Principles of Constraint
Programming

Krzysztof R. Apt

Chapter 4
Some Complete Constraint Solvers

Objectivesl

e Introduce a simple proof theoretic frame-
work.

e Use it to define complete solvers.

e Discuss Martelli-Montanari unification
algorithm for solving term equations.

e Discuss GAUSS—JORDAN ELIMINATION and
(FAUSSIAN ELIMINATION algorithms for
solving linear equations over reals.

Proof Theoretic Frameworkl

e Rules that transform CSP’s

(C; DE)
(¢ DE)

e A rule

¢

W

is equivalence preserving if ¢ and ¥
are equivalent.

e All considered rules will be equivalence pre-
serving.

Types of Rulesl

Domain reduction rules

o DE =x1€ Dy,....xp € Dy,
e DE" =x1€Dy,...,zyp € D),
o for i € [1..n]
D; C D;,
e C': restriction of all constraints in C to the
domains D1, ..., D).

Transformation rules

e Not domain reduction rules,
oC' 10,
e DE' extends DE.

Examples: Domain reduction rulesl

e LINEAR DISEQUALITY

(r <y; x€|lg.he|,y € [ly..hyl)
(x <y; x € llp.hi],y €[l hyl)

where
h/ — m@n(hx, h/y — 1))

X
ZZ/J = max(ly, Iz + 1.

o EQUALITY

(x=vy; € Dg,y € Dy)

e DISEQUALITY

(r#y; z€D,y=a)
(; z€D—A{a},y=aq)

(domain expression y = a stands for y € {a}.)

Examples: Transformation rulesl

e DISEQUALITY TRANSFORMATION
(s £t ; DE)
(x #£t, x=35; DE,x € Z)

where

— s 1s not a variable,

— D& includes all variables present in s and
t,

— x does not appear in DE.

o VARIABLE ELIMINATION
(C; DE,x = a)
(C{z/a} ; DE,x = a)

where x occurs in C.

C{x/a} : constraints obtained from C by
substituting each occurrence of x by a.

An instance:

(3zy? + dxy — byz < 6 ; x € [0..100],y = 2, z € [0..100])

(22x — 102 <6 ; x € 0..100],y = 2, z € [0..100])

5

Rule Applicationsl

e Application of a rule (informally):

replace in a CSP the part that matches the
premise by the conclusion.

e Relevant application of a rule
(informally):
the result differs from the initial CSP.

e A CSP P is closed under the applica-
tions of R if

— R cannot be applied to P
or

—no application of it to P is relevant.

Recap: Solved and Failed CSP’SI

e A constraint is solved if it equals the Carte-
sian product of the domains of its variables.

e CSP issolved if all its constraints are solved.

e CSP is failed if
either

it contains the false constraint _L

or

some of its domains or constraints is empty:.

Derivations I

Given: a finite set of proof rules.

e Derivation: a sequence of CSP’s s.t. each
is obtained from the previous one by an ap-
plication of a proot rule.

e A finite derivation is called

—successful: last element is a first solved
CSP in this derivation,

— failed: last element is a first failed CSP
in this derivation,

—stabilising: last element is a first CSP
closed under the applications of the proof
rules.

Derivation: Examplel

Take
e EQUALITY
(x=vy; x€ Dy,y € Dy)

e DISEQUALITY

(r#y; x€D,y=aq)
(; x€ D—{a},y=a)

and consider CSP

(T =y,y#2,2#u
r € {a,b,c},y €{a,b,d},z € {a,b},u="0).

Derivation: Example, CtdI

(*=y,y# 22 #u;
v € {a,b,c},y €{a,b,d},z €{a,b},u="0).

Apply EQUALITY rule:
(x=y,y#22#u;z€{ablyec{ab},z€{ab}u=0b).
Apply DISEQUALITY rule to z # u
(r=y,y#z2#u; z€{ab}y€{ab}z=au=b).
Apply DISEQUALITY rule to y # =

=y, y#z2z#u;v€{ably=bz=au=0).

Apply EQUALITY rule

(t=y,y#z,z#u; r=by=bz=au=0b).

Last CSP is solved:
the derivation is successful.

10

Term Equationsl

Alphabet

[t consists of

e variables,

e function symbols, each with a fixed
arity.

e parentheses: “(“and)",

«w
)

e comma, that is:

Terms

Defined inductively as follows.
e a variable is a term.,

e if fisan n-ary function symboland ty,...,t,
are terms, then f(t1,...,ty) is a term.

Note: Every constant is a term.

11

Substitutionsl

e ['inite mappings from variables to terms.

To each variable z in its domain a term dif-
ferent from x is assigned.

e Written as

{il?l/tl, . ,:E‘n/tn}

where
—x1,..., Ty are different variables,
—t1,...,ln are terms,

—fori € [1,n], x; £ t;.

12

Applying Substitutionsl

Given: term s, substitution 6.
sf: result of applying 6 to s.

Replace simultaneously each variable in s by
corresponding term from 6.

Example Take language of arithmetic expres-
sions in prefix form.

s:=+((x,7),-(4,y)),

0:={x/0,y/ + (2,2)}
Then

s = +(-(0,7), (4, +(2,2))).

13

Composing Substitutionsl

e Given: substitutions 6 and 7.
On: composition of 6 and .

(On)(x) == (x0)n.

Note: 0n is a substitution.
Example Take

0 :={u/z,2/3,y/f(x. 1)},
n:={x/4,z/u}.
Then
On ={x/3,y/f(4,1),z/u}.
e § is more general than 7 if for some
substitution 7

T = 0On.
Example Take

0 :=1{y/g(x,a),z/b},
T:={x/c,y/g(c,a),z/b}.

6 is more general than 7 since
{ZE/C, y/g(c, CL), Z/b} — {y/g(aj7 CL), z/b}{az/c}

14

Uniﬁcationl

e () 1s a unifier of s and ¢ if

sO = t0.

e # is a most general unifier (mgu) of s
and ¢ if

— 6 is a unifier of s and ¢,

— 6 is more general than all unifiers of s and ¢.

Example
Take f(g(z,a),z) and f(y,b). Then

o {x/c,y/g(c,a), z/b} is one of their unifiers.

e {y/g(x,a),z/b} is an mgu of f(g(x,a), 2)
and f(y,b).

15

Sets of Term Equationsl

e is a unifier of a set of term equations
{s1 =1t1,...,8, =tn} if 0 is a unifier of s;
and t; for i € [1..n].

e is an mgu of E it

— @ is a unifier of F.
— 6 is more general than all unifiers of F.

e T'wo sets of equations are equivalent if
they have the same set of unifiers.

16

Connection with CSP’SI

e Variable domains: 7, the set of all terms
in the considered alphabet.

e s = t with variables x1, ..., x, represents
the constraint

{(z1m,...,xpn) | 7 a unifier of s and ¢}.

o {s1 =11,...,8 = ti.} withvariablesxz{, ..., zp,

represents

(s1=11,..,8.=tp;x1€7T,...,an €T).

Note E: finite set of term equations with the
variables x1,...,xn. Then

Sol(E ; x1€T,....,anp€T)) =
{(x1m,...,xpn) | n a unifier of F}.

17

UNIF Proof Systeml

DECOMPOSITION
F(s1,. . sn) = flty, .. 1)
81 :tl,,Sn:tn
FAILURE 1
f(s1,.8n) = glt1, -, tm)
L
where f #Z g,
DELETION

r =T

18

UNIF Proof System, CtdI

TRANSPOSITION

t=x

r =1
where ¢ is not a variable,

SUBSTITUTION
x=t L
r=t, F{x/t}
where x € Var(t) and x € var(F),

FAILURE 2
r =1
il
where x € Var(t) and x #£ t.

Lemma Each rule of UNIF' is equivalence
preserving (w.r.t. sequence of the variables
present in the rule premise).

19

A Derivation in UNIFI

Selected equations underlined.

Take

E = {k(z, f(x,b,2)) = k(h(z), f(g(a), ¥, 2))}.
Using DECOMPOSITION rule we get

{z=hlx), f(2,b,2) = f(g(a),y, 2)}.
Using DECOMPOSITION rule again we get

{z="Nz),z=gla),b=y,z =z}
Using TRANSPOSITION rule we get

{z="h(z),z=gla),y=bz=2z}.
Using DELETION rule we get

{Z — h($)7x — g(&),y — b}
Using SUBSTITUTION rule we get

1z = higla)),z = gla),y = b}.

No rule applies at this stage.
{z/h(g(a)),x/g(a),y/b} is an mgu of E.

20

Martelli-Montanari Algorithml

Given:
~CSP P = (C; DE)
— rule
_(C; DE)
R= e pey

—{(C": DE") is the result of applying R to P.
— This rule application of R is called global.

Martelli-Montanari Algorithm

e UNIF proof rules.

e All applications of the SUBSTITUTION
rule global.

21

Correctnessl

Theorem
Given: finite set of term equations F.

e MARTELLI-MONTANARI algorithm always
terminates.

e [f F/ has a unifier, then each execution of the
algorithm terminates with a set of equations
that determines an mgu of E.

Otherwise each execution terminates with a
set. containing the false constraint L.

22

Termination: Proof Sketchl

Consider the lexicographic ordering < on N3,
(my, mg, m3) <3 (n1,n9, ng)iff
mi1 < nj
or mi =n1 N\ mo<<ng
or mji =n1 N\ mog=mn9 N\ mg<ns.
e A variable xr solved in FE if for some term

t, x =t € E and this is the only occurrence
of zin F.

e A variable unsolved if it is not solved.

uns(FE) — the # of unsolved variables in F,
[fun(E) — total # of occurrences of fun. syms

on the LHS of an equation in E.
card(E) — the # of equations in .

— Each rule application reduces the triple
(uns(E), Lfun(E), card(F))

in the lexicographic ordering <.
— For the SUBSTITUTION rule it holds
only for global applications.

23

Linear Equations over Realsl

Alphabet

e cach real number is a constant,

e for each real number r unary function sym-
bol ‘r-’,

e binary function symbol ‘4’ (written in the
infix notation).

Linear expressions and equations

e Linear expression over reals: a term
in this alphabet.

e Linear equation over reals:
s =1,

s, t linear expressions.

24

Normal Formsl

Assume ordering < on the variables.
e Linear expression in normal form:
n
D=1 + T,
wheren > 0, x1, ..., xy, are ordered w.r.t. <.

e Linear equation in normal form :

V10T =T,
wheren > 0, x1, ..., x, are ordered w.r.t. <.
e Linear equation in pivot form:
r =1
if v € Var(t) and t is in normal form.

e Each linear equation can be rewritten (nor-
malises) to a unique linear equation in nor-
mal form.

25

Substitutionsl

e Substitution: finite mapping from vari-
ables to linear expressions in normal form.

To each variable z in its domain a linear
expression different from x is assigned.

e Application of a substitution to a linear
expression: defined as before.

e Given: substitutions 6 and .
f~v: composition of § and 7.
Uniquely determined by

n(x) := norm((xf)y).

e () is a unifier of s = ¢ if s = t0 normalises
to 0 = 0.

e mgu: defined as before.

26

Pivot Formsl

Three types of normal forms:
1.0=0,
2.0 = r where r is a non-zero real,

3. X qa;x; = r, where n > 0.

Pivots forms of linear equations

e [lach linear equation e normalises to a nor-
mal form.
o [f it is type 1 or 2, then it has no pivot

form.
e [f it is type 3, then each equation
a; r
Ly = Zze[l..j—l]u[jﬂ..n] - a—jﬂfi + a—j

is a pivot form of e.

27

LIN Proof Systeml

— norm(s): normal form of s,
— stand(s = t) = norm(s) = norm(t).

DELETION

S ="

if s = v normalises to 0 = 0,

FAILURE
S ="
1

if s = v normalises to 0 = r,
r 1S a non-zero real,

SUBSTITUTION
s=uv, I
v =t, stand(E{x/t})

where x = t is a pivot form of s = wv.

28

(FAUSS—JORDAN ELIMINATIONI

(GAUSS—JORDAN ELIMINATION Algorithm

e LIN proof rules.

e All applications of the SUBSTITUTION
rule global and condition x € Var(FE) holds.

Theorem
Given: finite set of linear equations F.

e GAUSS—JORDAN ELIMINATION algorithm
always terminates.

e [f F/ has a solution, then each execution of
the algorithm terminates with a set of linear
equations that determines an mgu of E.

Otherwise each execution terminates with a
set containing the false constraint L.

29

(FAUSSIAN ELIMINATIONI

Forward substitution phase:

Repeatedly take the first not yet considered
equation from the left.

e DELETION rule applicable: delete the equa-
tion and consider the next equation.

o FAILURE applicable: termination with a
failure.

e SUBSTITUTION rule applicable: apply
it taking as E the set of equations lying to
the right of the current equation.

Backward substitution phase:

Repeatedly take the first not yet considered
equation from the right.

Apply SUBSTITUTION rule taking as E
the set of equations lying to the left of the
current equation.

30

(FAUSSIAN ELIMINATION: Correctnessl

Theorem
Given: finite set of linear equations F.

e (GAUSSIAN ELIMINATION algorithm always
terminates.

e [f I/ has a solution, then each execution of
the algorithm terminates with a set of linear
equations that determines an mgu of F.

Otherwise each execution terminates with a
set. containing the false constraint L.

31

Objectivesl

e Introduce a simple proof theoretic frame-
work.

e Use it to define complete solvers.

e Discuss Martelli-Montanari unification
algorithm for solving term equations.

e Discuss GAUSS—JORDAN ELIMINATION and
(FAUSSIAN ELIMINATION algorithms for
solving linear equations over reals.

32

