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Best Response Dynamics
Consider a game G := (S1, . . ., Sn, p1, . . ., pn).

An algorithm to find a Nash equilibrium:

choose s ∈ S1 × . . . × Sn;
while s is not a NE do

choose i ∈ {1, . . ., n} such that
si is not a best response to s−i;

si := a best response to s−i

od

Trivial Example: the Battle of the Sexes game.
Start anywhere.

F B
F 2, 1 0, 0
B 0, 0 1, 2
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Best Response Dynamics, ctd

Best response dynamics may miss a Nash equilibrium.

Example (Shoham and Leyton-Brown ’09)

H T E
H 1,−1 −1, 1 −1,−1
T −1, 1 1,−1 −1,−1
E −1,−1 −1,−1 −1,−1

Here (E,E) is a unique Nash equilibrium.

Potential Games – p. 4/36



Potential Games

(Monderer and Shapley ’96)

Consider a game G := (S1, . . ., Sn, p1, . . ., pn).

A function P : S1 × . . . × Sn → R is a potential function for G if

∀i ∈ {1, . . ., n} ∀s−i ∈ S−i ∀si, s
′
i ∈ Si

pi(si, s−i) − pi(s
′
i, s−i) = P (si, s−i) − P (s′i, s−i).

Intuition: P tracks the changes in the payoff when some
player deviates.

Potential game: a game that has a potential function.
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Example
Prisoner’s dilemma for n players.

pi(s) :=

{

2
∑

j 6=i sj + 1 if si = 0

2
∑

j 6=i sj if si = 1

For i = 1, 2

pi(0, s−i) − pi(1, s−i) = 1.

So P (s) := −
∑n

j=1 sj is a potential function.
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Another Example
The Battle of the Sexes

F B
F 2, 1 0, 0
B 0, 0 1, 2

Each potential function P has to satisfy

P (F, F ) − P (B,F ) = 2,

P (F, F ) − P (F,B) = 1,

P (B,B) − P (F,B) = 1,

P (B,B) − P (B,F ) = 2.

Just use: P (F, F ) = P (B,B) = 2, P (F,B) = 1, P (B,F ) = 0.

Non-example:

Matching Pennies See the next slide.
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Potential Games, ctd
Theorem (Monderer and Shapley ’96)
Every finite potential game has a Nash equilibrium.

Proof 1.

The games (S1, . . ., Sn, p1, . . ., pn) and (S1, . . ., Sn, P, . . ., P )
have the same set of Nash equilibria.

Take s for which P reaches maximum. Then s is a Nash
equilibrium of (S1, . . ., Sn, P, . . ., P ).

Proof 2.
For finite potential games the best response dynamics
terminates.
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Congestion Games
n > 1 players,

set M of facilities (road segments, primary production
factors, . . .),

each strategy is a non-empty subset of M ,

each player has a possibly different set of strategies,

costj : {1, . . ., n}→ R is the cost function for using j ∈ M ,

costj(k) is the cost to each user of facility j when there are k

users of j,

users(r, s) = |{i ∈ {1, . . ., n} | r ∈ si}| is the number of users
of facility r in s,

ci(s) :=
∑

r∈si
costr(users(r, s)),

We use here cost functions ci instead of payoff functions pi.
To convert to payoffs use pi(s) := −ci(s).

Potential Games – p. 9/36



Example
5 drivers.

Each driver chooses a road from Katowice to Gliwice.

More drivers choose the same road: bigger delays.

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE
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Example as a Congestion Game
5 players,

3 facilities (roads),

each strategy: (a singleton set consisting of) a road,

cost function:

ci(s) :=







































1 if si = 1 and |{j | sj = 1}| = 1

2 if si = 1 and |{j | sj = 1}| = 2

3 if si = 1 and |{j | sj = 1}| ≥ 3

1 if si = 2 and |{j | sj = 2}| = 1

. . .

6 if si = 3 and |{j | sj = 3}| ≥ 3
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Possible evolution (1)

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE
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Possible evolution (2)

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE
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Possible evolution (3)

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE
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Possible evolution (4)

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE

So we reached a Nash equilibrium using the best response
dynamics.

Potential Games – p. 15/36



Congestion Games, ctd

Theorem (Rosenthal, ’73)
Every congestion game is a potential game.

Proof.
Given a joint strategy s we define ∪s := ∪n

i=1si.

P (s) :=
∑

r∈∪s

users(r,s)
∑

k=1

costr(k),

where (recall)

users(r, s) = |{i ∈ {1, . . ., n} | r ∈ si}|

is a potential function.

Conclusion Every congestion game has a Nash equilibrium.
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Another Example
Assumptions:

4000 drivers drive from A to B.

Each driver has 2 possibilities (strategies).

T/100

T/100

45

 U

R

B

45

A

Problem: Find a Nash equilibrium (T = number of drivers).
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Nash Equilibrium

T/100

T/100

45

 U

R

B

45

A

Answer: 2000/2000.

Travel time: 2000/100 + 45 = 45 + 2000/100 = 65.
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Braess Paradox
Add a fast road from U to R.

Each drives has now 3 possibilities (strategies):
A - U - B,
A - R - B,
A - U - R - B.

T/100

T/100

45

 U

R

B

45

A 0

Problem: Find a Nash equilibrium.
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Nash Equilibrium

T/100

T/100

45

 U

R

B

45

A 0

Answer: Each driver will choose the road A - U - R - B.

Why?: The road A - U - R - B is always a best response.
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Small Complication

T/100

T/100

45

 U

R

B

45

A 0

Travel time: 4000/100 + 4000/100 = 80!

Potential Games – p. 21/36



Does it Happen?
From Wikipedia (‘Braess Paradox’):

In Seoul, South Korea, a speeding-up in traffic around the
city was seen when a motorway was removed as part of the
Cheonggyecheon restoration project.

In Stuttgart, Germany after investments into the road
network in 1969, the traffic situation did not improve until a
section of newly-built road was closed for traffic again.

In 1990 the closing of 42nd street in New York City reduced
the amount of congestion in the area.

In 2008 Youn, Gastner and Jeong demonstrated specific
routes in Boston, New York City and London where this
might actually occur and pointed out roads that could be
closed to reduce predicted travel times.
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Price of Stability

Definition

PoS: social welfare of the best Nash equilibrium
social welfare of the social optimum

Question: What is PoS for congestion games?
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Example

B

x

n

A

n - even number of players.
x - number of drivers on the lower road.

Two Nash equilibria
1/(n − 1), with social welfare n + (n − 1)2.
0/n, with social welfare n2.

Social optimum
Take f(x) = x · x + (n − x) · n = x2 − n · x + n2.
We want to find the minima of f .
f ′(x) = 2x − n, so f ′(x) = 0 if x = n

2 .
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Example

B

x

n

A

Best Nash equilibrium
1/(n − 1), with the social welfare n + (n − 1)2.

Social optimum
f(x) = x2 − n · x + n2.
Social optimum = f(n

2 ) = 3
4n2.

PoS = (n+(n−1)2)
3

4
n2

= 4
3

n+(n−1)2

n2 .

limn→∞ PoS = 4
3 .
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Price of Stability

Theorem (Roughgarden and Tárdos, 2002)
Assume the delay functions (for example T/100) are linear.
Then PoS for the congestion games is ≤ 4

3 .

A good Nash equilibrium can be reached using the best
response dynamics.

Unfortunately: it can take exponentially long before the
equilibrium is reached.

Open problem: what is the PoS for arbitrary congestion
games?
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Fair Cost Sharing Games
Example

2 drivers.

Each driver chooses a route from BEGIN to his depot.

More drivers choose the same road segment ⇒
the costs are shared.

BEGIN

DEPOT1 DEPOT2

4
5

8

11
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Possible evolution (1)

BEGIN

DEPOT1 DEPOT2

4
5

8

11
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Possible evolution (2)

BEGIN

DEPOT1 DEPOT2

4
5

8

11
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Possible evolution (3)

BEGIN

DEPOT1 DEPOT2

4
5

8

11

A Nash equilibrium has been reached.
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Nash equilibria are not unique

Example

BEGIN

DEPOT

2 3
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Social Optimum

Example

BEGIN

DEPOT1 DEPOT2

11

3 5
5

Unique Nash equilibrium, with the total cost 8.

Total cost in social optimum: 7.
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General Case
Assume a finite, non-empty set of resources R.
Each resource r ∈ R has a fixed, strictly positive cost costr.

A strategy is a non-empty set of resources.
Each player i has a set of strategies Si, so a set of subsets of
R.

Example: A strategy for player i:
a path from BEGIN to DEPOTi.

Recall
users(r, s) = |{i ∈ {1, . . ., n} | r ∈ si}|
is the number of users of resource r in s,

We define

ci(s) :=
∑

r∈si

costr/users(r, s).
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Fair Cost Sharing Games (2)

Given a joint strategy s we define ∪s := ∪n
i=1si.

∪s is the set of resources used in s.

Note: Social optimum is a joint strategy s for which
∑

r∈∪s costr is minimal.
Proof.
∑n

i=1 ci(s) =
∑

r∈∪s costr.
That is, the social cost of s is the aggregate cost of the
resources used in s.

Theorem
Every fair cost sharing game is a potential game.
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Price of Stability (1)
Harmonic numbers

H(n) = 1 + 1/2 + . . . + 1/n.

Theorem (Oresme, around 1350)

lim
n → ∞

H(n) = ∞.

Proof

1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + . . .

= 1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + . . .

> 1 + 1/2 + (1/4 + 1/4) + (1/8 + 1/8 + 1/8 + 1/8) + . . .

= 1 + 1/2 + 1/2 + 1/2 + . . .
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Price of Stability (2)

Theorem (Anshelevich et al, 2004)
The PoS for the fair cost sharing games for n players is ≤ H(n).
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