
Common Beliefs and Public Announcements in

Strategic Games with Arbitrary Strategy Sets

Krzysztof R. Apt and Jonathan A. Zvesper∗

September 26, 2007

Abstract

We provide an epistemic analysis of arbitrary strategic games based
on possibility correspondences. Such an analysis calls for the use of
transfinite iterations of the corresponding operators. In the case of
common beliefs and common knowledge our approach is based on
Tarski’s Fixpoint Theorem and applies to ‘monotonic’ properties. In
the case of an analysis based on the notion of a public announcement
our approach applies to ‘global properties’. Both classes of properties
include the notions of rationalizability and the iterated elimination of
strictly dominated strategies. We also provide an axiomatic presen-
tation of the main results concerning common beliefs and monotonic
properties.

Keywords: epistemic analysis, possibility correspondences, fixpoints, ratio-
nalizability, public announcements.

1 Introduction

1.1 Background

Epistemic analysis of strategic games (in short, games) aims at predicting the
choices of rational players in the presence of (partial or common) knowledge
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or belief about the behaviour of other players. Most often it focusses on the
iterated elimination of never best responses (a notion termed as rationaliz-
ability), the iterated elimination of strictly dominated strategies (IESDS) and
on justification of the strategies selected in Nash and correlated equilibria.

Starting with Aumann [1987], Brandenburger and Dekel [1987] and Tan
and Werlang [1988] a large body of literature arose that investigates the epis-
temic foundations of rationalizability by modelling the reasoning employed
by players in choosing their strategies. Such an analysis, based either on
possibility correspondences and partition spaces, or Harsanyi type spaces, is
limited either to finite or compact games with continuous payoffs, or to two-
player games, see, e.g., Battigalli and Bonanno [1999] or Ely and Peski [2006].

In turn, in the case of IESDS the epistemic analysis has focussed on
finite games (with an infinite hierarchy of beliefs) and strict dominance either
by pure or by mixed strategies, see, e.g. Brandenburger, Friedenberg and
Keisler [2004].

1.2 Contributions

In this paper we provide an epistemic analysis of arbitrary strategic games
based on possibility correspondences. More specifically, denote by RAT(φ)
the property that each player i uses a monotonic property1φi to select his
strategy (‘each player i is φi-rational’). Then the following sets of strategy
profiles coincide:

• those that the players choose in the states in which RAT(φ) is common
knowledge,

• those that the players choose in the states in which RAT(φ) is true
and is common belief,

• those that remain after the iterated elimination of the strategies that
for player i are not φi-optimal.

This requires that transfinite iterations of the strategy elimination are
allowed and covers the usual notion of rationalizability and a global version of
the iterated elimination of strictly dominated strategies. For the customary,
local version of the iterated elimination of strictly dominated strategies (that
is defined using a non-monotonic property) we justify the statement

1The concepts of monotonic, global and local properties are introduced in Section 3.
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common knowledge of rationality implies that the players will
choose only strategies that survive the iterated elimination of
strictly dominated strategies

for arbitrary games and transfinite iterations of the elimination process. Ra-
tionality refers here to the concept studied in Bernheim [1984].

We also provide an axiomatic presentation of some of these results. This
clarifies the logical underpinnings of the epistemic analysis and shows that
the use of transfinite iterations can be naturally captured by a single infer-
ence rule that involves greatest fixpoints. Also, it shows that the relevant
monotonic properties can be defined using positive formulae.

Finally, inspired by van Benthem [2007], we provide an alternative char-
acterization of the strategies that remain after iterated elimination of strate-
gies that for player i are not φi-optimal, based on the concept of a pub-
lic announcement due to Plaza [1989]. This yields a generalization of van
Benthem’s results to arbitrary strategic games and to other properties than
rationalizability, and a global version of the iterated elimination of strictly
dominated strategies.

Apart of the necessity of the use of transfinite iterations when studying
arbitrary strategic games, our analysis shows the relevance of two concepts
of the underlying properties φi used by the players to select their strategies.
The first one is monotonicity, and it allows us to use Tarski’s Fixpoint The-
orem. The second is globality, which intuitively means that each subgame
obtained by iterated elimination of strategies is analyzed in the context of
the given initial game. While the epistemic analysis of arbitrary games based
on possibility correspondences applies only to monotonic properties, the one
based on public announcement applies to global properties.

1.3 Connections

Our results complement the findings of Lipman [1991] in which transfinite
ordinals are used in a study of limited rationality, and Lipman [1994], where a
two-player game is constructed for which the ω0 (the first infinite ordinal) and
ω0 + 1 iterations of the rationalizability operator of Bernheim [1984] differ.
In turn, Heifetz and Samet [1998] show that in general arbitrary ordinals
are necessary in the epistemic analysis of strategic games based on partition
spaces. Further, as argued in Chen, Long and Luo [2005], the notion of
IESDS à la Milgrom and Roberts [1990], when used for arbitrary games, also
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requires transfinite iterations of the underlying operator.
The relevance of monotonicity in the context of epistemic analysis of

finite strategic games has already been pointed out in van Benthem [2007].
The distinction between local and global properties is from Apt [2007b] and
Apt [2007c]. Some of the results presented here were initially reported in
Apt [2007a].

2 Preliminaries

This paper connects three concepts, operators on a complete lattice, strategic
games and possibility correspondences. In this section we introduce these
concepts and recall basic results concerning them.

2.1 Operators

Consider a fixed complete lattice (D, ⊆ ) with the largest element ⊤. In
what follows we use ordinals and denote them by α, β, γ. Given a, possibly
transfinite, sequence (Gα)α<γ of elements of D we denote their join and meet
respectively by

⋃

α<γ Gα and
⋂

α<γ Gα.

Definition 1. Let T be an operator on (D, ⊆ ), i.e., T : D→D.

• We call T monotonic if for all G1, G2

G1 ⊆G2 implies T (G1) ⊆ T (G2).

• We call T contracting if for all G

T (G) ⊆G.

• We say that an element G is a fixpoint of T if G = T (G) and a
post-fixpoint of T if G⊆ T (G).

• We define by transfinite induction a sequence of elements Tα of D,
where α is an ordinal, as follows:

– T 0 := ⊤,

– Tα+1 := T (Tα),
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– for all limit ordinals β, T β :=
⋂

α<β T
α.

• We call the least α such that Tα+1 = Tα the closure ordinal of T
and denote it by αT . We call then TαT the outcome of (iterating) T
and write it alternatively as T∞. 2

So an outcome is a fixpoint reached by a transfinite iteration that starts
with the largest element. In general, the outcome of an operator does not
need to exist but we have the following classic result due to Tarski [1955].2

Tarski’s Fixpoint Theorem Every monotonic operator T on (D, ⊆ ) has
an outcome, i.e., T∞ is well-defined. Moreover,

T∞ = νT = ∪{G | G⊆ T (G)},

where νT is the largest fixpoint of T .

In contrast, a contracting operator does not need to have a largest fix-
point. But we have the following obvious observation.

Note 1. Every contracting operator T on (D, ⊆ ) has an outcome, i.e., T∞

is well-defined. 2

In Section 5 we shall need the following lemma.

Lemma 1. Consider two operators T1 and T2 on (D, ⊆ ) such that

• for all G, T1(G) ⊆ T2(G),

• T1 is monotonic,

• T2 is contracting.

Then T∞
1 ⊆ T∞

2 .

Proof. We first prove by transfinite induction that for all α

Tα1 ⊆ Tα2 . (1)

By the definition of the iterations we only need to consider the induction
step for a successor ordinal. So suppose the claim holds for some α. Then by

2We use here its ‘dual’ version in which the iterations start at the largest and not at
the least element of a complete lattice.
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the first two assumptions and the induction hypothesis we have the following
string of inclusions and equalities:

Tα+1
1 = T1(T

α
1 ) ⊆ T1(T

α
2 ) ⊆ T2(T

α
2 ) = Tα+1

2 .

This shows that for all α (1) holds. By Tarski’s Fixpoint Theorem and
Note 1 the outcomes of T1 and T2 exist, which implies the claim. 2

2.2 Strategic games

Given n players (n > 1) by a strategic game (in short, a game) we mean
a sequence (S1, . . ., Sn, p1, . . ., pn), where for each i ∈ [1..n]

• Si is the non-empty set of strategies (sometimes called actions) avail-
able to player i,

• pi is the payoff function for the player i, so pi : S1 × . . . × Sn →R,
where R is the set of real numbers.

We denote the strategies of player i by si, possibly with some superscripts.
Given s ∈ S1× . . .×Sn we denote the ith element of s by si, write sometimes
s as (si, s−i), and use the following standard notation:

• s−i := (s1, . . ., si−1, si+1, . . ., sn),

• S−i := S1 × . . .× Si−1 × Si+1 × . . .× Sn.

Given a finite non-empty set A we denote by ∆A the set of probability
distributions over A and call any element of ∆Si a mixed strategy of player
i.

In the remainder of the paper we assume an initial strategic game

H := (T1, . . ., Tn, p1, . . ., pn).

A restriction of H is a sequence (S1, . . ., Sn) such that Si ⊆ Ti for i ∈
[1..n]. We identify the restriction (T1, . . ., Tn) with H. We shall focus on
the complete lattice that consists of the set of all restrictions of the game H
ordered by the componentwise set inclusion:

(S1, . . ., Sn) ⊆ (S ′
1, . . ., S

′
n) iff Si ⊆ S ′

i for all i ∈ [1..n].
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So H is the largest element in this lattice and
⋃

α<γ and
⋂

α<γ are the cus-
tomary set-theoretic operations on the restrictions.

Consider now a restriction G := (S1, . . ., Sn) of H and two strategies si, s
′
i

from Ti (so not necessarily from Si). We say that si is strictly dominated

on G by s′i (and write s′i ≻G si) if

∀s−i ∈ S−i pi(s
′

i, s−i) > pi(si, s−i),

and that si is weakly dominated on G by s′i (and write s′i ≻
w
G si) if

∀s−i ∈ S−i pi(s
′

i, s−i) ≥ pi(si, s−i) ∧ ∃s−i ∈ S−i pi(s
′

i, s−i) > pi(si, s−i).

In the case of finite games, once the payoff function is extended in the
expected way to mixed strategies, the relations ≻G and ≻w

G between a mixed
strategy and a pure strategy are defined in the same way.

A belief of player i held in G := (S1, . . ., Sn) can be

• a joint strategy of the opponents of player i in G (i.e., s−i ∈ S−i),

• or, in the case the game is finite, a joint mixed strategy of the opponents
of player i (i.e., (m1, . . .,mi−1,mi+1, . . .,mn), where mj ∈ ∆Sj for all
j),

• or, in the case the game is finite, a correlated strategy of the oppo-
nents of player i (i.e., m ∈ ∆S−i).

Each payoff function pi can be modified to an expected payoff function
pi : Si×Bi →R, where Bi is one of the above three sets of beliefs of player i.

Further, given a restriction G′ := (S ′
1, . . ., S

′
n) of H, we say that the

strategy si from Ti is a best response in G′ to some belief µi held in

G if
∀s′i ∈ S ′

i pi(si, µi) ≥ pi(s
′

i, µi).

2.3 Possibility correspondences

In this and the next subsection we essentially follow the exposition of Bat-
tigalli and Bonanno [1999]. Fix a non-empty set Ω of states. By an event

we mean a subset of Ω.
A possibility correspondence is a mapping from Ω to the powerset

P(Ω) of Ω. We consider three properties of a possibility correspondence P :
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(i) for all ω, P (ω) 6= ∅,

(ii) for all ω and ω′, ω′ ∈ P (ω) implies P (ω′) = P (ω),

(iii) for all ω, ω ∈ P (ω).

If the possibility correspondence satisfies properties (i) and (ii), we call
it a belief correspondence and if it satisfies properties (i)–(iii), we call it
a knowledge correspondence .3 Note that each belief correspondence P
yields a partition {P (ω) | ω ∈ Ω} of Ω.

Assume now that each player i has to its disposal a possibility correspon-
dence Pi. Given an event E we define then�E := {ω ∈ Ω | ∀i ∈ [1..n] Pi(ω) ⊆ E}.

If all Pis are belief correspondences, we write BE instead of �E and if
all Pis are knowledge correspondences, we write KE instead of �E.

An event F is called evident if F ⊆�F . That is, F is evident if for all
ω ∈ F we have Pi(ω) ⊆ F for all i ∈ [1..n]. Following Aumann [1976] if each
Pi is a knowledge correspondence, we say that an event E is a common

knowledge in the state ω ∈ Ω if for some evident event F we have ω ∈
F ⊆ E. We write then ω ∈ K∗E.

Further, using a characterization of Monderer and Samet [1989], if each
Pi is a belief correspondence, we say that an event E is a common belief

in the state ω ∈ Ω if for some evident event F we have ω ∈ F ⊆BE. We
write then ω ∈ B∗E.

These two definitions can be made even more similar: thanks to an ob-
servation of Monderer and Samet [1989] we can replace in the definition of
common knowledge the condition ω ∈ F ⊆ E by ω ∈ F ⊆KE. This and
the observation that �(E ∩ F ) = �E ∩ �F allows us to define common
knowledge and common belief in a uniform way by putting�∗E :=

⋃

{F ⊆ Ω | F ⊆ �(E ∩ F )}.

Intuitively, an event E is a common knowledge in the state ω if in ω

every player knows that every player knows that every player . . . knows E,
where we say that every player knows E in the state ω if ω ∈ KE, and
analogously with the common belief.

3In the modal logic terminology a belief correspondence is a frame for the modal logic
KD45 and a knowledge correspondence is a frame for the modal logic S5, see, e.g. Black-
burn, de Rijke and Venema [2001].
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2.4 Models for games

We now link these considerations with the strategic games. Given a restric-
tion G := (S1, . . ., Sn) of the initial game H, by a model for G we mean a set
Ω of states such that |Ω| ≥ |Si| for all i ∈ [1..n] (where for a set A we denote
its cardinality by |A|), together with a sequence of functions si : Ω → Si,
where i ∈ [1..n]. We denote it by (Ω, s1, . . ., sn).

In what follows we use si interchangingly to denote a strategy of player
i or a function that, when applied to a state, yields a strategy of player i.
If a confusion arises, we write si(·) to denote a function. Further, given a
function f and a subset E of its domain, we denote by f(E) the range of f
on E and by f |E the restriction of f to E.

By the standard model M for G we mean the model in which

• Ω := S1 × . . .× Sn (which means that for ω ∈ Ω, ωi is well-defined),

• si(ω) := ωi.

So the states of the standard model for G are exactly the joint strategies in
G, and each si(·) is a projection function. Since the initial game H is given,
we know the payoff functions p1, . . ., pn. So in the context of H a standard
model is just an alternative way of representing a restriction of H.

Given a (not necessarily standard) model M := (Ω, s1, . . ., sn) for a re-
striction G and a vector of events E = (E1, . . ., En) in M we define

GE := (s1(E1), . . ., sn(En))

and call it the restriction of G to E. When each Ei equals E we write
GE instead of GE.

Finally, we extend the notion of a model for a restriction G to a belief

model for G by assuming that each player i has a belief correspondence Pi on
Ω. If each Pi is a knowledge correspondence, we refer then to a knowledge

model .

3 Local and global properties

The assumption that each player is rational is one of the basic stipulations
within the framework of strategic games. However, rationality can be differ-
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ently interpreted by different players.4 This may for example mean that a
player

• does not choose a strategy weakly/strictly dominated by another pure/mixed
strategy,

• chooses only best replies to the (beliefs about the) strategies of the
opponents.

In this paper we are interested in analyzing situations in which each player
pursues his own notion of rationality, more specifically those situations in
which this information is common knowledge or common belief. As a special
case we cover then the usually analyzed situation in which all players use the
same notion of rationality.

Given player i in a strategic game H := (T1, . . ., Tn, p1, . . ., pn) we formal-
ize his notion of rationality using a property φi(si, G,G

′) that holds between
a state si ∈ Ti and restrictions G and G′ of H. Intuitively, φi(si, G,G

′) holds
if si is an ‘optimal’ strategy for player i within the restriction G in the context
of G′, assuming that he uses the property φ to select optimal strategies.

Here are some examples of the property φi which show that the above-
mentioned rationality notions can be formalized in a number of natural ways:

• sdi(si, G,G
′) that holds iff the strategy si of player i is not strictly

dominated on G by any strategy from the restriction G′ := (S ′
1, . . ., S

′
n)

of H (i.e., ¬∃s′i ∈ S ′
i s

′
i ≻G si),

• (assuming H is finite) msdi(si, G,G
′) that holds iff the strategy si of

player i is not strictly dominated onG by any of its mixed strategy from
the restriction G′ := (S ′

1, . . ., S
′
n) of H, (i.e., ¬∃m′

i ∈ ∆S ′
i m

′
i ≻G si),

• wdi(si, G,G
′) that holds iff the strategy si of player i is not weakly

dominated on G by any strategy from the restriction G′ := (S ′
1, . . ., S

′
n)

of H (i.e., ¬∃s′i ∈ S ′
i s

′
i ≻

w
G si),

• (assuming H is finite) mwdi(si, G,G
′) that holds iff the strategy si of

player i is not weakly dominated on G by any of its mixed strategy from
the restriction G′ := (S ′

1, . . ., S
′
n) of H, (i.e., ¬∃m′

i ∈ ∆S ′
i m

′
i ≻

w
G si),

4This matter is obfuscated by the fact that the etymologically related noun ‘rational-
izability’ stands by now for the concept introduced in Bernheim [1984] and Pearce [1984]
that refers to the outcome of iterated elimination of never best responses.
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• bri(si, G,G
′) that holds iff the strategy si of player i is a best response

in the restriction G′ := (S ′
1, . . ., S

′
n) of H to some belief µi held in G

(i.e., for some belief µi held in G, ∀s′i ∈ S ′
i pi(si, µi) ≥ pi(s

′
i, µi)).

Two natural possibilities for G′ are G′ = H or G′ = G. We then abbre-
viate φi(si, G,H) to φ

g
i (si, G) and φi(si, G,G) to φ li (si, G) and henceforth

focus on the binary properties φi(·, ·). The superscript ‘g’ stands for global

and ‘l’ for local . Global properties are then those in which a player’s strategy
is evaluated with respect to all his strategies from the initial game, whereas
local properties are concerned solely with a comparison of strategies available
in the restriction G.

We say that the property φi(·, ·) used by player i is monotonic if for all
restrictions G and G′ of H and si ∈ Ti

G⊆G′ and φ(si, G) implies φ(si, G
′).

Each sequence of properties φ := (φ1, . . ., φn) determines an operator Tφ
on the restrictions of H defined by

Tφ(G) := (S ′

1, . . ., S
′

n),

where G := (S1, . . ., Sn) and for all i ∈ [1..n]

S ′

i := {si ∈ Si | φi(si, G)}.

Since Tφ is contracting, by Note 1 it has an outcome, i.e., T∞

φ
is well-

defined. Moreover, if each φi is monotonic, then Tφ is monotonic and by
Tarski’s Fixpoint Theorem its largest fixpoint νTφ exists and equals T∞

φ
.

Intuitively, Tφ(G) is the result of removing from G all strategies that are
not φi-optimal. So the outcome of Tφ is the result of the iterated elimination
of strategies that for player i are not φi-optimal, where i ∈ [1..n].

When each property φi equals sd l, we write T
sd

l instead of T
sd

l and
similarly with other specific properties. The natural examples of such an
iterated elimination of strategies that were discussed in the literature are:5

• iterated elimination of strategies that are strictly dominated by another
strategy;

5The reader puzzled by the existence of multiple definitions for the apparently uniquely
defined concepts is encouraged to consult Apt [2007b].
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This corresponds to the iterations of the T
sd

l operator in the case of
Dufwenberg and Stegeman [2002]) and of the Tsd

g operator in the case
of Chen, Long and Luo [2005].

• iterated elimination of strategies that are weakly dominated by another
strategy;

• (for finite games) iterated elimination of strategies that are weakly,
respectively strictly, dominated by a mixed strategy;

This are the customary situations studied starting with Luce and Raiffa
[1957] that corresponds to the iterations of the T

msd
l, respectively

T
mwd

l , operator.

• iterated elimination of strategies that are never best responses to some
belief;

This corresponds to the iterations of the Tbr
g operator in the case of

Bernheim [1984] and the T
br

l operator in the case of Pearce [1984], in
each case for an appropriate set of beliefs.

Usually only the first ωo iterations of the corresponding operator T are
considered, i.e., one studies T ω0 , that is

⋂

i<ω0
T i, and not T∞.

In the next section we assume that each player i employs some property φi
to select his strategies, and we analyze the situation in which this information
is common knowledge. To determine which strategies are then selected by
the players we shall use the Tφ operator. We shall also explain why in general
transfinite iterations are necessary.

4 Two theorems

All belief and knowledge models considered in this section are models for the
initial game H and use a fixed set of states Ω.

Given now a property φi(·, G) that player i uses to select his strate-
gies in the restriction G of H, we say that, given a belief model M :=
(Ω, s1, . . ., sn, P1, . . ., Pn) for H, player i is φi-rational in the state ω if
φi(si(ω), GPi(ω)) holds. Note that when player i knows (respectively, believes)
that the state is in Pi(ω), the restriction GPi(ω) represents his knowledge (re-
spectively, his belief) about the players’ strategies. That is, GPi(ω) is the
game he knows (respectively, believes) to be relevant to his choice. Hence
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φi(si(ω), GPi(ω)) captures the idea that if player i uses φi(·, ·) to select his
optimal strategy in the game he considers relevant, then in the state ω he
indeed acts ’rationally’.

We are interested in the strategies selected by each player in the states in
which it is common knowledge (or true and is common belief) that each player
i is φi-rational. To this end, given a belief model M := (Ω, s1, . . ., sn, P1, . . ., Pn)
for H we introduce the following event:

RAT(φ) := {ω ∈ Ω | each player i is φi-rational in ω},

and focus on the following two events:

CK(φ) := {ω ∈ Ω | for some knowledge model ω ∈ K∗RAT(φ)},

CB(φ) := {ω ∈ Ω | for some belief model ω ∈ RAT(φ) and ω ∈ B∗RAT(φ)},

and the corresponding restrictions GCK(φ) and GCB(φ) of H.
So a strategy si is an element of the ith component of GCK(φ) if for some

knowledge model (Ω, s1(·), . . ., sn(·), P1, . . ., Pn) for H we have si = si(ω) for
some ω ∈ K∗RAT(φ). That is, si is a strategy that player i chooses in a
state in which for some knowledge model it is common knowledge that each
player j is φj-rational, and similarly for GCB(φ).

The following result then relates for arbitrary strategic games the restric-
tion GCB(φ) to the outcome of the iteration of the operator Tφ.

Theorem 1. Suppose that each property φi is monotonic. Then

GCK(φ) = GCB(φ) = T∞

φ
.

Proof. We prove three inclusions.
(i) GCK(φ) ⊆GCB(φ).

This is an immediate consequence of the inclusion CK(φ) ⊆ CB(φ) that
holds for an arbitrary φ on the account of the alternative characterization
of common knowledge mentioned in Subsection 2.3 and the fact that for all
events E we have K∗E ⊆ E.

(ii) GCB(φ) ⊆ T∞

φ
.

Take a strategy si that is an element of the ith component of GCB(φ).
Thus for some belief model M := (Ω, s1(·), . . ., sn(·), P1, . . ., Pn) for H we
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have si = si(ω) for some ω ∈ CB(φ). So ω ∈ RAT(φ) and ω ∈ B∗RAT(φ).
The latter implies that for some evident event F

ω ∈ F ⊆ {ω′ ∈ Ω | ∀i ∈ [1..n] Pi(ω
′) ⊆ RAT(φ)}. (2)

Take now an arbitrary ω′ ∈ F ∩ RAT(φ) and i ∈ [1..n]. Since ω′ ∈
RAT(φ), player i is φi-rational in ω′, i.e., φi(si(ω

′), GPi(ω′)) holds. But F is

evident, so Pi(ω
′) ⊆ F . Moreover by (2) Pi(ω

′) ⊆ RAT(φ), so Pi(ω
′) ⊆ F ∩

RAT(φ). Hence GPi(ω′) ⊆GF∩RAT(φ) and by the monotonicity of φi we con-
clude that φi(si(ω

′), GF∩RAT(φ)) holds.
By the definition of Tφ this means that GF∩RAT(φ) ⊆ Tφ(GRAT(φ)), i.e.

that GF∩RAT(φ) is a post-fixpoint of Tφ. Hence by Tarski’s Fixpoint Theorem
GF∩RAT(φ) ⊆ T∞

φ
.

But si = si(ω) and ω ∈ F ∩ RAT(φ), so we conclude by the above
inclusion that si is an element of the ith component of T∞

φ
. This proves

GCB(φ) ⊆ T∞

φ
.

(iii) T∞

φ
⊆GCK(φ).

Recall that H = (T1, . . ., Tn, p1, . . ., pn). We first define

• the functions s1 : Ω → T1, . . ., sn : Ω → Tn,

• an event E,

• the knowledge correspondences P1, . . ., Pn.

Suppose T∞

φ
= (S1, . . ., Sn). Choose j0 ∈ [1..n] such that the set Sj0

has the largest cardinality among the sets S1, . . ., Sn. Define the function
sj0 : Ω → Tj0 arbitrarily, but so that it is onto (note that this is possible
since by assumption |Ω| ≥ |Tj0 |) and let E := s−1

j0
(Sj0).

Our aim is to ensure that

GE = T∞

φ
.

So we define each function sk : Ω → Tk, where k 6= j0, in such a way that
s−1
k (Sk) = E. Note that this is possible since |E| ≥ |Sj0 | ≥ |Sk|.

Next, we define each knowledge correspondence Pi arbitrarily but so that
for all ω ∈ E we have Pi(ω) = E. Then for all i ∈ [1..n]

GPi(ω) = GE.
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We now show that in all ω ∈ E, in the resulting knowledge model for H,
each player i is φi-rational in ω. So take an arbitrary ω ∈ E and i ∈ [1..n].
By the definition of the function si(·) a strategy si ∈ Si exists such that
si = si(ω). Now, T∞

φ
is a fixpoint of Tφ, so φi(si, T

∞

φ
) holds. But T∞

φ
=

GE = GPi(ω), so φi(si(ω), GPi(ω)) holds, i.e. player i is indeed φi-rational in
ω.

To complete the proof take now an arbitrary strategy si ∈ Si. By the
definition of the function si(·) a state ω ∈ E exists such that si = si(ω).
Further, we just showed that each player j is φj-rational in ω. But by the
definition of the knowledge correspondences E is an evident event, so it
is common knowledge in ω that each player j is φj-rational in ω. Hence
ω ∈ CK(φ) and consequently si is an element of the ith component ofGCK(φ).

This proves that T∞

φ
⊆GCK(φ). 2

The above theorem, through the definitions of the events CK(φ) and
CB(φ), makes use of arbitrary models for the initial game H. But it also
holds when we admit only standard models for H in these two definitions.
Indeed, among the three inclusions that we established in its proof we only
need to reconsider the last one, T∞

φ
⊆GCK(φ). The argument in the presence

of only standard models runs as follows.
Suppose T∞

φ
= (S1, . . ., Sn). Consider the event F := S1 × . . . × Sn

in the standard model for H. Then GF = T∞

φ
. Define each knowledge

correspondence Pi by

Pi(ω) :=

{

F if ω ∈ F

Ω \ F otherwise

Each Pi is indeed a knowledge correspondence (also if F = ∅ or F = Ω) and
clearly F is an evident event.

Take now an arbitrary i ∈ [1..n] and an arbitrary state ω ∈ F . Since T∞

φ

is a fixpoint of Tφ and si(ω) ∈ Si, φi(si(ω), T∞

φ
) holds, so by the definition of

Pi, φi(si(ω), GPi(ω)) holds.
This shows that each player i is φi-rational in each state ω ∈ F . Since

F is evident, we conclude that in each state ω ∈ F it is common knowledge
that each player i is φi-rational. So F ⊆ CK(φ) and consequently T∞

φ
=

GF ⊆GCK(φ).

The above theorem shows that when each property φi is monotonic, the
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strategy profiles that the players choose in the states in which it is common
knowledge that each player i is φi-rational (or in which each player i is
φi-rational and it is common belief that each player i is φi-rational), are
included in those that remain after the iterated elimination of the strategies
that are not φi-optimal. It generalizes corresponding results established for
finite strategic games (for their survey see Battigalli and Bonanno [1999]) to
the case of arbitrary strategic games and arbitrary monotonic properties φi.

In Chen, Long and Luo [2005], Lipman [1994] and Apt [2007b] examples
are provided showing that for the properties of strict dominance (namely
sd g) and best response (namely br g) in general transfinite iterations (i.e.,
iterations beyond ω0) of the corresponding operator are necessary to reach the
outcome. So to achieve equalities in the above theorem transfinite iterations
of the Tφ operator are necessary.

By instantiating φis to specific properties we get instances of the above
result that relate to specific definitions of rationality. Before we do this we
establish another result that will apply to another class of properties φi.

Theorem 2. Suppose that

φi(si, ({s1}, . . ., {sn})) holds for all i ∈ [1..n] and si ∈ Ti. (3)

Then
GCK(φ) = GCB(φ) = H.

Proof. As noted in the proof of Theorem 1, for all φ we haveGCK(φ) ⊆GCB(φ).
Since GCB(φ) ⊆H, it suffices to prove that H ⊆GCK(φ).

So take a strategy si of player i in H. We choose a knowledge model in
stages. First we stipulate that each function si(·) is onto. This is possible
since by assumption |Ω| ≥ |Ti| for all i ∈ [1..n]. So a state ω exists such that
si = si(ω). Next, we choose for each player j a knowledge correspondence Pj
such that Pj(ω) = {ω}. Then

GPj(ω) = ({s1(ω)}, . . ., {sn(ω)})

and, on the account of (3), each player j is φj-rational in ω.
By the choice of the knowledge correspondences {ω} is an evident event.

Hence it is common knowledge in ω that each player j is φj-rational in ω. So
by definition si is an element of the ith component of CKφ. 2
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Note that any property φi that satisfies (3) and is not trivial (that is, for
some strategy si, φi(si, H) does not hold) is not monotonic.

Also here the claim holds if in the definitions of CK(φ) and CB(φ) we
admit only standard models for H. The reason is that all we needed was for
each function si(·) to be onto; but this is the case for standard models.

5 . . . and their consequences

Let us analyze now the consequences of the above two theorems. Consider
first Theorem 1. The following lemma, in which we refer to the properties
introduced in Section 3, clarifies the matters.

Lemma 2. The properties sd gi , msd
g
i and br gi are monotonic.

Proof. Straightforward. 2

So Theorem 1 applies to the above three properties. (Note that br gi
actually comes in three ’flavours’ depending on the choice of beliefs.) Strict
dominance in the sense of sd gi is studied in Chen, Long and Luo [2005], while
br

g
i corresponds to the rationalizability notion of Bernheim [1984].
In contrast, Theorem 1 does not apply to the properties wd gi and mwd gi ,

since, as indicated in Apt [2007c], the corresponding operators Twd
g and

Tmwd
g are not monotonic, and hence the properties wd gi and mwd

g
i are not

monotonic.
To see the consequences of Theorem 2 note that the properties sd li , msd

l
i ,

wd li , mwd
l
i and br li satisfy (3). In particular, this theorem shows that the

‘customary’ concepts of strict dominance, sd li and msd li cannot be justified in
the used epistemic framework as ‘stand alone’ concepts of rationality. Indeed,
this theorem shows that common knowledge that each player is rational in
one of these two senses does not exclude any strategy.

What can be done is to justify these two concepts as consequences of the
common knowledge of rationality defined in terms of br gi , the ‘global’ version
of the best response property, Namely, we have the following result. When
each property φi equals br gi ), we write here CK(br g) instead of CK(br g) and
analogously for CB.

Theorem 3. For all games H

GCK(br g) = GCB(br g) ⊆ T∞

sd
l ,
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where we take as the set of beliefs the set of joint strategies of the opponents.

Proof. By Lemma 2 and Theorem 1 GCK(br g) = GCB(br g) = T∞

br
g . Each best

response to a joint strategy of the opponents is not strictly dominated, so for
all restrictions G

Tbr
g(G) ⊆ Tsd

g(G).

Also, for all restrictions G

Tsd
g(G) ⊆ T

sd
l(G).

So by Lemma 1 T∞

br
g ⊆ T∞

sd
l, which concludes the proof. 2

The above result formalizes and justifies in the epistemic framework used
here the often used statement:

common knowledge of rationality implies that the players will
choose only strategies that survive the iterated elimination of
strictly dominated strategies

for games with arbitrary strategy sets and transfinite iterations of the elimi-
nation process.

In the case of finite games we have the following known result. For a
proof using Harsanyi type spaces see Brandenburger and Friedenberg [2006].

Theorem 4. For all finite games H

GCK(br g) = GCB(br g) ⊆ T∞

msd
l ,

where we take as the set of beliefs the set of joint mixed strategies of the
opponents.

Proof. The argument is analogous as in the previous proof but relies on a
subsidiary result.

Again by Lemma 2 and Theorem 1 GCK(br g) = GCB(br g) = T∞

br
g . Further,

for all restrictions G
Tbr

g(G) ⊆ T
br

l(G)

and
T

br
l(G) ⊆ T

brc
l(G),

where brc li stands for the best response property w.r.t. the correlated strate-
gies of the opponents. So by Lemma 1 T∞

br
g ⊆ T∞

brc
l .
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But by the result of Osborne and Rubinstein [1994, page 60] (that is a
modification of the original result of Pearce [1984]) for all restrictions G we
have T

brc
l(G) = T

msd
l(G), so T∞

brc
l = T∞

msd
l , which yields the conclusion. 2

6 Axiomatic presentation

The proof of Theorem 1 relied on a judicious manipulation of events. So it is
natural to ask what are the proof-theoretic principles involved. In this section
we present a formal language Lν that will be interpreted over belief models.
We will then give syntactic proof rules for Lν that lead to an axiomatic
proof of the main part of Theorem 1. Throughout the section we assume,
as usual, the initial game H and monotonic properties φ1, . . ., φn. Later we
shall introduce a language that allows us to define and analyze the relevant
properties.

To start with, we consider the simpler language L the formulae of which
are defined by the following recursive definition, where i ∈ [1..n]:

ψ ::= rati | ψ ∧ ψ | ¬ψ | �iψ | Oiψ,

where each rati is a constant. We abbreviate the formula
∧

i∈[1..n] rati to rat,
∧

i∈[1..n]�iψ to �ψ and
∧

i∈[1..n]Oiψ to Oψ.
Formulae of L will be interpreted as events in belief models for H. Given

a belief model (Ω, s1, . . ., sn, P1, . . ., Pn) for H, we define the interpretation

function I(·) : L → P(Ω) as follows:

• I(rati) = {ω ∈ Ω | φi(si(ω), GPi(ω))},

• I(φ ∧ ψ) = I(φ) ∩ I(ψ),

• I(¬ψ) = Ω − I(ψ),

• I(�iψ) = {ω ∈ Ω | Pi(ω) ⊆ I(ψ)},

• I(Oiψ) = {ω ∈ Ω | φi(si(ω), GI(ψ))}.

Note that I(rat) is the event that every player is rational, I(�ψ) is the
event that every player believes the event I(ψ) and I(Oψ) is the event that
every player’s strategy is optimal in the context of the restriction GI(ψ).

L is a modal language in the sense of Blackburn, de Rijke and Ven-
ema [2001]. Although L can express some connections between our formal
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definitions of optimality, rationality and beliefs, it is not a very expressive
language. If our interest were to reason about particular games, we could
extend the language with atoms si expressing the event that the strategy si is
chosen. This choice is often made when defining modal languages for models
of games, see, e.g., de Bruin [2004]. However, we are interested in a language
to reason about games with arbitrary strategy sets, and in particular in a
language that can express the non-trivial part of the left-to-right inclusion of
Theorem 1 (part (ii) of its proof).

Specifically, we want a language that can express the following statement:

Imp If it is true common belief that every player is rational, then all players
choose strategies that survive the iterated elimination of non-optimal
strategies.

To this end we extend the vocabulary of L with a single set variable
denoted by x and the largest fixpoint operator νx. (The corresponding ex-
tension of the first-order logic by the dual, least fixpoint operator µx was
first studied in Gurevich [1984].) Modulo one caveat the resulting language
Lν is defined as follows, where ‘. . .’ stands for the already given definition of
L:

ψ ::= . . . | x | νx.φ.

The caveat is the following: φ must be

• positive in x, which means that each occurrence of x in φ is under
the scope of an even number of negation signs (¬),

• ν-free , which means that it does not contain any occurrences of the
νx operator.

(The latter restriction is not necessary, but simplifies matters and is sufficient
for our considerations.)

To define the interpretation function I(·) for Lν we must keep track of
the variable x. Therefore we first extend the function I(·) on L to a function
I(·) : Lν × P(Ω) → P(Ω) by padding it with a dummy argument. We give
one clause as an example:

• I(�iψ,E) = {ω ∈ Ω | Pi(ω) ⊆ I(ψ,E)}.

Then we put
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• I(x,E) = E,

and finally define

• I(νx.ψ) =
⋃

{E ⊆ Ω | E ⊆ I(ψ,E)}.

It is straightforward to see that the restriction to positive in x and ν-free
formulae ψ ensures that I(ψ, ·) is a monotonic operator on the powerset P(Ω)
of Ω. Hence by Tarski’s Fixpoint Theorem I(νx.ψ) is its largest fixpoint.

This language can express Imp. To see this, first notice that common be-
lief is definable in Lν using the νx operator. The analogous characterization
of common knowledge is given in Fagin et al. [1995, Section 11.5].

Note 2. Let ψ be a formula of L and x a variable. Then I(νx.�(x ∧ ψ)) is
the event that the event I(ψ) is common belief.

Proof. ψ is a formula of L, so x does not occur in ψ. Note that for all F ⊆ Ω
we have

• I(�(x ∧ ψ), F ) = I(�x, F ) ∩ I(�ψ, F ),

• I(�x, F ) = �I(x, F ) = �F ,

• I(�ψ, F ) = �I(ψ, F ) = �I(ψ),

where the ‘outer’ � is defined in Subsection 2.3. Hence

I(νx.�(x ∧ ψ)) =
⋃

{F ⊆ Ω | F ⊆ I(�(x ∧ ψ), F )}
=

⋃

{F ⊆ Ω | �(F ∩ I(ψ))}
= �∗I(ψ),

where �∗ is defined in Subsection 2.3. 2

From now on we abbreviate the (well-formed) formula νx.�(x∧ψ) for ψ
being a formula of L to �∗ψ. So �∗ is a new modality added to the language
Lν .

We can also define the iterated elimination of non-optimal strategies.

Note 3. In the game determined by the event I(νx.Ox), every player selects
a strategy which survives the iterated elimination of non-optimal strategies.
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Proof. We must show the following inclusion:

GI(νx.Ox) ⊆ T∞

φ
.

Let G′ := (S ′
1, . . . , S

′
n) = GI(νx.Ox). By Tarski’s Fixpoint Theorem it

suffices to show that G′ ⊆ Tφ(G
′). So take any j ∈ [1..n] and any s′j ∈ S ′

j.
We must show that φj(s

′
j, G

′) holds. By definition for some ω ∈ I(νx.Ox) we
have sj(ω) = s′j. Then there is some E such that ω ∈ E and E ⊆ I(Ox,E).
Therefore for all i ∈ [1..n], φi(si(ω), GE) holds, so in particular φj(s

′
j, GE)

holds.
But E ⊆ I(Ox,E) implies E ⊆ I(νx.Ox) and thereforeGE ⊆ GI(νx.Ox) =

G′. Hence by monotonicity of φj we get φj(s
′
j, G

′) as desired. 2

Now consider the following formula:

(rat ∧�∗rat) → νx.Ox. (4)

By Notes 2 and 3, we can see that wherever the formula (4) holds, then if
it is true common belief that every player is rational, then each player selects
a strategy that survives the iterated elimination of non-optimal strategies.

We call an Lν-formula ψ valid if for every belief model (Ω, s1, . . ., sn, P1, . . ., Pn)
for H we have I(ψ) = Ω.

We are now in a position to connect Lν to Imp: the statement Imp

asserts that the formula (4) is valid.
In the rest of this section we will discuss a simple proof system in which

we can derive (4). This will provide an alternative way of proving the corre-
sponding inclusion in Theorem 1.

We will use an axiom and rule of inference for the fixpoint operator taken
from Kozen [1983] and one axiom for rationality analogous to the one called
in de Bruin [2004] an ‘implicit definition’ of rationality. We give these in
Figure 1 denoting by ψ[x 7→ χ] the formula obtained from ψ by substituting
each occurence of the variable x with the formula χ.

First we establish the soundness of this proof system, that is that its
axioms are valid and the proof rules preserve validity.

Lemma 3. The proof system P is sound.

Proof. We show first the validity of the axiom ratDis. Let (Ω, s1, . . ., sn, Pi, . . ., Pn)
be a belief model for H. We must show that I(rat→ (�ψ→ Oψ)) = Ω.
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Axiom schemata

rat→ (�ψ→ Oψ) ratDis

νx.ψ→ ψ[x 7→ νx.ψ] νDis

Rule of inference

χ→ ψ[x 7→ χ]

χ→ νx.ψ
νInd

Figure 1: Proof system P

That is, that for any ψ the inclusion I(rat)∩I(�ψ) ⊆ I(Oψ) holds. So take
some ω ∈ I(rat) ∩ I(�ψ). Then for every i ∈ [1..n], φi(si(ω), GPi(ω)), and
Pi(ω) ⊆ I(ψ). So by monotonicity of φi, φi(si(ω), GI(ψ)), i.e. ω ∈ I(Oiψ) as
required.

The axioms νDis and the rule νInd were introduced in Kozen [1983],
and their soundness proof is standard. This axiom and the rule formalize,
respectively, the following two consequences of Tarski’s Fixpoint Theorem
concerning a monotonic operator T :

• νT is a post-fixpoint of T , i.e., νT ⊆ T (νT ) holds,

• if Y is a post-fixpoint of T , i.e., Y ⊆ T (Y ) holds, then Y ⊆ νT . 2

Next, we establish the already announced claim.

Theorem 5. The formula (4) is a theorem of the proof system P.

Proof. The following formula is an instance of the axiom ratDis (with ψ :=�∗rat ∧ rat):

rat→ (�(�∗rat ∧ rat) →O(�∗rat ∧ rat)),

and the following is an instance of νDis (with ψ := �(x ∧ rat)):�∗rat→�(�∗rat ∧ rat)

Putting these two together via some simple propositional logic, we obtain:
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(�∗rat ∧ rat) → O(�∗rat ∧ rat).

This last formula is of the right shape to apply the rule νInd (with χ :=�∗rat ∧ rat and ψ := Ox), to obtain:

(�∗rat ∧ rat) → νx.Ox,

which is precisely the formula (4). 2

The derivation of 4 has shown which proof-theoretic principles are re-
quired, or at least sufficient, to obtain the part of Theorem 1 on which we
are concentrating. It is interesting to note that no axioms or rules for the
modalities � and O were needed in order to derive (4). This corresponds to
the fact that in the proof of the corresponding inclusion in Theorem 1 we did
not use the fact that the possibility correspondences were belief correspon-
dences.

Corollary 1. The formula (4) is valid. 2

In the language Lν , rat1, . . ., ratn are propositional constants. We can
define them in terms of the �i and Oi modalities but to this end we need to
extend the language Lν to a second-order one by allowing quantifiers over set
variables, so by allowing formulae of the form ∃Xφ. It is clear how to extend
the semantics to this larger class of formulae. In the resulting language each
rati constant is definable by a formula of the latter language:

rati ≡ ∀X(�iX →OiX), (5)

where ∀Xφ is an abbreviation for ¬∃X¬φ.
The following observation then shows correctness of this definition.

Note 4. For all i ∈ [1..n] the formula (5) is valid. 2

Let us mention that such second-order extensions of propositional modal
logics were first considered in Fine [1970].

To further our syntactic analysis, we now give a language LO which can
be used to define and analyze the optimality properties φi(·, ·). It is a first-
order language formed from a family of n ternary relation symbols x ≥i

z y,
where i ∈ [1..n], along with the binary relation x ∈ X between a first-order
variable and a set variable. LO is given by the following recursive definition:
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φ ::= x ∈ X | x ≥i
z y | ¬φ | φ ∧ φ | ∃xφ,

where i ∈ [1..n].
We use the same abbreviations → and ∨ as above and further abbreviate

¬y ≥i
z x to x >i

z y, ∃x(x ∈ X ∧ φ) to ∃x ∈ Xφ, ∀x(x ∈ X → φ) to ∀x ∈ Xφ,
and write ∀xφ for ¬∃x¬φ.

By an optimality condition for player i we now mean a formula con-
taining exactly one free first-order variable and the set variable X, and in
which all the occurrences of the atomic formula x ≥j

z y are with j equal to i.
In particular, we are interested in the following optimality conditions:

• sdli(x,X) := ∀y ∈ X∃z ∈ Xx ≥i
z y,

• sd
g
i (x,X) := ∀y∃z ∈ Xx ≥i

z y,

• wdli(x,X) := ∀y ∈ X(∀z ∈ Xx ≥i
z y ∨ ∃z ∈ Xx >i

z y),

• wd
g
i (x,X) := ∀y(∀z ∈ Xx ≥i

z y ∨ ∃z ∈ Xx >i
z y),

• brli(x,X) := ∃z ∈ X∀y ∈ Xx ≥i
z y,

• br
g
i (x,X) := ∃z ∈ X∀y x ≥i

z y.

We now give a semantics for LO-formulae in the context of a model
(Ω, s1, . . . , sn) for the initial game H. An assignment is a function α that
maps each first-order variable to a state in Ω and each set variable to an
event in (a subset of) Ω. The semantics is given by a satisfaction relation
between an assignment α and a formula φ of LO, with |=α φ meaning that α
satisfies φ. This relation is defined as follows:

• |=α x ∈ X iff α(x) ∈ α(X),

• |=α x ≥i
z y iff pi(si(α(x)), s−i(α(z))) ≥ pi(si(α(y)), s−i(α(z))),

• |=α ¬φ iff not |=α φ,

• |=α φ ∧ ψ iff |=α φ and |=α ψ,

• |=α ∃xφ iff there is an ω ∈ Ω such that |=α[x7→ω] φ,
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where:

α[x 7→ ω](x0) :=

{

α(x) if x 6= x0

ω otherwise.

This semantics allows us to relate the above six optimality conditions to
the corresponding optimality properties that are concerned solely with pure
strategies.

Note 5. For each optimality condition φi, where φ ∈ {sdl, sdg, wdl, wdg, brl, brg}

|=α φi(x,X) iff the property φi(si(α(x)), Gα(X)) holds.

2

To relate optimality conditions to monotonic optimality properties we
need one more definition. We say that a formula φ of LO is positive just
when every occurrence of the set variable X occurs under a positive number
of negation signs (¬). So for example the formula brli(x,X), that is, ∃z ∈
X∀y ∈ Xx ≥i

z y, is not positive, since the second occurrence of X is under
one negation sign, while brgi (x,X), that is, ∃z ∈ X∀y x ≥i

z y, is positive.
The following observation then links syntactic matters with monotonicity.

Note 6. For every positive optimality condition φi(x,X) for player i the
corresponding property φi(si, G) (used by player i) is monotonic. 2

Among the above six optimality conditions only sdgi (x,X) and brgi (x,X)
are positive. The corresponding other four properties, as already mentioned
earlier, are not monotonic. By the above observation they cannot be defined
by positive formulae.

7 Public announcements

In this section, inspired by van Benthem [2007], we provide an alternative
characterization of the iterated elimination of strategies that for player i are
not φi-optimal, based on the concept of a public announcement.

Let us clarify first what we would like to achieve. Consider a model M
for the initial game H. The process of iterated elimination of the strategies
that are not φi-optimal, formalized by the iterated applications of the Tφ
operator, produces a sequence Tα

φ
, where α is an ordinal, of restrictions of
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H. We would like to mimic it on the side of the models, so that we get a
corresponding sequence Mα of models of these restrictions.

To make this idea work we need to define an appropriate way of reducing
models. We take care of it by letting the players repeatedly announce that
they only select φi-optimal strategies. This brings us to the notions of public
announcements and their effects on the models.

Given a model M = (Ω, s1, . . ., sn) we define

• a public announcement by player i in a model M as an event E in
M,

• given a vector E := (E1, . . ., En) of public announcements by players
1, . . ., n we let

[E](M) := (∩ni=1Ei, (si |∩
n
i=1Ei)i∈[1..n])

and call it the effect of the public announcements of E on M.

Given a property φi(·, G) that player i uses to select his strategies in the
restriction G of H and a model M := (Ω, s1, . . ., sn) for G we define [[φi]] as
the event in M that player i selects optimally his strategies with respect to
G. Formally:

[[φi]] := {ω ∈ Ω | φi(si(ω), G)}

(Note that in the notation of the previous section we have [[φ]] = I(OiT),
where T := ψ ∨ ¬ψ.) We abbreviate the vector ([[φ1]], . . ., [[φn]]) to [[φ]].

We want now to obtain the reduction of a model M of G to a model M
of Tφ(G) by means of the just defined vector [[φ]] of public announcements.

The effect of the public announcements of E on a model of G should
ideally be a model of the restriction GE. Unfortunately, this does not hold
in such generality. Indeed, let the two-player game G have the strategy
sets S1 := {U,D}, S2 := {L,R} and consider the model M for G with
Ω := {ωul, ωdr} and the functions s1 and s2 defined by

s1(ωul) = U, s2(ωul) = L, s1(ωdr) = D, s2(ωdr) = R.

This simple example is depicted in Figure 2.
Let E = ({ωul}, {ωdr}); then [E](M) = ∅, which is not a model of GE =

({U}, {R}).
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L R

U ωul
D ωdr

Figure 2: A motivating example for the use of standard models

A remedy lies in restricting one’s attention to the standard models. How-
ever, in order to find a faithful public announcement analogue to strategy
elimination we must also narrow the concept of a public announcement as
follows. A proper public announcement by player i in a standard model
is a subset of Ω = S1×. . .×Sn of the form S1×. . .×Si−1×S

′
i×Si+1×. . .×Sn.

So a proper public announcement by a player is an event that amounts to
a ‘declaration’ by the player that he will limit his attention to a subset of his
strategies, that is, will discard the remaining strategies. So when each player
makes a proper public announcement, their combined effect on the standard
model is that the set of states (or equivalently, the set of joint strategies)
becomes appropriately restricted. An example, which is crucial for us, of a
proper public announcement in a standard model is of course [[φi]].

The following note links in the desired way two notions we introduced.
It states that the effect of the proper public announcements of E on the
standard model for G is the standard model for the restriction of G to E.

Note 7. Let M be the standard model for G and E a vector of proper public
announcements by players 1, . . ., n in M. Then [E](M) is the standard model
for GE.

Proof. We only need to check that ∩ni=1Ei is the set of joint strategies of
the restriction GE. But each Ei is a proper announcement, so it is of the
form S1 × . . . × Si−1 × S ′

i × Si+1 × . . . × Sn, where G = (S1, . . ., Sn). So
∩ni=1Ei = S ′

1 × . . .× S ′
n.

Moreover, each function si(·) is a projection, soGE = (s1(E1), . . ., sn(En)) =
(S ′

1, . . ., S
′
n). 2

We also have the following observation that links the vector [[φ]] of public
announcements with the operator Tφ of Section 3.

Note 8. Let M := (Ω, s1, . . ., sn) be the standard model for G. Then

Tφ(G) = G[[φ]].
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Proof. Let G = (S1, . . ., Sn), Tφ(G) = (S ′
1, . . ., S

′
n) and G[[φ]] = (S ′′

1 , . . ., S
′′
n).

Fix i ∈ [1..n]. Then we have the following string of equivalences:

si ∈ S ′
i

iff si ∈ Si ∧ φi(si, G)
(si(·) is onto) iff si ∈ Si ∧ ∃ω ∈ Ω (si = si(ω) ∧ φi(si(ω), G))

iff si ∈ Si ∧ ∃ω ∈ [[φi]] (si = si(ω))
iff si ∈ S ′′

i .

2

Denote now by [[φ]]
∞

the iterated effect of the public announcements of
[[φ]] starting with the standard model for the initial game H. The following
conclusion then relates the iterated elimination of the strategies that for
player i are not φi-optimal to the iterated effects of the corresponding public
announcements.

Corollary 2. [[φ]]
∞

is the standard model for the restriction T∞

φ
.

Proof. By Notes 7 and 8. 2

Note that in the above corollary each effect of the public announcements
of [[φ]] is considered on a different standard model. Note also that the above
result holds for arbitrary properties φi, not necessarily monotonic ones.

We already mentioned in Section 1 that for various natural properties
φ transfinite iterations of Tφ may be needed to reach the outcome T∞

φ
. So

the same holds for the iterated effects of the corresponding public announce-
ments. It is useful to point out that, as shown in Parikh [1992] a similar
situation can arise in case of natural dialogues the aim of which is to reach
common knowledge.

This analysis gives an account of public announcements of the optimality
of players’ strategies. We now extend this analysis to public announcements
of rationality. To this end we additionally assume for each player a belief
correspondence Pi : Ω → P(Ω), that is we consider belief models.

We define then the event of player i being φi-rational in the restriction G
as

〈φi〉 := {ω ∈ Ω | φi(si(ω), GPi(ω))}.

(Note that in the notation of the previous section we have 〈φi〉 = I(rati).)
Again we abbreviate (〈φ1〉, . . . , 〈φn〉) to 〈φ〉. Note that 〈φ〉 depends on the
underlying belief model (M, s1, . . ., sn, P1, . . ., Pn) and on G.
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We extend the definition of the effect of the public announcements E :=
(E1, . . ., En) to belief models in the natural way, by restricting each possibility
correspondence to the intersection of the events in E:

[E](M, P1, . . ., Pn) = ([E]M, P1 |∩
n
i=1Ei, . . ., Pn |∩

n
i=1Ei).

This definition is in the same spirit as in Plaza [1989] and in Osborne and
Rubinstein [1994, page 72], where it is used in the analysis of the puzzle of
the hats.

We aim to find a class of belief models for which, under a mild restriction
on the properties φi, 〈φ〉

∞, the iterated effect of the public announcements
of 〈φ〉 starting with the standard belief model for the initial game H, will be
the standard belief model for T∞

φ
. We will therefore use a natural choice of

possibility correspondences, which we call the standard possibility cor-

respondences:
Pi(ω) = {ω′ ∈ Ω | si(ω) = si(ω

′)}.

By the standard knowledge model for a restriction G we now mean the
standard model forG endowed with the standard possibility correspondences.

The following observation holds.

Note 9. Consider the standard knowledge model (Ω, s1, . . ., sn, P1, . . ., Pn) for
a restriction G := (S1, . . ., Sn) of H and a state ω ∈ Ω. Then

GPi(ω) = (S1, . . ., Si−1, {ωi}, Si+1, . . ., Sn).

Proof. Immediate by the fact that in the standard knowledge model for each
possibility correspondence we have Pi(ω) = {ω′ ∈ Ω | ω′

i = ωi}. 2

Intuitively, this observation states that in each state of a standard knowl-
edge model each player knows his own choice of strategy but knows nothing
about the strategies of the other players. So standard possibility correspon-
dences represent the beliefs of each player after he has privately selected his
strategy but no information between the players has been exchanged. It
is in that sense that the standard knowledge models are natural. In van
Benthem [2007] in effect only such models are considered.

A large class of properties φi satisfy the following restriction:

A For all G := (S1, . . . , Sn) and G′ := (S ′
1, . . . , S

′
n) such that Sj = S ′

j for all
j 6= i,

φi(si, G) ↔ φi(si, G
′).
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That restriction on the properties φi is sufficient to obtain the following
analogue of Corollary 2 for the case of public announcements of rationality.

Corollary 3. Suppose that each property φ1, . . ., φn satisfies A. Then 〈φ〉∞

is the standard knowledge model for the restriction T∞

φ
.

Proof. Notice that it suffices to prove for each restriction G the following
statement for each i:

∀ω ∈ Ω φi(ωi, G) ↔ φi(ωi, GPi(ω)). (6)

Indeed, (6) entails that 〈φi〉 = [[φi]], in which case the result follows from
Corollary 2 and the observation that the possibility correspondences are re-
stricted in the appropriate way.

But (6) is a direct consequence of the assumption of A and of Note 9. 2

To see the consequences of the above result note that A holds for each
global property sd gi , msd gi , wd gi , mwd gi and (all three forms of) br gi intro-
duced in Section 3.

For each φi equal sd gi and finite games Corollary 3 boils down to Theorem
7 in van Benthem [2007]. The corresponding result for each φi equal to br gi ,
with the beliefs consisting of the joint strategies of the opponents, and finite
games is mentioned at the end of Section 5.4 of that paper.

It is interesting to recall that the properties wd gi and mwd gi , in contrast
to sd gi and msd gi and br gi , are not monotonic. So, in contrast to Theorem 1,
we have now a characterization of T∞

φ
for both forms of weak dominance.

Also it is important to note that the above Corollary does not hold for
the corresponding local properties sd li , msd li , wd li , mwd li and br li introduced
in Section 3. Indeed, for each such property φi by Note 9 φi(ωi, GPi(ω)) holds

for each state ω and restriction G. Consequently 〈φ〉 = Ω. So when each φi
is a local property listed above, 〈φ〉 is an identity operator on the standard
knowledge models, that is 〈φ〉∞ is the standard knowledge model for the
initial game H and not T∞

φ
.

Still, as the following result shows, it is possible for finite games to draw
conclusions about the outcome of the iterated elimination of strategies that
are not optimal in a local sense.

Corollary 4. Assume the initial game H is finite. Then for each φ ∈
{sd,msd,wd,mwd, br}, 〈φg〉∞ is the standard knowledge model for the re-
striction T∞

φl .
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Proof. We rely on the following results that for finite games link the out-
comes of the iterations of the corresponding local and global properties:

• (see Apt [2007b])

T∞

br l = T∞

br g ,

• (see Apt [2007c])

T∞

φl = T∞
φg for φ ∈ {sd, wd},

• (see Brandenburger, Friedenberg and Keisler [2006b])

T∞

msdl = T∞

msdg ,

• (see Brandenburger, Friedenberg and Keisler [2006a])

T∞

mwdl = T∞

mwdg .

The conclusion now follows by Corollary 3. 2

This corollary states that for finite games the outcome of, for example
the customary iterated elimination of weakly dominated strategies, T∞

wdl , can
be obtained by iterating on the standard knowledge models the effect of the
public announcements by all players of the corresponding global version of
weak dominance, wd gi . So, yet again, we see an intimate interplay between
the local and global notions of dominance.
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