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Abstract

Renunciation games are games where an individual (or small group) is pitted against a col-
lective. The setup of the games is such that the social optimum of a game can only be reached at
the expense of a single individual (or small group). When will an individual sacrifice his/her own
interest to save society? It turns out that the nature of the renunciation game changes crucially
depending on the temptation offered to the renouncer. Eijck [to appear, 2013]



Overview

• Game Theory and the Structure of Society

• Terminology for Strategic n Player Games

• Punishment and Reward as Game Transformations

• Proportionality of Punishment, Social Harm

• Repression Cost of a Game

• From Punishment to Reward: Welfare Redistribution

• Civilization Cost of a Game

• Renunciation Games: Self-Sacrifice to Save Society

• Further Questions



Game Theory and the Structure of Society

• GT: an analysis tool using extremely abstract/crude models of
‘social reality.’

• Hopefully we can still learn something from GT analysis of what
goes on in the social world that we live in.

• Cf. Parikh [2002].

• Use (strategic) GT to analyze mechanisms of Punishment and
Reward



Some Terminology for Strategic n Player Games

A strategic game G is a tuple

({1, . . . , n}, {Si}i∈{1,...,n}, {ui}i∈{1,...,n}),

where

• {1, . . . , n} with n > 1 is the set of players,

• each Si is a set of strategies (the strategies for player i),

• each ui is a function from S1× · · · × Sn to R (the utility function
for player i).

Use N for {1, . . . , n}, S for S1 × · · · × Sn and u for {ui}i∈{1,...,n}.
Then (N,S, u) denotes a game.



Strategy Profiles

A member of S1 × · · · × Sn is a strategy profile: each player i picks
a strategy si ∈ Si.

• Use s to range over strategy profiles.

• Use s−i for the strategy profile that results by deleting strategy
choice si of player i from s.

• Let (s′i, s−i) be the strategy profile that is like s for all players
except i, but has si replaced by s′i.

• Let S−i be the set of all strategy profiles minus the strategy for
player i (the product of all strategy sets minus Si). Note that
s−i ∈ S−i.



Best Response, Nash Equilibrium

A strategy si is a best response in s if

∀s′i ∈ Si ui(s) ≥ ui(s
′
i, s−i).

A strategy profile s is a (pure) Nash equilibrium if each si is a best
response in s:

∀i ∈ N ∀s′i ∈ Si ui(s) ≥ ui(s
′
i, s−i).

Let nash(G) = {s ∈ S | s is a Nash equilibrium of G}.
A game G is Nash if G has a (pure) Nash equilibrium.



Social Welfare, Social Optimum

Define a social welfare function W : S1 × · · · × Sn → R by setting

W (s) =

n∑
i=1

ui(s).

A strategy profile s of a game G = (N,S, u) is a social optimum if

W (s) = sup{W (t) | t ∈ S}.

For a finite game, s is a social optimum if W (s) is the maximum of
the welfare function for that game.



Punishment and Reward as Game Transformations

Let us start with the Prisoner’s Dilemma (PD) Game:

II cooperates II defects
I cooperates 3, 3 0, 4

I defects 4, 0 1, 1

Suppose a ‘social software engineer’ has to design a policy to make
defection less profitable in a PD situation.

One thing she could do is put a penalty P on defection.

This does not have an immediate effect. A penalty can only be im-
posed if the cheater gets caught. Suppose the probability of getting
caught is γ. In case the cheater gets caught, she gets the penalty,
otherwise she gets what she would have got in the original game.



Transforming the PD Game

Adopting the punishment policy amounts to a change of utilities.

The policy change can be viewed as a game transformation that maps
strategic game G to strategic game GγP , where GγP is like G except
for the fact that the utility function is replaced by:

uγPI (c, c) = uI(c, c),

uγPI (d, c) = γP + (1− γ)uI(d, c),
uγPI (c, d) = uI(c, d),

uγPI (d, d) = γP + (1− γ)uI(d, d),

and similarly for upPII .

The new utility of cheating if the other is honest amounts to P in case
you get caught, and to the old utility of cheating in case you can get
away with it.



Compare also the social ties utilities function in Chapter 6 of Moison
[2013].



Something is missing still ...



Proportionality of Punishment

If an equal punishment be ordained for two crimes that injure
society in different degrees, there is nothing to deter men
from committing the greater as often as it is attended with
greater advantage. [Beccaria, 1764, Ch 6]



A Measure for Social Harm Caused by the Strategy of an Indi-
vidual Player

Let a game G = (N,S, u) be given.

For any i ∈ N , define the individual harm function Hi : S → R, as
follows:

Hi(s) = W (s)− sup
s′i∈Si

W (s′i, s−i).

This gives the difference between the social welfare for the profile s
and the best outcome for society as i unilaterally deviates from her
current strategy (against her own interest).

That is, Hi(s) gives a measure for how much player i harms society
by playing si rather than the alternative s′i that ensures the maximum
social welfare.

Clearly, in case s is a social optimum, Hi(s) = 0 for any i.



Appropriate Punishment Transformations of a Game

If G = (N,S, u) is a strategic game, γ ∈ [0, 1], then Gγ is the game
(N,S, uγ), where uγ is given by:

uγi (s) := (1− γ)ui(s) + γHi(s).

Think of γ as the probability of getting caught.

For the PD example:

c d

c 3, 3 0, 4

d 4, 0 1, 1

⇒
c d

c 3, 3 0, 4− 6γ

d 4− 6γ, 0 1− 3γ, 1− 3γ

Explanation: social harm caused by playing d in case the other plays
c is −2, social harm caused by playing d in case the other plays d is
also −2.



The Repression Cost of a Game

The repression cost of a game G is the least γ for which the move
from G to Gγ turns a social optimum into a Nash equilibrium. In case
G has no social optimum, the repression cost is undefined.

Intuition behind this: a strong police force is needed to make detec-
tion and punishment very probable, so γ can be taken as a measure
for repression.

Games that have a Nash social optimum have repression cost equal to
0: no game transformation is needed to create a social optimum that
is Nash.

A game G with a social optimum, but without Nash social optimum
can always be transformed into a game Gγ with a social optimum that
is Nash.



Illustration: The Repression Cost of the PD Game

Take another look at the transformation:

c d

c 3, 3 0, 4

d 4, 0 1, 1

⇒
c d

c 3, 3 0, 4− 6γ

d 4− 6γ, 0 1− 3γ, 1− 3γ

To turn (c, c) into a Nash equilibrium, we have to demand

3 ≥ 4− 6γ.

This gives: γ ≥ 1
6, so PDγ has a social optimum that is Nash iff

γ ∈ [16, 1], and the repression cost for the PD game is 1
6.



From Punishment to Reward: Welfare Redistribution

Instead of punishing offenders directly, one can also punish them in-
directly . . .

. . . by raising taxes for everybody, and distributing the tax revenue
uniformly over the players.

Welfare redistribution can be represented by a map from payoff func-
tions to new payoff functions, i.e., by a game transformation.



The Welfare Redistribution Map

The map for welfare redistribution is G 7→ G[γ], where γ ∈ [0, 1],
and the payoff uγi in the new game G[γ] is computed from the payoff
ui in G (assuming there are n players) by means of:

uγi (s) = (1− γ)ui(s) + γ
W (s)

n
.

Here W (s) gives the result of the welfare function on s in G.

Thus, player i is allowed to keep 1 − γ of her old revenue ui(s), and
gets an equal share 1

n of γW (s), which is the part of the welfare that
gets redistributed.

This definition is mentioned (but not used) in Chen and Kempe [2008].

Note that for any game G, any γ ∈ [0..1], any s:

W (s) = W γ(s).



The Civilization Cost of a Game

The civilization cost of a game G is the least γ for which the move
from G to G[γ] turns a social optimum into a Nash equilibrium. In
case G has no social optimum, the civilization cost is undefined.

The players are not “selfish”; rather the preferences of each
player i are represented by the payoff functionmi(a)+αmj(a),
where mi(a) is the amount of money received by player i
when the action profile is a, j is the other player, and α is a
given non-negative number. [Osborne, 2004, exercise 27.1]

Compare Apt and Schaefer [2012], who define the selfishness level
of a game. Let G(α) be the result of adding αW (s) to each payoff in
s. The selfishness level of G is the least α for which the move from
G to G(α) turns some social optimum of G into a Nash equilibrium.



Illustration: The Civilization Cost of the PD Game

Redistribution of part γ of social welfare transforms the PD game.

Note that if welfare is already equally distributed, the payoff transfor-
mation changes nothing.

In the case W (c, d) = W (d, c) = 4, we get that the payoffs of the
players get changed, into (1− γ)4 + 4

2γ = 4− 2γ for the player who
defects, and into 4

2γ = 2γ for the player who cooperates.

c d

c 3, 3 0, 4

d 4, 0 1, 1

⇒
c d

c 3, 3 2γ, 4− 2γ

d 4− 2γ, 2γ 1, 1

Thus, the social optimum of G[γ] is Nash iff 3 ≥ 4− 2γ iff γ ≥ 1
2. So

the civilization cost of the PD game is 1
2.



Illustration: The ToC Game

The Tragedy of the Commons game scenario was first analyzed in
Gordon [1954] and was made famous in an essay by Garrett Hardin:

The tragedy of the commons develops in this way. Picture a
pasture open to all. It is to be expected that each herdsman
will try to keep as many cattle as possible on the commons.
Such an arrangement may work reasonably satisfactorily for
centuries because tribal wars, poaching, and disease keep the
numbers of both man and beast well below the carrying ca-
pacity of the land. Finally, however, comes the day of reck-
oning, that is, the day when the long-desired goal of social
stability becomes a reality. At this point, the inherent logic
of the commons remorselessly generates tragedy. [Hardin,
1968]



Formal Version

ToC can be viewed as a multi-agent version of the PD game. Assume
there are n players. Chapter 1 of Vazirani et al. [2007] proposes the
following model. The players each want to have part of a shared
resource. Setting the value of the resource to 1, each player i has to
decide on the part of the resource xi to claim, so we can assume that
xi ∈ [0, 1].

Stipulate the following payoff function. Let N be the set of agents. If∑
j∈N xj < 1 then the value for player i is

ui = xi(1−
∑
j∈N

xj).

The benefit for i decreases as the resource gets exhausted. If
∑

j∈N xj ≥
1 (the demands on the resource exceed the supply), the payoff for the
players becomes 0.



Nash Equilibrium of ToC Game

Take the perspective of player i. Let D be the total demand of the
other players, i.e., D =

∑
j∈N,j 6=i xj < 1. Then strategy xi gives

payoff ui = xi(1 − (D + xi)), so the optimal solution for i is xi =
(1−D)/2.

Since the optimal solution for each player is the same, this gives x =
1−(n−1)x

2 , and thus x = 1
n+1 as the optimal strategy for each player.

This givesD+x = n
n+1, and payoff for x of u = 1

n+1(1−
n
n+1) =

1
(n+1)2

.

The total payoff is n
(n+1)2

, which is roughly 1
n. This means that the

social welfare in the Nash equilibrium for this game depends inversely
on the number of players.



Social Optimum of the ToC Game

If the players had agreed to leave the resource to a single player, the
total payoff would have been u = x(1 − x), which is optimal for
x = 1

2, yielding payoff u = 1
4.

If the players had agreed to demand only equal shares of 1
2 of the

resource, they would have had a payoff of 1
4n each, which is much

more than 1
(n+1)2

for large n.



Illustration: The Civilization Cost of the ToC Game

A social optimum s in the ToC game satisfies W (s) = 1
4.

We can now calculate just how much welfare we have to distribute
for a given alternative to social optimum s to lose its appeal for i. A
tempting alternative s′ for i in s loses its appeal for i in s when the
following holds:

uγi (s
′) ≤ uγi (s).

Write out the definition of uγi :

(1− γ)ui(s′) + γ
W (s′)

n
≤ (1− γ)ui(s) + γ

W (s)

n
.

Solving for γ yields . . .γ = 1.

Since the social optimum s was arbitrary, it follows that the cost of
civilization for the tragedy of the commons game is 1.



Renunciation Games: Self Sacrifice to Save Society

Some new games (not from the textbooks) where an individual is pit-
ted against a collective. The setup of the games is such that the social
optimum of the game can only be reached at the expense of one single
individual.

When will an individual sacrifice his or her own interest to save soci-
ety?



Pure Renunciation Game

The pure renunciation game has n players, who each choose a strat-
egy in [0, 1], which represents their demand. If at least one player
renounces (demands 0), then all other players get as payoff what they
demand. Otherwise, nobody gets anything. The payoff function for i
is given by:

ui(s) =

{
si if ∃j 6= i : sj = 0

0 otherwise.



Analysis

This game has n social optima

(0, 1, . . . , 1), (1, 0, 1, . . . , 1), . . . , (1, . . . , 1, 0),

where the social welfare W equals n− 1. The social optima are also
Nash equilibria. No need for welfare redistribution, no need for pun-
ishment.

The repression cost and the civilization cost of this game are both 0.

The situation changes if there is a temptation for the renouncer in the
game.



Renunciation Game With Mild Temptation

This renunciation game has n players, who each choose a strategy in
[0, 1], which represents their demand. If at least one player renounces
(demands 0), then all other players get as payoff what they demand.
Otherwise, if there is one player i who demands less than any other
player, i gets what she demands, and the others get nothing. In all
other cases nobody gets anything. The payoff function for i is given
by:

ui(s) =


si if ∃j 6= i : sj = 0

or ∀j 6= i : 0 < si < sj
0 otherwise.



Analysis: Repression Cost

This game has n social optima

(0, 1, . . . , 1), (1, 0, 1, . . . , 1), . . . , (1, . . . , 1, 0),

where the social welfare W equals n− 1.

The social optima are not Nash equilibria. For in a social optimum,
the player who renounces (and receives nothing) can get any q with
0 < q < 1 by playing q. That’s the temptation.

Suppose s is the profile where player i plays q > 0 and all other
players play 1. Then W (s) = q, so the social harm i does by not
renouncing is q − (n− 1).

How can the social optimum where i renounces and all other players
play 1 be turned into a Nash equilibrium by punishment?



By picking a value for γ that yields:

uγi (s) = (1− γ)q + γ(x + 1− n) ≥ 0.

Solving for γ gives:
γ ≥ q

n− 1
.

Taking the supremum for q → 1 gives:

γ ≥ 1

n− 1
.

The repression cost for this game is 1
n−1.



Analysis: Civilization Cost

The cost of civilization for the Renunciation Game is γ = 1
2n−2.

Focus on player 1 and compute the least γ for which the social opti-
mum (0, 1, . . . , 1) turns into a Nash equilibrium in G[γ]. The payoff
function for player 1 in G[γ] satisfies:

uγ1(0, 1, . . . , 1) = γ
n− 1

n
.

For the social optimum to be Nash, this value has to majorize

uγ1(q, 1, . . . , 1) = (1− γ)q + γ

n
q.

Since q can be arbitrarily close to 1, we get uγ1(q, 1, . . . , 1) < (1 −
γ) + γ

n, Therefore (0, 1, . . . , 1) is a social optimum in G[γ] iff γ n−1n ≥
(1− γ) + γ

n. Solving this for γ gives γ ≥ 1
2n−2.



Renunciation Game With Heavy Temptation

The situation changes drastically if there is heavy temptation.

This renunciation game has n players, who each choose a strategy q in
[0, 1], which represents their demand. If at least one player renounces
(demands 0), then all other players get as payoff what they demand.
Otherwise, if there is one player i who demands less than any other
player, i gets n− 1 times what she demands, and the others get noth-
ing. In all other cases nobody gets anything. The payoff function for
i is given by:

ui(s) =


si if ∃j 6= i : sj = 0

(n− 1)si if ∀j 6= i : 0 < si < sj
0 otherwise.



Analysis: Repression Cost

Social optima are the same as before.

To compute the repression cost of the game, take the social optimum
s where player i renounces. If i yields to temptation, the social harm
is modest (but the harm to the other players is considerable). Let
s′ = (q, s−i), with 0 < q < 1. Then

Hi(s
′) = q(n− 1)− (n− 1) = (q − 1)(n− 1).

Putting in the equation for uγi and solving for γ yields γ = 1. The
repression cost for the game is 1.



Analysis: Civilization Cost

The civilization cost for Renunciation With Heavy Temptation is also
1.

We have to compute the least γ that turns social optimum (0, 1, . . . , 1)

into a Nash equilibrium inG[γ]. The constraint on the payoff function
for player 1 is:

uγ1(q, 1, . . . , 1) = (1− γ)(n− 1)q +
γ

n
(n− 1)q.

Since q can be arbitrarily close to 1, this gives

uγ1(q, 1, . . . , 1) < (1− γ)(n− 1) +
γ

n
(n− 1).

This puts the following constraint on γ:

γ
n− 1

n
≥ (1− γ)(n− 1) +

γ

n
(n− 1).

Solving for γ gives nγ ≥ n, and it follows that γ = 1.



Some Questions

• What is the formal relation between repression cost and civiliza-
tion cost?

• Can we make sense of the notion of a social optimum in abstract
strategic games, where utilities are replaced by preference order-
ings?

• Is it possible to define analogues of repression cost and civiliza-
tion cost for abstract strategic games? Maybe we have to blend
in some social choice theory to compare strategy profiles?

• What does this kind of analysis teach us about what goes on in
social reality?

• Where does Logic come in?
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