
Principles of Constraint
Programming

Krzysztof R. Apt

Chapter 7
Constraint Propagation Algorithms



Objectives

• Explain constraint propagation algorithms
for the considered local consistency notions.

• Introduce generic iteration algorithms on par-
tial orderings.

•Use them to explain constraint propagation
algorithms.

•Discuss implementations of incomplete con-
straint solvers.

1



Motivation: Crossword Puzzle

3

4 5

6 7

8

21

• HOSES, LASER, SAILS, SHEET, STEER,

• HEEL, HIKE, KEEL, KNOT, LINE,

• AFT, ALE, EEL, LEE, TIE.

Variables: x1, . . ., x8,
Domains: x7 ∈ {AFT, ALE, EEL, LEE, TIE}, etc.
Constraints: one per crossing

C1,2 := {(HOSES, SAILS), (HOSES, SHEET),
(HOSES, STEER), (LASER, SAILS),
(LASER, SHEET), (LASER, STEER)} .

etc.

2



Unique Solution

1 2 3

4 5

6 7

8

H O S E S

S

E

EE

E

E

A

A

I

R

K

L

L

L A

H

T

•We can reach it repeatedly applying ARC

CONSISTENCY rules 1 and 2.

• But many derivations exist.

General considerations:

•How to schedule rule applications to guar-
antee termination?

•How to avoid (at a low cost) redundant rule
applications?

• Is the outcome of the derivations unique?

• If yes, how can it be characterised?

3



Informal Introduction

•Constraint propagation is a very widely
used concept.

On www.google.com on October 3, 2002:

“constraint propagation”: 99300 hits,
“NP completeness” : 92800 hits.

Other names:

• (local) consistency,

• consistency enforcing,

•Waltz,

• filtering,

• narrowing

algorithms

• (incomplete) constraint solver,

• reasoner.

4



Constraint Propagation: Intuition

Take a constraint satisfaction problem.

Repeatedly reduce its

• domains

and/or

• constraints

while maintaining equivalence.

Outcome: a locally consistent CSP.

Constraint Propagation Algorithms

• Scheduling of atomic reduction steps.

• Stopping criterion: local consistency

notion.

5



Official History
of Constraint Propagation

•Montanari ’74: path consistency intro-
duced and an algorithm to achieve it.

•Waltz ’75: informally used in an algorithm
for analysis of polyhedral scenes,

•Mackworth ’77: arc consistency defined,
arc consistency algorithm AC-3 and path
consistency algorithm PC-2 introduced,

• . . .

• Benhamou ’96, Telerman and Ushakov ’96:
local consistency for domain reduction viewed
as a greatest fixpoint,

•Van Emden ’97 and Fages, Fowler, and Sola
’98: constraint propagation linked to chaotic
(i.e., fair) iterations,

•Apt ’97, ’99: arbitrary constraint propaga-
tion algorithms explained as instances of
chaotic iteration algorithms.

6



Inofficial History
of Constraint Propagation

Several techniques used in mathematics, op-
eration research and computer science are in-
stances of constraint propagation.

Examples

• various forms of resolution method
(automated theorem proving),

•Gaussian elimination (linear algebra),

• Fourier-Motzkin elimination
(linear programming),

• cutting planes (integer programming),

• various algorithms for test generation for
digital circuits,

• . . .

7



Approach

•Constraint propagation algorithms will
be explained as special cases of generic it-
eration algorithms.

•We shall discuss these generic iterations al-
gorithms first.

•Relevant properties of functions:

–monotonicity,

– inflationarity,

– idempotence,

– commutativity.

•We shall study such functions on partial or-
derings.

•Generic iterations algorithms schedule such
functions.

8



Partial Orderings

A binary relation R on a set D is

• reflexive if (a, a) ∈ R for all a ∈ D,

• antisymmetric if for all a, b ∈ D,

(a, b) ∈ R and (b, a) ∈ R implies a = b,

• transitive if for all a, b, c ∈ D

(a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R.

•Partial ordering: pair (D, v ) with D

a set and v a reflexive, antisymmetric and
transitive relation on D.

•Given (D, v ) an element d of D is the
least element of D if d v e for all e ∈ D.

9



Examples

• (N ,≤),

N : the set of natural numbers,

• (P(A),⊇),

P(A): the set of all subsets of the set A,

⊇: the reversed subset ordering.

Note: A is the least element of P(A).

• (P(D1)× . . .× P(Dn),⊇)

P(D1)× . . .× P(Dn):

Cartesian product of P(Di) for i ∈ [1..n].

⊇: the componentwise ordering ⊇.

So (X1, . . ., Xn) ⊇ (Y1, . . ., Y1) iff Xi ⊇ Yi
for i ∈ [1..n].

Note: (D1, . . ., Dn) is the least element of
P(D1)× . . .× P(Dn).

10



Fixpoints

Given: (D, v ) and function f on D.

• a is a fixpoint of f if f (a) = a.

• a is the least fixpoint of f if a is the least
element of the set {x ∈ D | f (x) = x}.

11



Iterations

Given: (D, v ) with the least element ⊥ and
a set of functions F := {f1, . . ., fk} on D.

• Iteration of F : an infinite sequence of
values d0, d1, d2, . . . defined by

d0 := ⊥,

dj := fij(dj−1),

where each j > 0 and ij ∈ [1..k].

• Increasing sequence d0 v d1 v d2 . . . of
elements from D eventually stabilises
at d if for some j ≥ 0

di = d for i ≥ j.

12



Stabilisation

Consider partial ordering (D, v ) and func-
tions f, g on D.

• f is inflationary if x v f (x).

• f ismonotonic if x v y implies f (x) v f (y).

• f is idempotent if ff (x) = f (x).

• f and g commute if fg(x) = gf (x).

• f semi-commutes with g (w.r.t. v )
if fg(x) v gf (x).

Stabilisation Lemma
Given:
– (D, v ) with the least element ⊥,
– a finite set of monotonic functions F on D.
Suppose an iteration of F eventually sta-
bilises at a common fixpoint d of functions
from F . Then d is the least common fixed
point of functions from F .

13



Commutativity

Given:
– (D, v ) with the least element ⊥,
– finite set F := {f1, . . ., fk} of functions on

D s.t.

• each f ∈ F is monotonic and idempotent,

• all f, g ∈ F commute.

Then for each permutation π : [1..k]→ [1..k]

fπ(1)fπ(2) · · · fπ(k)(⊥)

is the least common fixpoint of the func-
tions from F .

Direct Iteration algorithm (DI)

d := ⊥;
G := F ;
WHILE G 6= ∅ DO
choose g ∈ G;
d := g(d);
G := G− {g}

END

14



Semi-commutativity

Given: partial ordering (D, v ) with the least
element⊥ and a finite sequence F := f1, . . ., fk
of

•monotonic,

• inflationary and

• idempotent

functions on D. Suppose

• fi semi-commutes with fj for i > j,

that is,

fifj(x) v fjfi(x) for all x. (∗)

Then f1f2. . .fk(⊥) is the least common
fixpoint of the functions from F .

——————————————————
(*) For example f3f1(x) v f1f3(x).

15



Simple Iteration Algorithm

Simple Iteration algorithm (SI)

d := ⊥;
FOR i := k TO 1 BY −1 DO
d := fi(d)

END

Note Upon termination d = f1f2. . .fk(⊥).

Theorem
Given: partial ordering (D, v ) with the least
element⊥ and a finite sequence F := f1, . . ., fk
of

•monotonic,

• inflationary and

• idempotent

functions on D such that (*) holds. Then the
SI algorithm terminates and computes in d

the least common fixpoint of functions
from F .

16



Generic Iteration Algorithm (GI)

In absence of (semi-)commutativity information.

Given:
– (D, v ) with the least element ⊥,
– finite set F := {f1, . . ., fk} of functions on D.

d := ⊥;
G := F ;
WHILE G 6= ∅ DO
choose g ∈ G;
IF d 6= g(d) THEN
G := G ∪ update(G, g, d);
d := g(d)

ELSE

G := G− {g}
END

END

where

{f ∈ F −G | f (d) = d ∧ fg(d) 6= g(d)} ⊆
update(G, g, d).

17



Properties of GI Algorithm

Generic Iteration Theorem

Consider finite partial ordering (D, v ) with
⊥ and functions F := {f1, . . ., fk} on D.
Suppose all functions in F are

• inflationary,

•monotonic.

Then every execution of the GI algorithm

• terminates,

• computes in d the least common fix-
point of the functions from F .

18



Instances of the Algorithms
for Compound Domains

Suppose:

• (D, v ) a Cartesian product of partial or-
derings,

• each function f ∈ F defined on some Carte-
sian subproduct, determined by scheme
(subsequence of [1..n]).

• For f ∈ F

f+ : D→D.

f+ is the canonic extension of f .

• f and g commute if

f+g+(d) = g+f+(d)

for all d ∈ D.

• f semi-commutes with g (w.r.t. v ) if

f+g+(d) v g+f+(d)

for all d ∈ D.

19



Instances of DI and SI Algorithms
for Compound Domains

Direct Iteration algorithm

d := (⊥1, . . .,⊥n);
G := F0;
WHILE G 6= ∅ DO
choose g ∈ G;
d[s] := g(d[s]), where s is the scheme of g

END

Simple Iteration algorithm

d := (⊥1, . . .,⊥n);
FOR i := k TO 1 BY −1 DO
d[si] := fi(d[si]), where si is the scheme of fi

END

20



Instance of GI Algorithm
for Compound Domains (CD)

Suppose:

• (D, v ) a Cartesian product of partial or-
derings,

• each function f ∈ F defined on some Carte-
sian subproduct, determined by scheme (sub-
sequence of [1..n]).

d := (⊥1, . . .,⊥n);
d′ := d;
G := F0;
WHILE G 6= ∅ DO
choose g ∈ G; suppose g is with scheme s;
d′[s] := g(d[s]);
IF d′[s] 6= d[s] THEN
G := G ∪{f ∈ F |f depends on i s.t. d[i] 6= d′[i]};
d[s] := d′[s]
ELSE

G := G− {g}
END

END

21



From Abstract Framework to
Constraint Propagation

Consider a CSP

〈C1, . . ., Ck ; x1 ∈ D1, . . ., xn ∈ Dn〉

•Partial orderings with ⊥:

– its elements:

∗ for arc consistency:
(X1, . . ., Xn) such that Xi ⊆Di,

∗ for path consistency:
(X1, . . ., Xk) such that Xi ⊆ Ci,

–⊥:

∗ for arc consistency: (D1, . . ., Dn),

∗ for path consistency: (C1, . . ., Ck),

– v : componentwise reversed subset or-
dering ⊇.

• Inflationary and monotonic functions:

functions that reduce domains or constraints,

•Common fixpoints:

correspond to CSP’s that satisfy the consid-
ered notion of local consistency.

22



Node Consistency Algorithm

• CSP is node consistent if for every vari-
able x every unary constraint on x coincides
with the domain of x.

Node algorithm

S0 := {C | C is a unary constraint from C};
S := S0;
WHILE S 6= ∅ DO
choose C ∈ S; suppose C is on xi;
Di := C ∩Di;
S := S − {C}

END

•An instance of the Direct Iteration al-
gorithm for compound domains.

• It can be systematically derived from it by
choosing the appropriate partial ordering and
functions.

23



Arc Consistency: Recap

•A constraint C on the variables x, y with
the domains X and Y (so C ⊆X × Y ) is
arc consistent if

– ∀a ∈ X∃b ∈ Y (a, b) ∈ C,

– ∀b ∈ Y ∃a ∈ X (a, b) ∈ C.

•A CSP is arc consistent if all its binary
constraints are.

24



Arc Consistency: Recap

ARC CONSISTENCY 1

〈C ; x ∈ Dx, y ∈ Dy〉

〈C ; x ∈ D′x, y ∈ Dy〉

where D′x := {a ∈ Dx | ∃ b ∈ Dy (a, b) ∈ C}

ARC CONSISTENCY 2

〈C ; x ∈ Dx, y ∈ Dy〉

〈C ; x ∈ Dx, y ∈ D′y〉

whereD′y := {b ∈ Dy | ∃ a ∈ Dx (a, b) ∈ C}.

Intuition

D′
y

D′
x

Dy

Dx

C

Note A CSP is arc consistent iff it is closed
under the applications of the ARC CONSIS-

TENCY rules 1 and 2.
25



Projection Functions

Given: C ⊆X × Y .

Let

X ′ = {a ∈ X | ∃b ∈ Y (a, b) ∈ C},

Y ′ = {b ∈ Y | ∃a ∈ X (a, b) ∈ C}.

Define

π1(X, Y ) := (X ′, Y ),

π2(X, Y ) := (X, Y ′).

ARC CONSISTENCY rule 1 orresponds to
function π1 on P(Dx)× P(Dy).

ARC CONSISTENCY rule 2 orresponds to
function π2 on P(Dx)× P(Dy).

26



Arc Consistency as a Fixpoint

π+
i : canonic extension of πi to all domains.

Lemma

• 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉 is arc con-
sistent iff (D1, . . ., Dn) is a common fix-
point of all functions π+

1 and π+
2 .

• Each projection function πi is

– inflationary w.r.t. the componentwise
ordering ⊇,

–monotonic w.r.t. the componentwise
ordering ⊇.

Conclusion:

•We can instantiate the CD algorithm with
the projection functions.

• Call it ARC algorithm.

27



ARC Algorithm

S0 := {C | C is a binary constraint from C} ∪
{CT | C is a binary constraint from C};

S := S0;
WHILE S 6= ∅ DO

choose C ∈ S; suppose C is on xi, xj;
Di := {a ∈ Di | ∃ b ∈ Dj (a, b) ∈ C};
IF Di changed THEN

S := S ∪ {C ′ ∈ S0 | C
′ is on y, z where y is xi or z is xi}

ELSE

S := S − {C}
END

END

Theorem
Consider P := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉
where each Di is finite.
The ARC algorithm always terminates. Let
P ′ be the CSP determined by P and the se-
quence of the computed domains. Then

• P ′ is arc consistent,

• P ′ is equivalent to P .

28



Hyper-arc Consistency: Recap

•A constraint C on the variables x1, . . ., xk
with the domainsD1, . . ., Dk is hyper-arc
consistent if

∀i ∈ [1..n]∀a ∈ Di ∃d ∈ C a = d[xi].

• CSP is hyper-arc consistent if all its
constraints are.

HYPER-ARC CONSISTENCY

〈C ; x1 ∈ D1, . . ., xk ∈ Dk〉

〈C ; . . ., xi ∈ D′i, . . .〉

C a constraint on the variables x1, . . ., xk,
i ∈ [1..k],

D′i := {a ∈ Di | ∃d ∈ C a = d[xi]}.

Note A CSP is hyper-arc consistent iff it is
closed under the applications of the HYPER-

ARC CONSISTENCY rule.

29



Hyper-arc Consistency a Fixpoint

C: a constraint on x1, . . ., xk with respective
domains D1, . . ., Dk.

For each i ∈ [1..k]
HYPER-ARC CONSISTENCY rule corre-
sponds to function πi on P(D1)×· · ·×P(Dk):

πi(X1, . . ., Xk) := (X1, . . ., Xi−1, X
′
i, Xi+1, . . ., Xk)

where

X ′i = {d[i] | d ∈ X1 × · · · ×Xk and d ∈ C}.

Each πi is associated with a constraint C.

Theorem

•A CSP 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉 is
hyper-arc consistent iff (D1, . . ., Dn) is a
common fixpoint of all functions π+

i .

• Each function πi is

– inflationary w.r.t. the componentwise or-
dering ⊇,

–monotonic w.r.t. the componentwise or-
dering ⊇.

30



Hyper-arc Consistency Algorithm

Instantiate the CD algorithm with

F0 := {f | f is a πi function associated

with a constraint of P}

and each ⊥i := Di.

Call it HYPER-ARC algorithm.

Theorem
Consider P := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉
where each Di is finite.
The HYPER-ARC algorithm always terminates.

Let P ′ be the CSP determined by P and the
sequence of the domains computed in d. Then

• P ′ is hyper-arc consistent,

• P ′ is equivalent to P .

31



Path Consistency: Recap

A normalised CSP is path consistent if for
each subset {x, y, z} of its variables

Cx,z ⊆ Cx,y · Cy,z.

Note A normalised CSP is path consistent iff
for each subsequence x, y, z of its variables

Cx,y ⊆ Cx,z · C
T
y,z,

Cx,z ⊆ Cx,y · Cy,z,

Cy,z ⊆ CT
x,y · Cx,z.

Intuition

zx

y

Cx,y Cy,z

Cx,z

32



Path Consistency: Recap

PATH CONSISTENCY 1

Cx,y, Cx,z, Cy,z

C ′x,y, Cx,z, Cy,z

where C ′x,y := Cx,y ∩ Cx,z · C
T
y,z,

PATH CONSISTENCY 2

Cx,y, Cx,z, Cy,z

Cx,y, C ′x,z, Cy,z

where C ′x,z := Cx,z ∩ Cx,y · Cy,z,

PATH CONSISTENCY 3

Cx,y, Cx,z, Cy,z

Cx,y, Cx,z, C ′y,z

where C ′y,z := Cy,z ∩ CT
x,y · Cx,z.

Note A normalised CSP is path consistent iff
it is closed under the applications of the PATH

CONSISTENCY rules 1, 2 and 3.

33



fzx,y functions

P : a normalised CSP with binary constraints
C1, . . ., Ck.

PATH CONSISTENCY rule 1 corresponds
to

fzx,y(P,Q,R) := (P ′, Q,R),

where
P ′ := P ∩Q ·RT ,

PATH CONSISTENCY rule 2 corresponds
to

fyx,z(P,Q,R) := (P,Q′, R),

where
Q′ := Q ∩ P ·R,

PATH CONSISTENCY rule 3 corresponds
to

fxy,z(P,Q,R) := (P,Q,R′),

where
R′ := R ∩ PT ·Q.

34



Path Consistency as a Fixpoint

(fzx,y)
+, (fyx,z)

+ and (fxy,z)
+ are functions on

P(C1)× · · · × P(Ck).

Theorem

•A standardised CSP P with the binary con-
straints C1, . . ., Ck is path consistent iff
(C1, . . ., Ck) is a common fixpoint of all func-
tions (fzx,y)

+, (fyx,z)
+ and (fxy,z)

+ associ-
ated with the subsequences x, y, z of vars of
P .

• The functions f zx,y, f
y
x,z and fxy,z are

– inflationary w.r.t. the componentwise

ordering ⊇,

–monotonic w.r.t. the componentwise

ordering ⊇.

35



A Path Consistency Algorithm

Instantiate the CD algorithm with

F0 := {f
z
x,y, f

y
x,z, f

x
y,z | x, y, z is a subsequence

quad of variables of P},

n := k and each ⊥i := Ci.

Call it PATH algorithm.

Theorem P a standardised CSP with the fi-
nite binary constraints C1, . . ., Ck.
The PATH algorithm always terminates. Let
P ′ be the CSP obtained from P by replacing
its binary constraints by the binary constraints
computed in d. Then

• P ′ is path consistent,

• P ′ is equivalent to P .

36



Directional Arc Consistency as a Fixpoint

Darc Theorem Consider a CSP P and lin-
ear ordering ≺ on its variables. Let

P≺ := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉.

where x1 ≺ x2. . . ≺ xn.
Then

• P is directionally arc consistent w.r.t. ≺ iff
(D1, . . ., Dn) is a common fixpoint of
all functions π+

1 associated with the binary
constraints from P≺.

• Each projection function πi is idempotent.

• Consider two binary constraints of P≺, C1
on , z and C2 on , y, where y ¹ z.

Then the π1 function of C1 semi-commutes
with the π1 function of C2 w.r.t. ⊇.

37



Ordering of π1 Functions

Assume P is standardised.
Suppose

P≺ := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉.

So x1 ≺ x2 ≺ . . . ≺ xn.

Denote the constraint of P≺ on xi, xj by Ci,j.
Order the binary constraints of P≺ as follows:

C1,n, C2,n, . . ., Cn−2,n, Cn−1,n,
C1,n−1, C2,n−1, . . ., Cn−2,n−1,

. . .

C1,2.

For the corresponding sequence of the π1 func-
tions Darc Theorem applies.

Instantiate the SICD algorithm with

• the above sequence of the π1 functions,

• each ⊥i := Di.

Call it Directional Arc Consistency Algorithm
(DARC).

38



DARC Algorithm

FOR j := n TO 2 BY −1 DO
FOR i := 1 TO j − 1 DO
Di := {a ∈ Di | ∃ b ∈ Dj (a, b) ∈ Ci,j}

END

END

Theorem Consider a CSP P with a linear
ordering ≺ on its variables. Let

P≺ := 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉.

The DARC algorithm always terminates. Let
P ′ be the CSP determined by P≺ and the se-
quence of the domains computed in d. Then

• P ′ is directionally arc consistent w.r.t. ≺,

• P ′ is equivalent to P≺.

39



Implementations of
Incomplete Constraint Solvers

Lemma Consider a domain reduction rule R.
Suppose the domains in conclusion of R are

built from the domains in premise of R using
these operations on relations:

• union and intersection,

• transposition operation “.T”,

• composition operation “. · ..”,

• join operation 1,

• projection functions πi and ΠX , and

• removal of an element.

Then R viewed as function on the variable
domains is inflationary and monotonic w.r.t.
the componentwise ordering ⊇.

Conclusion

•We can instantiate the generic iteration al-
gorithm GI by such domain reduction rules.

• This yields implementations of incomplete
constraint solvers of Chapter 6.

40



Other Local Consistency Notions

This approach applies to other local consis-
tency notions. Generic iteration algorithm GI

can be used to derive constraint propagation
algorithms for

• directional path consistency,

• k-consistency,

• strong k-consistency,

• relational consistency.

41



Objectives

• Explain constraint propagation algorithms
for the considered local consistency notions.

• Introduce generic iteration algorithms on par-
tial orderings.

•Use them to explain constraint propagation
algorithms.

•Discuss implementations of incomplete con-
straint solvers.

42


