rxy :: (e = e = t) = (e = t).

Thisisthe uncurrying operation.
A type (1) function f on E can be lifted to afunction (L ("+1)" f) from (n + 1)-ary relationsto
n-ary relations by means of the following lift operator:

LD = XFARN (@1, ..., 2n) - fOAz - R(z1, . .., 30, 2)).

Notethatif f :: (n) and R :: et — t, 2y ze,..., 2, m e,z e (i.e. Risan (n + 1)-ary relation
and z;,z are individual variables) then (L(™*V""f) is of the required type, i.e. (L") f)
(et = t) = (e” > t).

Similarly, a type (n) function F can be lifted to a function (L ™™™ F) from (m + n)-ary
relations to m-ary relations, by means of:

L(m+n),m

AFARMN 1, ..., Zm) - FAN(@mt1, oy Ton) - R(Z1, oy Ty T 1y« + -5 Tinkn) ) -
If F:: (n)and R :: e™t7 — ¢, then (L™ F) o (747 5 1) — (e™ — ), i.e. (L™ ™)
maps (m + n)-ary relationsto m-ary relations.

Lifted type (1) functions can then be composed by means of the following operation (assume
R:e™? 5 t):

(L) o (LD g) = AR - (LD £)((L D ) R)).
Note that (L7 f) o (L"+2):("+1) gy maps (n + 2)-ary relations to n-ary relations, i.e. it is of
type (e"t2 = t) — (e — t).

For the particular case of binary relations, we get, on the assumption that R :: e? — ¢:

fo(L*g) = AR- f(L*! g R).
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If F:: (2) equals f o (L*'g) for some f :: (1), ¢ :: (1), we say that F' can be decomposed into f
and g, or that F' reduces to a composition of f and g.

Clearly, many type (2) functions can be decomposed in this way into pairs of type (1) functions.
For instance, the type (2) function F' that interprets the complex expression Every lawyer ___afirm
can be decomposed into a type (1) function g that interprets a firm and a type (1) function f that
interprets every lawyer, for f o (L*'g) equals F.

Moregeneraly, if F' :: (n) equals

fio (L fa) oo (L™ f,)

for some f :: (1),..., fn :: (1), wesay that F' can be decomposed into (or reduced to) f4, ..., fa.
Thus, the function F of type (3) that interprets the quantificationin

Every firm ___aletter ___ some lawyer

(onits natural scopereading) isacomposition f; o (L**! f,) o (L*? f3), where f; istheinterpretation
of every firm, f, istheinterpretation of a letter, and f5 isthe interpretation of some lawyer.
In the rest of this paper, we will leave the lifting operations implicit. We will use f; o f> as
shorthand for f; o (L*' f>), use fi o f» o f3 asshorthand for f; o (L*' f5) o (L>?f3), and so on.
Moregenerdly, if F :: {m) and G :: (n), then F' o G is shorthand for the function of type (m + n)
that results from the following lift:
Fo (L™mm@),

Spelled out in full, thisis the following function (assume R :: e™ " — t):

AR-F(Mz1, .-y xm)  GOM@ma1s - s Tmtn) - B(T1, -+ o Ty Tt 15 - -+ s Tintn))) -

Cdl afunction F' of type (n) positiveif F(()) = L, and negative otherwise. The interpretations of
some firm and every lawyer are positive, those of no lawyer and not every firm are negative.

When studying compositions of functions F' o GG, we will always assume, without loss of gener-
dity, that G is positive: if not, one can simply replace G by -G and F' by F'—. More precisely, if
F :: (n), G :: {m), then:

-G = AR-—(GR)
F- = AS-F)Xxi,.-..,xn) ~(S(x1,-..,20)))-

Clearly, F o G :: (m + n) isthesamefunctionas F— o =G :: (m + n).

3 Failuresof decomposition

In[5] it is demonstrated that there are cases where quantifiers of type (2) or higher are not decom-
posable. Keenan shows that the following sentence exhibits an example of non-decomposable type
(2) quantification:

(3.1) Different students answered different questions.

For sentence (3.1) to make sense, we haveto assumethat there are at |east two students. The sentence
istrueif there is aone-to-one correspondence between students and sets of questionsthey answered.
Thus, Different students ___ different questions is interpreted as the type (2) function expressing
that its argument relation R satisfies the property that all the aR, with a ranging over students, are
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different (hereaR is used as shorthandfor {z | R(a, x)}). Keenan has an ingenious method to prove
this fact. He states and proves a theorem to the effect that for any two type (2) functions F, G that
arereducibleit holds that these functions are equal iff they act the same on Cartesian products, i.e. if
for al subsets P, 9 of the domain of discourse E it holdsthat F/(P x Q) = G(P x Q) (see Section
4 below).

How can this be used to show that a type (2) function F' is non-reducible? Here is how, for the
exampleof (3.1).

Let F' be the type (2) function that interprets different students ___ different questions. Assume
that F isreducible.

Let S bethe set of studentsand () the set of questions. Assume there are at |east two students and
at least two questions, for otherwise statement (3.1) becomestrivial. Let A x B beaproduct relation,
i.e. arelation that links every object in A to every object in B. If there are two studentsin S — A,
then they bear A x B to the same questions, namely, no questions. If there are two studentsin SN A,
then the questions they bear A x B to are again the same, namely BN Q. Again, F(A x B) = L.

Recall that 0 is the type (1) function that is false for any argument. Then, by the above, F(R) =
(0 0 0)(R) for any product relation R.

By Keenan’'s theorem, it follows from this F' is equal to 0 o 0. Contradiction, for obviously, F’
is different from the composition 0 o 0, for F is true of {(s1,q1), (s2,q2)} (With s;,s2 € S and
q1,92 € @), and 0 o 0 isnot. Thus, the assumption that F' is reducible must be false. F' is not
reducible.

Here are some further examples of quantifiers that Keenan shows to be not reducible.

(3.2) Threeboysin my class dated the same girl.
(3.3) All girls fancied the same boy.
(3.4) John criticized Bill and no-one else criticized anyone else.
(3.5) The women at the wedding all wore different hats.
(3.6) Every student criticized everyone but himself.
(3.7) The students criticized each other.
(3.8) Two detectivesinterviewed atotal of twenty witnesses.
(3.9) The boys gave the same presents to the same girlfriends on the same occasions.
(3.10) Every student gave different answers to different questions.

Here are some example quantifiers, with their types. Restricted universal quantifier, type (1).

forall4 Az - ¢(z) & Va(Az = ¢(x)).
Transitivity quantifier, type (2).
Tr A, y) - oz, y) == VaVy(d(z,y) = Vz((y, 2) = ¢(, 2)))-
Injectivity quantifier, type (2).
Inj A(z,y) - ¢(z,y) & VaVy(z #y = Fudv(d(z,u) A d(y,v) Au # v)).
Set injectivity quantifier, type (2).
INJ Az, y) - o(z,y) & VaVy(z #y = Au - ¢(z,u) # \.¢d(y,v)).

The set injectivity quantifier captures the meaning of Different students gave different answers.
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4 Crossing the Frege boundary

This section gives Keenan's theorem that underpins his method for establishing the irreducibility
facts mentioned above, plus Dekker’s generalization and Dekker’sindirect criterion for irreducibility
[3]. Section 5 proposes adirect criterion for (ir)reducibility.

Keenan [5] starts out from the following Fact about the behaviour of type (1) functions on prod-
ucts:

FACT 4.1 (Keenan)
Let f beapositive function of type (1) and let P, @ C E. Then:

_ [P iff@=T
f(PXQ)_{(Z) otherwise,

PROOF. Let f :: (1) beapositive function. Let P,Q C E.
Firstassume P = (. Then P x Q = ), and

f(PxQ)

{ded|f{d eQ|(dd)ed}=T}
0.

FromP = () and f(P x Q) = 0, the Fact follows directly.

Now assume @ = . Again P x Q = 0, and f(P x Q) = 0. From the positivity of f we get
f(Q) = f(0) = L, and the Fact follows.

Finaly, assume P # (), Q # 0. Now P x @Q # (), and:

f(PxQ) = {deE|f{deFE|dd)ePxQ}=T}
= {deE|deP,f{d € E|d €Q} = T} becausef positive
= {deP[fQ)=T}
{P ifr@Q) =T

(0 otherwise.

From this we get immediately:

FACT 4.2 (Keenan)
Let f, g be positive functions of type (1), andlet P,Q C E. Then:

(goIPxQ)=Tiffg(P)=TAf(Q)=T.
Recdll that a (2) function F' isreducibleif there are type (1) functions f, g with F = f o g.

THEOREM 4.3 (Keenan)
If Fand G are reducible type (2) functions, then F' = G iff for all P,(Q C E it holdsthat F'(P x
Q) =G(P x Q).

PROOF. If F' = @ then their behaviour on productsis the same.

For the other direction, assume F', G have the same behaviour on products.

First suppose F, G positive. Then, because of reducibility there are positive f1, f2, g1, g2 With
F = fio fyand G = g1 o go. Because F, G act the same on products, using Fact 4.2 we see that
f1 =0 ande ZQQ.ThUSF:fl Of2 = g1 °g> =G.
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Now assume F, G negative. Then, because of reducibility there are f1, f2, g1, 92, with f1, g1
negative, f2,g2 pOSitiVE, F = f1 o f2 and G = g1 °© go.

Clearly, if fo = go,thenby Fact 4.2, fi = g1, and FF = f1 0 fo = g1 0 g2 = G.

1f3Q: L = £2(Q) # 92(Q) = T, thenfor any P,

(fief)(PxQ)=fi(0) =T = (g1 092)(P x Q).
Itfollowsthat fi = g1 =1: (1),andF =G =1 :: (2). [ |
Dekker [3] generalizes Fact 4.1 to Fact 4.4, and Theorem 4.3 to the case of reducing a type (n)
function to n functions of type (1) (n-reducibility).
FACT 4.4 (Dekker)
Let F = f,0---0 f,,withal f; positive. Thenfor al Q; C E:
F(Qux--xQn)=T&Vi(l<i<n= fi(Qi)=T).

PROOF. Suppose F(Q x -+ x Q) = T. Assume thereis ai with f;(Q;) = L. Without loss of
generality we may assume that fori < j < n, f;(Q;) = T. Then,fromF = f; o --- 0o f,, with
n — ¢ applications of (an obvious generalization of) Fact 4.1:

F(Qu x--xQn)=(fio--0ofi)(Q1x - xQ;).
From this, with f;(Q;) = L, and again Fact 4.1,

F(Ql><"'XQn):(f1°"'°fi—1)(@)a

and from this, by positivity of the f, F(Q1 x --- x Q) = F(#) = L, and contradiction with the
given about F'.

For the other direction, assume Vi 1 < i < n: f;(Q;) = T. Then with n applications of Fact 4.1,
F(Qix-xQn)=T. | |

THEOREM 4.5 (Dekker)
If F and G are positive n-reducibletype (n) functions, then F = G iff VQ+,...,Q, C E: F(Q1 X
X Qn) =G(Q1 X X Qp).
PrRooF. If F, G arethe same, then they behave the same on products.

Conversely, assume F' = fio---o f, and G = g, o --- o g,,, With dl the f;, g; positive, and
suppose F' and G act the same on products. Then: F(Q; x --- x Q,) = 1 iff (Fact 4.4) for all

i:1<4i<nitholdsthat f;(Q;) = 1. Smilarly for G. Since F' and G act the same on products,
the f; must be equal to the g;, whence F' = G. [ |

Dekker also succeeds in finding suitable candidate type (1) functionsfor this reduction, provided
afunction satisfies the following condition of invariance.

DEFINITION 4.6 (Invariance, Dekker)
A type (n) function F'isinvariant if for al non-empty Q1,...,Q, C Ewith F(Q1 X -+ x Q; X
-+ X @Qp) = L thefollowing holds: either for al non-empty @ }:

F(Qrx - xQi1 X Qi X Qip1 X - xQp) =1,
or for all non-empty Q’; (j # i):

F(QL x - x Qi X Qi x Qi X -+ x Q) = L.
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The importance of invariance is that it gives us a means of defining positive functions f; :: (1)
(for 1 <4 < n) from a positive invariant function F' of type (n). The recipeis this. To determine
whether f;(Q) = L, check whether F' takes the value L for arbitrary choices of the other argument
placesin the product

Q1 X X Qi1 X QX Qig1 X -+ X Q.

THEOREM 4.7 (Dekker)
A positive type (n) function F' isinvariant iff 7' has a product equivalent n-reducible correlate G.

PrROOF. Only if: Assumethat F' isinvariant and positive. Then g4, ..., g, can be defined by means
of:
g:(0) = 1L
gz(Q 7& w) =1L & Vv non_emptle, s ,QiflyQiJrl: N 7Qn g E:

F(Qux X Qiit X Q X Qiy1 X - x Q) = L.

By definition, all g; are positive. By invariance and positivity of F', F(Q1 % --- x @,,) = T iff all
Q; aenon-emptyand g1 (Q1) = T A--- A gn(Qr) = T iff (Fact 4.4)

(gro--0g.)(Q1 X - XQp)=T.

Conversely, assumethat G = g, o - - - 0 g,, isafunction that actslike F' on products. Assume G and
all g; positive. Suppose F/(Q; X --- x @,,) = L. Then by the fact that F' and G act the same on
products:

(910"'°gn)(Q1 X e XQTL):J—
Suppose g;(Q;) = L. Then, by Fact 4.4,

(gro--ogn)(Q) x - X Qi1 X Qi X Qiy X -~ x Q) =L
Thus,
FQ] x--xQj 1 xQ; XQ;’H X--x Q)= L.
Suppose on the other hand that g;(Q;) = T. Then by Fact 4.4, thereisaj # i withg;(Q;) = L. In
this case, for any Q'

(gro- 0gn)(@Q1 XX Qi1 X Qf X Qiy1 X+ XQp) =1,

FQux - x Qi1 X Qi X Qip1 X=X Qp) =1,

It follows that F isinvariant. [ |

5 A direct criterion for reducibility

In this section we will show that if a positive function F' :: (n) isn-reducible, then it is possible to
give explicit definitions of positive functions f; (1 < i < n)with F = f; o---0o f,. For this, we
first define what we mean by the reduct of a positivefunction F', and next show that F' isn-reducible
iff Fitsequal toits reduct.
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DEFINITION 5.1 (Reduct)
Thereduct F'* of apositive type (n) function F is defined as

F*=fio-of,
with f; given by:
fi(@ = 1
fl(Q#w) =T & ElQl,"':Qifl,Qi+la"',Qn gE:
F(Qi x xQiz1 xQ X Qip1 X+ X Qpn)=T.

Clearly, each f; is positive. This gives us asimple test for reducibility:

THEOREM 5.2
For all positive type (n) functions F': F' = F'* iff F' isreducible.

PrROOF. Only if. Immediate, for F'* hastheform f; o --- o f,.

93

Conversely, suppose there are positive g1, ...,g, With P =gy 0---0g,. L&t F* = fi 0.0 f,.
We haveto show that g, o - - - 0 g,, equals f; o - - - o f,,. By Theorem 4.5 it is enough to show, for all

Ql:"':Qn gE
(gr0-09)(Qux X Qu) = (fro---0 fu)(@QLx - X Qu)-
We have:
F(Qix--xQn)=(g10-0g2)(Q1 % - XxQpn) =1
iff (Fact 4.4)
Fi(1<i<nAg(Q:)=1)
iff (positivity of F’)

VQID st :Q;—va;'-',-lﬂ te aQIna
Py x X Qi 1 X Qi X Qi X+ xQn)=F(0)=1
iff (definition of f;)
fi(@Qi) =L
iff (Fact 4.4, definition of F'*)
F*(Q1 x - x@Qn) =L

The test ‘Is F' equal to its reduct? is easy to apply. An irreducibility argument based on it
is different from the irreducibility reasoning proposed by Dekker, where the irreducibility of the
symmetry function is deduced from the fact that the functionis not invariant. In the case of invariant
functionsthat areirreducible (such as the transitivity function), Dekker needs a different test. In our

case, the test is the same for any function.

Take as an example the function F' that characterizes the symmetric relations. Since this is a
negative function (for the empty relation is symmetric), switch to —F' instead. To establish whether
—F isreducible, we must ask what (—F')* looks like. (=F)®* = f o g with f(P # () = T iff
3Q C E,Q # 0 with (=F)(P x Q) = T. Such Q surely exists, for P x () is non-symmetric
iff P # Q. So f = 1, the constant T function. By the same reasoning we seethat ¢ = 1. So

(=F)* =101 # —F, and therefore ~F isirreducible (and so is F).
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Take the function G that characterizes transitive relations. Again, since thisis a negative function
(theempty relationistransitive), we switch toitsnegation ~G. (-G)® = fog,where f(P # 0) = T
iff 3Q C E,Q # 0 with (=F)(P x Q) = T. Thisis never possible, for any product relation is
transitive, so f = 0. Similarly, ¢ = 0, and (—=G)* = 0 0 0 # —@, and therefore -G isirreducible
(and sois G).

6 Reduction on thefar side

The fact that a function is not n-reducible does not mean that it isin its simplest possible form. The
following definition allows us to discuss reduction on the far side of the Frege boundary.

DEFINITION 6.1 (m — n-reduction)
A function F of type (m + n) is (m, n)-reducibleif there are functions G, H, of types (m) and (n)
respectively, withF = G o H.

Thisisauseful concept, becauseit allows stating and answering further questions about reducibil-
ity of functions. Take for instance the quantification pattern of (6.1).

(6.1) Every prosecutor charged the same suspects with the same crimes.
(6.2) No lawyer argued for the same treatment of suspects of the same offence.

These examples are certainly not 3-reducible, but they might well be (1, 2)-reducible, in which case
they could be construed by composing a Fregean quantifier with atype (2) function.
Or take the pattern in (6.3).

(6.3) The prosecutors assisted each other in asking for identical punishmentsfor identical offences.

This pattern is certainly not 4-reducible, but it might well be (2, 2)-reducible. For a compositional
treatment of quantification beyond the Frege boundary these issues are crucial.
If RC E™andS C E™ then R x S isthefollowing (m + n)-ary relation:

/\(mla---:xm,xm+1,---7mm+n) 'R(ml,---axm) /\S(mm+1,'--7mm+n)'
Here is the corresponding set-theoretic expression:
{(dy,...,dm,dms1y- s dmin) € E™™ | (dy,...,dn) € R, (dmi1 ... dmin) €S}

Thus, R x S consists of al (m + n)-tuplesover E that result from concatenating atuplein R with
onein S.
Fact 4.1 can be generalized as follows:

FACT 6.2
Let F be apositive function of type (n), andlet R C E™, S C E™. Then:

R ifF(S)=T

F(RxS) = { 0 otherwise.

The following generalizations are also straightforward:

THEOREM 6.3
If F and G are (m, n)-reducible functions of type (m + n), then F = G holdsiff F and G act the
sameon products R x SwithR C E™ and S C E™.
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THEOREM 6.4
LetF = Go H,withG :: (m) and H :: (n) both positive. Then: F(R x S) = T iff G(R) = T and
H(S)=T.
PrOOF. Only if. Assume F(R x S) = T. Suppose H(S) = L. Then with Fact 6.2, F(R x
S) = G(P). Contradiction with the positivity of G. Suppose H(S) = T. Then with Fact 6.2,
F(R x S) = G(R), and done.

The other direction follows immediately from Fact 6.2. [ |

The following definition will be our tool for characterizing the (m, n)-reducible functions.

DEFINITION 6.5 (m — n-reduct)
The (m,n)-reduct of atype (m + n) function F is the composition G o H, with G of type (m) and
H of type (n), with G defined by

G(R)=T > 3ISCE", F(RxS)=T

and H by
H(S)=T:3RCE™ F(RxS)=T.

The notion of an (m, n)-reduct provides us with adirect criterion for (m, n)-reducibility:

THEOREM 6.6
A positive type (m + n) function F isequal to its own (m, n)-reduct iff F is (m, n)-reducible.
PROOF. Only if. Immediate, for the (m, n)-reduct has the form G o H, with G of type (m) and H
of type (n).

Conversely, assume F = K o M, with both K and M positive, K of type (m), M of type (n).
Let G o H bethe (m,n)-reduct of F. We show that K’ = G and M = H. For this, it is enough to
show that it holdsforal R C E™ and S C E™ that

(K o M)(R x S) = (GoH)(R x S).
Let R C E™, S C E™. Then

F(RxS)=T iff (KoM)(RxS)=T
iff K(R)=TadM(S)=T
iff G(R)=T (forthereisan SwithF(R x S) =T)
and
H(S) =T (forthereisan RwithF(R x S) =T)
iff (GoH)(RxS)=T.

We will show now that any positive type (n) function can be reduced in a unique manner to a
composition of irreducible functions. For this, we need to establish confluence of the reduction
process. Thisis stated in the following theorem.

THEOREM 6.7 (Diamond property)
fF=FoG=KoMWwithF :: (m)andG :: (n),m <m', K =: ({m'), M :: (m+n —m'),al of
F,F,G, K, M positive, then thereis a positive function H :: {m' —m) suchthat F = FFo H o M.
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F —— Fod

l l

KoM —— FoHoM
PROOF. Let Ho M' bethe (m' —m, m+n—m')-reductof G. Let F'o H' bethe (m, m' —m)-reduct
of K. Weshowthat F = F',H = H', M = M' by showingthat F o H o M' = F' o H o M.
For this, it is enough to show that the two compounds have the same values for products R x S x T,
withR C Em, § C Em'—m T C pmtn—m'
(FoHoM')(RxSxT)=T

iff (H,M'isreductof G) (FoG)(RxSxT)=T

iff (F=FoQ) F(RxSxT)=T

iff (F =Ko M) (KoM)(RxSxT)=T

iff (F',H' isreductof k) (F'oH o M)(RxSxT)=T.

THEOREM 6.8 (Normal form)
Every positive F :: (n) isuniquely representable as

F=Fo---0F,
with F; positiveand irreduciblefor all 7 : 1 < i < k. Moreover, on finite domains E there exists an
algorithm for finding this normal form NF(F).

ProoF. Fisirreducibleif fornok with1 < k < n, F equalsits (k, n—k) reduct. If F isirreducible,
NF(F) = F. Otherwise, find the smallest k for which F equalsits (k,n — k)-reduct F'; o F’, and put
NF(F) = F; o NF(F'). Then F; isirreducible by virtue of its definition. By the diamond theorem,
the normal form is unique.

To find the normal form of F assuming that E is finite, note that for all £ with1 < k < n, the
equality test between F and its (k, n — k) reduct is decidable. [ |

Note that the n-reducible positive functions of type (n) are precisely the positive functions F' for
whichNF(F) = F*.

7 Application to natural language semantics
Let uslook at some examplesto see how all of this can be applied to natural language semantics.
(7.1) Some hermit forbade himself every pleasure.

Theorem 6.8 can be used to see that the type (3) quantifier in example (7.1) is (2, 1) reducible, as
follows. The sentence is true on domain E iff thereexist R C E? and Q C E with R areflexive
relation with at least one hermit in its domain, and ) a set containing every pleasure, such that
R x ) C FORBID. This meansthat the type (3) quantifier in (7.1) isequal toits (2, 1) reduct, so it
is(2,1) reducible.

(7.2) Some hermit forbade some hermit every pleasure.

The quantifier in (7.1) isnot (1, 2) reducible, for its (1, 2)-reduct is (7.2), and this is not equivalent
to (7.1). So the normal form of the quantificationin (7.1) is:

(AR - ((dom(R) N HERMIT) # 0 AVz R(z,z)) o AQ - PLEASURE C Q)(FORBID).
Next, look at example (3.10), repeated here as (7.3) for convenience.
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(7.3) Every student gave different answers to different questions.

Thisisreducibletoforallsolnj, withforalls :: (1) andInj 4, ¢ :: (2). Inother words, the quantifier
is (1, 2)-reducible. By Keenan's result, the quantifier from this example is not fully reducible. It
follows from the diamond theorem that it cannot be (2, 1)-reducible.

We can al so show that the type (3) quantifier of example (6.1) isneither (2, 1) nor (1, 2)-reducible.
Hereis the example repeated for convenience.

(7.4) Every prosecutor charged the same suspects with the same crimes.

Thisisnot (1, 2)-reducible, for its (1, 2)-reduct is equivalent to (q :: (1)) o (1 :: (2)), sinceit holds
forevery Q C E and R C E? that ) x R isin the quantifier relation, for ) x R expresses that
every pin Q isrelated to every (s, ¢) pair in R, so it is indeed the case that every p charges every s
with the same crimes, namely the crimesin sR. Neither isit (2, 1)-reducible, for its (2, 1)-reduct is
equivalent to (1 :: (2)) o (1 :: (1)), sinceit holdsforevery R C E2 andQ C E that R x Q isin
the quantifier relation, for R x () expressesthat every (p, s) pairin R isrelated to every cin @, so if
(p1, s) and (p2, s) bothin R then p; and p, charge s with the same crimes, namely all crimesin Q.
This establishes the following fact about natural language:

FacT 7.1
Natural languages can express type (3) quantifiers that cannot be reduced to any composition of
| esser types.

Theiterated ‘same’ construction can be used to generalize this fact.
(7.5) Every politician told the same lies to the same audiences on the same occasions.

(7.6) Every palitician told the same variations on the same lies to the same audiences on the same
occasions.

Exampleslike these show:

FAacT 7.2
For all reasonable n, natural languages present examples of type (n) quantificational expressions
that cannot be reduced to any composition of quantifiers of lesser degree.

Thanksto Ed Keenan for urging me to be explicit about these facts about natural language.

8 Related work

Keenan's first examples of irreducible type (n) quantifiers are from [4]; the treatment of Section 4
is based on [5]. Van Benthem [2] gives a characterization of the reducible type (n) quantifiers that
satisfy (an appropriate version of) permutation: these are exactly the Boolean compounds of unary
quantifiers. Paper [5] has updates with further examples of irreducible quantifiers: [6, 7].
Ben-Shalom [1] remarksthat Keenan’s methods do not allow to establish the reducibility of (8.1).

(8.1) Two students criticised themselves.

A Keenan-style argument would try to find a composition of two unary quantifiers that behave the
same on products, and conclude from the fact that this composition is not equivalent to the original
quantifier that the original quantifier isnot reducible. AsBen-Shalom remarks, restricted to products,
(8.1) is equivalent to (8.2) rather than to (8.3).
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(8.2) Two students criticized the same two students.
(8.3) Two students criticized two students.

Since (8.2) is not an example of a composition of two type (1) quantifiers, a Keenan style argument
does not get off the ground. Our argumentation for showing that (8.1) is irreducible remains intact,
however. The reduct of (8.1) is (8.3), and from the fact that (8.1) and (8.3) are different it follows
that (8.1) isirreducible.

Ben-Shalom, by the way, defines (k)-reducibility of a function F' :: (n) asfollows: F' :: (n) is
(k)-reducibleif thereisafunction f :: (n — k) and apositive g :: (k) with F' = f o g. The ‘right-
hand-side bias’ in this definition is connected to the tree-based representation of n-ary relations that
is at the core of Ben-Shalom'’s proof technique for irreducibility. This makes the definition less
natural than the one we adopted: it misses (e.g.) the distinction between (2, 1)-reducibility and
(1)-reducibility (in our sense).

(8.4) The students answered the same questions on two exams.
(8.5) There were two exams where the students answered the same questions.

According to Ben-Shalom’s definition, the type (3) function in (8.4) is (BS) (1)-reducible, for it
is a composition F o g, of the functiondity quantifier F' :: (2) and the quantifier ¢, :: (1). The
type (3) function in (8.5), however, is (BS) (2)-reducible but not (BS) (1)-reducible, for it can be
decomposed as ¢» o F.

Using our characterization of (n — k, k)-reducibility of type (n) functions, we can establish alink
with Ben-Shalom’sgraphical invariancetheorem, asfollows: if F :: (n) is(n — k, k)-reducible, then
the G :: (k) givenby

GS)=T:3IRCE"* F(RxS)=T

satisfies the ‘replace tree’ and ‘ delete tree’ properties.
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