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Objectivesl

e ['xplain constraint propagation algorithms
for the considered local consistency notions.

e Introduce generic iteration algorithms on par-
tial orderings.

e Use them to explain constraint propagation
algorithms.

e Discuss implementations of incomplete con-
straint solvers.



Motivation: Crossword Puzzlel

e HOSES, LASER, SAILS, SHEET, STEER,
e HEEL, HIKE, KEEL, KNOT, LINE,
e AFT. ALE, EEL, LEE, TIE.

Variables: 1, ..., s,
Domains: x7 € {AFT, ALE, EEL, LEE, TIE}, etc.

Constraints: one per crossing

Ci» = {(HOSES, SAILS), (HOSES, SHEET),
(HOSES, STEER), (LASER, SAILS),
(LASER, SHEET), (LASER, STEER)} .

etc.



Unique Solutionl

e We can reach it repeatedly applying ARC
CONSISTENCY rules 1 and 2.

e But many derivations exist.

(General considerations:

e How to schedule rule applications to guar-
antee termination?

e How to avoid (at a low cost) redundant rule
applications?

e [s the outcome of the derivations unique?

e [f yes, how can it be characterised?
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Informal Introductionl

e Constraint propagation is a very widely
used concept.

On www.google.com on October 3, 2002:

“constraint propagation”: 99300 hits,
“NP completeness” > 92800 hits.

Other names:
e (local) consistency,
e consistency enforcing,
o Waltz,
e filtering,
® NAITrOWInNg
algorithms
e (incomplete) constraint solver,

® I'casoOlleT.



Constraint Propagation: Intuitionl

Take a constraint satisfaction problem.

Repeatedly reduce its
e domains
and /or

e constraints

while maintaining equivalence.

Outcome: a locally consistent CSP.

Constraint Propagation Algorithms

e Scheduling of atomic reduction steps.

e Stopping criterion: local consistency
notion.



Official History
of Constraint Propagation
e Montanari '74: path consistency intro-
duced and an algorithm to achieve it.

e Waltz '75: informally used in an algorithm
for analysis of polyhedral scenes,

e Mackworth '77: arc consistency defined,
arc consistency algorithm AC-3 and path
consistency algorithm PC-2 introduced,

e Benhamou '96, Telerman and Ushakov "96:
local consistency for domain reduction viewed
as a greatest fixpoint,

e Van Emden '97 and Fages, Fowler, and Sola
'98: constraint propagation linked to chaotic
(i.e., fair) iterations,

e Apt 97, '99: arbitrary constraint propaga-
tion algorithms explained as instances of
chaotic iteration algorithmes.



Inofficial History
of Constraint Propagation

Several techniques used in mathematics, op-
eration research and computer science are in-
stances of constraint propagation.

Examples

e various forms of resolution method
(automated theorem proving),

e Gaussian elimination (linear algebra),

e Fourier-Motzkin elimination
(linear programming),

e cutting planes (integer programming),

e various algorithms for test generation for
digital circuits,



Approachl

e Constraint propagation algorithms will
be explained as special cases of generic it-
eration algorithms.

e We shall discuss these generic iterations al-
oorithms first.

e Relevant properties of functions:

— monotonicity,
— inflationarity,
—idempotence,
— commutativity.

e We shall study such functions on partial or-
derings.

e Generic iterations algorithms schedule such
functions.



Partial Orderingsl

A binary relation R on a set D is
o reflexive if (a,a) € R for alla € D,

e antisymmetric if for all a,b € D.
(a,b) € R and (b,a) € R implies a = b,
e transitive if for all a,b,c € D

(a,b) € R and (b,c) € R implies (a,c) € R.

e Partial ordering: pair (D, C ) with D
aset and C a reflexive, antisymmetric and
transitive relation on D.

e Given (D, C ) an element d of D is the
least element of D if d C e for all e € D.



Examplesl

o (N, <),
N: the set of natural numbers,

o (P(A),2),
P(A): the set of all subsets of the set A,
D: the reversed subset ordering.
Note: A is the least element of P(A).

e (P(Dy) x...xP(Dy),2D)
P(D1) X ... x P(Dy):

Cartesian product of P(D;) fori € [1..n].

D: the componentwise ordering O.

So (X1, Xp) D (Y1, YY) i X; D,
for i € [1..n|.

Note: (Dq, ..., Dy) is the least element of
P(Dq) x ... X P(Dy).
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Fixpointsl

Given: (D, C ) and function f on D.
e ¢ is a fixpoint of f if f(a) = a.

e o is the least fixpoint of f if ¢ is the least
clement of the set {x € D | f(x) = x}.
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Iterationsl

Given: (D, C ) with the least element L and
a set of functions F := {fy,..., fr} on D.

e Iteration of F: an infinite sequence of
values dg, dq, do, . .. defined by
dg = L,
dj = fi;(dj-1),
where each j > 0 and i, € [1..k].

e Increasing sequence dg = dy C do ... of
elements from D eventually stabilises
at d if for some 5 > 0

d; = d for i > 3.
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Stabilisationl

Consider partial ordering (D, C ) and func-
tions f,g on D.

e f is inflationary if x C f(x).
e fismonotonicifx C yimplies f(z) C f(y).
e f is idempotent if ff(x) = f(x).

e f and g commute if fg(z) = gf(x).

e / semi-commutes with ¢ (w.r.t. C)

if fg(x) E gf(x).

Stabilisation Lemma
Given:
— (D, C ) with the least element L,
— a finite set of monotonic functions F on D.
Suppose an iteration of F' eventually sta-
bilises at a common fixpoint d of functions
from F'. Then d is the least common fixed
point of functions from F'.
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Commutativityl

Given:
— (D, C ) with the least element L,
—finite set I :={f1,..., fi.} of functions on
D s.t.

e cach f € F'is monotonic and idempotent,
eall f,g € FF commute.

Then for each permutation 7 : [1..k] — |1..k]
ey fr@) e e (L)

is the least common fixpoint of the func-
tions from F.

DIRECT ITERATION algorithm (DI)
d:= 1;
G .=F;
WHILE G # () DO
choose g € G;

d = g(d);
G =G —{g;
END
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Semi-commutativityl

Given: partial ordering (D, E ) with the least

element | and a finite sequence F' := f1,..., fr
of

e monotonic,
e inflationary and

e idempotent

functions on D. Suppose
e f; semi-commutes with f; for i > j,
that is,

fifi(x) E f;fi(z) for all z. (")

Then fif5...f1(L) is the least common
fixpoint of the functions from F'.

(*) For example f3f1(z) E f1f3().

15



Simple Iteration Algorithml

SIMPLE ITERATION algorithm (SI)

d:= 1;

FOR::=k TO 1 BY —1 DO
d = fi(d)

END

Note Upon termination d = f1 fo...fr(L).

Theorem
Given: partial ordering (D, C ) with the least
element | and a finite sequence F' := f1,..., fz

of
e monotonic,
e inflationary and

e idempotent

functions on D such that (*) holds. Then the
SI algorithm terminates and computes in d
the least common fixpoint of functions

from F'.
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Generic Iteration Algorithm (GI)'

[n absence of (semi-)commutativity information.

Given:
— (D, C ) with the least element L,
—finite set F':= {fy,..., fi.} of functions on D.

d:= 1L;
G .= F"
WHILE G # () DO
choose g € G;
IF d +# ¢(d) THEN
G = G Uupdate(G, g,d);

d = g(d)
ELSE
G :=G—{g}
END
END
where

feF-G|fld)=dn fg(d)#gld)} S
update(G, g, d).
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Properties of GI Algorithml

Generic Iteration Theorem

Consider finite partial ordering (D, C ) with
1 and functions F' = {fy,...,fr} on D.
Suppose all functions in F' are

e inflationary,
e monotonic.

Then every execution of the GI algorithm
e terminates.

e computes in d the least common fix-
point of the functions from F'.
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Instances of the Algorithms
for Compound Domains

Suppose:

e (D, C ) a Cartesian product of partial or-
derings,

e cach function f € F defined on some Carte-
sian subproduct, determined by scheme
(subsequence of [1..n]).

efor f € F
ft:D—D.
{7 is the canonic extension of f.

e { and g commute if
frgt(d)=g"f(d)
for all d € D.

¢ f semi-commutes with g (w.r.t. C ) if

fTg(d) E g f(d)
for all d € D.
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Instances of DI and SI Algorithms
for Compound Domains

DIRECT ITERATION algorithm

d:=(Ly,...,1pn);

G = Fp;

WHILE G = () DO
choose g € G;

d|s] := g(d|s]), where s is the scheme of ¢
END

SIMPLE ITERATION algorithm

d:=(Ly,...,1pn);
FOR::= k TO 1 BY —1 DO
d|s;| == fi(d|s;]), where s; is the scheme of f;

END
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Instance of GI Algorithm
for Compound Domains (CD)

SUppose:

e (D, C ) a Cartesian product of partial or-
derings,

e cach function f € F defined on some Carte-
sian subproduct, determined by scheme (sub-
sequence of [1..n)).

d:=(Ly,...,1pn);
d' =d;
G = Fy;
WHILE G # () DO
choose g € G; suppose ¢ is with scheme s;
d'[s] := g(d]s]);
IF d'[s] # d[s] THEN
G = GU{f € F|f depends on i s.t. d[i] # d'[1]};
d[s] := d'[s]
ELSE
G =G —{g}
END
END
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From Abstract Framework to
Constraint Propagation
Consider a CSP
(C1,...,Cr:; x1 € Dy,....,xp € Dy)
e Partial orderings with |:

— its elements:
x for arc consistency:
(X1,...,Xp) such that X; C D;,
x for path consistency:
(X1,...,X) such that X; C C;,
—1:
* for arc consistency: (D1q,..., Dy),
* for path consistency: (C1, ..., CL),
— [ : componentwise reversed subset or-
dering O.
e Inflationary and monotonic functions:
functions that reduce domains or constraints,

e Common fixpoints:

correspond to CSP’s that satisty the consid-
ered notion of local consistency:.
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Node Consistency Algorithml

e CSP is node consistent if for every vari-
able x every unary constraint on x coincides
with the domain of z.

Node algorithm

Sy :={C' | C is a unary constraint from C};
S = 50;
WHILE S # () DO
choose C' € S'; suppose C'is on x;;
D; =CnNDy;
S=85—-{C}
END

e An instance of the DIRECT ITERATION al-
oorithm for compound domains.

e [t can be systematically derived from it by
choosing the appropriate partial ordering and
functions.
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Arc Consistency: Recapl

e A constraint C' on the variables x,y with

the domains X and Y (so C C X x Y) is
arc consistent if

—Ya € X3dbeY (a,b) € C,
—Vb e Yda € X (a,b) € C.

e A CSP is arc consistent if all its binary
constraints are.
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Arc Consistency: Recapl

ARC CONSISTENCY 1
(C'; z € Dg,y € Dy)
(C; z €D,y € Dy)
where D), :={a € D, |3b € D, (a,b) € C}

ARC CONSISTENCY 2
(C'; z € Dg,y € Dy)
(C; € Dy, y € Dy)
where Dy, = {b € Dy | Ja € Dy (a,b) € C}.

Intuition

D/

- |

C

D,

Note A CSP is arc consistent iff it is closed
under the applications of the ARC CONSIS-
TENCY rules 1 and 2.
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Projection Functionsl

Given: C C X x Y.

Let
X' ={acX|TEY (a,b) € C},
Y'={bcY |Jac X (a,b) € C}.
Define
m(X,Y) = (X, Y),
m(X,Y) = (X, Y.
ARC CONSISTENCY rule 1 orresponds to
function 71 on P(Dyz) x P(Dy).

ARC CONSISTENCY rule 2 orresponds to
function 79 on P(Dyz) x P(Dy).
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Arc Consistency as a Fixpointl

+: canonic extension of 7; to all domains.

Uy

Lemma

e (C: x1 € Dy,...,z, € Dy) is arc con-
sistent iff (D1, ..., Dy) is a common fix-
point of all functions 77 and 75 .

e Flach projection function m; is

—inflationary w.r.t. the componentwise
ordering O,

—monotonic w.r.t. the componentwise
ordering 2.
Conclusion:

e We can instantiate the CD algorithm with
the projection functions.

e Call it ARC algorithm.
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ARC ALGORITHMI

Sy := {C"| C is a binary constraint from C} U
{CT| C is a binary constraint from C};
S = SQ;
WHILE S # () DO
choose C' € S; suppose C' is on x;, x;;
D;:={a€e D;|3be D, (a,b) € C};
IF D, changed THEN
S:=5uU{C" €S| C"ison y,z where y is x; or z is x;}
ELSE

S:=S—1{C)}
END
END
Theorem

Consider P := (C ; x1 € Dq,...,zn € Dp)
where each D; is finite.

The ARC algorithm always terminates. Let
P’ be the CSP determined by P and the se-
quence of the computed domains. Then

e P’ is arc consistent,

e P is equivalent to P.
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Hyper-arc Consistency: Recapl

e A constraint C' on the variables x1, ...,z
with the domains Dy, ..., D;. is hyper-arc
consistent if

Vi € [1.n]Va € D; Ad € C a = d|x;)|.

e CSP is hyper-arc consistent if all its
constraints are.

HYPER-ARC CONSISTENCY
<C; x1 € Dy,...,71 EDk>
<C; ...,:CiEDé,...>

C' a constraint on the variables z1, ..., zy,
i€ [1..k],

D,Z = {CLE D; ‘ d € Ca:d[azi]}.

Note A CSP is hyper-arc consistent iff it is
closed under the applications of the HYPER-
ARC CONSISTENCY rule.
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Hyper-arc Consistency a Fixpointl

C: a constraint on x1, ..., x; with respective
domains Dy, ..., D;..

For each ¢ € [1..k]
HYPER-ARC CONSISTENCY rule corre-
sponds to function m; on P(D1) X+ - - xP(Dy.):

Wi(X17 " 7X]~€) ‘= (X17 ax '7X’i—17X"L{7XZ'+17 X 7X]<;)
where
={d[i] |d e X x---x X and d € C}.

Each ; is associated with a constraint C'.

Theorem
oA CSP (C; 1 € Dy,...,xp, € Dyp) is
hyper-arc consistent iff (Dy,...,Dy) is a

common fixpoint of all functions ;.

e Flach function 7, is

— inflationary w.r.t. the componentwise or-
dering O,

— monotonic w.r.t. the componentwise or-
dering DO.
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Hyper-arc Consistency Algorithml

Instantiate the CD algorithm with
Fy:={f | f is a m; function associated
with a constraint of P}
and each 1; = D;.
Call it HYPER-ARC algorithm.

Theorem
Consider P := (C ; x1 € Dy,...,xp € Dy)
where each D; is finite.

The HYPER-ARC algorithm always terminates.
Let P’ be the CSP determined by P and the

sequence of the domains computed in d. Then
e P’ is hyper-arc consistent,

e P’ is equivalent to P.
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Path Consistency: Recapl

A normalised CSP is path comnsistent if for
each subset {x,y, 2z} of its variables

Cx,z g Cx,y ) Cy,Z

Note A normalised CSP is path consistent iff
for each subsequence x, y, z of its variables

T
Caz,y C C:I:,z | Oy7z7
Cr,z © Cpy - Oy z,

T
nyg g CZC,y * Cx}z.

X z

Cz,z

Intuition
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Path Consistency: Recapl

PATH CONSISTENCY 1

CZL’,y7 CJ?,Z) Cy,z
C/ Oﬂ?,Z) Oy,z

LY’

where C’é’y =CryNCyz- C’;Z,

PATH CONSISTENCY 2

C:L’,ya Cx,z; Cy,z
CZE??/’ 053,27 Oyaz

Whel’e Czﬁc,z = CZE’,Z M Cx’y . Cy)z,

PATH CONSISTENCY 3

C:L’,ya Cx,z; Cy,z
Caz,y; 033,2’7 Oé)z
where C?’J’Z = Cy.» N C’xT’y - Oy 2.
Note A normalised CSP is path consistent iff

it is closed under the applications of the PATH
CONSISTENCY rules 1, 2 and 3.
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f+., functions

P: a normalised CSP with binary constraints

cy,...,Ch.

PATH CONSISTENCY rule 1 corresponds
to

fiy(P,Q,R) = (P, Q,R),
where
P =PnNnQ- RT,
PATH CONSISTENCY rule 2 corresponds
to
f.(P,Q,R) = (P,Q", R),
where
Q' =QNP-R,
PATH CONSISTENCY rule 8 corresponds
to
fy-(P,Q,R) = (P,Q, R,
where

R =Rnprl.Q.
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Path Consistency as a Fixpointl

(ff,y>+a (fxy,z)+ and ((Ifg’;z)Jr are functions on

P(CO X e X P(Ck)

Theorem

e A standardised CSP ‘P with the binary con-
straints C1, . . ., C} is path consistent ift
(C1, . ..,C})is a common fixpoint of all func-

tions (£2, )%, (fL.)* and (f7.)" associ-
ated with the subsequences x, v, z of vars of

P.
e The functions f7 , f , and fj . are
— inflationary w.r.t. the componentwise
ordering O,
— monotonic w.r.t. the componentwise

ordering O.
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A Path Consistency Algorithml

Instantiate the CD algorithm with

Fy = {f5y [ 2 fy 2 | ,y, 2 is a subsequence
quad  of variables of P},

n = k and each L, := C;.

Call it PATH algorithm.

Theorem P a standardised CSP with the fi-

nite binary constraints Cf, ..., C}.
The PATH algorithm always terminates. Let

P’ be the CSP obtained from P by replacing

its binary constraints by the binary constraints
computed in d. Then

e P’ is path consistent,

e P is equivalent to P.
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Directional Arc Consistency as a Fixpointl

Darc Theorem Consider a CSP P and lin-
car ordering < on its variables. Let

P<x:=(C; x1 € Dyq,...,xn € Dp).

where 1 < x9... < xp.

Then
e P is directionally arc consistent w.r.t. < iff
(D1,...,Dp) is a common fixpoint of

all functions 7] associated with the binary
constraints from P.

e Flach projection function 7; is idempotent.

e Consider two binary constraints of P~, Cf
on .,z and C9 on _,y, where y < 2.

Then the 7 function of C'7 semi-commutes
with the 7 function of Cy w.rt. D.
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Ordering of 7 Functionsl

Assume P is standardised.
Suppose

P~ :=(C; x1 € Dq,...,xn € Dp).
S0 X1 < X9 < ...=<Tp.

Denote the constraint of P< on x;, x; by Cj ;.
Order the binary constraints of P~ as follows:

Cl,n» CZ,TL) JORY Cn—Q,na Cn—l,na
Cin—1,Con-1, -, Chn—o2n—1,
C' 9.

)

For the corresponding sequence of the 7y func-
tions Darc Theorem applies.

Instantiate the SICD algorithm with

e the above sequence of the m functions,
ecach |, :=D;.

Call it Directional Arc Consistency Algorithm
(DARC).
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DARC Algorithml

FOR 7 :=n TO 2 BY —1 DO
FOR:?:=1T0y — 1DO0O
D; = {CLEDZ' | HbEDj (a,b) ECZ'J'}
END
END

Theorem Consider a CSP P with a linear
ordering < on its variables. Let
P~ :=(C; x1 € Dq,...,xn € Dyp).

The DARC algorithm always terminates. Let
P’ be the CSP determined by P~ and the se-

quence of the domains computed in d. Then
e P’ is directionally arc consistent w.r.t. <,

e P is equivalent to P—.

39



Implementations of
Incomplete Constraint Solvers

Lemma Consider a domain reduction rule R.

Suppose the domains in conclusion of R are
built from the domains in premise of R using
these operations on relations:

e union and intersection,

e transposition operation “.17.

e composition operation . -..”,

e join operation X,

e projection functions m; and Il y, and
e removal of an element.

Then R viewed as function on the variable
domains is inflationary and monotonic w.r.t.
the componentwise ordering O.

Conclusion

e We can instantiate the generic iteration al-
gorithm GI by such domain reduction rules.

e This yields implementations of incomplete
constraint solvers of Chapter 6.
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Other Local Consistency Notionsl

This approach applies to other local consis-
tency notions. (Generic iteration algorithm GI
can be used to derive constraint propagation
algorithms for

e directional path consistency,
e k-consistency,
e strong k-consistency,

e relational consistency.
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Objectivesl

e ['xplain constraint propagation algorithms
for the considered local consistency notions.

e Introduce generic iteration algorithms on par-
tial orderings.

e Use them to explain constraint propagation
algorithms.

e Discuss implementations of incomplete con-
straint solvers.
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