
Principles of Constraint

Programming

Krzysztof R. Apt

Chapter 3

Constraint Programming in a
Nutshell

Objectives

• Introduce notion of equivalence of CSP’s.

• Provide intuitive introduction to gen-
eral methods of Constraint Programming.

• Introduce basic framework for Constraint
Programming.

• Illustrate this framework by 2 examples.

1

Projections

•Given: variables X := x1, . . ., xn with the
domains D1, . . ., Dn.

Consider

– d := (d1, . . ., dn) ∈ D1 × . . .×Dn,

– subsequence Y := xi1, . . ., xi` of X .

Denote (di1, . . ., di`) by d[Y].

d[Y]: projection of d on Y .

In particular: d[xi] = di.

•Note For a CSP

P := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉

(d1, . . ., dn) ∈ D1 × . . . ×Dn is a solution
to P iff for each constraint C of P on a
sequence of variables Y

d[Y] ∈ C.

2

Equivalence of CSP’s

• P1 and P2 are equivalent if they have the
same set of solutions.

• CSP’s P1 and P2 are equivalent w.r.t.
X iff

{d[X] | d is a solution to P1} =

{d[X] | d is a solution to P2}.

•Union of P1, . . .,Pm is equivalent w.r.t.

X to P0 if

{d[X] | d is a solution to P0} =
m
⋃

i=1
{d[X] | d is a solution to Pi}.

3

Solved and Failed CSP’s

•C a constraint on variables y1, . . ., yk with
domainsD1, . . ., Dk, so C ⊆D1×. . .×Dk.

C is solved if C = D1 × . . .×Dk.

• CSP is solved if

– all its constraints are solved,

– no domain of it is empty.

• CSP is failed if

– it contains the false constraint ⊥,

or

– some of its domains is empty.

4

Constraint Programming:

Basic Framework

Formulate your problem as a CSP;

Solve:

VAR continue: BOOLEAN;
continue:= TRUE;
WHILE continue AND NOT Happy DO

Preprocess;
Constraint Propagation;
IF NOT Happy

THEN

IF Atomic

THEN

continue:= FALSE

ELSE

Split;
Proceed by Cases

END

END

END

• continue is local to Solve.

•Proceed by Cases leads to a recursive
call of Solve for each newly formed CSP.

5

Preprocess

Bring to desired syntactic form.

•Example: Constraints on reals.

Desired syntactic form: no repeated occur-
rences of a variable.

ax7 + bx5y + cy10 = 0

ax7 + z + cy10 = 0, bx5y = z

Happy

• Found a solution,

• Found all solutions,

• Found a solved form from which one can
generate all solutions,

•Determined that no solution exists (incon-
sistency),

• Found best solution,

• Found all best solutions.

•Reduced all interval domains to sizes < ε.

6

Atomic

Check

• whether CSP is amenable for splitting, or

• whether search ‘under’ this CSP is still needed.

Split

- Split a domain.

•D finite (Enumeration)

x ∈ D

x ∈ {a} | x ∈ D − {a}

•D finite (Labeling)

x ∈ {a1, . . ., ak}

x ∈ {a1} | . . . | x ∈ {ak}

•D interval of reals (Bisection)

x ∈ [a..b]

x ∈ [a..a+b
2] | x ∈ [a+b

2 ..b]

7

Split

- Split a constraint.

•Disjunctive constraints

Example:

Start[task1] + Duration[task1] ≤ Start[task2] ∨
Start[task2] + Duration[task2] ≤ Start[task1]

• Constraints in “compound” form

Example:

|p(x̄)| = a

p(x̄) = a | p(x̄) = −a

C1 ∨ C2

C1 | C2

8

Effect of Split

• Each call to Split replaces current CSP P
by CSP’s P1, . . .,Pn such that the union of
P1, . . .,Pn is equivalent to P .

•Example: Enumeration.

It replaces

〈C ; DE , x ∈ D〉

by
〈C′ ; DE , x ∈ {a}〉

and
〈C′′ ; DE , x ∈ D − {a}〉.

where C′ and C′′ are restrictions of the con-
straints from C to the new domains.

• Split also determines in which operation
is to be applied next.

9

Heuristics

Which

• variable to choose,

• value to choose,

• constraint to split.

Examples:
– Select a variable that appears in the largest

number of constraints (most constrained
variable).

– For a domain being an integer interval:
select the middle value.

10

Proceed by Cases

Various search techniques.

• Backtracking,

• Branch and bound,

• Can be combined withConstraint Prop-

agation

• Intelligent backtracking

11

Backtracking

Here

•Nodes generated “on the fly”.

•Nodes are CSP’s.

• Leaves are CSP’s that are solved or failed.

12

Branch and Bound

•Modification of backtracking aiming at find-
ing the optimal (here maximal) solution.

• Takes into account objective function.

•One maintains currently best value of
the objective function in variable bound.

• bound initialized to −∞ and updated each
time a better solution found.

•Used in combination with heuristic func-
tion.

• Conditions on heuristic function h:

A. If ψ is a direct descendant of φ, then

h(ψ) ≤ h(φ).

B. If ψ is solved CSP with singleton set do-
mains, then

obj(ψ) ≤ h(ψ).

• h allows us to prune the search tree.

13

Illustration

14

Constraint Propagation

Intuition: Replace a CSP by an equivalent
one that is “simpler”.

Constraint propagation performed by repeat-
edly reducing

• domains

and/or

• constraints

while maintaining equivalence.

15

Reduce a Domain: Examples

•Arbitrary CSP’s.

Projection rule:

Take a constraint C. Choose a variable x
of it with domain D.

Remove from D all values for x that do
not participate in a solution to C.

• Linear inequalities on integers.

〈x < y ; x ∈ [50..200], y ∈ [0..100]〉

〈x < y ; x ∈ [50..99], y ∈ [51..100]〉

More generally:

〈x < y ; x ∈ [lx..hx], y ∈ [ly..hy]〉

〈x < y ; x ∈ [lx..h′x], y ∈ [l′y..hy]〉

where

h′x = min(hx, hy − 1),

l′y = max(ly, lx + 1.

16

Repeated Domain Reduction: Example

Consider

〈x < y, y < z ; x ∈ [50..200], y ∈ [0..100], z ∈ [0..100]〉.

Apply above rule to x < y:

〈x < y,y < z ; x ∈ [50..99], y ∈ [51..100], z ∈ [0..100]〉.

Apply it now to y < z:

〈x < y, y < z ; x ∈ [50..99], y ∈ [51..99], z ∈ [52..100]〉.

Apply it again to x < y:

〈x < y, y < z ; x ∈ [50..98], y ∈ [51..99], z ∈ [52..100]〉.

17

Reduce Constraints

Usually by introducing new constraints.

• Transitivity of <

〈x < y, y < z ; DE〉

〈x < y, y < z, x < z ; DE〉

This rule introduces new constraint, x < z.

•Resolution rule.

Let

¬x := x,

x̄ := ¬x.

C1 and C2 clauses (disjunctions of literals)

〈C1 ∨ L,C2 ∨ L̄ ; DE〉

〈C1 ∨ L,C2 ∨ L̄, C1 ∨ C2 ; DE〉

This rule introduces new constraint,

clause C1 ∨ C2.

18

Constraint Propagation Algorithms

•Deal with scheduling of atomic atomic re-
duction steps.

• Try to avoid useless applications of atomic
reduction steps

• Stopping criterion for general CSP’s:

a local consistency notion.

Example:

Projection rule, so:

Take a constraint C. Choose a variable x
of it with domain D.

Remove from D all values for x that do
not participate in a solution to C.

Corresponding local consistency notion:

Hyper-arc consistency:

For every constraint C and every vari-
able x with domain D, each value for x
from D participates in a solution to C.

19

Example: Boolean Constraints

Happy: found all solutions.

Desired syntactic form (for preprocess-
ing):

• x = y,

• ¬x = y,

• x ∧ y = z,

• x ∨ y = z.

Preprocessing:

x ∧ s = z

x ∧ y = z, s = y

Constraint propagation:

〈x ∧ y = z ; x ∈ Dx, y ∈ Dy, z ∈ {1}〉

〈 ; x ∈ Dx ∩ {1}, y ∈ Dy ∩ {1}, z ∈ {1}〉

Write as

x ∧ y = z, z = 1→ x = 1, y = 1.

20

Boolean Constraints: Ctd

EQU 1 x = y, x = 1→ y = 1
EQU 2 x = y, y = 1→ x = 1
EQU 3 x = y, x = 0→ y = 0
EQU 4 x = y, y = 0→ x = 0

NOT 1 ¬x = y, x = 1→ y = 0
NOT 2 ¬x = y, x = 0→ y = 1
NOT 3 ¬x = y, y = 1→ x = 0
NOT 4 ¬x = y, y = 0→ x = 1

AND 1 x ∧ y = z, x = 1, y = 1→ z = 1
AND 2 x ∧ y = z, x = 1, z = 0→ y = 0
AND 3 x ∧ y = z, y = 1, z = 0→ x = 0
AND 4 x ∧ y = z, x = 0→ z = 0
AND 5 x ∧ y = z, y = 0→ z = 0
AND 6 x ∧ y = z, z = 1→ x = 1, y = 1

OR 1 x ∨ y = z, x = 1→ z = 1
OR 2 x ∨ y = z, x = 0, y = 0→ z = 0
OR 3 x ∨ y = z, x = 0, z = 1→ y = 1
OR 4 x ∨ y = z, y = 0, z = 1→ x = 1
OR 5 x ∨ y = z, y = 1→ z = 1
OR 6 x ∨ y = z, z = 0→ x = 0, y = 0

21

Boolean Constraints: Ctd

Split:

• Choose the most constrained variable.

•Apply the labeling rule:

x ∈ {0, 1}

x ∈ {0} | x ∈ {1}

Proceed by cases: backtrack.

22

Example:

Polynomial Constraints on

Integer Intervals

Domains: integer intervals [a..b].

[a..b] := {x ∈ Z | a ≤ x ≤ b}.

Constraints:

s = 0,

s is a polynomial (in possibly several variables)
with integer coefficients.

Example:

2·x5·y2·z4+3·x·y3·z5−4·x4·y6·z2+10 = 0.

Objective function: a polynomial.

23

Example

Find a solution to

x3 + y2 − z3 = 0

in [1..1000] such that

2 · x · y − z

is maximal.

Answer:
x = 112, y = 832, z = 128.
Then 2 · x · y − z = 186240.

24

Polynomial Constraints on

Integer Intervals, Ctd

Desired syntactic form:

• Σn
i=1aixi = b,

• x · y = z.

Preprocess:

Use appropriate transformation rules.

Example:

〈Σn
i=1mi = 0 ; DE〉

〈Σn
i=1vi = 0, m1 = v1, . . ., mn = vn ; DE , v1 ∈ Z, . . ., vn ∈ Z〉

where

• some mi is not of the form axi,

• v1, . . ., vn do not appear in DE .

Happy:

an optimal solution w.r.t. the objective
function was found.

25

Polynomial Constraints on

Integer Intervals, Ctd

Constraint propagation:
uses interval arithmetic.

X, Y sets of integers.

• addition:

X + Y := {x + y | x ∈ X, y ∈ Y },

• subtraction:

X − Y := {x− y | x ∈ X, y ∈ Y },

•multiplication:

X · Y := {x · y | x ∈ X, y ∈ Y },

• division:

X/Y := {u ∈ Z | ∃x ∈ X∃y ∈ Y u · y = x}.

For integer a and op ∈ {+,−, ·, /} identify
a op X with {a} op X ,
X op a with X op {a}.

26

Interval Arithmetic, ctd

Note X, Y integer intervals, a an integer.

•X ∩Y , X +Y,X −Y are integer intervals.

•X/{a} is an integer interval.

•X ·Y does not have to be an integer interval,
even if X = {a} or Y = {a}.

•X/Y does not have to be an integer interval.

Examples

[2..4] + [3..8] = [5..12],

[3..7]− [1..8] = [6..− 5],

[3..3] · [1..2] = {3, 6},

[3..5]/[−1..2] = {−5,−4,−3, 2, 3, 4, 5},

[−3..5]/[−1..2] = Z.

27

Turning Sets to Intervals

int(X) :=























smallest int. interval ⊇ X if X finite
Z otherwise.

Examples:

int([3..3] · [1..2]) = [3..6],

int([3..5]/[−1..2]) = [−5..5],

int([−3..5]/[−1..2]) = Z .

28

Rule for Linear Equality

Intuition:
n
∑

i=1
aixi = b

implies that for j ∈ [1..n]

xj =
b− ∑

i∈[1..n]−{j} aixi

aj

LINEAR EQUALITY

〈∑n
i=1 aixi = b ; x1 ∈ D1, . . ., xn ∈ Dn〉

〈∑n
i=1 aixi = b ; . . ., xj ∈ D

′
j, . . .〉

where j ∈ [1..n], and

D′j := Dj ∩
b− ∑

i∈[1..n]−{j} int(ai ·Di)

aj

29

Multiplication Rules

MULTIPLICATION 1

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz ∩ int(Dx ·Dy)〉

MULTIPLICATION 2

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉

〈x · y = z ; x ∈ Dx ∩ int(Dz/Dy), y ∈ Dy, z ∈ Dz〉

MULTIPLICATION 3

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉

〈x · y = z ; x ∈ Dx, y ∈ Dy ∩ int(Dz/Dx), z ∈ Dz〉

30

Effect of MULTIPLICATION rules

Consider

〈x · y = z ; x ∈ [1..20], y ∈ [9..11], z ∈ [155..161]〉.

UsingMULTIPLICATION rules we can trans-
form it to

〈x · y = z ; x ∈ [16..16], y ∈ [10..10], z ∈ [160..160]〉.

31

Polynomial Constraints on

Integer Intervals, Ctd

Split:

• Choose the variable with the smallest inter-
val domain.

•Apply the bisection rule:

x ∈ [a..b]

x ∈ [a..ba+b
2 c] | x ∈ [ba+b

2 c + 1..b]

where a < b.

• Combine it with the following heuristic:

choose the variable with the smallest
interval domain.

Proceed by cases: branch and bound.

32

More on Interval Arithmetic

Given objective function obj.
obj+: extension of obj to function from sets
of integers to sets of integers.
Defined by induction using interval arithmetic.

Example Suppose

obj(x, y) := x2 · y − 3x · y2 + 5

Then

obj+(X, Y) = X ·X · Y − 3 ·X · Y · Y + 5.

Lemma Given:
— obj : arithmetic expression,
— X1, . . ., Xn integer intervals.

• obj+(X1, . . ., Xn) is a finite set of integers.

• For all ai ∈ Xi, i ∈ [1..n]

obj(a1, . . ., an) ∈ obj+(X1, . . ., Xn).

• For all Yi ⊆Xi, i ∈ [1..n]

obj+(Y1, . . ., Yn)⊆ obj+(X1, . . ., Xn).

33

Heuristic Function

Take

• P := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉,

with D1, . . ., Dn integer intervals,

• obj : polynomial with variables x1, . . ., xn.

Define

h(P) := max(obj+(D1, . . ., Dn)).

Thanks to Lemma h satisfies conditionsA and
B for the heuristic function.

34

Objectives

• Introduce notion of equivalence of CSP’s.

• Provide intuitive introduction to gen-
eral methods of Constraint Programming.

• Introduce a basic framework for Con-
straint Programming.

• Illustrate this framework by 2 examples.

35

