Principles of Constraint
Programming

Krzysztof R. Apt

Chapter 3

Constraint Programming in a
Nutshell

Objectivesl

e Introduce notion of equivalence of CSP’s.

e Provide intuitive introduction to gen-
eral methods of Constraint Programming.

e Introduce basic framework for Constraint
Programming.

e [llustrate this framework by 2 examples.

Pro jectionsl

e Given: variables X := x1, ..., x), with the
domains D1, ..., Dy,

Consider
—d = (dl,...,dn) c Dy x...x Dy,
— subsequence Y =z, ..., z;, of X.

Denote (d;y, - - -, d;,) by d[Y].
d|Y]: projection of d on Y.
[n particular: d|x;| = d;.
e Note For a CSP
P.=(C; x1 € Dyq,...,xn € Dy)

(dy,...,dp) € Dy X ... X Dy is a solution
to P iff for each constraint C' of P on a
sequence of variables Y

dlY] e C.

Equivalence of CSP’SI

e P and Ps are equivalent if they have the
same set of solutions.

e CSP’s Py and P9 are equivalent w.r.t.
X iff
{d[X] | d is a solution to P} =
{d[X] | d is a solution to Po}.

e Union of Py, ..., P, is equivalent w.r.t.
X to Py if

{d|X] | d is a solution to Py} =
.731 {d|X] | d is a solution to P;}.
1=

Solved and Failed CSP’SI

e (a constraint on variables 1, ...,y with
domains D1, ..., Dy, soC C Dy x...xDy.

Cissolved if C'= Dy x ... x Dy.
e CSP is solved if

—all its constraints are solved,
—no domain of it is empty:.

e CSP is failed if
— it contains the false constraint L,

or

—some of its domains is empty:.

Constraint Programming:
Basic Framework

Formulate your problem as a CSP:

Solve:

VAR CONTINUE: BOOLEAN;
CONTINUE:= TRUE;
WHILE CONTINUE AND NOT HAPPY DO
PREPROCESS;
CONSTRAINT PROPAGATION;
IF NOT HAPPY
THEN
IF ATOMIC
THEN
CONTINUE:= FALSE
ELSE
SPLIT;
PROCEED BY CASES
END
END
END

e CONTINUE is local to SOLVE.

e PROCEED BY CASES leads to a recursive
call of Solve for each newly formed CSP.

5

Preprocessl

Bring to desired syntactic form.

e Eixample: Constraints on reals.

Desired syntactic form: no repeated occur-
rences of a variable.

ax’ + bx5y + cylo =0
axr’ + z + cyll =0, bady = 2

Happyl

e Found a solution,

e Found all solutions,

e Found a solved form from which one can
generate all solutions,

e Determined that no solution exists (incon-
sistency),

e Found best solution,
e Found all best solutions.
e Reduced all interval domains to sizes < e.

6

Atomic

Check
e whether CSP is amenable for splitting, or
e whether search ‘under’ this CSP is still needed.

- oplit a domain.

e D finite (Enumeration)

r e D
re{al|xeD—{a}
e D finite (Labeling)

r € {ay,...,a}
re€far}|...|ze€{a}
e D interval of reals (Bisection)

r € |a..b]
T € |a. a—+b]|x€[a+b .b]

7

- oplit a constraint.

e Disjunctive constraints

Example:

Start [task;]| + Duration[task;| < Start[tasks| V
Start [tasky| + Duration[task,| < Start[task]

e Constraints in “compound” form

Example:

p(Z)| =a
p(z) =a|p(x)=—a

Ch1 Vv Oy
Cy | Cy

Effect of SplitI

e Each call to SPLIT replaces current CSP P
by CSP’s Py, ..., P such that the union of

P1, ..., P is equivalent to P.

e EExample: Enumeration.
It replaces

(C; DE,x € D)
by
(C": DE,x € {a})
and
(" DE,x € D —{a}).
where C" and C" are restrictions of the con-
straints from C to the new domains.

e SPLIT also determines in which operation
is to be applied next.

Heuristicsl

Which

e variable to choose,
e value to choose,

e constraint to split.

Examples:

— Select a variable that appears in the largest
number of constraints (most constrained
variable).

— For a domain being an integer interval:
select the middle value.

10

Proceed by Casesl

Various search techniques.
e Backtracking,
e Branch and bound,

e Can be combined with CONSTRAINT PROP-
AGATION

e Intelligent backtracking

11

Backtrackingl

Here

e Nodes generated “on the fly”.
e Nodes are CSP’s.

e [.caves are CSP’s that are solved or failed.

12

Branch and Boundl

e Modification of backtracking aiming at find-
ing the optimal (here maximal) solution.

e Takes into account objective function.

e One maintains currently best value of
the objective function in variable bound.

e bound initialized to —oo and updated each
time a better solution found.

e Used in combination with heuristic func-
tion.

e Conditions on heuristic function h:

A.If 1 is a direct descendant of ¢, then

h(y) < h(e).
B. If ¢ is solved CSP with singleton set do-

mains, then

obj(th) < h(1).

e h allows us to prune the search tree.

13

Illustrationl

14

Constraint Propagationl

Intuition: Replace a CSP by an equivalent
one that is “simpler”.

Constraint propagation performed by repeat-
edly reducing

e domains
and /or
e constraints

while maintaining equivalence.

15

Reduce a Domain: Examplesl

e Arbitrary CSP’s.
Projection rule:

Take a constraint €. Choose a variable x
of 1t with domain D.

Remove from D all values for x that do
not participate in a solution to C'.

e Linear inequalities on integers.

(x <y ; x €[50..200],y € [0..100])
(x <y ; xe€|50..99],y € [51..100])

More generally:

(x <y; x€lly..h]ye [ly/;--hyb

where
Z?/J = max(ly, l; + 1.

16

Repeated Domain Reduction: Examplel

Consider

(x <y,y<z;xel[50.200],y € [0..100], z € [0..100]).
Apply above rule to z < y:

(r <y,y <z; x€l50.99],y € [51..100], z € [0..100]).
Apply it now to y < z:

(x <y,y<z;xeldb0..99],y € [51..99], z € [52..100]).
Apply it again to = < y:

(r <y,y<z;x€lb0.98],y € [51..99], z € [52..100]).

17

Reduce Constraintsl

Usually by introducing new constraints.

e Transitivity of <

(x <y,y < z; DE)
(x <y,y<zx<z; DE)

This rule introduces new constraint, r < z.

e Resolution rule.

Let
=T =,
€T = —x&.

C and Cy clauses (disjunctions of literals)

(CyV L,CyV L DE)
<Cl\/L,Cg\/Z,Cl V Oy : D5>

This rule introduces new constraint,
clause C V (.

18

Constraint Propagation Algorithmsl

e Deal with scheduling of atomic atomic re-
duction steps.

e Try to avoid useless applications of atomic
reduction steps
e Stopping criterion for general CSP’s:
a local consistency notion.
Example:
Projection rule, so:

Take a constraint €. Choose a variable x
of 1t with domain D.

Remove from D all values for x that do
not participate in a solution to C'.

Corresponding local consistency notion:
Hyper-arc consistency:

For every constraint C' and every vari-
able x with domain D, each value for x
from D participates in a solution to C'.

19

Example: Boolean Constraintsl

Happy: found all solutions.

Desired syntactic form (for preprocess-

ing):

°*r =Y,

® T =Y,

or NYy==2,

or Viy==z.
Preprocessing:

r/N\NS—=2

TNANY=2,8=1y

Constraint propagation:
(xNy==z2; x€Dg,y€ Dy, ze{l})
(; € DyN{l},ye DyN{l},ze€ {1}
Write as

ctNy=z,2=1—-ax=1y=1.

20

Boolean Constraints: CtdI

EQU 1 x=yz=1—-y=1

EQU 2 x=y,y=1—ax=1

EQU S rz=y,x2=0—-y=0

EQU 4 x=y,y=0—2=0

NOT 1 ~x=y,z=1—y=0

NOT 2 - z=y,zr=0—y=1

NOT 8 —zxz=y,y=1—2=0

NOT 4 z=y,y=0—2x=1

AND 1z ANy=z,x=1y=1—-2=1
AND 2x Ny=z,x=1,2=0—y=0
AND SxNy=zy=1,2z=0—2=0
AND JaxANy=z,x=0—2=0
AND Sz ANy=z,y=0—2=0
AND 6xNy=z,z=1—-2z=1y=1

OR 1 zVy=zzr=1—2=1
OR 2 zVy=z,xz=0y=0—2=0
OR 38 zVy=zx=0z2=1—-y=1
OR 4 xVy=zy=0z=1—-2=1
OR 6 xVy=zy=1—2z=1
OR 6 zVy=z2,2=0—2=0,y=0

21

Boolean Constraints: CtdI

Split:
e Choose the most constrained variable.
e Apply the labeling rule:
z € {0,1}
v e {0} |xe{l}

Proceed by cases: backtrack.

22

Example:
Polynomial Constraints on
Integer Intervals

Domains: integer intervals [a..b|.

a.b] ={x e Z|a<x<b}.

Constraints:

s =0,

s is a polynomial (in possibly several variables)
with integer coefficients.

Example:

2-x5-y2-z4+3-x-y3-25—4-x4-y6-z2+10 = 0.

Objective function: a polynomial.

23

Example I

Find a solution to
o + y2 — 27 =0
in [1..1000] such that
2:0-Y — 2
is maximal.

Answer:
x =112,y =832, 2 = 128.
Then 2 -z -y — z = 186240.

24

Polynomial Constraints on
Integer Intervals, Ctd

Desired syntactic form:
o Yl ja;w; = b,

or -y =2

Preprocess:

Use appropriate transformation rules.

Example:
(v, =0, m =vy,..., my=1v,; DE ;v € Z,... v, € Z)
where

e some m; is not of the form ax;,

®V{,... Uy donot appear in DE.

Happy:

an optimal solution w.r.t. the objective
function was found.

25

Polynomial Constraints on
Integer Intervals, Ctd
Constraint propagation:
uses interval arithmetic.

X, Y sets of integers.

e addition:
X+Y ={z+y|lzeX yeY},
e subtraction:
X-Y={r—ylreX yeVY}
e multiplication:
XY ={zr-ylreXyeVY}
e division:
XY ={ueZ|dre XyeYu-y=uxa}.

For integer a and op € {+, —, -, /} identify
aop X with {a} op X,
X opa with X op{a}.

26

Interval Arithmetic, ctdI

Note X, Y integer intervals, a an integer.
e XNY, X+Y, X —Y are integer intervals.
e X /{a} is an integer interval.

e X -Y does not have to be an integer interval,
even if X ={a} or Y = {a}.

e X /Y does not have to be an integer interval.

Examples

2..4] + [3..8] = [5..12],

3.7 —[1..8] = [6.. — 5],

3..3] - [1..2] = {3,6},

3.5|/[—1..2) = {-5, —4,-3,2,3,4,5},
—3..5]/[-1..2] = Z.

27

Turning Sets to Intervalsl

smallest int. interval O X if X finite

int(X) = Z otherwise.

Examples:

int([3..3] - [1..2]) = [3..6],
int([3..5]/|—1..2]) = [—5..5],
int(|—3..5]/[—1..2]) = Z.

28

Rule for Linear Equalityl

Intuition:

n
Y a;x; =0
1=1

implies that for j € [1..n]
b= Yicn. n]—{j} @it
aj

mj:

LINEAR EQUALITY
(i air; =b; 21 € Dy,...,zn € Dp)
<E%z:1a'é$i:b; SRR D;,)

where j € |1..n], and

b—=x, _rivint(a; - D)
/ ~ ie[l.n]—{j} S
Dj « D]

4j

29

Multiplication Rulesl

MULTIPLICATION 1

(x-y=z;x€D,,ye Dy, z€D,)
(x-y=z;x€eD,,ye D, zeD,Nint(D,-D,))

MULTIPLICATION 2

(x-y=z;xeD,,ye D, z€D,)
(x-y==z;xeD,Nint(D,/D,),y € D,,z € D,)

MULTIPLICATION 3

(x-y=z;x€D,,ye Dy z€ D,
(x-y=2z;x€D,,ye D,Nint(D,/D,),z € D,)

30

Effect of MULTIPLICATION rulesI

Consider
(x-y=2; xell.20],y €9.11], 2 € [155..161]).

Using MULTIPLICATION rules we can trans-
form it to

(x-y=2z; xell6.16],y € [10..10], z € [160..160]).

31

Polynomial Constraints on
Integer Intervals, Ctd
Split:
e Choose the variable with the smallest inter-

val domain.

e Apply the bisection rule:
r € |a..b]
v€la "] e [9] + 1.0

where a < b.

e Combine it with the following heuristic:

choose the variable with the smallest
interval domain.

Proceed by cases: branch and bound.

32

More on Interval Arithmeticl

Given objective function o0bj.
0bjT: extension of obj to function from sets
of integers to sets of integers.

Defined by induction using interval arithmetic.

Example Suppose
obj(x,y) := >y —3z-y°+5
Then
obi "X, Y) =X -X-Y-3-X-Y-Y+5.

Lemma Given:
— 0bj: arithmetic expression,
— X1, ..., X, integer intervals.

e 0bjT(X1,..., X}, is a finite set of integers.
e For all a; € X, 7 € [1.n]
obj(ay,...,an) € obj (X1, ..., Xn).
e forall Y; C X, i € [l..n]
obi T (Y1,.. ., Yn) Cobj T (Xy,..., Xn).

33

Heuristic Functionl

Take

oP =(C; x1€Dy,...,xn € Dp),
with D1, ..., Dy integer intervals,

e 0bj: polynomial with variables x1, ..., xp.

Define
h(P) .= max(obj " (Dy,...,Dp)).

Thanks to Lemma h satisfies conditions A and
B for the heuristic function.

34

Objectivesl

e Introduce notion of equivalence of CSP’s.

e Provide intuitive introduction to gen-
eral methods of Constraint Programming.

e Introduce a basic framework for Con-
straint Programming.

e [llustrate this framework by 2 examples.

35

