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Abstract

We propose a simplified logic for reasoning about (multi-agent) epistemic probability models,
and for epistemic probabilistic model checking. Epistemic probability models are multi-agent
Kripke models that assign to each agent an equivalence relation on worlds, together with a
function from worlds to positive rationals (a lottery). The difference with the usual approach is
that probability is linked to knowledge rather than belief, and that knowledge is equated with
certainty.

A first contribution of the paper is a comparison of a semantics for epistemic probability in
terms of models with multiple lotteries and models with a single lottery. We give a proof that
multiple lottery models can always be replaced by single lottery models. As multiple lotteries
represent multiple subjective probabilities, our result connects subjective and intersubjective
probability.

Next, we define an appropriate notion of bisimulation, and use it to prove an adaptation of
the Hennessy-Milner Theorem and to prove that some finite multiple lottery models only have
infinite single lottery counterparts. We then prove completeness, and state results about model
checking complexity. In particular, we show the PSPACE-completeness of the model checking
in the dynamic version with action models.

The logic is designed with model checking for epistemic probability logic in mind; a prototype
model checker for it exists. This program can be used to keep track of information flow about
aleatory acts among multiple agents.
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1 Probability as a function of degree of information

A classical view of probability theory is that probability measures degree of informa-
tion. Here is a characteristic quote from [17]:

Dans les choses qui ne sont que vraisemblables, la différence des
données que chaque homme a sur elles, est une des causes principales
de la diversité des opinions que I’on voit régner sur les mémes objects.
(Laplace)

We present a multi-agent logic of probability and knowledge, with a very natural
product update, yielding a simplification of the logic proposed in [7], which is in turn
based on [15] and [6]. We show how probability measures on Kripke models can
be defined in a straightforward way from lotteries. We propose a complete logic for
lottery models, define an appropriate notion of bisimulation (different from the notion
in [14,15]), and prove a Hennessey-Milner result for this notion. We prove that every
model with lotteries is equivalent to a single-lottery model, where all agents share the
same lottery. Finally, we investigate the model checking complexity of the logic.

This paper presents a logic of probability and knowledge where the two are related
as follows:

Agent a knows ¢ if and only if the probability a assigns to ¢ equals 1.

Our proposal has obvious relations to earlier proposals on combining knowledge and
probability [10,15,14,7,5,13] and many more. A key difference is that these proposals
do not equate knowledge with certainty. An exception to this is [1].

A possible reason for not equating knowledge with certainty is the well-known
difference between impossible in practice and impossible in theory which arises when
measuring probabilities in uncountable spaces, where one equates “the probability of
¢ equals 17 with “¢ is almost certain”. An infinite process of fair coin throwing that
results in an infinite sequence of 1s is practically imposssible (its probability is 0),
but the sequence is in the sample space. Since we are careful to work with countable
models and with lotteries that are bounded (Definition 2.2), this difficulty does not
arise for us.

In real applications, knowledge and certainty are strongly related. We present our
simplified framework of epistemic probability logic in Section 2. In particular, we
will present models with a single lottery and in Section 3 we prove that the semantics
with a single lottery and the semantics with several lotteries are equivalent, by con-
structing single lottery models from multiple lottery models. This throws light on the
relation between subjective probability (modeled by multiple lotteries) and intersub-
jective probability (modeled by single lotteries). In Section 4 we define the appropriate
notion of bisimulation, and use it to prove a Hennessy-Milner Theorem for epistemic
probability logic. Section 5 gives an axiomatization for epistemic probability logic
based on [10] and proves that the S5 axioms for certainty can be derived. In Section
6, we deal with the model checking procedure, and show that it runs in polynomial
time. Section 7 explains how to add action model update in DEL style (but simplified),
and gives a PSPACE-completeness proof for the model checking problem that results
from adding a dynamic operator to the language.



van Eijck, Schwarzentruber 3

2 Epistemic probabilistic logic

We present our epistemic lottery models (with the variant with a single lottery even for
the multi-agent case). We then present the language of our version of epistemic prob-
abilistic logic and its semantics and finally we show how to embed standard epistemic
logic in our framework.

2.1 Epistemic lottery models

We start out from the definition of standard epistemic models.

Definition 2.1 A standard epistemic model M for a set P of propositions and a set A
of agents is a tuple (W, V, R) where

¢ W is a non-empty, finite or countable set of worlds,

e V is a valuation function that assigns to every w € W a subset of P.

¢ Ris a function that assigns to every agent a € A an equivalence relation R, on W.

To turn a standard epistemic model into an epistemic probability model, we assign
to each agent a lottery, representing the subjective probabilities the agent assigns.

Definition 2.2 A W -lottery L is a function from a (finite or countable) set W to the
set of positive (non-zero) rationals, i.e., L : W — QT. A W-lottery L is bounded on
VCWwit) . L(v) < oc.

Definition 2.3 An epistemic multiple lottery model M is a tuple (W,V,R,L)
where W, V, R are as in Definition 2.1 and L is a function that assigns to every
agent a € A a W-lottery that is bounded on every R, equivalence class.

We say that an epistemic lottery model is normalized if L, restricted to E is a
probability measure for all agents a and for all R,-equivalence classes E. By the
boundedness condition, all epistemic lottery models can be normalized.

Now, we define an epistemic lottery model where the lotteries are the same for
each agent, that is L, = I, for all agents a,b. We will write L instead of IL, for
a given agent a. Models where there is a single lottery seem easier to manipulate.
Formally:

Definition 2.4 An epistemic single lottery model M is a tuple (W, V, R, L) where
W, V, R are as in Definition 2.1 and L is a W-lottery that is bounded on every R,
equivalence class, for every agent a.

2.2 Epistemic probability logic language
The language £ of multi-agent epistemic probability logic is defined as follows.
Definition 2.5 Let p range over P, a over A, ¢ over Q. Then L is given by:
¢ == T [ p| 0| ¢Ad | taz0 | ta=0
ta = q | ¢-Pug | tatta
The intention in ¢, + t, is that both indices are the same.
Some useful abbreviations:

o 1,91V 2, 01 — @2, P1 > o
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t >t fort+ (—1)t' > 0.

o t <t for -t >t.

o t >t for =t >t.

o t <t fort' >t

t #t for—t =1t'.

Pu(91]¢2) = q for Pu(¢2) > 0Aq- Pu(d2) = Pu(d1 A ¢2).

t, generates linear expressions dealing with subjective probabilities of agent a. A
formula of the form ¢, = 0 or ¢, > 0 is called an a-probability formula.
Given these, we have:

e P,¢ = q expresses that the probability of ¢ according to a equals g.

e P,(¢1]|¢2) = q expresses that according to a, the probability of ¢, conditional on
@2, equals g.
The truth definition for £ is given below.

Definition 2.6 Let M = (W, V, R, L) be an epistemic lottery model and let w € W.
M,wlET  always
M, w Epiffp € V(w)
M, w |= =g iff itis not the case that M, w |= ¢
M,w | ¢1 A ¢ iff M w = ¢1 and M, w |= ¢2
M,w =ty > 0iff [t ]2 >0
M,w = t, = 0iff [t ]2 = 0.

[q]2" =4
lq- Pud]t = q x PX.(6)
[ta + L1200 = [tald" + [tL12"

_ > ALa(u) | wR,u and M, u = ¢}
> ALa(u) | wRqu} '

Notice that L,(u) > 0 for all w € W so that there is no division by zero. Also,

> {Lo(u) | wReu} < o0, by the boundedness condition on L,. So P, ,, is well-

defined. The interpretation of formulas in epistemic single lottery models is similar
except that we directly use L instead of I, for a given agent a.

PM(9)

2.3 Relating Knowledge to Certainty

We use K, (¢) as an abbreviation for P,(¢) = 1. This interprets knowledge as cer-
tainty and makes K, behave as an S5-operator. 3

Example 2.7 [Agents with different priors]

3 If you have still qualms about this, then please read: “This interprets knowledge as almost-certainty.”
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1.1 b 151
a.17b.§ *********** a'Z7b'§
0:pgq 2:q
a a
1 1 1 1
a:z,bre b a:z,b: ¢
1 D 4 6 b 3 4 6

In the model of this example, loterries are L, = {0 : %,1 : %, 2 : %, 3: %} and
Ly, =A10: %, 1: %, 2: %7 3: %} At world 0, the probability that a (represented by
solid lines) assigns to pis 1, so K, p is true at 0. K,q is false at 0, for the probability

that a assigns to g is less than 1. In fact, we have:

Proposition 2.8 Let ¢ be a formula of standard epistemic logic. The following state-
ments are equivalent:

(1) ¢ is satisfiable in a standard epistemic model;

(i) tr(¢) is satisfiable in an epistemic single lottery model
(iii) tr(¢) is satisfiable in an epistemic lottery model
where tr is defined by tr(K,¢) = Pytr(¢) = 1.

Proof. (iii) = (i). If tr(¢) is satisfiable in an epistemic lottery model, we extract a
standard epistemic model by dropping the lotteries and we prove that ¢ is true.

(7) = (41). Suppose that ¢ is satisfiable in a standard epistemic model. As S5,
has the finite model property [8], there is a finite standard epistemic model for ¢.
We transform this standard epistemic model into an epistemic single lottery model
M = (W,V,R, L) by adding a fake single lottery L that assigns 1 to all worlds.
As the model is finite, it is guaranteed that the VW -lottery L is bounded on every R,
equivalence class. We prove that ¢tr(¢) is true in M.

(#i) = (¢i7). Because an epistemic single lottery model is an epistemic lottery
model. a

Proposition 2.8 can be generalized to set of formulas.

Proposition 2.9 Let 3. be a formula of standard epistemic logic. The following state-
ments are equivalent:

(i) X is satisfiable in a standard epistemic model;

(i) {tr(¢) | ¢ € X} is satisfiable in an epistemic single lottery model
(iil) {tr(¢) | ¢ € X} is satisfiable in an epistemic lottery model
where tr is defined by tr(K,¢) = P,tr(¢) = 1.
Proof. The proof is essentially the same one than for proposition 2.8 except for
(i) = (4i). Suppose that ¥ is satisfiable in a standard epistemic model. The finite
model property argument does not work anymore. Nevertheless, we suppose that the

standard epistemic model has at most a countable number of worlds. We transform
this standard epistemic model into an epistemic lottery model M = (W,V,R,L)
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Fig. 1. Example of an epistemic probability model M

by adding a fake lottery L as follows: we consider {wg, wr, ...} a (possibly finite)
enumeration of worlds in W. We define L, (wy) = 2. As Z;:S & < +oo, itis
guaranteed that the W -lottery LL,, is bounded on every R, equivalence class. We prove

that {tr(¢) | ¢ € X} is true in M. 0

Remark 2.10 Notice that if we define a belief operator B, by P,(¢) > « for some
o € (%, 1], the formula B,p A Bog A =B, (p A q) is satisfiable. That is, B, behaves
as a non-normal operator and not as a K D45 operator. This provides a way out of the
so-called lottery paradox [16].

3 Single lottery versus multiple lottery models

In this section, we prove that the semantics given in terms of epistemic multiple lottery
models (definition 2.3) and the semantics given in terms of epistemic single lottery
models (definition 2.4) are equivalent, in the sense that for each multiple lottery model
there is an equivalent single lottery model.

Philosophically, this suggests that objective probability, or at least intersubjective
probability, can be defined from subjective probabilities. In any case, epistemic single
lottery models are easier to handle because we attribute the same value to a world for
each agent.

Proposition 3.1 Given an epistemic lottery model M = (W, V, R,1L), given a world
w, there exists an epistemic single lottery model M’ = (W', V' R' L) and a world
w' € W' such that for all formulas ¢, M,w = ¢ iff M’ w' £ ¢.

Before starting the proof, let us consider an example. We start with the model M
depicted in Figure 1 consisting in two worlds w and u. p is true in w and false in w.
The lottery for agent a assigns probability % to w and % to u. The lottery for agent b
assigns probability % to w and % to u.

In order to get a model with a single lottery, we unravel the model M and we
obtain the infinite epistemic lottery model of Figure 2. The proof formalizes this
transformation.

Proof. The construction goes as follows. The set of worlds W' is the set of all
sequences of the form:
Woapwi1a1 ... WH_10p_1Wx

such that, n > 0, wg = w, w; are worlds, a; are agents, (w;,w;+1) € R,, and
a; # a;11. For any sequence s, we write end(s) for the last world in the sequence
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Fig. 2. Epistemic lottery model M’ obtained by unraveling the model M

that is, end(wpapwiay ... Wp—_1an_1W,) = w,. The valuation V' is defined by
V'(s) = V(end(s)). The relation R/, is defined as follows:

R, = {(s,) | s € W'}U
{(s, sau), (sau, s) | s, sau € W'}U
{(sau1, sauz) | s, sauy, saus € W'}

The lottery is defined by induction on sequences as follows:

o L(w) =1,
Lo(u)L(s
¢ L(sau) = La((evzd((s)))'
It can now be proved by induction on ¢ that for all sequences s, M, end(s) = ¢ iff

M, s = ¢ O

Notice that our construction produces models with infinite sets of worlds. We will
prove in the next Section (Proposition 4.3) that this is unavoidable. What this means is
that the logic, when interpreted over the class of single lottery models, does not have
the finite model property. Also, it suggests that the logic is not expressive enough to
characterize models that are built from a single lottery. What is needed to make such
characterization possible? We leave this question for future work.

4 Bisimulation

In this section, we pick up a yarn in the story about bisimulation from [14], we modify
(simplify) the definition so that it suits our logic, and we prove a Hennessy-Milner
result for our new version. Next, we use our notion of bisimulation to prove that some
finite multiple lottery models cannot have finite single lottery counterparts.

If X is a set of worlds with X C R, (w) then we use L ,,(X) for Zeexle@)
’ Z'uERa,(w) La(v)

Given two epistemic lottery models M = (W, V, R, L), M’ = (W', V', R, L),
we say that a relation B is a bisimulation over W x W' if wBw’ implies:

(i) w and w’ satisfy the same atomic propositions;

(ii) forevery set E C R,(w) there exists a set E' C R/ (w’) such that:
e forallw’' € E’, there exists u € E such that uBv’;
e and Ly, (E) < Lg o (E').

(iii) for every set E' C R/ (w’) there exists a set £ C R, (w) such that:
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1 B
a: g a:l
w w’
a
B
L1
a.§
u
M M

Fig. 3. Two models M, M’ and a bisimulation relation B

e forall u € F, there exists ' € E’ such that uBv’;
e and Ly (E') < Lg o (E).
If there exists a bisimulation B such that w Bw’ we say that w and w’ are bisimilar,
notation w € w’ or M, w € M’ w' if there is danger of ambiguity.
Figure 3 shows two models M, M’ and a bisimulation B. We see that condition
(ii) and condition (iii) require inequalities and not equalities.
Proposition 4.1 Let M, M’ be two models and w and w' be worlds of M and M,
respectively. If M, w < M’ w' then M, w and M’ w' satisfy the same formulas.

Proof. We will prove by induction on ¢ and ¢,:
(a) for all w, w’ with M,w & M’ w': M,w = ¢ iff M' | w' = ¢,
(b) for all w, w’ with M, w & M, w': [t JM = [ta] .

Let C be a bisimulation that witnesses M, w € M’ w'.

For T (a) holds trivially. For atoms p, use property (i) of C. The cases of —¢ and
¢1 N\ @9 are straightforward, using the induction hypothesis for (a).

For the cases of t, > 0 and t, = 0, we assume that [t,]4" = [t,], from
which the statements M, w = t, > 0iff M’ v’ = t, > 0and M,w = ¢, = 0 iff
M w' Et, = 0 follow.

Next, we show (b). The key issue here is to show that P! (¢) = P;L,(¢). From
this (b) easily follows.

Let

E = {ve R} (w) | M,v = ¢}.
By property (ii) of C there is a set ' C RM’(w') such that:
(i) forall w’ € E’ there exists v € E with uCu/;
() Ly w(F) < sz7w,(E’).

From (i) we get that for all v’ € E': M’,«' |= ¢. Use this, plus (ii) and the fact
that [P, o] = L, (F) to get:

[Pug]it < L, (E') < [Padl? .

a,w’

Let )
E'={v € RY" (v) | MV |= ¢}
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By property (iii) of C there is a set E C R (w) such that:
(i) forall u € E there exists v’ € E’ with uCu’;
(i1) ]L:z,w' (E") <Ly o(E).

From (i) we get that for all u € E: M,u |= ¢. Use this, plus (ii) and the fact that
[Piglat =1L, (E') to get:

[Pg]! < Law(E) < [P

Together this gives [P, = [[Piqﬁ]]{;’,l/. O

Now we adapt the proof of the Hennessy-Milner Theorem [8, p. 69] to our epis-
temic lottery logic. We say that a model M is image-finite iff for all worlds w in M,
and for all agents a, R, (w) is finite.

Proposition 4.2 Let M, M’ be two image-finite models and w and w' be respectively
two worlds of M and M'. M,w and M’ w' are bisimilar if, and only if M, w and
M’ ' satisfy the same formulas.

Proof. We show the right to left direction and for that, we prove that the relation «~»
of modal equivalence on the two models is itself a bisimulation.

Condition (i) is immediate: if w and w’ satisfy the same formulas, they satisfy the
same atomic propositions. Assume that w «~ w’ and let F be a subset of R, (w).
We will prove condition (ii) by arriving at a contradiction by assuming that there is no
E’' C R/ (w') such that

e forall u’' € E’, there exists © € E such that u «~ u/;
e and L, (F) < L,(E").

That is, we assume that for every set E' C R/ (w’) such that L, (F) < L,(E") there
exists ' € F’ such that for all u € FE we have u ¢ u'.

Let &' = {E},...,E]} be an enumeration of sets £/ C R/ (w') such that
Lo(E) <L,(E’). Foralli € {1,...,n}, there exists ' € E] and a (finite) collection
of formulas (v; ,,)ye g such that for all w € E, M, u = ¢);,, and M, 0’ (= 1, 4.

Let ¢ = A;_; . Vuecr i On the one hand, we have that for all u € F,
M, u = ¢. Thus, if we pose a = L, (E), we have M, w = P,(¢) > a.

On the other hand, for all i € {1,...,n}, there exists a world v’ € E/ such
that M',u" = A cp "iu. Thatis M u' = \/,_, , Nuep Vi that is to say
M’ W = ¢, In particular, the set {u' € R,(w') | M/, v |= ¢} is not in S’ and is
therefore of probability strictly lower that . So, M, w’ = P,(¢) > «.

So w and w’ do not satisfy the same formulas and there is a contradiction hence
condition (ii) holds. Condition (iii) is symmetrical and may be checked in a similar
way. 0

Proposition 4.3 There is no finite epistemic single lottery model M’ that is bisimilar
to the model M from Figure 1.

Proof. Suppose there is a finite epistemic single lottery model M’ = (W', V' R', L)
that is bisimilar to the model M from Figure 1.
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Let R/ (wy),... R} (w¢) be an enumeration of a-equivalence classes in M’. Let
R (w1), ... R, (w,) be an enumeration of b-equivalence classes in M’.
As M and M’ are bisimilar, we have:
* Duerywolpev(w) LW = Xuery wilpgv e LW
22 werywalpev (w) L) = Xuery (w)pgv ) L1W)-
Now:
¢ On the one hand,
¢
2uewipgv ) L(u) = Zézl 2wy (wi)lpgv () L(W)
= im1 EueRg(wi)\pGV(u) L(u)
= ZuEW’\pEV(u) :
¢ On the other hand,
DoueW pgV () = 2oim1 2oue Ry (w) lpgV () L(W)
= i=1 Zuu€R, (w;)|pEV (u) L(u)
=2 EuGW’lpEV(u) .
Thus, >,y |pgv(u) L(w) = 0 which contradicts the definition of model M.
We have proved by contradiction that there is no finite epistemic single lottery model

M’ that is bisimilar to M.
O

S Axiomatization
Figure 4 shows a complete axiomatization of epistemic probabilistic logic. We show
in subsection 5.1 that the principles of standard epistemic logic S5 (where K, ¢ is
replaced by P,¢ = 1) are derivable from the axiomatization. In subsection 5.2, we
adapt the proof of completeness of [10] to our simplified logic.
5.1 Principles of S5 are derivable
Principles of S5 are the following:
¢ the necessitation rule: if g5 ¢ then Fg5 K, ¢;
o the K-principle: K 1 A K, (1 — ¢p2) = Kaopa;
e the T-axiom or truth axiom : K,¢ — ¢;
e the 4-axiom (positive introspection): K,¢ — K, K,¢;
¢ the 5-axiom (negative introspection): K¢ — K,—K 0.

First, remark that ProbaT corresponds to the 7T-axiom. Now, we prove that all
other S5-principles are derivable.
Proposition 5.1 The necessitation rule for certainty is derivable:

IfE ¢ thent P, = 1.

Proof. From I ¢ derive - ¢ <> T. From this and ProbaRule, - P,(¢) = P,(T) and
with ProbaTrue, gives - P,(¢) = 1. ]
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Propositional Logic Axioms

All instances of tautologies of propositional logic are axioms (CPL)

From - ¢ and - ¢; — ¢4 conclude - ¢o. (ModusPonens)
Probability Rule
If - ¢1 <> o then - Pyopy = P,oo. (ProbaRule)
Probability Axioms
H P,o>0 (ProbaNonNeg)
= P,T=1 (ProbaTrue)

F Pu(¢1 A d2) + Pu(¢r A —¢2) = Pudy  (ProbaAdditivity)

F ¢ — P,y = 1for all a-probability formulas ¢/ (ProbaProba)

Certainty Axioms
= Pp=1—29¢ (ProbaT)
Linear (in)equality axioms

All instances of valid formulas about linear inequalities  (Linear)

Fig. 4. Axiomatization

Proposition 5.2 The K-principle for certainty is derivable:
l_Pa¢1:1/\Pa(¢1_>¢2):1_>Pa¢2:1 (@)

Proof. From ProbaRule, ProbaAdditivity and Linear, we have: - P,(T A ¢) +
P,(T A —¢) = 1. With ProbaRule this gives: - P,¢ + P,(—¢) = 1. And therefore:
F P,(—¢) = 1 — P,¢. Using this, we derive P,(¢1 — ¢2) = Py(—(d1 A —¢p2)) =
1 = Py(¢1 A —¢p2). From this: P,(¢1 — ¢2) = 1 <> Pu(d1 A —¢2) = 0. On the
other hand, using ProbaAdditivity: P,(—¢2) = P,(d1 A =¢2) + Po(—1 A —¢2).
Therefore: P,y = 1 A P(¢p1 — ¢2) = 1 = Py(—¢2) = Py(—d1 A —p3) = 0 By
Propositional logic axioms, this proves (*). O

Formula (*) is a theorem of epistemic probability logic; it can be viewed as a
probabilistic version of the K -axiom in epistemic logic.
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Note that the following is derivable from ProbaT and ProbaAdditivity:

FP,p=0— -0 (ProbaTfalse)
Fo— P,p>0 (ProbaGeq0)

Note that the following formulas are theorem because they are instantiation of
ProbaProba:

FPgp=1— P(Pup=1)=1 4)
F Py >0 — Py(Pudp>0) =1 (5)

They corresponds respectively to axiom 4 (positive introspection) and axiom 5
(negative introspection) in standard epistemic logic S5.
5.2 Soundness and Completeness
Theorem 5.3 The EPL calculus is sound.
Proof. All axioms are valid in all EPL models. All rules preserve validity. a
Theorem 5.4 The EPL calculus is complete.

The proof is given in the appendix.

6 Model checking

Here is the algorithm for model checking, where again it is assumed that the input
model M is a normalized epistemic lottery model.

function mc(M = (W, V, R,LL), ¢)
if T'[¢] is defined then
|  return T[¢];
endIf
match ¢ do
case :
T[] := W
return T'[¢];
case p:
T[¢] :={we W |peV(w)}h
return 7'[¢)];
case —¢:
T[¢] :== W \ mc(9);
return 7'[¢];
case g1 A ¢2:
T[¢] := me(M, 1) Nme(M, d2);
return 7'[¢)];
caset, > q:
T[¢] :== {w € W | get(M, ta,w,%) > q};
return 7'[¢)];
endMatch
endFunction




van Eijck, Schwarzentruber 13

function get(M, t, w, ©)
match ¢ do
case ¢
| return g;
case q - Py (o):
Y= me(M, ¢);
V= Zuez\wRau Lo (u)
return g X v;
case t1 + to:
| return get(M,t1, w) + get(M, t2, w);

endMatch
endFunction

Theorem 6.1 A call to mc(M, @) returns the set {w € W | M,w = ¢}.
Proof. By induction on ¢. a
Theorem 6.2 A call to mc(M, @) requires O(|¢|? x |W|3) elementary operations.

Proof. A call to me(M, ¢) calls me(M, 1)) where ¢ is a subformula of ¢. As the
algorithm mc(M, ¢) is based on memoization: for a given v, the call me(M, 1)) is
called at most once. So it is sufficient to compute an upper bound of the number of
elementary operations performed in one call mc(M, ). Then we multiply this upper
bound by an upper bound of the number of calls, that is the number of subformulas of
¢ which is O(|¢|).

We may represent subsets of W by an array of Booleans W — {0,1}. The case
®1 X @2 uses the intersection operation that requires O(|W|) operations. Let us study
the case t, > ¢g. We first browse all the O(|WW|) worlds w and we check whether
>k get(M, i, w) > g holds or not. We make n calls to get and n = O(¢). Each call
to get requires at most O(|W|) for browsing successors of w by R,. We count the
call to me(M, ¢) as O(1) since it is done once with the memoization and its effective
computation is counted apart.

Conclusion: each call to mc(M, 1)) costs at most O(|¢| x |W|?). There are at
most |¢| such calls so the global complexity is bounded by O(|#|? x |[W]3). O

7 Updates
7.1 Example

Consider the following story. An urn contains a single marble, either white or black.
Mr A and Mrs B know this, and they also know that both possibilities are equally
likely. Next, Mr A looks in the urn, while Mrs B is watching. Mr A puts another
marble in the urn, a white one, and Mrs B sees this. The urn now contains two marbles.
Next, Mrs B draws one of the two marbles from the urn. It turns out to be white. What
is the probability, according to Mr A, that the other marble is also white? What is
the probability, according to Mrs B, that the other marble is also white? (This is a
multi-agent variation on a puzzle by Lewis Carroll, see [12].)

Call the first white marble p and the second one q. We start with a situation where
there is nothing in the urn, and both agents know this. Update this with the action of
tossing a fair coin and making p true in case the coin shows heads. It is assumed that
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the two agents a and b see that the action happens, but do not see what the outcome is.
The action model for this (solid arrows for a, dashed arrows for b):

N[

1
p:=T 2 F---1p:= 1

The update of the initial model looks like this:

D=

1
2 Lo ___ _
p - p

The action where a takes a look, while b sees this but does not observe what a
sees:

R 1
p ? p°
The situation after a has taken a look:
1 1
2 [~ 7777 2
b p
The action of putting another white marble (represented by ¢) in the urn:
g=T 1
The result of updating with this:
1 1
2 [T _ 2
bq pq

Extracting a white marble from the box is represented as either the act of removing
p or the act of removing ¢, with neither a nor b seeing the difference. The act of
removing p (making p false) has as precondition that p is true, the act of removing ¢
has as precondition that q is true.

1 — 1
ppi=1 % b dqq=1 72
The result of updating with this is the following model:
1 1 1
3 Lo __ 3 [~ ° 3
w:q - u:p v

We see that in w it holds that P,(pV q) = 1, Py(pV q) = % Same values in u, while
in v it holds that P,(p V q) =0, Py,(pV q) =

W

7.2 Definitions

Formally, an action model £ for epistemic probability logic is the result of replacing
the valuation function in an epistemic lottery model by a pair of functions PRE and
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POST that assign to every world (or: event) a precondition and a postcondition, where
the precondition ¢ is a formula of the epistemic probability language, and the post-
condition is a finite set of bindings p := ¢, with p in the set of basic proposition letters
of the epistemic probability language, and ¢ a formula of the language.

Update is defined as the product construction of [4], with the extra proviso that
L,(w,e) = Ly,(w) x L/ (e), where L, is the a-lottery of the input model and L/, is
the a-lottery of the update model. Let M x & denote the product of M and £. If
the initial epistemic lottery model and the update model are both normalized, then
the product defines an epistemic lottery model (not necessarily normalized, for some
(w, ) pairs may drop out by the update restriction). Our update definition is a consid-
erable simplification of the update defined in [7].

We consider a probabilistic version of the language extended with the dynamic
operator of [4] [r]i) where 7 defined by 7 ::= &,e | m U m. This allows updates
with pointed action models and choice between such updates, by means of the union
operator U. Call the new language DEPL. The truth conditions are defined as follows:

e M,w = [€, €]y iff M,w = PRE(e) implies M ® &, (w, e) = 1;
e M,w = [ Un'|yY iff M,w = [7]y and M, w = [7']4.

7.3 Model checking with updates
To study model checking in DEPL, we adapt the model checking procedure written in
Section 6. Now, array 7' is replaced by 7'y, where M is the current epistemic lottery
model. The implemented version works as follows:
case [€, e|i:
Tm(PRE(e)) = me(M, PRE(e));

T ety = {w e LETAPREC)
return T ([€, e]));

This leads to an algorithm which is running in exponential time and that uses an
exponential amount of memory. We may write an algorithm that only use a polynomial
amount of memory in the size of the initial model and the size of the formula, that
is inspired by the algorithm provided in [2]: we browse the product models on the
fly. Thus our model checking in the dynamic case is in PSPACE. Nevertheless, the
PSPACE-hardness bound for DEL without probability, with U operator (and where
preconditions are all T) shown in [2] does not provide a lower bound because we
can not reduce DEL without probability on models without constraints to the model
checking problem in DEPL. Nevertheless the idea of the proof of [2] can be adapted
and it provides the following lemma.

Lemma 7.1 The model checking problem when the initial models and action models
are S5-models, when we have the U-operator in the language and when there are at
least two agents is PSPACE-hard. The result holds even if all preconditions of the
action models are propositional formulas

Proof. Without loss of generality, we only consider in this proof quantified Boolean

formulas of the form Vp; 3IpaVps . . . Vpor—13pox ¥ (p1, - - - 2k ), Where ¥ (p1, . . ., Pak)
is a Boolean formula over the atomic propositions py, . . . , Pok.
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The quantified Boolean formula satisfiability problem takes as
input a natural number k£ and a quantified Boolean formula ¢
Vp13paVps . . . Vpak—13pakd(p1, - . ., pok). It returns yes iff ¢ is true in quanti-
fied Boolean logic.

Let ¢ be such a quantified Boolean formula. We define a pointed epistemic model
M, wP, 2k pointed event models &1, eq, ..., Eap, eax, a pointed event model En,en
and an epistemic formula 1)’ that are computable in polynomial time in the size of ¢
such that:

> 5

¢ is satisfiable in quantified Boolean logic
iff
M,wo ': [51, e1 Uy, 60“52, ea UEr, eo> A
[Ear—1, €261 U €y, e00] (Ear, 21 U €y, 00)1).
where

e M is depicted below:

””E*‘ lok11 HE%H‘

where (g, /1, ..., o541 are distinct propositional letters.

e Foralli € {1,...,2k}, &, e; is the action model depicted below:

\/jgiéj

e &y, e is the action model made up of a single event e, with precondition T;

¢ )’ is the formula 1) where all p; occurrences are substituted by (KGK b) KoKyl

p; is true is interpreted as the existence of a branch that stop at ¢; world. Making the
product with &;, e; will add such a branch in the model whereas making the product
with &, eqy will leave the epistemic model as it is. The universal and existential
choices of values for the p;’s are simulated by the dynamic epistemic operators. O

Proposition 7.2 Model checking for DEPL with at least two agents and with the U
operator is PSPACE-complete.

Proof. Membership in PSPACE comes from the remark above. We polynomially
reduce the model checking of S5-models that is PSPACE-hard (Lemma 7.1) in the
model checking of DEPL. To do so, we add to the models ‘artificial’ lotteries and we
recursively replace all subformulas K,¢ by P,(¢) = 1. Thus, we obtain the lower-
bound. a

8 Connections, Further Work

The assumption that agents have a common prior, widely used in epistemic game
theory, is not built into our concept of an epistemic probability model. It follows from
Proposition 3.1 that “having a common prior” does not coincide with “having the same
lottery.”

If we want to impose common prior conditions, say for proposition p, then a nat-
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ural way to express this would be by means of:

/\ P,p = Pyp.
a,be A

Currently, this is not in our language, but if we allow such expressions, then this
formula rules out models like the following:

a

b

N[

a:s,b:
0:p P - ---11

wn
N[
ol

This model describe a situation where a and b ‘agree to disagree’ on the probability
of p. If they are both willing to take bets on the truth of p, they are not rational, for
then they make themselves vulnerable to a pair of bets that forms a Dutch book [3].
In finite models with a single lottery Dutch books cannot occur.

Question 1 Can we strengthen the language to allow for an axiom that forces lotteries
to be single?

If we want to allow lotteries with unknowns in our models, then the language should
be extended with expressions B,, with meaning: the (unknown) probability of p, and
lotteries should allow for factors B,,. To handle cases where it is given that no proba-
bility distribution for an event exists, we can allow lotteries with unknown factors. A
W -lottery with unknowns X C P (or: a W-lottery functional over X) is a function
from (0..1)% to W-lotteries, where (0..1) is the open unit interval C Q. Thus, the
type of a W-lottery with unknowns X is:

(X —(0.1)) = W —- Q"

Let B be a function that assigns probabilities to the members of X, i.e., B : X —
(0..1). Let ! be a W-lottery with values summing up to 1 over W, and let V be a
valuation for W. Then L, v, g is the W-lottery given by:

LZ,V,B(w) :l(w)
< [[{B®) |peQpeV(w)}
< [[{1=Bp) |peP.p ¢ V(w)}

Then forallw € W, L, v, g(w) € (0..1) C Q, so L; v, is a W-lottery. The function
B+ L, v, is alottery functional.

Example 8.1 [Von Neumann’s Trick] How to obtain fair results from a coin with
unknown bias [18]:

Toss the coin twice. If the results match, forget both results and start over. If the
results differ, use the first result.

Here is the explanation. Represent the coin as a lottery functional for the set {h}.
Let B assign a probability to h. That is, By, = bis the coin bias. Then the probabilities
of the four possible outcomes of Von Neumann’s procedure are represented by the
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following lottery:
{hh :b* ht:b—b%th:b—b%tt: (1—0b)°}.

This shows that the cases ht and th are equally likely, so interpreting the first as & and
the second as ¢ gives indeed a model of a fair coin.

Example 8.2 [Model representing a coin with unknown bias]

B, 1-B,
p p

Model checking and model update for the epistemic probability logic of this paper
is implemented in [9]. This allows to solve urn problems in a multi-agent setting by
means of epistemic model checking. This extension generates lots of further logical
questions. Also, it can serve as a solid basis for the design and analysis of probabilistic
protocol languages for epistemic probability updating. Hooking up to more sophis-
ticated model checkers like NuSMV (nusmv. fbk.eu) is future work. Finally, we
would like to further explore the obvious connections with Bayesian learning.
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Appendix: Completeness
The completeness works as follows. We prove that:

Proposition 8.3 If ¢ is consistent, then ¢ is satisfiable.

We adapt the proof from [10]. First we construct a canonical epistemic proba-
bility model. Contrary to the proof in [10], the epistemic relations are inferred from
probabilities.

Let SF(¢) be the set of all subformulas of ¢ augmented with the negations of
subformulas. Let us define the canonical model M = (W, V, R,IL). W is the set of
all maximal consistent subsets of SF'(¢). W is not empty because ¢ is supposed to
be consistent. Valuations are defined as follows: V(w) = P Nw.

Let sat(w) = {¢ | w F 1}, that is, sat(w) is the set of formulas that are provable
from w. Relations are defined as follows: wRyu iff sat(w) and sat(u) contain the
same a-probability formulas.

Now it remains to define IL. Let us consider an agent a and an equivalence class
R,(w) in the canonical model M. All worlds v of R,(w) contain the same a-
probability formulas. In the sequel, we are transforming all the a-probability formulas
in a system of linear inequations that is consistent.

For all u € W, we write ¢,, the conjunction of all formulas in u. We have:

* = ¢y — ¢, if u # v by CPL.
Given any formulas 1) of SF'(¢), we have

L R \/ueW|wEu ¢, by CPL.
Let ¢ be any formula of SF(¢). By axioms ProbaRule and ProbaAdditivity, we
have:

o FP(Y) = Y uewven Paldu):
Thus, if we take any a-probability formula v, and we replace any term P,(x) by
> uewpeu Pa(du), we obtain

2uew Cula(¢u) 20

where ¢, b € Q. Now, when we evaluate the value of P,(¢,,) in w, we should obtain
non-zero if, and only if, u € R, (w). Let us prove it.

e Ifu € R,(w), we have:

i) - ¢, = P,(¢.) > 0 by ProbaGeq0;
(53 szgﬁu_)>> O(QG5 .za?(u);y robaed
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(iil) P,(¢y) > 0 € sat(w) because u € R, (w).
There, P,(¢,,) > 0 should be also true in w.
e Ifu € Ry(w), u and w differ by at least one a-probability formula ) € SF(¢)

such that ¢ € w and ¢ & u without loss of generality. We have:
(i) F ¢ — 1 by CPL;
(ii) ¢ — —¢, by CPL;
(iii) + ¢ — P,(¢) = 1 axiom ProbaProba;
(iv) F ¢y — P,(¢)) = 1 by CPL and ModusPonens;
V) F ¢y — Py(—dy) = 1by 2. and 4.
(Vi) = @ — Pa(¢u) =0.
Therefore P,(¢,,) = 0 should be true in w.

Thus, 1 should be equivalent to

> cuPa(du) = b

UER, (w)

where ¢,,,b € Q. This yields a system of linear inequations made up of inequations
2 ueRy (w) Culu = b when ¢ € wor Y cp () Ccuy < b when ¢ & w, plus

weR, (w) Tu = Land z, > 0 forall u € Rq(w). The set sat(w) is consistent so
the above system, which is a rephrasing of some inequations that are in sat(w), is
also consistent and therefore satisfiable [11, Theorem 2.2]. Let (xy%)yc R.(a) DE @
solution. We define L, (u) = x,*.

Lemma 8.4 (truth lemma) For all formulas v € SF(¢$), we have M,w = 9 iff
P € w.

Proof. By induction on 1. a



	Probability as a function of degree of information
	Epistemic probabilistic logic
	Epistemic lottery models
	Epistemic probability logic language
	Relating Knowledge to Certainty

	Single lottery versus multiple lottery models
	Bisimulation
	Axiomatization
	Principles of S5 are derivable
	Soundness and Completeness

	Model checking
	Updates
	Example
	Definitions
	Model checking with updates

	Connections, Further Work
	Acknowledgement 
	References

