
Principles of Constraint

Programming

Krzysztof R. Apt

Chapter 4

Some Complete Constraint Solvers



Objectives

• Introduce a simple proof theoretic frame-
work.

•Use it to define complete solvers.

•Discuss Martelli-Montanari unification
algorithm for solving term equations.

•DiscussGauss–Jordan Elimination and
Gaussian Elimination algorithms for
solving linear equations over reals.

1



Proof Theoretic Framework

•Rules that transform CSP’s

〈C ; DE〉

〈C′ ; DE ′〉

•A rule

φ

ψ

is equivalence preserving if φ and ψ
are equivalent.

•All considered rules will be equivalence pre-
serving.

2



Types of Rules

Domain reduction rules

• DE := x1 ∈ D1, . . ., xn ∈ Dn,

• DE ′ := x1 ∈ D
′
1, . . ., xn ∈ D

′
n,

• for i ∈ [1..n]

D′i ⊆Di,

• C′: restriction of all constraints in C to the
domains D′1, . . ., D

′
n.

Transformation rules

•Not domain reduction rules,

• C′ 6= ∅,

• DE ′ extends DE .

3



Examples: Domain reduction rules

• LINEAR DISEQUALITY

〈x < y ; x ∈ [lx..hx], y ∈ [ly..hy]〉

〈x < y ; x ∈ [lx..h′x], y ∈ [l′y..hy]〉

where

h′x = min(hx, hy − 1),

l′y = max(ly, lx + 1.

• EQUALITY

〈x = y ; x ∈ Dx, y ∈ Dy〉

〈x = y ; x ∈ Dx ∩Dy, y ∈ Dx ∩Dy〉

•DISEQUALITY

〈x 6= y ; x ∈ D, y = a〉

〈 ; x ∈ D − {a}, y = a〉

(domain expression y = a stands for y ∈ {a}.)

4



Examples: Transformation rules

•DISEQUALITY TRANSFORMATION

〈s 6= t ; DE〉

〈x 6= t, x = s ; DE , x ∈ Z〉
where

– s is not a variable,

–DE includes all variables present in s and
t,

– x does not appear in DE .

•VARIABLE ELIMINATION

〈C ; DE , x = a〉

〈C{x/a} ; DE , x = a〉

where x occurs in C.

C{x/a} : constraints obtained from C by
substituting each occurrence of x by a.

An instance:

〈3xy2 + 5xy − 5yz ≤ 6 ; x ∈ [0..100], y = 2, z ∈ [0..100]〉

〈22x− 10z ≤ 6 ; x ∈ [0..100], y = 2, z ∈ [0..100]〉

5



Rule Applications

•Application of a rule (informally):

replace in a CSP the part that matches the
premise by the conclusion.

•Relevant application of a rule

(informally):

the result differs from the initial CSP.

•A CSP P is closed under the applica-

tions of R if

–R cannot be applied to P

or

– no application of it to P is relevant.

6



Recap: Solved and Failed CSP’s

•A constraint is solved if it equals the Carte-
sian product of the domains of its variables.

• CSP is solved if all its constraints are solved.

• CSP is failed if

either

it contains the false constraint ⊥

or

some of its domains or constraints is empty.

7



Derivations

Given: a finite set of proof rules.

•Derivation: a sequence of CSP’s s.t. each
is obtained from the previous one by an ap-
plication of a proof rule.

•A finite derivation is called

– successful: last element is a first solved
CSP in this derivation,

– failed: last element is a first failed CSP
in this derivation,

– stabilising: last element is a first CSP
closed under the applications of the proof
rules.

8



Derivation: Example

Take

• EQUALITY

〈x = y ; x ∈ Dx, y ∈ Dy〉

〈x = y ; x ∈ Dx ∩Dy, y ∈ Dx ∩Dy〉

•DISEQUALITY

〈x 6= y ; x ∈ D, y = a〉

〈 ; x ∈ D − {a}, y = a〉

and consider CSP

〈x = y, y 6= z, z 6= u;

x ∈ {a, b, c}, y ∈ {a, b, d}, z ∈ {a, b}, u = b〉.

9



Derivation: Example, ctd

〈x = y, y 6= z, z 6= u;
x ∈ {a, b, c}, y ∈ {a, b, d}, z ∈ {a, b}, u = b〉.

Apply EQUALITY rule:

〈x = y, y 6= z, z 6= u ; x ∈ {a, b}, y ∈ {a, b}, z ∈ {a, b}, u = b〉.

Apply DISEQUALITY rule to z 6= u

〈x = y, y 6= z, z 6= u ; x ∈ {a, b}, y ∈ {a, b}, z = a, u = b〉.

Apply DISEQUALITY rule to y 6= z

〈x = y, y 6= z, z 6= u ; x ∈ {a, b}, y = b, z = a, u = b〉.

Apply EQUALITY rule

〈x = y, y 6= z, z 6= u ; x = b, y = b, z = a, u = b〉.

Last CSP is solved:
the derivation is successful.

10



Term Equations

Alphabet

It consists of

• variables,

• function symbols, each with a fixed

arity,

• parentheses: “(“ and “)”,

• comma, that is: “,” .

Terms

Defined inductively as follows.

• a variable is a term,

• if f is an n-ary function symbol and t1, . . . , tn
are terms, then f (t1, . . . , tn) is a term.

Note: Every constant is a term.

11



Substitutions

• Finite mappings from variables to terms.

To each variable x in its domain a term dif-

ferent from x is assigned.

•Written as

{x1/t1, . . . , xn/tn}

where

– x1, . . . , xn are different variables,

– t1, . . . , tn are terms,

– for i ∈ [1, n], xi 6≡ ti.

12



Applying Substitutions

Given: term s, substitution θ.

sθ: result of applying θ to s.

Replace simultaneously each variable in s by
corresponding term from θ.

ExampleTake language of arithmetic expres-
sions in prefix form.

s := +(·(x, 7), ·(4, y)),

θ := {x/0, y/ + (z, 2)}
Then

sθ = +(·(0, 7), ·(4,+(z, 2))).

13



Composing Substitutions

•Given: substitutions θ and η.

θη: composition of θ and η.

(θη)(x) := (xθ)η.

Note: θη is a substitution.

Example Take

θ := {u/z, x/3, y/f (x, 1)},

η := {x/4, z/u}.

Then

θη = {x/3, y/f (4, 1), z/u}.

• θ is more general than τ if for some
substitution η

τ = θη.

Example Take

θ := {y/g(x, a), z/b},

τ := {x/c, y/g(c, a), z/b}.

θ is more general than τ since

{x/c, y/g(c, a), z/b} = {y/g(x, a), z/b}{x/c}.

14



Unification

• θ is a unifier of s and t if

sθ ≡ tθ.

• θ is a most general unifier (mgu) of s
and t if

– θ is a unifier of s and t,

– θ is more general than all unifiers of s and t.

Example

Take f (g(x, a), z) and f (y, b). Then

• {x/c, y/g(c, a), z/b} is one of their unifiers.

• {y/g(x, a), z/b} is an mgu of f (g(x, a), z)
and f (y, b).

15



Sets of Term Equations

• θ is a unifier of a set of term equations
{s1 = t1, . . ., sn = tn} if θ is a unifier of si
and ti for i ∈ [1..n].

• θ is an mgu of E if

– θ is a unifier of E,

– θ is more general than all unifiers of E.

• Two sets of equations are equivalent if
they have the same set of unifiers.

16



Connection with CSP’s

•Variable domains: T , the set of all terms
in the considered alphabet.

• s = t with variables x1, . . ., xn represents
the constraint

{(x1η, . . ., xnη) | η a unifier of s and t}.

• {s1 = t1, . . ., sk = tk}with variables x1, . . ., xn

represents

〈s1 = t1, . . ., sk = tk ; x1 ∈ T , . . ., xn ∈ T 〉.

Note E: finite set of term equations with the
variables x1, . . ., xn. Then

Sol(〈E ; x1 ∈ T , . . ., xn ∈ T 〉) =

{(x1η, . . ., xnη) | η a unifier of E}.

17



UNIF Proof System

DECOMPOSITION

f (s1, . . ., sn) = f (t1, . . ., tn)

s1 = t1, . . ., sn = tn

FAILURE 1

f (s1, . . ., sn) = g(t1, . . ., tm)

⊥
where f 6≡ g,

DELETION

x = x

18



UNIF Proof System, Ctd

TRANSPOSITION

t = x

x = t
where t is not a variable,

SUBSTITUTION

x = t, E

x = t, E{x/t}

where x 6∈ Var (t) and x ∈ var(E),

FAILURE 2

x = t

⊥
where x ∈ Var (t) and x 6≡ t.

Lemma Each rule of UNIF is equivalence
preserving (w.r.t. sequence of the variables
present in the rule premise).

19



A Derivation in UNIF

Selected equations underlined.

Take

E := {k(z, f (x, b, z)) = k(h(x), f (g(a), y, z))}.

Using DECOMPOSITION rule we get

{z = h(x), f (x, b, z) = f (g(a), y, z)}.

Using DECOMPOSITION rule again we get

{z = h(x), x = g(a), b = y, z = z}.

Using TRANSPOSITION rule we get

{z = h(x), x = g(a), y = b, z = z}.

Using DELETION rule we get

{z = h(x), x = g(a), y = b}.

Using SUBSTITUTION rule we get

{z = h(g(a)), x = g(a), y = b}.

No rule applies at this stage.

{z/h(g(a)), x/g(a), y/b} is an mgu of E.

20



Martelli-Montanari Algorithm

Given:

– CSP P := 〈C ; DE〉
– rule

R :=
〈C ; DE〉

〈C′ ; DE ′〉

– 〈C′ ; DE ′〉 is the result of applying R to P .
– This rule application ofR is called global.

Martelli-Montanari Algorithm

•UNIF proof rules.

•All applications of the SUBSTITUTION

rule global.

21



Correctness

Theorem

Given: finite set of term equations E.

•Martelli–Montanari algorithm always
terminates.

• If E has a unifier, then each execution of the
algorithm terminates with a set of equations
that determines an mgu of E.

Otherwise each execution terminates with a
set containing the false constraint ⊥.

22



Termination: Proof Sketch

Consider the lexicographic ordering≺3 onN
3.

(m1,m2,m3) ≺3 (n1, n2, n3)iff

m1 < n1
or m1 = n1 ∧ m2 < n2
or m1 = n1 ∧ m2 = n2 ∧ m3 < n3.

•A variable x solved in E if for some term
t, x = t ∈ E and this is the only occurrence
of x in E.

•A variable unsolved if it is not solved.

uns(E) – the # of unsolved variables in E,
lfun(E) – total # of occurrences of fun. syms

on the LHS of an equation in E,
card(E) – the # of equations in E.

– Each rule application reduces the triple

(uns(E), lfun(E), card(E))

in the lexicographic ordering ≺3.
– For the SUBSTITUTION rule it holds

only for global applications.

23



Linear Equations over Reals

Alphabet

• each real number is a constant,

• for each real number r unary function sym-
bol ‘r·’,

• binary function symbol ‘+’, (written in the
infix notation).

Linear expressions and equations

•Linear expression over reals: a term
in this alphabet.

•Linear equation over reals:

s = t,

s, t linear expressions.

24



Normal Forms

Assume ordering ≺ on the variables.

• Linear expression in normal form:

Σn
i=1aixi + r,

where n ≥ 0, x1, . . ., xn are ordered w.r.t.≺.

• Linear equation in normal form :

Σn
i=1aixi = r,

where n ≥ 0, x1, . . ., xn are ordered w.r.t.≺.

• Linear equation in pivot form:

x = t

if x 6∈ Var (t) and t is in normal form.

• Each linear equation can be rewritten (nor-
malises) to a unique linear equation in nor-
mal form.

25



Substitutions

• Substitution: finite mapping from vari-

ables to linear expressions in normal form.

To each variable x in its domain a linear
expression different from x is assigned.

•Application of a substitution to a linear
expression: defined as before.

•Given: substitutions θ and γ.

θγ: composition of θ and γ.

Uniquely determined by

η(x) := norm((xθ)γ).

• θ is a unifier of s = t if sθ = tθ normalises
to 0 = 0.

•mgu: defined as before.

26



Pivot Forms

Three types of normal forms:

1. 0 = 0,

2. 0 = r where r is a non-zero real,

3. Σn
i=1aixi = r, where n > 0.

Pivots forms of linear equations

• Each linear equation e normalises to a nor-
mal form.

• If it is type 1 or 2, then it has no pivot
form.

• If it is type 3, then each equation

xj = Σi∈[1..j−1]∪[j+1..n] −
ai

aj
xi +

r

aj

is a pivot form of e.

27



LIN Proof System

– norm(s): normal form of s,
– stand(s = t) ≡ norm(s) = norm(t).

DELETION

s = v

if s = v normalises to 0 = 0,

FAILURE

s = v

⊥
if s = v normalises to 0 = r,
r is a non-zero real,

SUBSTITUTION

s = v, E

x = t, stand(E{x/t})

where x = t is a pivot form of s = v.

28



Gauss–Jordan Elimination

Gauss–Jordan Elimination Algorithm

• LIN proof rules.

•All applications of the SUBSTITUTION

rule global and condition x ∈ Var (E) holds.

Theorem

Given: finite set of linear equations E.

•Gauss–Jordan Elimination algorithm
always terminates.

• If E has a solution, then each execution of
the algorithm terminates with a set of linear
equations that determines an mgu of E.

Otherwise each execution terminates with a
set containing the false constraint ⊥.

29



Gaussian Elimination

Forward substitution phase:

Repeatedly take the first not yet considered
equation from the left.

•DELETION rule applicable: delete the equa-
tion and consider the next equation.

• FAILURE applicable: termination with a
failure.

• SUBSTITUTION rule applicable: apply
it taking as E the set of equations lying to
the right of the current equation.

Backward substitution phase:

Repeatedly take the first not yet considered
equation from the right.
Apply SUBSTITUTION rule taking as E

the set of equations lying to the left of the
current equation.

30



Gaussian Elimination: Correctness

Theorem

Given: finite set of linear equations E.

•Gaussian Elimination algorithm always
terminates.

• If E has a solution, then each execution of
the algorithm terminates with a set of linear
equations that determines an mgu of E.

Otherwise each execution terminates with a
set containing the false constraint ⊥.

31



Objectives

• Introduce a simple proof theoretic frame-
work.

•Use it to define complete solvers.

•Discuss Martelli-Montanari unification
algorithm for solving term equations.

•DiscussGauss–Jordan Elimination and
Gaussian Elimination algorithms for
solving linear equations over reals.

32


