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Local Consistency Notions



Objectivesl

e Introduce several local consistency notions:

—node consistency,

— arc consistency,

— hyper-arc consistency,

— directional arc consistency,
— path consistency,

— directional path consistency;,
— k-consistency,

—strong k-consistency;,
—relational consistency.

e Use the proof theoretic framework to char-
acterize these local consistency notions.



Node Consistencyl

e CSP is node consistent if for every vari-
able x every unary constraint on x coincides
with the domain of z.

e Examples

Assume C contains no unary constraints.

N — natural numbers,

Z — integers.

—(C,21>0,...,2,>0; ;i eN,...,z, € N)
is node consistent.

—{C,x1>0,...,2, >0
ZClEN,---,xn_leN,anZ>

1s not node consistent.



Arc Consistencyl

e A constraint C' on the variables x,y with

the domains X and Y (so C C X x Y) is
arc consistent if

—Ya e XAb €Y (a,b) € C,
—Vb e Yda € X (a,b) € C.

e A CSP is arc consistent if all its binary
constraints are.

e Examples

—(r <y ; x€l2.6],y e [3.7)
1S arc consistent.

—(r<y; xel2.7,y€[3.7)
1S not arc consistent.



Status of Arc Consistencyl

e Arc consistency does not imply consistency.

Example Take

& =y,z#y; ve{ab}yc{ab}).

e Consistency does not imply arc consistency.

Example Take

(r=y; z€{ab},y € {a}).

e For some CSP’s arc consistency does imply
consistency:.

(A general result later.)



Proof Rules for Arc Consistencyl

ARC CONSISTENCY 1
(C; v € Dg,y € Dy)
(C; x € D,y € Dy)
where D), :={a € D, |3b € Dy (a,b) € C}

ARC CONSISTENCY 2

(C; € Dg,y € Dy)

where Dj, .= {b € Dy | Ja € Dy (a,b) € C}.

Intuition

D/
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Characterization of Arc Consistencyl

Note A CSP is arc consistent iff it is closed
under the applications of the ARC CONSIS-
TENCY rules 1 and 2.



Derivation: Examplel
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Hyper-arc Consistencyl

e A constraint C' on the variables x1,..., Ty
with the domains Dy, ..., Dy, is hyper-arc
consistent if

Vi € [1.n]Va € D; Ad € C a = d|x;)|.

e CSP is hyper-arc consistent if all its
constraints are.

e Examples
—(rNy=2z;r=1y€{0,1},z€{0,1})
1s hyper-arc consistent.
—(zAy=2;2€{0,1},ye{0,1},z=1)
1s not hyper-arc consistent.



Characterization of
Hyper-arc Consistency
HYPER-ARC CONSISTENCY

(C; x1 € Dy,...,xn € Dp)
<C; ...,ZCiEDé,...>
C' a constraint on the variables x1, ..., oy,
i € [1..n],
D; = {CL c D ‘ dd e Ca= d[il?z]}

Note A CSP is hyper-arc consistent iff it is
closed under the applications of the HYPER-
ARC CONSISTENC'Y rule.



Directional Arc Consistencyl

Assume a linear ordering < on the variables.

e A constraint C' on x, y with the domains D,
and Dy 1s directionally arc consistent
w.r.t. <if

—Va € Dy3b € Dy (a,b) € C
provided x < v,

—Vb € Dyda € Dy (a,b) € C
provided y < .

e A CSP is directionally arc consistent
w.r.t. < if all its binary constraints are.

Example

(x <y xel2.7,y€[3.7)
1S
e not arc consistent,
e directionally arc consistent w.r.t. y < .
e not directionally arc consistent w.r.t.
T <.
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Characterization of
Directional Arc Consistency

Define P<Z
P with the variables reordered w.r.t. <.

Example
Take P =
(x <y,y#z;x€l2.10,y € [3.7],z € [3..6])
and
y<x=<z.
Then P~ =

(y >x,y#z;y€l3.7,x€l2.10], z € [3..6]).

Note A CSP P is directionally arc consis-
tent w.rt. < iff the CSP P~ is closed un-
der the applications of the ARC CONSIS-
TENCY rule 1.
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Limitations of Arc Consistencyl

Note
(x <y,y<zz<uz;xyze{1.100000}).

1S 1nconsistent.

Proof using arc consistency rules.

Applying ARC CONSISTENCY rule 1 we
get

(r<yy<zz<z;ze{l.99999},y,z € {1..100000}),
ete.

Disadvantages:

e Large number of steps.

e Length depends on the size of the domains.

Direct proof: use transitivity of <.

Path consistency: a generalizes this form
of reasoning to arbitrary binary relations.
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Normalized CSP’SI

A CSP ‘P is normalized if for each pair x,y
of its variables at most one constraint on x, y
exists.

Denote by Cy 4 the unique constraint on x, y
if it exists and otherwise the “universal’ rela-
tion on x, .

R and S: two binary relations.

e transposition of R:
R" :={(b,a) | (a,b) € R},
e composition of R and S by

R-S :={(a,b) | dc((a,c) € R, (c,b) € 5)}.
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Path Consistencyl

A normalized CSP is path consistent if for
each subset {x,y, 2z} of its variables

C.Q?,Z g O&?,y ) Cy,Z

Note A normalized CSP is path consistent iff
for each subsequence x, y, z of its variables

T
Caz,y C C:I:,z | Oy7z7
Cr,z € Cry - Oy z,

T
nyg g ijy * Cx}z.

X z

Cz,z

Intuition
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Path Consistency: Example 1

(x <y,y<zx<z
r € [0..4],y € [1..5], z € [6..10])

z [6..10]

< >

x [0..4] y [1..5]
is path consistent. Indeed

Cry={(a,b) | a<bac|0.4],be 1.5},

Cr.={(a,c)|a<cae|0.4],cel6.10]},

Cyr=1{(b,c)|b<ecbell.b],cel6.10]},

and all 3 conditions are satisfied.
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Path Consistency: Example 2

(x <y,y<zx<z
r € [0..4],y € [1..5], z € [5..10])

z [5..10]

< <

x [0..4] y [1..5]
is not path consistent. Indeed, now

Cr.={(a,c)|a<cae|0.4],ce [5.10]}

and for 4 € [0..4] and 5 € |5..10] no b € [1..5]
exists such that 4 < b and b < 5.
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Characterization of Path Consistencyl

PATH CONSISTENCY 1

Cx,ya CQZ‘,Z7 Cy,z
C/ CZIZ,Z) Oy,z

LY’
where Cgf,y =CryNCyz- ngm
PATH CONSISTENCY 2

Caz,ya Ox,z; Oy,z

CZC?Z/’ C.;Z,Z’ Oy,Z

where Cg’z:,z =Cr:NCry-Cy.z,

PATH CONSISTENCY 3
Cry, Oz, Oy 2
Coryr oo C
where C?’J’Z = Cy.»N C’xT’y - Cp 2.
Note A normalized CSP is path consistent iff

it is closed under the applications of the PATH
CONSISTENCY rules 1, 2 and 3.
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m-Path Consistencyl

A normalized CSP is m-path consistent
(m > 2) if for each subset {x1,..., 21} of
its variables

me‘mﬂ C Cm,xz ) C$2,$3 T me,xmﬂ'

Note A normalized CSP is m-path consistent
if for each subset {x1,..., 21} of its vari-
ables

if (a1, am+1) € Cyy .2, then for some
a9, ..., amy for all i € [1..m]

(ai; aiv1) € Cayayyy-
as, ..., amy: path connecting a and a1 1.

Theorem Every normalized path consistent
CSP is m-path consistent for each m > 2.

Proof. Induction on m.
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Directional Path Consistencyl

Assume a linear ordering < on the variables. A
normalized CSP is directionally path con-
sistent w.r.t. < if for each subset {z,y, 2}
of its variables

Cr:C Cry- Oy provided z,z < y.

Note A normalized CSP is directionally path
consistent w.r.t. =< iff for each subsequence
x, vy, z of its variables

CryCCsz- ng provided x,y < z,
CrpC Cry- Oy provided x, 2 < v,

Cy.» C C:;;F,y - Uy » provided y, 2 < .
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Examplesl

Reconsider
(x <y,y<zx<2z
r € [0.4],y € [1.5], z € [5..10])

Then
Cry=1(a,b) | a <b,aec|0.4],be[l.5]},

Cr.={(a,c)|a<cae|0.4,ce|5.10]},

Cy.={(b,c) | b<cbell.5],ce[5.10]}.

e [t is directionally path consistent w.r.t. the
ordering < in which z,y < z.

Indeed, for every pair (a,b) € Cy 4 there
exists ¢ € [5..10] such that a < cand b < c.

e [t is directionally path consistent w.r.t. the
ordering < in which y, z < x.

Indeed, for every pair (b,c) € Cy » there
exists a € [0..4] such that a < b and a < c.
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Characterization of
Directional Path Consistency

Note A normalized CSP P is directionally
path consistent w.r.t. < iff P~ is closed un-
der the applications of the PATH CONSIS-

TENCY rule 1.
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Instantiationsl

Fix a CSP P.

e Instantiation: function on a subset of the

variables of P. It assigns to each variable a
value from its domain.

Notation:
{(x1,dy), ..., (zp, dp)}.
e (. a constraint on x1, ..., T}.

[nstantiation {(x1,dy), ..., (g, dr)}
satisfies C' if (dy,...,d) € C.

e /[: instantiation with a domain X, Y C X.
I'|Y: restriction of [ to Y.

e Instantiation I with domain X is consis-
tent if for every constraint C' of P on some

Y withY CX T |Y satisfies C.

e Consistent instantiation is k-consistent if
its domain consists of k variables.

e An instantiation is a solution to P if it is
consistent and defined on all variables of P.
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Example I

Consider

(x<y,y<zax<z,zelld,yell.b,zel5.10]).
Let T = {(2,0), (5.5), (=6)}

z [5..10]

< <

x [0..4] y [1..5]

o ['| 1z, y; ={(,0),(y,9)}-

It satisfies v < y.

o/ |{x,z} ={(x,0),(2,6)}.

[t satisfies & < 2.

oI [{y,z}={(y,5),(2,6)}.

It satisfies y < z.

e S0 [ is a 3-consistent instantiation. It i1s a
solution to this CSP.
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k—ConsistencyI

e CSP is 1-consistent if for every variable x
with a domain D each unary constraint on
x equals D.

e CSP is k-consistent, k > 1, if every (k —
1)-consistent instantiation can be extended
to a k-consistent instantiation no matter
which new variable is chosen.

k-consistency aka node consistency

Note

e A node consistent CSP is arc consistent iff
1t 18 2-consistent.

e A node consistent normalized binary CSP
is path consistent iff it is 3-consistent.
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k-Consistency, CtdI

Fix k> 1.

(i) There exists a CSP that is (k—1)-consistent
but not k-consistent.

(ii) There exists a CSP that is not (k — 1)-
consistent but is k-consistent.

Proof of (i) for k = 3:

21 [0.1] 25 [0..1]

Proof of (ii):

e 17 {a,b}

o 15 {a}

o 13 {a}

o T {CL}
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Strong k—ConsistencyI

CSP strongly k-consistent, k£ > 1, if it is
i-consistent for every i € [1..k].

Theorem Take a CSP with k variables,
k > 1, such that

e at least one domain is non-empty,
e it is strongly k-consistent.

Then 1t 1s consistent.

Proof. Construct a solution by induction.
Prove that

(i) there exists a 1-consistent instantiation,

(ii) for every ¢ € [2..k] each (i—1)-consistent in-
stantiation can be extended to an 7-consistent
instantiation.

Disadvantage Required level of strong con-
sistency = # of variables.
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Graphs and CSP’SI

Graph is associated with a CSP P.
Nodes: variables of P.

Arcs: connect two variables if they appear
jointly in some constraint.
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Examplesl

e SEND + MORE = MONFEY puzzle.
The graph has8nodes, S, E, N, D, M,O,R. Y,

and 1s complete.

e (x+ty=z,x+u=v; DE)

o (v <z,x<y,y<u,y<wv; DE)

Y

x
z
u
v
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Width of a Graphl

(G: a finite graph G.
<: linear ordering on the nodes of G.

e <-width of a node of GG: number of arcs
in (G that connect it to <-smaller nodes.

e <-width of (G: maximum of the <-widths
of 1ts nodes.

e The width of G: minimum of <-widths for
all linear orderings <.

Examples

e SEND + MORE = MONFEY puzzle.

Complete graph with 8 nodes, so its width
= 7.

e [t is a tree, so its width = 1.
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Examples, ctdI
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Two examples of the <-widths of the nodes

Here width = 2.
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Consistency via Strong k-ConsistencyI

Theorem Given: a CSP such that
e all domains are non-empty,
e it is strongly k-consistent,
e the graph associated with it has width k—1.
Then this CSP is consistent.

Proof. (Sketch)

Assume n variables.

e Reorder the variables so that the resulting
<-width is & — 1.

e Prove by induction that

—there exists consistent instantiation with
domain {z},

—for every j € [1..n—1] each consistent in-
stantiation with domain {z1,...,2;} can
be extended to a consistent instantiation
with domain {x1,..., 741}
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Useful Corollariesl

Corollary 1

Given: P and a linear ordering < such that
e all domains are non-empty,
o P is

—node consistent,

— directionally arc consistent w.r.t. <,

e the <-width of the graph associated with P
1s 1.

Then P is consistent.

Corollary 2

Given: P and a linear ordering < such that
e all domains are non-empty,
o P is

— directionally arc consistent w.r.t. <,

— directionally path consistent w.r.t. <,

e the <-width of the graph associated with it
1S 2.
Then P is consistent.
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Relational Consistencyl

“Ultimate” notion of local consistency

e (Given: P and a subsequence C of its con-
straints.

P|C:
—remove from P all constraints not in C,

— delete all domain expressions involving vari-
ables not present in any constraint in C.

e P is relationally (i, m)-consistent if for
every sequence C of m constraints and X C Var(C)

of size 1:
every consistent instantiation with the do-
main X can be extended to a solution to

P|cC.
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Relational Consistency, CtdI

Intuition:

For every sequence of m constraints and for
every set X of ¢ variables, each present in one
of these m constraints:

cach consistent instantiation with the do-
main X can be extended to a solution to
all these m constraints.

Some properties

e A node consistent binary CSP is arc consis-
tent iff it is relationally (1, 1)-consistent.

e A node consistent CSP is hyper-arc consis-
tent iff it is relationally (1, 1)-consistent.

e [ivery node consistent normalized relation-
ally (2, 3)-consistent CSP is path consistent.

e Every strictly binary relationally (k— 1, k)-
consistent CSP 1s k-consistent.

e A CSP with m constraints is consistent iff
it is relationally (0, m)-consistent.
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Some Notationl

e Given: constraint C' on variables X, sub-
sequence Y of X.

[y (C) = {d[Y]| d € CY.

e X: sequence of variables,
X1, ..., Xy subsequences of X.

union of X1, ..., X,,: shortest subsequence
of X containing each X, as a subsequence.

Example: Take x1, 9, x4, x5.
Union of (w9, 24), (74, T5), (29, T5) is 29, T4, T5.

e (Given: a sequence of constraints C'q, ..., Cy,
on variables X1, ..., Xy.

CiX...XCyp ={d]|dX;| €C;fori e |[l.m]}.

Cy X ... X Oy, is a constraint on the
“union” of Xq,..., X,

e X: a sequence of variables

Cx =X A{Cy | Y is a subsequence of X }.
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Characterization of k—ConsistencyI

Note d is a solution to (C, ..., Cy, ; DE) iff

A CSP P regular if for each sequence X of
its variables a unique constraint on X exists.
Denote it by C'y.

k-CONSISTENCY

Cx
Cx Nllx(Cx,y)

Note If a regular CSP is closed under the ap-
plications of the k-CONSISTENC'YY rule for
all subsequences X of k£ — 1 variables and all
variables y not in X, then it is k-consistent.
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Characterization of Relational Consistencyl

RELATIONAL (i, m)-CONSISTENCY

Cx
Cx NIlx(Cy X ... X Cy)

Note If a regular CSP is closed under the ap-
plications of

RELATIONAL (i,m)-CONSISTENCY
rule for each subsequence of constraints C'y, . .., Cjy,
and each subsequence X of Var(C1,...,Cy)
of length 7, then it is relationally (¢, m)-consistent.
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Objectivesl

e Introduce several local consistency notions:

—node consistency,

— arc consistency,

— hyper-arc consistency,

— directional arc consistency,
— path consistency,

— directional path consistency;,
— k-consistency,

—strong k-consistency;,
—relational consistency.

e Use the proof theoretic framework to char-
acterize these local consistency notions.
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