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Local Consistency Notions



Objectives

• Introduce several local consistency notions:

– node consistency,

– arc consistency,

– hyper-arc consistency,

– directional arc consistency,

– path consistency,

– directional path consistency,

– k-consistency,

– strong k-consistency,

– relational consistency.

•Use the proof theoretic framework to char-
acterize these local consistency notions.
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Node Consistency

• CSP is node consistent if for every vari-
able x every unary constraint on x coincides
with the domain of x.

•Examples

Assume C contains no unary constraints.

N – natural numbers,

Z – integers.

– 〈C, x1 ≥ 0, . . ., xn ≥ 0 ; x1 ∈ N , . . ., xn ∈ N〉

is node consistent.
– 〈C, x1 ≥ 0, . . ., xn ≥ 0 ;

x1 ∈ N , . . ., xn−1 ∈ N , xn ∈ Z〉

is not node consistent.
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Arc Consistency

•A constraint C on the variables x, y with
the domains X and Y (so C ⊆X × Y ) is
arc consistent if

– ∀a ∈ X∃b ∈ Y (a, b) ∈ C,

– ∀b ∈ Y ∃a ∈ X (a, b) ∈ C.

•A CSP is arc consistent if all its binary
constraints are.

•Examples

– 〈x < y ; x ∈ [2..6], y ∈ [3..7]〉

is arc consistent.

– 〈x < y ; x ∈ [2..7], y ∈ [3..7]〉

is not arc consistent.
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Status of Arc Consistency

•Arc consistency does not imply consistency.

Example Take

〈x = y, x 6= y ; x ∈ {a, b}, y ∈ {a, b}〉.

• Consistency does not imply arc consistency.

Example Take

〈x = y ; x ∈ {a, b}, y ∈ {a}〉.

• For some CSP’s arc consistency does imply
consistency.

(A general result later.)
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Proof Rules for Arc Consistency

ARC CONSISTENCY 1

〈C ; x ∈ Dx, y ∈ Dy〉

〈C ; x ∈ D′x, y ∈ Dy〉

where D′x := {a ∈ Dx | ∃ b ∈ Dy (a, b) ∈ C}

ARC CONSISTENCY 2

〈C ; x ∈ Dx, y ∈ Dy〉

〈C ; x ∈ Dx, y ∈ D′y〉

whereD′y := {b ∈ Dy | ∃ a ∈ Dx (a, b) ∈ C}.

Intuition
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y
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Characterization of Arc Consistency

Note A CSP is arc consistent iff it is closed
under the applications of the ARC CONSIS-

TENCY rules 1 and 2.
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Derivation: Example
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Hyper-arc Consistency

•A constraint C on the variables x1, . . ., xn

with the domains D1, . . ., Dn is hyper-arc
consistent if

∀i ∈ [1..n]∀a ∈ Di ∃d ∈ C a = d[xi].

• CSP is hyper-arc consistent if all its
constraints are.

•Examples

– 〈x ∧ y = z ; x = 1, y ∈ {0, 1}, z ∈ {0, 1}〉

is hyper-arc consistent.

– 〈x ∧ y = z ; x ∈ {0, 1}, y ∈ {0, 1}, z = 1〉

is not hyper-arc consistent.
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Characterization of

Hyper-arc Consistency

HYPER-ARC CONSISTENCY

〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉

〈C ; . . ., xi ∈ D′i, . . .〉

C a constraint on the variables x1, . . ., xn,
i ∈ [1..n],

D′i := {a ∈ Di | ∃d ∈ C a = d[xi]}.

Note A CSP is hyper-arc consistent iff it is
closed under the applications of the HYPER-

ARC CONSISTENCY rule.
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Directional Arc Consistency

Assume a linear ordering ≺ on the variables.

•A constraint C on x, y with the domains Dx

and Dy is directionally arc consistent
w.r.t. ≺ if

– ∀a ∈ Dx∃b ∈ Dy (a, b) ∈ C

provided x ≺ y,

– ∀b ∈ Dy∃a ∈ Dx (a, b) ∈ C

provided y ≺ x.

•A CSP is directionally arc consistent

w.r.t. ≺ if all its binary constraints are.

Example

〈x < y ; x ∈ [2..7], y ∈ [3..7]〉

is

• not arc consistent,

• directionally arc consistent w.r.t. y ≺ x.

• not directionally arc consistent w.r.t.

x ≺ y.
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Characterization of

Directional Arc Consistency

Define P≺:

P with the variables reordered w.r.t. ≺.

Example

Take P :=

〈x < y, y 6= z ; x ∈ [2..10], y ∈ [3..7], z ∈ [3..6]〉

and

y ≺ x ≺ z.

Then P≺ :=

〈y > x, y 6= z ; y ∈ [3..7], x ∈ [2..10], z ∈ [3..6]〉.

Note A CSP P is directionally arc consis-
tent w.r.t. ≺ iff the CSP P≺ is closed un-
der the applications of the ARC CONSIS-

TENCY rule 1.
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Limitations of Arc Consistency

Note

〈x < y, y < z, z < x ; x, y, z ∈ {1..100000}〉.

is inconsistent.

Proof using arc consistency rules.

Applying ARC CONSISTENCY rule 1 we
get

〈x < y, y < z, z < x ; x ∈ {1..99999}, y, z ∈ {1..100000}〉,

etc.

Disadvantages:

• Large number of steps.

• Length depends on the size of the domains.

Direct proof: use transitivity of <.

Path consistency: a generalizes this form
of reasoning to arbitrary binary relations.
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Normalized CSP’s

A CSP P is normalized if for each pair x, y

of its variables at most one constraint on x, y

exists.
Denote by Cx,y the unique constraint on x, y

if it exists and otherwise the “universal” rela-
tion on x, y.

R and S: two binary relations.

• transposition of R:

RT := {(b, a) | (a, b) ∈ R},

• composition of R and S by

R·S := {(a, b) | ∃c ((a, c) ∈ R, (c, b) ∈ S)}.
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Path Consistency

A normalized CSP is path consistent if for
each subset {x, y, z} of its variables

Cx,z ⊆ Cx,y · Cy,z.

Note A normalized CSP is path consistent iff
for each subsequence x, y, z of its variables

Cx,y ⊆ Cx,z · C
T
y,z,

Cx,z ⊆ Cx,y · Cy,z,

Cy,z ⊆ CT
x,y · Cx,z.

Intuition

zx

y

Cx,y Cy,z

Cx,z
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Path Consistency: Example 1

〈x < y, y < z, x < z;
x ∈ [0..4], y ∈ [1..5], z ∈ [6..10]〉

<

><

y [1..5]x [0..4]

z [6..10]

is path consistent. Indeed

Cx,y = {(a, b) | a < b, a ∈ [0..4], b ∈ [1..5]},

Cx,z = {(a, c) | a < c, a ∈ [0..4], c ∈ [6..10]},

Cy,z = {(b, c) | b < c, b ∈ [1..5], c ∈ [6..10]},

and all 3 conditions are satisfied.
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Path Consistency: Example 2

〈x < y, y < z, x < z;
x ∈ [0..4], y ∈ [1..5], z ∈ [5..10]〉

<

<<

y [1..5]x [0..4]

z [5..10]

is not path consistent. Indeed, now

Cx,z = {(a, c) | a < c, a ∈ [0..4], c ∈ [5..10]}

and for 4 ∈ [0..4] and 5 ∈ [5..10] no b ∈ [1..5]
exists such that 4 < b and b < 5.
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Characterization of Path Consistency

PATH CONSISTENCY 1

Cx,y, Cx,z, Cy,z

C ′x,y, Cx,z, Cy,z

where C ′x,y := Cx,y ∩ Cx,z · C
T
y,z,

PATH CONSISTENCY 2

Cx,y, Cx,z, Cy,z

Cx,y, C ′x,z, Cy,z

where C ′x,z := Cx,z ∩ Cx,y · Cy,z,

PATH CONSISTENCY 3

Cx,y, Cx,z, Cy,z

Cx,y, Cx,z, C ′y,z

where C ′y,z := Cy,z ∩ CT
x,y · Cx,z.

Note A normalized CSP is path consistent iff
it is closed under the applications of the PATH

CONSISTENCY rules 1, 2 and 3.
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m-Path Consistency

A normalized CSP is m-path consistent

(m ≥ 2) if for each subset {x1, . . ., xm+1} of
its variables

Cx1,xm+1 ⊆ Cx1,x2 · Cx2,x3 · ... · Cxm,xm+1.

Note A normalized CSP is m-path consistent
if for each subset {x1, . . ., xm+1} of its vari-
ables

if (a1, am+1) ∈ Cx1,xm+1, then for some
a2, . . ., am for all i ∈ [1..m]

(ai, ai+1) ∈ Cxi,xi+1.

a2, . . ., am: path connecting a1 and am+1.

Theorem Every normalized path consistent
CSP is m-path consistent for each m ≥ 2.

Proof. Induction on m.
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Directional Path Consistency

Assume a linear ordering≺ on the variables. A
normalized CSP is directionally path con-
sistent w.r.t. ≺ if for each subset {x, y, z}
of its variables

Cx,z ⊆ Cx,y · Cy,z provided x, z ≺ y.

Note A normalized CSP is directionally path
consistent w.r.t. ≺ iff for each subsequence
x, y, z of its variables

Cx,y ⊆ Cx,z · C
T
y,z provided x, y ≺ z,

Cx,z ⊆ Cx,y · Cy,z provided x, z ≺ y,

Cy,z ⊆ CT
x,y · Cx,z provided y, z ≺ x.
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Examples

Reconsider
〈x < y, y < z, x < z;
x ∈ [0..4], y ∈ [1..5], z ∈ [5..10]〉

Then

Cx,y = {(a, b) | a < b, a ∈ [0..4], b ∈ [1..5]},

Cx,z = {(a, c) | a < c, a ∈ [0..4], c ∈ [5..10]},

Cy,z = {(b, c) | b < c, b ∈ [1..5], c ∈ [5..10]}.

• It is directionally path consistent w.r.t. the
ordering ≺ in which x, y ≺ z.

Indeed, for every pair (a, b) ∈ Cx,y there
exists c ∈ [5..10] such that a < c and b < c.

• It is directionally path consistent w.r.t. the
ordering ≺ in which y, z ≺ x.

Indeed, for every pair (b, c) ∈ Cy,z there
exists a ∈ [0..4] such that a < b and a < c.
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Characterization of

Directional Path Consistency

Note A normalized CSP P is directionally
path consistent w.r.t. ≺ iff P≺ is closed un-
der the applications of the PATH CONSIS-

TENCY rule 1.
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Instantiations

Fix a CSP P .

• Instantiation: function on a subset of the
variables of P . It assigns to each variable a
value from its domain.

Notation:

{(x1, d1), . . ., (xk, dk)}.

•C: a constraint on x1, . . ., xk.

Instantiation {(x1, d1), . . ., (xk, dk)}

satisfies C if (d1, . . ., dk) ∈ C.

• I : instantiation with a domain X , Y ⊆X .

I | Y : restriction of I to Y .

• Instantiation I with domain X is consis-
tent if for every constraint C of P on some
Y with Y ⊆X I | Y satisfies C.

• Consistent instantiation is k-consistent if
its domain consists of k variables.

•An instantiation is a solution to P if it is
consistent and defined on all variables of P .
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Example

Consider

〈x < y, y < z, x < z ; x ∈ [0..4], y ∈ [1..5], z ∈ [5..10]〉.

Let I := {(x, 0), (y, 5), (z, 6)}.

<

<<

y [1..5]x [0..4]

z [5..10]

• I | {x, y} = {(x, 0), (y, 5)}.

It satisfies x < y.

• I | {x, z} = {(x, 0), (z, 6)}.

It satisfies x < z.

• I | {y, z} = {(y, 5), (z, 6)}.

It satisfies y < z.

• So I is a 3-consistent instantiation. It is a
solution to this CSP.
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k-Consistency

• CSP is 1-consistent if for every variable x

with a domain D each unary constraint on
x equals D.

• CSP is k-consistent, k > 1, if every (k −
1)-consistent instantiation can be extended
to a k-consistent instantiation no matter

which new variable is chosen.

k-consistency aka node consistency

Note

•A node consistent CSP is arc consistent iff
it is 2-consistent.

•A node consistent normalized binary CSP
is path consistent iff it is 3-consistent.
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k-Consistency, ctd

Fix k > 1.

(i) There exists a CSP that is (k−1)-consistent
but not k-consistent.

(ii) There exists a CSP that is not (k − 1)-
consistent but is k-consistent.

Proof of (i) for k = 3:

6=

6=6=

x2 [0..1]x1 [0..1]

x3 [0..1]

Proof of (ii):
• x1 {a, b}

• xk {a}

• x3 {a}

• x2 {a}
6=

. . .

6=
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Strong k-Consistency

CSP strongly k-consistent, k ≥ 1, if it is
i-consistent for every i ∈ [1..k].

Theorem Take a CSP with k variables,
k ≥ 1, such that

• at least one domain is non-empty,

• it is strongly k-consistent.

Then it is consistent.

Proof. Construct a solution by induction.

Prove that

(i) there exists a 1-consistent instantiation,

(ii) for every i ∈ [2..k] each (i−1)-consistent in-
stantiation can be extended to an i-consistent
instantiation.

Disadvantage Required level of strong con-
sistency = # of variables.
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Graphs and CSP’s

Graph is associated with a CSP P .

Nodes: variables of P .

Arcs: connect two variables if they appear
jointly in some constraint.
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Examples

• SEND + MORE = MONEY puzzle.

The graph has 8 nodes, S, E, N, D, M, O, R, Y ,
and is complete.

• 〈x + y = z, x + u = v ; DE〉

x
y

z
u

v

• 〈x < z, x < y, y < u, y < v ; DE〉

x y

u

z

v
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Width of a Graph

G: a finite graph G.

≺: linear ordering on the nodes of G.

• ≺-width of a node of G: number of arcs
in G that connect it to ≺-smaller nodes.

• ≺-width of G: maximum of the ≺-widths
of its nodes.

• Thewidth of G: minimum of ≺-widths for
all linear orderings ≺.

Examples

• SEND + MORE = MONEY puzzle.

Complete graph with 8 nodes, so its width
= 7.

x y

u

z

v

• It is a tree, so its width = 1.
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Examples, ctd

x
y

z
u

v

≺-width:

y z v ux

0 1 2 1 2

≺-width:

u v z y x

0 1 0 1 4

Two examples of the ≺-widths of the nodes

Here width = 2.

30



Consistency via Strong k-Consistency

Theorem Given: a CSP such that

• all domains are non-empty,

• it is strongly k-consistent,

• the graph associated with it has width k−1.

Then this CSP is consistent.

Proof. (Sketch)

Assume n variables.

•Reorder the variables so that the resulting
≺-width is k − 1.

• Prove by induction that

– there exists consistent instantiation with
domain {x1},

– for every j ∈ [1..n−1] each consistent in-
stantiation with domain {x1, . . ., xj} can
be extended to a consistent instantiation
with domain {x1, . . ., xj+1}.
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Useful Corollaries

Corollary 1

Given: P and a linear ordering ≺ such that

• all domains are non-empty,

• P is

– node consistent,

– directionally arc consistent w.r.t. ≺,

• the ≺-width of the graph associated with P
is 1.

Then P is consistent.

Corollary 2

Given: P and a linear ordering ≺ such that

• all domains are non-empty,

• P is

– directionally arc consistent w.r.t. ≺,

– directionally path consistent w.r.t. ≺,

• the ≺-width of the graph associated with it
is 2.

Then P is consistent.
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Relational Consistency

“Ultimate” notion of local consistency

•Given: P and a subsequence C of its con-
straints.

P | C:

– remove from P all constraints not in C,

– delete all domain expressions involving vari-
ables not present in any constraint in C.

• P is relationally (i, m)-consistent if for
every sequence C ofm constraints andX ⊆ Var (C)
of size i:

every consistent instantiation with the do-
main X can be extended to a solution to
P | C.
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Relational Consistency, ctd

Intuition:
For every sequence of m constraints and for
every set X of i variables, each present in one
of these m constraints:

each consistent instantiation with the do-
main X can be extended to a solution to
all these m constraints.

Some properties

•A node consistent binary CSP is arc consis-
tent iff it is relationally (1, 1)-consistent.

•A node consistent CSP is hyper-arc consis-
tent iff it is relationally (1, 1)-consistent.

• Every node consistent normalized relation-
ally (2, 3)-consistent CSP is path consistent.

• Every strictly binary relationally (k− 1, k)-
consistent CSP is k-consistent.

•A CSP with m constraints is consistent iff
it is relationally (0, m)-consistent.
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Some Notation

•Given: constraint C on variables X , sub-
sequence Y of X .

ΠY (C) := {d[Y ] | d ∈ C}.

•X : sequence of variables,

X1, . . ., Xn: subsequences of X .

union ofX1, . . ., Xn: shortest subsequence
of X containing each Xi as a subsequence.

Example: Take x1, x2, x4, x5.

Union of (x2, x4), (x4, x5), (x2, x5) is x2, x4, x5.

•Given: a sequence of constraintsC1, . . ., Cm

on variables X1, . . ., Xm.

C1 1 . . . 1 Cm := {d | d[Xi] ∈ Ci for i ∈ [1..m]}.

C1 1 . . . 1 Cm is a constraint on the
“union” of X1, . . ., Xm.

•X : a sequence of variables

CX :=1 {CY | Y is a subsequence of X}.
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Characterization of k-Consistency

Note d is a solution to 〈C1, . . ., Cm ; DE〉 iff
d ∈ C1 1 . . . 1 Cm.

A CSP P regular if for each sequence X of
its variables a unique constraint on X exists.
Denote it by CX .

k-CONSISTENCY

CX

CX ∩ ΠX(CX,y)

Note If a regular CSP is closed under the ap-
plications of the k-CONSISTENCY rule for
all subsequences X of k − 1 variables and all
variables y not in X , then it is k-consistent.
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Characterization of Relational Consistency

RELATIONAL (i, m)-CONSISTENCY

CX

CX ∩ ΠX(C1 1 . . . 1 Cm)

Note If a regular CSP is closed under the ap-
plications of
RELATIONAL (i, m)-CONSISTENCY

rule for each subsequence of constraintsC1, . . ., Cm

and each subsequence X of Var (C1, . . ., Cm)
of length i, then it is relationally (i, m)-consistent.
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Objectives

• Introduce several local consistency notions:

– node consistency,

– arc consistency,

– hyper-arc consistency,

– directional arc consistency,

– path consistency,

– directional path consistency,

– k-consistency,

– strong k-consistency,

– relational consistency.

•Use the proof theoretic framework to char-
acterize these local consistency notions.
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