Constrained Mixture Estimation for Analysis and Robust Classification of Clinical Time Series

Alexander Schönhuth

(joint work with Ivan Costa, Christoph Hafemeister and Alexander Schliep)

Lab for Mathematical and Computational Biology
Department of Mathematics
UC Berkeley
Multiple Sclerosis (MS)

- Autoimmune disease
 - leads to neuronal disability
 - multiple genetic causes
 - Prevalence: 266,000 (U.S.)

- Treatment with IFNβ
 - stops disease progression
 - works only for half of the patients
Personalized Medicine

- Treatment selection according to patient genetics
- Machine learning methods to classify response to treatments
- Challenges:
 - dimensionality: more features (genes) than observations (patients)
 - gene expression: noise and missing data
 - patient classification: subjective and error prone
Treatment Response Classification

- **Clinical Time Series** (Baranzini et al., 2005)
 - 52 MS Patients after IFNβ treatment
 - Good and bad responders
 - Expression of 70 genes over 7 time points

- **Classification method (IBIS)**
 - uses only first time point
 - 75% accuracy

Caveats

- Temporal information relevant
 - patients have individual response time (Lin et. al 2008)
- MS has multiple genetic causes
 - response groups may display heterogeneous expression patterns
- Expert classification can be wrong

Our Approach

- Mixture Model based classification
 - Mixture Estimation with constraints (semi-supervised)
 - explore **sub-groups** within classes
 - robustness to **wrong labels**
- Models: linear HMMs
 - align time courses with respect to patient **response time**
 - support **missing value handling** and robust w.r.t. **noise**
Our Approach

- Mixture Model based classification
 - Mixture Estimation with constraints (semi-supervised)
 - explore sub-groups within classes
 - robustness to wrong labels
- Models: linear HMMs
 - align time courses with respect to patient response time
 - support missing value handling and robust w.r.t. noise
Patient Response Classification

Gene 1

Gene 2

- good responder
- bad responder
- unknown
Patient Response Classification

Gene 1

Gene 2

- **good responder**
- **bad responder**
- **unknown**
Patient Response Classification

Gene 1

Gene 2

- **good responder**
- **bad responder**
- **unknown**
Mixture Estimation with Constraints
Mixture Estimation with Constraints
Mixture Estimation with Constraints

negative constraints
Mixture Estimation with Constraints

- Negative constraints
Mixture Estimation with Constraints
Mixture Estimation with Constraints

negative constraints
Our Approach

- Mixture Model based classification
 - Mixture Estimation with constraints (semi-supervised)
 - explore **sub-groups** within classes
 - robustness to **wrong labels**
- Models: linear HMMs
 - align time courses with respect to patient **response time**
 - mixtures as emissions: support **missing value handling** and robust w.r.t. **noise**
Our Approach

• Mixture Model based classification
 – Mixture Estimation with constraints (semi-supervised)
 • explore sub-groups within classes
 • robustness to wrong labels
• Models: linear HMMs
 – align time courses with respect to patient response time
 – mixtures as emissions: support missing value handling and robust w.r.t. noise
Robustness to Wrong Labels

- good responder
- bad responder
- unknown
Robustness to Wrong Labels

Potentially mislabelled
Robustness to Wrong Labels

Potentially mislabelled

“misclassified“
Experiments

• Comparison with
 – IBIS (Baranzini et al., 2005)
 – SVM Kalman (Borgwardt, et al., 2006)
 – HMM Discriminant Learning (Lin et al. 2008)

• Experiments
 – 5 times 4-fold cross validation
 – linear HMM with 4 states
 – feature selection and number of sub-classes
 • based on training error

Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Genes</th>
<th>Test Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBIS</td>
<td>3</td>
<td>75.00%</td>
</tr>
<tr>
<td>HMM Disc</td>
<td>7</td>
<td>85.00%</td>
</tr>
<tr>
<td>SVM Kal.</td>
<td>70</td>
<td>87.80%</td>
</tr>
<tr>
<td>HMM Const 2.</td>
<td>17</td>
<td>89.62%*</td>
</tr>
<tr>
<td>HMM Const 3.</td>
<td>17</td>
<td>90.39%*</td>
</tr>
</tbody>
</table>

Significantly higher than other methods (paired t-test)
Results - Consensus Analysis

All 5 x 4-fold classifications – HMM Const. 3

Results - Consensus Analysis

All 5 x 4-fold classifications – HMM Const. 3

Results - Consensus Analysis

All 5 x 4-fold classifications – HMM Const. 3

Results – Selected Genes

- Caspase 10
- Tyk2
- Caspase 3
- MAP3K1
- BAX
- STAT4
- IRF4
- Jak2
- IFN-γRb
- IRF8
- IL-4Ra
- Caspase 2
- IRF5
- IRF2
- Caspase 5
- IL-2Rg
- IFNαR2

Legend:
- Red: bad responders
- Blue: good responders 1
- Cyan: good responders 2
Results – Selected Genes

- Caspase 10
- Tyk2
- STAT4
- IRF4
- IL-4Ra
- Caspase 2
- IL-2Rg
- IFNaR2
- MAP3K1
- Jak2
- IFN-gRb
- IRF8
- IRF5
- IRF2
- Caspase 3
- Caspase 5

Legend:
- red: bad responders
- blue: good responders 1
- cyan: good responders 2
Results – Selected Genes

- Caspase 10
- Tyk2
- Caspase 3
- MAP3K1
- BAX
- STAT4
- IRF4
- Jak2
- IFN-γRb
- IRF8
- IL-4Ra
- Caspase 2
- IRF5
- IRF2
- Caspase 5
- IL-2Rg
- IFNR2

Legend:
- Red: bad responders
- Blue: good responders 1
- Green: good responders 2
Results – Selected Genes
Results – Selected Genes

- Caspase 10
- Tyk2
- Caspase 3
- MAP3K1
- BAX
- STAT4
- IRF4
- Jak2
- IFN-γRb
- IRF8
- IL-4Ra
- Caspase 2
- IRF5
- IRF2
- Caspase 5
- IL-2Rγ
- IFNαR2

Legend:
- Red: bad responders
- Blue: good responders 1
- Cyan: good responders 2
Results – Selected Genes

- Caspase 10
- Tyk2
- Caspase 3
- MAP3K1
- BAX
- STAT4
- IRF4
- Jak2
- IFN-gRb
- IRF8
- IL-4ra
- Caspase 2
- IRF5
- IRF2
- Caspase 5
- IL-2Rg
- IFNAR2

Legend:
- Red: bad responders
- Blue: good responders 1
- Cyan: good responders 2
Results – Selected Genes

- Caspase 10
- Tyk2
- Caspase 3
- MAP3K1
- BAX
- STAT4
- IRF4
- Jak2
- IFN-γRb
- IRF8
- IL-4Ra
- Caspase 2
- IRF5
- IRF2
- Caspase 5
- IL-2Rg
- IFNαR2

Lines represent:
- red: bad responders
- blue: good responders 1
- cyan: good responders 2
Conclusion

- Increase in classification accuracy
 - robustness to mislabeled patients
 - detection of sub-classes

- MS Treatment Classification
 - mislabeled sample was confirmed
 - sub-classes of good responders can have clinical implications
 - selected relevant MS genes as features
Acknowledgements

- **Benjamin Georgi**
 Max Planck Institute for Molecular Genetics

- **Katrin Höfl, Peter van den Elzen**
 Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver

- **Sergio Baranzini**
 Department of Neurology, UCSF

Software:
- GHMM – www.ghmm.org
- PyMix - algorithmics.molgen.mpg.de
- GQL – www.ghmm.org/gql (soon)

Funding:
- PIMS Fellowship
- CAPES (Prodoc Fellowship)
- FACEPE