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Abstract
Many service providers require permissions to access privacy-sensitive data that are not 
necessary for their core functionality. To support users’ privacy management, we pro-
pose a novel agent-based negotiation framework to negotiate privacy permissions between 
users and service providers using a new multi-issue alternating-offer protocol based on 
exchanges of partial and complete offers. Additionally, we introduce a novel approach to 
learning users’ preferences in negotiation and present two variants of this approach: one 
variant personalised to each individual user, and one personalised depending on the user’s 
privacy type. To evaluate them, we perform a user study with participants, using an experi-
mental tool installed on the participants’ mobile devices. We compare the take-it-or-leave-
it approach, in which users are required to accept all permissions requested by a service, 
to negotiation, which respects their preferences. Our results show that users share personal 
data 2.5 times more often when they are able to negotiate while maintaining the same level 
of decision regret. Moreover, negotiation can be less mentally demanding than the take-
it-or-leave-it approach and it allows users to align their privacy choices with their prefer-
ences. Finally, our findings provide insight into users’ data sharing strategies to guide the 
future of automated and negotiable privacy management mechanisms.
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1  Introduction

With the advancement of digital economy, our personal data has become the ‘new oil of the 
Internet’ [104]. From gaming apps to social media platforms, many popular online services 
are indirectly funded through the collection of personal data which use it as a currency: 
users share the data in return for access to the service. Service providers then monetise 
the information through personalised advertising, use it to improve the service or some-
times sell to third parties. Typically, those services rely on privacy mechanisms that allow 
the user to manually grant them access to the data. For instance, mobile operating sys-
tems such as iOS and Android allow service providers to ask for permission to access the 
user’s resources via a dialog box. Similarly, websites embed cookie banners which inform 
the user of online tracking and ask them to accept or reject such tracking. Other examples 
include authentication mechanisms such as Facebook Login1 which allows apps to ask for 
permissions to access users’ Facebook data.

However, at the other end of this data exchange, there is an individual user who receives 
an unwieldy number of data sharing requests. As the number of services asking for per-
sonal data grows, there is an increasing risk that more and more users may start experienc-
ing the so-called consent transaction overload, i.e. a situation when there are too many 
data sharing requests for an individual to consider [21, 103]. Consequently, the increasing 
difficulty on the user’s side in managing their personal data leads to them feeling a loss of 
control and a sense of ‘weariness’ towards privacy issues, in which users believe that there 
is no effective means of managing their personal data [27]. As a result, excessive data shar-
ing requests lead to consent fatigue [103] which reflects users’ tendency to simply accept 
a request without reading it [27]. When users start accepting data sharing requests without 
thinking whether they aligns with their privacy preferences or not, they are no longer able 
to control their personal data manually. For this reason, we believe that there is a need for 
automation in the area of privacy management.

Furthermore, service providers have an unfair advantage over users. This is not only 
because users almost always grant access to their personal data when it is required by the 
service provider [22], but also because they may be unaware of the data collection. In fact, 
recent research shows that even European websites, where the most demanding privacy 
regulations apply [69], tend to collect visitor’s personal data without consent, collect the 
data even when the user has explicitly opted out, or nudge users towards sharing by pre-
selecting options [74, 102]. This allows service providers to take advantage of users which 
does not result in fair agreements between the two parties. However, as users are becoming 
more aware of the ultimate value of their data and potential consequences of disclosure, a 
new trend is emerging to compensate users directly for the loss of privacy they may suffer 
as a result of this exchange [104]. More and more often, users can choose to pay to opt out 
of advertising on an app that is usually free, or to share their data in return for an incentive. 
For instance, startups such as Gener8 Ads2 and BitsaboutMe3 allow users to exchange their 
personal data for gifts, discounts, charity donations and monetary rewards. In fact, Perera 
et  al. proposed the idea of personal data marketplaces empowered by agent negotiations 
where consent of data owners is exchanged in an efficient and effective manner [88, 89].

1  Facebook Login, https://​devel​opers.​faceb​ook.​com/​docs/​faceb​ook-​login/.
2  Gener8 Ads, https://​gener​8ads.​com/.
3  BitsaboutMe, https://​bitsa​bout.​me/​en/.

https://developers.facebook.com/docs/facebook-login/
https://gener8ads.com/
https://bitsabout.me/en/
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Yet, ensuring that users are compensated fairly for the privacy loss is a non-trivial prob-
lem, because the users’ views of fairness are subjective within the context of privacy [20, 
121]. To address this problem, Krol and Preibusch envisioned effortless privacy negotia-
tions which provide the opportunity to reach individual agreements about personal data 
collection between users with heterogeneous privacy preferences and service providers 
[62]. In their article, they posed the question of how such negotiations could be imple-
mented, highlighting that making such them ‘effortless’ is challenging and ‘might not be 
achievable’ at all [62]. Although privacy issues have received a lot of attention from the 
multi-agent systems community [108], to date the opportunity of providing an effective 
solution to enable privacy negotiations between the user and the service provider has not 
been well-explored. There have been very few studies which propose automated negotia-
tion solutions in the privacy domain, and none of these have been evaluated with real users 
using their real data. A major challenge in the implementation of such negotiations is the 
uncertainty around the user’s individual privacy preferences.

Therefore, we address this gap by proposing a novel agent-based approach for privacy 
negotiations and by testing this approach with human participants using their actual private 
data. In general, agent-based negotiation can offer a lot of benefits: win-win outcomes for 
all parties, reduction in negotiation duration and reduced users’ effort [5]. In this paper, we 
argue that privacy negotiations can be automated effectively using autonomous agents that 
represent users and service providers. In particular, our goal is to automate this negotiation 
on behalf of a user to reduce the number of data sharing requests that the user needs to 
process manually. As such, we specifically focus on the problem of the agent’s uncertainty 
about the privacy preferences of the user it represents.

Specifically, we introduce a novel framework for automated negotiation with preference 
uncertainty, i.e where the agent needs to learn the user’s preferences. As part of the frame-
work, we propose a new alternating offers multi-issue negotiation protocol with costly 
quoting, in which one agent can propose partial offers by specifying values for some issues, 
and the other agent completes those offers. We argue that this framework: 1) is more suit-
able for this negotiation domain than the original alternating offers protocol, 2) allows for 
more collaborative exploration of the negotiation space to find mutually beneficial agree-
ments, and 3) avoids distributive negotiation on single issues. Using this protocol, the agent 
employs its strategy to negotiate autonomously on the user’s behalf. In a subsequent phase, 
the agent presents a potential agreement to the user, which the user can accept, or manually 
override and continue the negotiation in order to further improve the offer. Importantly, 
this framework generalises to other domains where the negotiation takes place between an 
individual and a service provider.

Additionally, to address the uncertainty about the user’s preferences, we introduce a 
novel approach to implicit preference elicitation [58]. Specifically, the agent representing 
the interests of the user needs to learn the user’s preferences in order to accurately repre-
sent them. Instead of asking directly, the agent can implicitly derive the user’s preferences 
in the form of a utility function from feedback received from the user either by accepting 
or manually overriding offers. Once the user’s utility function is established, in subsequent 
negotiations, it is used to generate optimal offers – that is, offers that maximise the user’s 
utility and are likely to be accepted by the service provider. We propose two different vari-
ants of this approach. In the first variant (Agent 1), the utility function is personalised for 
each user based on their previous decisions (accepted or rejected offers). For the second 
variant (Agent 2), the agent classifies a user as being one of a three different privacy types, 
which is initially determined based on their Westin’s Privacy Segmentation Index [40, 64] 
and later adjusted based on their sharing behaviour.
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Finally, we perform the first empirical study of agent-based privacy negotiation4. We 
investigate how it impacts users’ personal data sharing decisions (i.e. do the users allow 
access to their private data more or less when an agent negotiates on their behalf?) and 
on the regret of those decisions (i.e. do the users regret granting the access more or less 
when an agent negotiates on their behalf?), and how these decisions relate to the users’ 
self-reported data sharing sensitivity scores (i.e. are the permission-granting decisions 
consistent with users’ privacy concerns and data sharing preferences?). We also evaluate 
the approaches in terms of the accuracy of the offers and the users’ effort. In general, the 
results from our lab study show that Agent 2 is more accurate than both Agent 1 and a con-
dition with randomly-chosen default settings. However, over the time of eight negotiation 
rounds, we can observe a rising trend of the accuracy of Agent 1, which in the end, exceeds 
the accuracy of Agent 2. Moreover, we observe that users grant permissions significantly 
more often (on average, over 2.5 times more often) when they are able to negotiate their 
permission settings, while the percentage of the regretted permission-granting decisions 
remains the same. The results also suggest that agent-supported negotiation might be less 
mentally demanding compared to setting the permissions manually and, at the same time, 
it better enables users to align their privacy choices with their actual preferences. Our find-
ings provide insight into data sharing strategies adopted by our participants to guide the 
future design of automated and negotiable privacy management mechanisms.

The remainder of the paper is structured as follows. We first review related work in 
Sect. 2. In Sect. 3, we propose the negotiation framework with a novel protocol for bilateral 
multi-issue negotiation. Then, Sect. 4 we demonstrate how the general framework can be 
implemented to develop an agent that represents the an individual. After that, in Sect. 5, we 
apply the framework and its proposed implementation to the privacy permission negotia-
tion domain. Next, Sect. 6 describes the apparatus, methodology and results of the experi-
mental evaluation. Furthermore, we discuss the implications of our results for future design 
choices for privacy management and automated negotiation in Sect. 7. Finally, Sect. 8 con-
cludes with key contributions and a future direction for this work.

2 � Related work

In this section, we expand the previous discussion by examining the existing literature 
related to automated privacy negotiations. Specifically, we start with a brief overview of 
the key papers in the vast area of privacy management. Then, we provide a brief overview 
of the literature in automated negotiation. Following this, we discuss more specific work 
that has looked at automated negotiation in the context of privacy. Lastly, we briefly sum-
marize the recent developments in learning users’ privacy preferences and preference elici-
tation methods used in automated negotiation.

2.1 � Privacy management

Manifested in various legal frameworks around the world, data protection law provides 
online users with a set of rights to enable them to control their personal data. As advance-
ments in computing made it much easier to collect, store, assemble, correlate, and use 

4  The initial study results were published in: [6].
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information, there has been an emergence of initiatives and tools whose aim is to aid users 
in managing their privacy. Early efforts include the Platform for Privacy Preferences (P3P) 
project developed by the World Wide Web Consortium (W3C), which aimed to enable 
machine-readable privacy policies [29]. With P3P, such privacy policies could be automat-
ically retrieved by Web browsers that could prompt users or take other appropriate actions. 
Some of the P3P user agents were also able to compare each policy against the user’s pri-
vacy preferences and assist the user in deciding when to allow sharing their personal data 
with websites [29]. However, the binary nature of the choice offered to the users has been 
concerning. In practice, users could either accept service providers’ unlimited use of their 
personal data or give up using the service [83, 103, 110]. This failure to offer the user any 
real choices has been described as the take-it-or-leave-it approach to privacy [12, 90].

To address this problem, many fine-grained solutions have been proposed for users to 
communicate their privacy preferences to the service provider (e.g. [2, 15, 16, 31, 42, 49, 
75, 80, 85, 119]). In fact, there is evidence that when given a choice, users prefer to exer-
cise fine-grained control and select the data they are happy to share, rather than refuse to 
share any data at all. Specifically, in one study, participants were able to choose the option 
of erasing their personal data from all optional form fields, which would save them a lot of 
time [63]. Regardless, most of them preferred to go from question to question and decide 
whether to share each data item, even though it required more effort on their side. While 
the reasons behind these choices varied (e.g. some participants simply enjoyed disclosing 
the information), some participants did so hoping for some benefit in return. Moreover, 
another study provides evidence that optional disclosure delivers a ‘good data return’ for 
service providers [93]. This result suggests that as the society becomes more privacy-
knowledgeable, fine-grained data sharing options may not be just preferable by users, but 
also beneficial to service providers.

However, as data is becoming a valuable resource for service providers, experts sug-
gest that users should be compensated for providing access to their personal data [104]. 
While users differ in what they consider fair use of their data, overstepping their indi-
vidual boundaries risks violating their trust, which may have implications for the service 
provider’s brand [104]. Thus, in this paper, we explore questions about the viability of an 
exchange between user and service that goes beyond communicating fine-grained privacy 
preferences: we investigate the use of automated negotiation as a sustainable, win-win 
solution that supports a meaningful dialog between the user and the service provider.

2.2 � Automated negotiation

Negotiation is about a joint exploration of outcomes in search for mutual gains. In doing 
so, the ultimate goal of negotiation is to resolve the conflict of interest present among dif-
ferent parties. Since negotiation covers so many aspects of people’s lives this has led to an 
increasing focus on the design of automated negotiators, i.e., autonomous agents capable of 
negotiating with other agents in a specific environment [48, 61].

There is a significant body of literature that deals with automated negotiation. This 
interest has been growing since the beginning of the 1980s with the work of early adop-
ters such as Smith’s Contract Net Protocol [105], Sycara’s persuader [111, 112], Robin-
son’s oz [95], as well as the work by Rosenschein [96] and Klein & Lu [57]. Broadly, there 
are two approaches: those using protocols based on the alternating offers approach where 
only offers are exchanged, and argumentation-based approaches where additional informa-
tion is conveyed in an attempt to convince their counter part [52]. In the former the agent 
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preferences are typically modelled using utility theory and techniques such as game theory 
and decision theory are applied, whereas the latter is mostly based on logical inference. 
Our approach in this paper is based on alternating offers.

Specifically, the alternating offers protocol [86, 99] is the best-known and most widely 
studied model for bargaining [35]. Following this protocol, offers are exchanged between 
two agents over a sequence of rounds. When one agent (the proposer) submits an offer, 
the other one (the responder) can either accept it or reject it. If the offer is rejected, the 
responder proposes an alternative offer, which the proposer can accept or reject. The nego-
tiation continues until one of the following conditions is satisfied: an offer is accepted, a 
deadline is reached or one of the parties terminates the negotiation. While there also exist 
other negotiation protocols such as the monotonic concession protocol [97], one of the 
main advantages of following this approach is that an abundance of agents have already 
been formulated for the alternating offers protocol, e.g. [4, 8, 25, 37, 39, 44, 53, 61, 122], 
which could be easily adapted to our model.

More specifically, the protocol we propose in this paper is based on the multi-issue 
bilateral alternating-offers protocol where two agents negotiate offers with regard to not 
just a single item or a single bundle of items, but on many issues. In general, there are two 
approaches to such negotiations: one way is to negotiate all the issues together and the 
other is to negotiate them one by one (issue-by-issue) [36]. As users’ privacy preferences 
are influenced by the context [82, 83], in our work, we negotiate all the issues together.

2.3 � Negotiation in the context of privacy

To date, various techniques have been used to automate privacy negotiations, including 
rule-based reasoning [106], game theory [125, 126], question-answer-based profiling [43] 
and learning through historical negotiations [51]. Ontologies have also been also com-
monly used to model privacy requirements [46, 47, 59, 106] and to measure the privacy 
sensitivity of different pieces of data based on relationships to each other [46].

In general, privacy negotiations can be divided into horizontal, where users negotiate 
among each other, and vertical, where the negotiation is conducted between a user and a 
service provider [62]. In the context of horizontal privacy, automated negotiations were 
proposed to resolve privacy conflicts among users. For example, to avoid privacy viola-
tions among users posting on social networks, automated negotiation frameworks and pro-
tocols were developed to help users manage the semantic rules of their privacy agreements 
with others [76]. Furthermore, a personal assistant was developed to help end-users with 
managing the privacy of their content by employing an auction-based mechanism [117]. 
Another work compared automated negotiation to users’ behaviour in privacy conflict situ-
ations, proving that negotiation can help to reduce the amount of manual user interventions 
to achieve a satisfactory solution for social media users involved in multi-party privacy 
conflicts [107, 109]. In addition, an argumentation approach was proposed for user agents 
to argue with each other on the privacy rules by generating facts and assumptions from 
their ontologies [55, 59, 60].

For vertical privacy, several studies based their approach on P3P. Although P3P itself 
lacks a negotiation mechanism, researchers utilised P3P enhancements to enable privacy 
policy negotiations between the user and the service provider [14, 26, 51, 71, 72, 92]. 
For example [26] proposed a model for automatic privacy policy conflict detection and 
resolution, using the eXtensible Access Control Markup Language (XACML) as a policy 
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description language; [92] extended P3P with a negotiation process modelled as a Bayesian 
game where the service provider faces users of different privacy types.

Closest to our work, [126] proposed an intelligent agent-based system to quantify and 
measure privacy payoff through private data valuation and privacy risks quantification. 
Their system includes five different agents, including one responsible for negotiation with 
the service provider. However, the agent works on behalf of a list of users whose privacy 
preferences need to be exactly specified by the users themselves prior to the negotiation. 
However, expecting users to spend the time to fully configure their privacy preference set-
tings has been shown to be unrealistic and difficult even for willing users [100]. There-
fore, this approach is not suitable for our requirement of utilising automated negotiation to 
reduce the users’ effort. Instead, we propose a preference elicitation method for the agent to 
learn the user’s privacy preferences automatically.

2.4 � Privacy preference elicitation

An important part of our work is modelling and learning the user’s privacy preferences. 
A number of studies have looked at these issues. In particular, early work has focused on 
modelling users’ location sharing preferences [13, 30, 94, 100]. For instance, personas and 
incremental suggestions were used to learn users’ location privacy rules, resulting in users 
sharing significantly more without a substantial difference in comfort [56, 79, 123]. How-
ever, as users have different sensitivity to different types of personal data and their willing-
ness to provide information varies depending on the perceived risk of sharing the particular 
information [77], location sharing preferences do not easily translate to other types of per-
sonal data. Thus, a more general approach is needed.

To understand users’ privacy preferences for other types of data, researchers surveyed 
users’ expectations and subjective feelings about different kinds of sensitive data, and iden-
tified key factors that influence them [67]. Then, clustering techniques were used to define 
a set of privacy profiles based on users’ self-reported privacy preferences [68, 70]. How-
ever, privacy profiles do not take individual user differences into account. To address this 
issue, in our study, we compare the profile-based approach to one where the prediction 
outcomes are based on the behaviour of an individual user.

In general, while research has focused on opponent preference modelling, costly user 
preference elicitation in automated negotiation has received little attention  [7, 18]. The 
work by Chajewska et al. [23, 24] provides one of the first starting points to this problem, 
but their solution method often deals with computationally intractable decision procedures. 
Costly preference elicitation has also been studied in the setting of auctions; notably by 
Conen and Sandholm  [28] and Parkes  [87]. These works are primarily aimed at design-
ing mechanisms that can avoid unnecessary elicitation. Costly preference elicitation may 
alternatively be cast as a problem in which agents have to allocate costly resources to com-
pute their valuation  [65], but this type of work focuses on interactions between different 
strategies.

A large family of strategies proposed for user preference modelling are the UTA meth-
ods (UTilités Additives) which obtain a ranked set of outcomes as input and formulate a 
linear utility function through the use of linear programming [38, 45, 98, 118]. CP-nets, 
which provide a qualitative representation of preferences that reflects conditional depend-
ence [19], were also studied in the automated negotiation context [7, 78]. Furthermore, 
Tsimpoukis et al. proposed a decision model that uses linear optimization to translate par-
tial information into utility estimates based on a set of ranked outcomes [116]. However, 
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as we explain later in Sect. 4.2, when the input data stems from (possibly erroneous) infor-
mation from human interaction, the problem quickly becomes over-constrained and linear 
constraint solvers can no longer be applied. Instead, in this paper, we propose a prefer-
ence elicitation method based on approximation techniques studied by Popescu [91] to find 
the most preferable outcomes. Another related area is discrete choice modelling [73, 114]. 
Similar to our approach, the aim is to estimate a utility function based on limited pair-wise 
comparisons of alternatives. However, while we assume a deterministic utility function, the 
discrete choice approach assumes unobserved variables which are modelled as probabilis-
tic noise, and the solution is found through logistic regression. In addition, it assumes deci-
sion makers are rational, i.e. the choices are consistent (e.g., if A is preferred to B, and B is 
preferred to C then C cannot be preferred to A). In contrast, our approach also works with 
irrational choices. An empirical comparison of the approaches would be interesting but is 
beyond the scope of this paper and left for future work.

Specifically, we build upon previous work on a user agent for an automated negotia-
tion of privacy permissions [6]. To this end, the agent was able to model the permission 
preferences of different user profiles and apply the right model when it represented a user 
assigned to one of these profiles. Conversely, in this paper, we propose a new user prefer-
ence elicitation method, personalised to the needs of an individual user. To compare the 
two approaches, we present results of a new user study and re-analyse the data collected 
during the study published in [6].

3 � Negotiation framework

In this paper, we propose a negotiation framework with a novel protocol that we refer to as 
the partial-complete offer protocol, which is a variant of the multi-issue alternating-offers 
protocol. In this section, we first motivate the development of this framework. Then, the 
negotiation setting is introduced. After that, we describe the partial-complete offer proto-
col, where two parties propose offers consisting of values of the negotiable issues. Finally, 
we explain the optimisation problem that needs to be solved in order for the negotiation to 
conclude.

3.1 � Motivation

In the classic multi-issue alternating offer protocol, offers are exchanged between two par-
ties that specify values for each of the negotiable issues. As detailed in Sect. 2.2, the pro-
poser submits a fully specified offer, which the responder can either accept or reject. If the 
offer is rejected, the responder proposes an alternative offer, which the proposer can accept 
or reject, and the negotiation continues until an offer is accepted, a deadline is reached or 
one of the parties terminates the negotiation.

However, in practice, parties typically have asymmetric roles such as buyer and seller. 
Often, a party can find it difficult to determine the value of some issues, which are more 
naturally determined by the counter party. For example, when negotiating a software devel-
opment contract with negotiable issues such as the functionality requirements, mainte-
nance level, hardware infrastructure and delivery timeframe, it is more natural for the cus-
tomer to solely specify the functionality requirements, whereas the developer may choose 
how much infrastructure they can make available for the project given the requirements. 
In a similar way, during a negotiation of an insurance policy, it is usually the buyer who 
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specifies the conditions for the extent of the cover – the seller then completes the contract 
by proposing a price.

In particular, the ability of a party to leave some issues unspecified is important for 
privacy negotiations. In such negotiations, some essential issues need to be controlled by 
the user, e.g. what kind of data access the user is happy to consent to, while others must 
stay under control of the service provider, e.g. what reward or extra functionality can be 
offered in exchange for access to the data. Thus, the user may want to initiate the negotia-
tion, specifying the requirements for a subset of important issues (e.g. I am happy to share 
my contacts, but not my browsing history; what will I get for sharing this?). The service 
provider is then able to submit a complete counter-offer, based on the proposed offer (e.g. 
without your browsing history, I miss out on ad revenue; given that, I can offer you £2.99). 
The user can either accept the proposal or submit a new enquiry (e.g. What if I choose to 
share my contacts and location but not my browsing history?).

To model this kind of automated negotiation, our premise is that, before the negotiation 
takes place, the proposer and the responder prescribe which issues they specify values for. 
This makes sure that, during the process, essential issues are under control of the party 
exchanging them, whereas others are left open. We do so by introducing partial offers, 
which we define as part of the negotiation setting.

3.2 � Negotiation setting

In this paper, we focus on bilateral multi-issue negotiations. Specifically, a negotiation 
domain is specified by m issues, where m ∈ ℕ and m > 1 . To reach an agreement, the agents 
must settle on an outcome that is accepted by both parties of the form � = (�1,… ,�m) , 
where �i denotes a value associated with the i-th negotiable issue for i ∈ {1,… ,m} . Then, 
� =

∏m

i=1
�i , where �i represents the set of possible values of �i . For example, in the con-

text of privacy permissions, if the issues �i correspond to Shared data, Purpose of sharing, 
Retention policy, and Price discount, then an example agreement in � ∈ � is (GPS loca-
tion, Targeted ads, Shared with third parties only, £0.20).

In this framework, we allow the value of an issue to be undefined. We denote so by 
a special character ⊥ ∈ 𝛺i for each i ∈ {1,… ,m} . Moreover, we define a subset S ⊆ 𝛺 
containing all offers where all values are defined. Formally, for each offer � ∈ S , 𝜔i ≠ ⊥ 
for any i ∈ {1,… ,m} . Because of this property, the elements of S are called the complete 
offers. On the contrary, the elements of the complement of S, S ⊆ 𝛺 , are called the partial 
offers.

While the domain is common knowledge, the preferences of each agent are its private 
information. Therefore, in addition to its own preferences, every agent also has an oppo-
nent model, which is an abstract description of the opponent’s preferences. This allows the 
agent to employ a negotiation strategy to determine its optimal action in a given state of 
the negotiation.

Since we focus on bilateral negotiation, there are two negotiating agents involved. 
We call them the proposer and the responder, and present the protocol that dictates their 
moves.

3.3 � Negotiation protocol

In the Partial-Complete Offer Protocol, the proposer submits a partial offer specifying 
the requirements for a subset of issues. Formally, the proposer offers �p = (�

p

1
,… ,�

p
m) 
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such that there exists (possibly more than one) i ∈ {1,… ,m} for which the value 
remains unspecified, i.e. 𝜔p

i
= ⊥ . The responder is then able to complete the offer, tak-

ing into account the proposed partial offer. That is, the responder replies with a complete 
offer �r = (�r

1
,… ,�r

m
) such that �r

i
= �

p

i
 for all 𝜔p

i
≠ ⊥ . This ends the first negotiation 

round. From here, the proposer can either accept a complete offer and end the negotiation, 
reject it and submit a new partial one starting the next negotiation round, or break off the 
negotiation.

As the negotiation continues, we assume that previous offers remain valid. That is, the 
complete offers returned by the responder generate a growing set Q ⊆ S of possible out-
comes that the proposer can agree to. Then, the negotiation ends when the proposer either 
accepts an offer � ∈ � or actively ends the negotiation by signalling a break off.

In addition, negotiations often involve some form of time pressure to ensure that they 
finish in a timely manner. In order to avoid the proposer exploring all possible partial 
offers, the proposer incurs a bargaining cost cp(n) ∈ ℝ where n is the total number of nego-
tiation rounds. Similarly, to make sure that the responder’s offers are more likely to be 
accepted by the proposer, additional bargaining cost cr(n) ∈ ℝ is levied on the responder.

To summarise, this the step-by-step process is presented in Protocol 1. Additionally, the 
protocol is illustrated in Fig. 1 as a sequence diagram. Next, we explain how the negotia-
tion outcome and costs affect the utility of each of the negotiating agents.

3.4 � Utility

When negotiation ends, the utility of each agent is updated. This depends on the cost the 
agent incurred and, if an offer is agreed, the agent’s valuation of the offer. Furthermore, 
each agent has a reservation value, which is the utility of a disagreement.

Specifically, the negotiation either ends with an outcome � ∈ Q or with no outcome. 
Then, if the proposer’s valuation is defined by a valuation function vp ∶ � ⟶ [0, 1] 
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and the proposer’s reservation value is rp ∈ [0, 1] , the utility of the proposer when the 
negotiation stops is given by:

Consequently, if the responder’s valuation is encoded by vr ∶ � ⟶ [0, 1] and the respond-
er’s reservation value is rr ∈ [0, 1] , then the utility of the responder is defined as:

Given that the valuation function of one agent is not necessarily know to the other one, 
each of the agents aims to maximise their expectation over utility. Thus, the challenge the 
agent faces lies in employing an adequate negotiation strategy to determine the optimal 
sequence of actions. Furthermore, in some situations where human users are involved, the 
exact valuation function may not necessarily be defined for an agent due to the uncertainty 
over the user’s preferences. To address this, we show how such negotiations can be mod-
elled using this framework.

(1)Up(Q) =

{
vp(�) − cp(|Q|) if � ∈ Q is the agreed outcome,

rp − cp(|Q|) if no agreement is reached.

(2)Ur(Q) =

{
vr(�) − cr(|Q|) if � ∈ Q is the agreed outcome,

rr − cr(|Q|) if no agreement is reached.

Proposer Responder

partial offer

complete offer

partial offer

complete offer

Agreement or Breakoff

End of negotiation

cost: cp(1)

cost: cp(2)

...

cost: cp(n)

cost: cr(1)

cost: cr(2)

cost: cr(n)

Fig. 1   Sequence diagram of a negotiation that ended after n rounds
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4 � Negotiation agent with preference uncertainty

In this section, we propose novel preference elicitation and negotiation strategies to dem-
onstrate how the framework can be implemented to account for situations where a user 
(or a customer) is negotiating with a service provider. Specifically, we consider a setting, 
where the proposer is negotiating on behalf of a user who is unwilling or unable to fully 
specify the valuation function. This is particularly the case in many realistic scenarios, 
where collecting the necessary preference information to define the valuation function is 
time-consuming or costly, or communicating them is difficult for the user. To address the 
challenge that preference uncertainty brings into the negotiation, we first discuss how the 
agent builds the user and the opponent models. Second, we propose a new method of pref-
erence elicitation which allows the agent to learn the user’s valuation. Finally, we propose 
a negotiation strategy which allows the agent to decide what offer, if any, to send to the 
opponent and when to terminate the negotiation.

4.1 � Models of uncertainty

In order for an agent to faithfully represent a user, it is important that the agent’s offers 
are aligned with the user’s preferences. In our setup, we assume that the proposer agent 
first negotiates the offer with the responder (its opponent) on behalf of the user, and then 
proactively interacts with the user to establish whether the negotiated offer aligns with their 
preferences. That is, as opposed to asking the user directly beforehand, the proposer agent 
requests from the user feedback on the negotiation when it ends, and derives the user’s 
preferences from the feedback. Specifically, in our setup, the user is presented with the 
complete offer negotiated by the agent and has an opportunity to communicate whether 
they approve the decision made on their behalf. This way, the agent is able to incremen-
tally collect information on user’s preferences for future negotiations at the most relevant 
time, while constantly keeping the user in the negotiation loop, as explained in detail in 
Sect. 5.3. Similarly, information on the opponent’s valuation can be updated through the 
offers that are exchanged with the opponent.

To this end, we can identify two kinds of preference uncertainty in this negotiation:

–	 the user’s preferences regarding the possible negotiation outcomes, and
–	 the opponent’s reactions to the offers.

In order to model this uncertainty, the agent builds a user model and an opponent model. 
Specifically, the user model consists of the agent’s beliefs about the user’s preferences. 
This can be elicited from the agent’s interactions with the user. Conversely, the opponent 
model, which reflects the agent’s beliefs about the opponent’s reactions, depends on the 
negotiation strategy used by the service provider. This model could be constructed from 
prior knowledge or previous interactions with the opponent, and can be based on the rela-
tive likelihood of the counter-proposal from the service provider (for an overview, see [9, 
10]). This model of uncertainty has been illustrated in Fig. 2.

4.2 � Preference elicitation

In a negotiation, a user has a specific set of preferences regarding the possible outcomes. The 
so-called preference profile is given by an ordinal ranking over the set of the outcomes: an 
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outcome � is said to be weakly preferred over an outcome �′ if � ⪰ �� where �,�� ∈ � or 
strictly preferred if 𝜔 ≻ 𝜔′ [116]. Given the outcome ranking, the agent’s goal is to formulate 
its estimate of the valuation function vp that approximates the real user’s valuation as much as 
possible so that the preferences are expressed in a cardinal way:

Following the literature on multi-issue negotiation [54], we make the common assumption 
that the agent’s valuation function is linearly additive. That is, it has the following form:

where wi is a weight indicating the importance of the i-th negotiable issue, and the weights 
are normalized such that:

Therefore, deriving the valuation for the issues specified in the partial offer means deriv-
ing the weights w1,… ,wm . This can be performed with feedback from the human user on 
the previous negotiation outcomes as explained in detail in Sect. 5. That is, if a user previ-
ously disliked a negotiated outcome � (which could include granting access to some per-
sonal data or sharing nothing) in favour of approving an outcome �′ , we can assume that 
vp(��) ≥ vp(�) . This can be written as:

If we do this for all previously approved and disapproved complete offers, we obtain a set 
of inequalities, from which we can deduce the most appropriate overall weights w1,… ,wm . 
To this end, note that this procedure transposes the problem into a set of linear inequalities 
of the form:

(3)� ⪰ �
�
⟺ vp(�) ≥ vp(��).

(4)vp(�) = �1w1 +⋯ + �mwm,

(5)
m∑

i=1

wi = 1.

(6)(��
1
− �1)w1 +⋯ + (��

m
− �m)wm ≤ vp(��) − vp(�).

(7)Aw ≤ b,

User

Agent

User Model

Negotiation
Strategy

Opponent
Model

Opponent

update model

get off
er

updat
e model

request feedback send offer

Fig. 2   The interaction model between the User, the Agent and the Opponent



	 Autonomous Agents and Multi-Agent Systems           (2022) 36:49 

1 3

   49   Page 14 of 38

where the entries of A and b correspond, for each equation, to the values of 
(��

i
− �i) ∈ {−1, 0, 1} and b = vp(��) − vp(�) respectively. We refer to these combinations 

of A and b as constraints.
However, as this data stems from human interaction, the problem quickly becomes 

over-constrained – that is, these inequalities are typically not consistent and any com-
plete assignment violates some constraint. Therefore, we cannot simply use standard 
linear constraint solvers such as [116] for negotiation elicitation in practice. To address 
this, instead, we find a solution that best satisfies the constraints following the tech-
niques described in [91]. Specifically, we determine the weights w∗ that minimize the 
least squares norm:

where (Aw − b)+ is the vector whose i-th component equals max{(Aw − b), 0}.
The weights w∗ can be then plugged to Eq. 4 to derive the valuation function, which the 

negotiation strategy relies on to select the most preferable offers.

4.3 � Negotiation strategy

Using the valuation function, the negotiation strategy needs to determine which of the 
partial offers, if any, the agent should propose to the opponent. What makes this problem 
non-trivial is its sequential nature: whether or not to propose a partial offer depends on 
the offers proposed so far. Therefore, the goal is to find an optimal sequence of offers to 
propose and a corresponding strategy which specifies when to conclude the negotiation 
process. To find this optimal negotiation strategy, we propose a similar approach to the one 
used in related work for preference elicitation (cf. [7]).

To evaluate partial offers, we assume that the agent has a model of the likelihood of 
receiving a certain complete offer from the opponent. That is, the probability of a complete 
offer given a partial offer �p is given by a stochastic variable X�p

 , with a cumulative distri-
bution function G�p

(x) known to the agent. From this, the expected value of a partial offer 
can be derived. Specifically, the valuation of a complete offer returned by the opponent is 
described by a stochastic variable Y�p

= vp(X�p
) ∼ [0, 1] with a corresponding cumulative 

distribution function H�p
(y) . Additionally, we assume that the total cost of the negotiation 

for the agent after n rounds is defined as cp(n) = Cpn.
With these assumptions, our goal is to formulate a negotiation policy � which, given a 

state E , decides whether to continue or stop the negotiation. Since the costs of offer propos-
als are sunk, it is easily verified that the negotiation strategy depends on the offers pro-
posed, P ⊆ S , and the offers received, Q ⊆ S by the agent so far. Thus, the current negotia-
tion state can be summarised by E = ⟨P,Q⟩.

Given the state E , the negotiation policy � should either stop the negotiation (with an 
outcome in Q or with no outcome) and obtain utility Up(Q) (defined in Eq.  1), or continue 
the negotiation by proposing a new partial offer �p ∈ {S ⧵ P} at cost Cp . If �p is proposed 
and a new complete offer �r ∈ S received, the negotiation enters a new state which can 
be described as E� = ⟨P ∪ {�p},Q ∪ {�r}⟩ . Since at that point the future utility in state E′ 
cannot be observed, the expectation over utility can be represented by the expected value 
��r|�p{U(�, E�)}.

Therefore, the utility of a policy � given the state E can be computed as follows:

(8)w∗ = argmin
w

||(Aw − b)+||2,
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Now, given the state E , we are looking for the optimal negotiation policy 
�∗ = argmax� U(�, E) . Note that when all offers are observed, U(�∗, ⟨S, S⟩) = Up(S) ; oth-
erwise, the agent may choose to propose one or more partial offers �p ∈ {S ⧵ P} . Given 
this, the optimal negotiation policy �∗ should consider the following: either stop the nego-
tiation and obtain Up(Q) , or propose a new partial offer �p ∈ {S ⧵ P} which maximises the 
expected value.

More formally, U(�∗, E) must satisfy the following recursive relation:

The relation for �∗ given in Eq.   10 is essentially a Bellman equation which, in princi-
ple, could be solved by backward induction. However, even for a moderate-size negotiation 
space, this approach quickly becomes intractable. Instead, we use a simple index-based 
alternative method to decide which partial offers to propose and whether to break off the 
negotiation.

Specifically, the negotiation strategy of the agent can be mapped onto a variant of the 
Pandora’s Problem  [120]: a search problem involving boxes that contain a stochastic 
reward. As such, each partial offer �p ∈ {S ⧵ P} can be regarded as a closed box with 
stochastic reward Y�p

 that can be opened at cost Cp , while every partial offer �p ∈ P can 
be represented by an open box with a known reward v(�r) where �r is the complete offer 
observed after proposing �p . As a consequence of Pandora’s Rule [120], we can assign 
an index z�p

 for every partial offer �p ∈ {S ⧵ P} , satisfying:

After identifying the offer �∗
p
∈ {S ⧵ P} with the highest index z∗

�p
 , we apply the following 

negotiation strategy:

Selection Rule: If an offer is proposed, it should be �∗
p
.

Stopping Rule: Terminate the negotiation whenever the reservation value rp or the 
highest valuation max�r∈Q

(vp(�r)) exceeds z∗
�p

 . Choose the negotiation outcome as 
follows:

•	 If max
𝜔r∈Q

(vp(𝜔r)) > z∗
𝜔p

 , then argmax
�r∈Q

(vp(�r)) is the outcome.

•	 If rp > z∗
𝜔p

 , the negotiation ends with no outcome.

This negotiation strategy completely characterises the optimal policy �∗ , as it has been 
proved to be optimal in terms of maximizing expected utility  [120]. In practice, the 
effectiveness of the optimal quoting strategy depends on the accuracy of the valuation 
function and the opponent model. However, with a faithful model, the agent’s strategy is 
optimal in a non-myopic sense: it will negotiate taking into account not only the costs, 
but also the incremental effect of any subsequent rounds.

(9)U(�, E) =

{
Up(Q) if the negotiation stops,

��r|�p{U(�, E�)} otherwise.

(10)U(�∗, E) = max

{
Up(Q), max

�p∈S⧵P

{
��r|�p{U(�, E�)}

}}
.

(11)∫
1

y=z�p

(y − z�p
) dH�p

(y) = Cp.
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Note that the complexity of the elicitation strategy is O(n log n) , since the index val-
ues do not need updating after our selection rule has chosen to elicit a particular offer 
[7]; hence, to find the next offer with the highest index, it suffices to order the set of 
indexes once, in O(n log n) time, before applying the stopping rule. Our algorithm has 
the further desirable property that if it is costless to acquire information about an offer 
then the algorithm will always elicit it, provided it is not dominated by an offer previ-
ously elicited [7].

5 � Negotiation of privacy

In this section, the theoretical framework described in Sect. 3 is applied to privacy nego-
tiations, where the user’s interests are represented by the proposer, and the service pro-
vider’s interests are represented by the responder. First, we formally define the negotiation 
domain. Second, we provide an overview of how the negotiation of privacy permissions is 
performed with human users in the loop. Finally, since the utility of both agents is similarly 
based on the valuation function and therefore, on the preference profile, as a first step, we 
focus specifically on modelling the user’s agent, and present two variants of how this pref-
erence profile can be created.

5.1 � Negotiation domain

In privacy permission management, the negotiation domain may consist of a set of permis-
sions to access user’s device resources such as contacts or text messages, as well as other 
negotiable issues such as access to certain functionalities of the online service owned by 
the service provider (e.g. a website, a mobile app or software running on a device). For the 
purpose of our proof of concept, consider a case where the permissions to access resources 
are granted in exchange for a monetary reward. This monetary reward is the total value a 
user can receive for granting permissions to a specific set of resources, and we refer to it 
as a quote. We assume that the user’s agent is in control of the values of issues related to 
the set of permissions and the service provider’s agent controls the value of the quote. For 
instance, if the permissions grant access to the user’s Contacts, Messages, Apps List, Photo 
Gallery and Browsing History, an example partial offer proposed by the user’s agent may 
be: (permission granted, no permission, permission granted, no permission, permission 
granted, ⊥ ). The service provider’s agent may complete the offer and respond with: (per-
mission granted, no permission, permission granted, no permission, permission granted, 
£0.55).

Formally, following the notation from Sect. 3, we define the negotiation domain such 
that �i ∈ {0, 1} for i ∈ {1,… ,m − 1} is a permission with binary values 1 and 0 indicat-
ing whether the permission is granted or not. In addition, �m is an issue representing the 
quote, where the possible values are continuous and normalized such that �m ∈ [0, 1] . 
Hence, the user’s agent proposes a partial offer providing values for �1,… ,�m−1 , whereas 
the service provider’s agent responds with a complete offer, including a value for �m . This 
way, the example offer returned by the service provider’s agent can be represented as: 
(1, 0, 1, 0, 1, 0.55). If the user’s agent refuses to grant any permissions, the complete offer 
would be (0, 0, 0, 0, 0, 0).
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5.2 � Overview of the negotiation

To demonstrate the applicability of the framework, we consider a specific bargaining situ-
ation where the user’s agent takes the role of the proposer by sending partial offers to the 
service provider’s agent. The offers indicate the permissions the user is willing to grant 
access to. Next, the service provider’s agent returns a complete offer, specifying the quote 
the service provider can offer for the permissions proposed. Consequently, the user’s agent 
negotiates the best possible offer (given the current user and opponent models) with the 
service provider’s agent on behalf of the human, and then proactively interacts with the 
human user to establish whether the negotiated offer met the user’s expectations.

Although the agent performs the negotiation autonomously, this framework allows us 
to keep the human user in control over data sharing. As discussed in detail in Sect. 6.2.2, 
in our setup, it is the human user who has the final say on whether permissions are granted 
and which ones by selecting Don’t Share for individual permissions. This way of negotiat-
ing privacy permissions provides two benefits: the user has full control over their privacy 
and the agent can use the feedback for constructing the user’s preference profile. However, 
in order for the agent to accurately represent the user, establishing an accurate preference 
profile is crucial. This is because the weights in the valuation function depend on the data 
present in the preference profile (see Eq.  4). To this end, we propose two ways of using 
users’ feedback to derive the user’s valuation. Since we implement them as two different 
variants of the user’s agent, we refer to them as Agent 1 and Agent 2.

5.3 � Agent 1: Individual preferences

Agent 1 recomputes the weights after each negotiation based on an individual user’s deci-
sions in the previous negotiations. At the beginning, to deal with the ‘cold-start’ problem 
(i.e. where no information is available about the past negotiations), the agent applies the 
weight derivation method on data collected from other users’ negotiations. Specifically, all 
data from control treatments without automated negotiation5 is aggregated to generate a set 
of constraints according to Inequality 6 which are, in turn, used to derive an initial set of 
weights through Eq.  8. Thus, when no information about an individual user is known, the 
initial weights wi are set the same for all users.

Then, whenever a user rejects an offer � in favour of accepting �′ , a new inequality 
of the form of Inequality 6 is added to the set of already existing inequalities. However, 
if there is a conflict between constraints, the user’s own constraints are always prioritised 
over the ones from the manual negotiation trials. This means that the individual user’s 
choice replaces the conflicting constraint. Then, the new weights are again derived and 
updated using Equation 8 for use in the next negotiation.

5.4 � Agent 2: Type‑based preferences

Agent 2 assigns users into categories before the start of their negotiations. We define these 
categories as follows:

–	 Fundamentalists – users generally granting less than 33% permissions.

5  For details on the control treatments, see Sect. 6.3.1.
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–	 Pragmatists – users generally granting between 33% and 66% permissions.
–	 Unconcerned – users generally to granting more than 66% permissions.

Initially, the preferences of a newly added user are based on the negotiation data from users 
previously classified into the same category. Specifically, the agent applies the weight deri-
vation method on negotiation data from the control treatments without negotiation where 
participants were categorised in the same way (see Sect. 6.3.1) to determine the weights 
offline.

After each negotiation, the cluster classification is updated according to the percent-
age of permissions that were actually granted. Specifically, if it is less than 33%, they are 
re-classified as Fundamentalists, between 33% and 66% – Pragmatists, and Unconcerned 
otherwise. This way, even though the weights are learnt offline, the classification of the 
user is performed online.

6 � Experimental evaluation

To evaluate the suitability of the agent-based negotiation framework for privacy permis-
sion management, as well as compare the performance of Agents 1 and 2, we developed an 
experimental platform in the form of a mobile application, which allows users to negotiate 
privacy permissions on their own smartphones. Following the approval of the study by the 
University of Southampton’s Ethics Committee (ref.: ERGO/FPSE/18082), we recruited 
132 participants, who used the tool to negotiate access permissions to their actual personal 
data in exchange for points converted to a monetary value at the end of the experiment. 
In this section, we provide a detailed description of the assumptions made about the ser-
vice provider’s agent, the apparatus, the methodology used and the findings of our exper-
imental evaluation. In particular, we compare the negotiation approach to the take-it-or-
leave-it approach often reflected in cookie banners, which we use as a benchmark for our 
experiments.

6.1 � Experimental setup

In order to conduct the experimental evaluation of the user’s agent, we abstract away from 
modelling the service provider’s agent and its actual strategy. Instead, we design a stochas-
tic way of completing the partial offers, making assumptions about the service provider. 
Specifically, we first assume that the order in which partial offers are made does not impact 
the complete offers, i.e. the complete offers are not different depending on the negotiation 
round. However, we assume that the complete offers depend on the number of granted per-
missions N =

∑m−1

i=1
�i . That is, the agent completes every partial offer with a uniformly 

random quote �m ∈ [max(0,N − 1∕m) , N/m). Using the previous example, if the partial 
offer received from the user’s agent is: (1, 0, 1, 0, 1,⊥) , then some of the possible complete 
offers are: (1, 0, 1, 0, 1, 0.4), (1, 0, 1, 0, 1, 0.45) and (1, 0, 1, 0, 1, 0.55). This approach 
to completing the offers ensures that granting more permissions results in a higher quote, 
while different combinations of permissions result in a different (not necessarily linearly 
additive) quotes. This reflects situations where some data types could complement each 
other (i.e. when a specific combination allows the service provider to derive more relevant 
information) or substitute each other (in which case the added data provides little addi-
tional benefit to the service provider).
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Furthermore, as in this paper we study the strategy of the user’s agent, we set the cost 
of negotiation to cp(|Q|) = 10 ∗ |Q| . For the service provider’s agent, we set the cost 
cr = 0 . In addition, for the purpose of this experiment, we set the reservation value for 
the user’s agent and the service provider’s agent to rp = rr = 0 . Lastly, we assume that 
the service provider’s valuation is equal to the quote of the accepted offer, i.e. for an 
outcome � = (�1,… ,�m) , the valuation vr(�) = �m . Thus, the service provider’s utility 
after negotiation is Ur(G) = �m if � is the agreed outcome or 0 otherwise.

6.2 � Apparatus

We developed a tool that allows participants to negotiate combinations of selected per-
missions on their smartphones in exchange for points, which map directly to a mon-
etary reward. In the setting screen, the user can see which permissions are going to be 
granted, the number of points they would receive as a reward, and the total number of 
points collected. The more data a user shares, the more points they receive. In this sec-
tion, we describe the tool and the ways users interact with it.

6.2.1 � Permissions

In order to avoid any personal preference towards the service and to focus on users’ 
permission preferences, the tool we developed has no intrinsic functionality other than 
capturing and displaying selected data points, and the testbed for negotiation. The 
advantage of using a mobile app as our experimental environment is that it allows us 
to use participants’ own data that they personally care about in a real, privacy-sensitive 
situation. This level of realism is particularly important in privacy-related experiments, 
because past studies [11, 113] have consistently shown a discrepancy between a per-
son’s stated preferences from surveys and actual disclosure decisions (i.e. the so-called 
privacy paradox).

The app requests access permissions to the following data:

–	 the list of contacts,
–	 the text messages,
–	 the list of installed apps,
–	 the gallery of photos, and
–	 the browsing history.

The reason why we selected the above permissions is that they are among the most 
often used, as ranked by [66], and can be acquired, mined from users’ smartphones and 
quantified. It is important to note that, although we decided to use the mobile app as 
our experimental environment, the aim is to test the negotiation framework in practice 
and to compare different privacy preference learning approaches. Hence, for simplic-
ity of the interface, we selected only five permission types. We present two designs of 
this interface: the negotiation screen allows the user to request a new negotiation of the 
permissions and the “Take It Or Leave It” screen that represents the take-it-or-leave-it 
approach that is still used by many services requiring users to share data.
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6.2.2 � Setting screen: negotiation

On the negotiation screen, the user is presented with the outcome of the negotiation. 
When the negotiation between the user’s agent and the service provider’s agent ends, 
the agreed permission settings (Share or Don’t Share) as well as the agreed quote (a 
number of points received in exchange) are displayed. If the user is happy with the offer, 
they can press the Accept button. In that case, the offered number of points is added to 
their total points. Otherwise, the user can communicate their permission preferences by 
selecting Share or Don’t Share to grant or refuse granting a permission. An example 
configuration is presented in Fig. 3a, where a user is offered 28 points for access to their 
contacts and messages only, but can change these settings. By pressing the Quote but-
ton, the user can then request a new quote. To prevent the user from constantly doing so, 
10 points are subtracted from their accumulated points every time they request the offer 
to be renegotiated. The user can also freely switch between the received offers using 
the Prev and Next buttons. Once they are happy with one of the offers, they can press 
Accept to approve it.

6.2.3 � Setting screen: “Take It Or Leave It”

The take-it-or-leave-it approach represents the situation where the data sharing terms lack 
any kind of tunable control over the privacy trade-offs. For example, prior to Android 6.0 
users were required to accept all data access permissions requested by mobile apps in order 
to proceed with the installation on their smartphones. Moreover, the take-it-or-leave-it 
approach is typical in many exchanges and not limited to apps. This approach is reflected in 
the differences between the negotiation screen and the “take it or leave it” one. Specifically, 
the “take it or leave it” screen does not allow the user to modify the permissions. The user 
can only accept or decline an offer by pressing the Accept or Decline buttons accordingly. 
The Decline option is equivalent to selecting Don’t Share for all data types. For example, 

(a) The negotiation screen. (b) Take-it-or-leave-it screen. (c) The review screen.

Fig. 3   The interface of the experimental tool, which displayed the result of the negotiation or take-it-or-
leave-it interaction during the user study, and allowed for a review of the user’s decision
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in Fig. 3b the user is able to accept or decline access to contacts and messages in return for 
28 points.

6.2.4 � Review screen

Following each sharing choice (through either negotiation or take-it-or-leave-it), the app 
collects three random data points of each shared permission type from the user’s device. 
The user is then presented with a review screen showing those data points (which the users 
are made to believe is made public, as explained specifically in the experimental design, 
see Sect.  6.3.1), and asked to retrospectively express whether they are Happy about or 
Regret granting the permission. Fig. 3c presents an example review screen displaying three 
sample contacts and messages of the user.

Note that participants cannot revoke their decision at this point. The purpose of this 
screen to assess whether retrospectively the agent has made the right decision and how this 
compares to the take-it-or-leave-it approach. As we explain in detail in Sect. 6.4.3, aligning 
the agent’s choices with the user’s preferences is one of the success measures we use.

6.3 � Methodology

A lab study is an experiment conducted in a controlled setting of a laboratory, as opposed 
to a real-world, natural setting. In order to allow for more control of the conditions, our 
experiments were conducted through lab studies. Participants were asked to use their own 
mobile phones, so that they truly cared about the data being shared. In this section, we 
report on the experimental design, the procedure of our lab studies and the participant 
recruitment.

6.3.1 � Experimental design

Between-subject experimental design is a type of experimental design where participants 
of an experiment are assigned to different treatments, with each participant experiencing 
only one of the experimental conditions. In our pilot studies, we noticed a change in par-
ticipants’ behaviour over time, as they became more aware of the consequences of their 
sharing decisions through the review of the data. Thus, in order to avoid bias caused by the 
learning effect, we decided to employ between-subject experimental design with four treat-
ments summarised in Table 1.

Firstly, our goal was to observe how a human negotiates without the help of an agent. 
For this reason, in the first treatment, Treatment Take-It-Or-Leave-It (TIOLI), we used 
the take-it-or-leave-it screen as a benchmark for our experiments. Secondly, we wanted to 
compare the take-it-or-leave-it approach to manual negotiation. We did so by introducing 

Table 1   A summary of 
the treatments used in the 
experimental evaluation

Treatment Summary

TIOLI Take-it-or-leave-it (no agent)
MN Manual negotiation (no agent)
A1 Agent 1 negotiating
A2 Agent 2 negotiating
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a second treatment, Treatment Manual Negotiation (MN), which instead, used the negotia-
tion screen. Finally, we aimed to test if the proposed designs of the agent-based negotiation 
can facilitate data sharing better than manual negotiation and to evaluate the performance 
of Agents 1 and 2, comparing them to the manual negotiation and to each other. Therefore, 
we developed Treatment Agent 1 (A1) and Treatment Agent 2 (A2).

6.3.2 � Procedure

The lab study procedure involved four parts: the initial survey, the main experiment, a post-
study questionnaire and a debrief. Table 2 summarises the user study procedure as it was 
experienced by the participant.

At the beginning, participants were asked to download the mobile app from the Play 
Store. They entered their demographics (age, gender, nationality, university course) into 
the app, and completed Westin’s Privacy Segmentation Index survey [64]. Westin’s Privacy 
Segmentation Index is a widely used tool for measuring privacy attitudes [124] and cat-
egorising individuals into three privacy types: Fundamentalists, Pragmatists, and Uncon-
cerned. As part of the Index, they indicated on a 4-point Likert scale (1 – strongly disagree, 
4 – strongly agree) the extent to which they agreed with three statements regarding control 
over personal information, personal information handling and legal privacy protection. The 
complete question set as defined by Westin’s Privacy Segmentation Index reads as follows: 

1.	 Consumers have lost all control over how personal information is collected and used 
by companies.

2.	 Most businesses handle the personal information they collect about consumers in a 
proper and confidential way.

3.	 Existing laws and organizational practices provide a reasonable level of protection for 
consumer privacy today.

They were informed that their monetary reward will be based on the total number of points 
earned and (to elicit a genuine response) that any data shared during the experiment will 
be made available on a public website. They were not informed about the agent negotiation 
taking place in this experiment.

After reading the app manual, participants were asked to interact with either the nego-
tiation or take-it-or-leave-it screen, depending on the treatment. In order to control the 
conditions, the offers for treatments with no agent negotiation (TIOLI and MN) were pre-
defined using random sampling prior to the experiment. Once a participant accepted or 

Table 2   A summary of the user study procedure as experienced by a participant

Part of experiment Summary

Initial survey Demographics (age, gender, nationality, university course)
Westin’s Privacy Segmentation Index

Main experiment “Take it or leave it” or negotiation screen + review screen
repeated eight times

Post-study questionnaire Data sharing sensitivity survey
NASA-TLX
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declined an offer, they proceeded to the review screen. As the experiment continued, these 
interactions were repeated such that each participant engaged in eight negotiation scenarios 
in total. To explore varying reward levels, those interactions differed in the maximum pos-
sible number of points to be gained by a participant: 25, 50 or 100. To cancel out possible 
interaction effects, this maximum reward was set to 50 in the first and last interaction for all 
participants, and a balanced Latin square design6 was used to determine the order of maxi-
mum rewards in all others. Consequently, the number of points a participant gained dur-
ing a single negotiation or a take-it-or-leave it interaction was the maximum reward level 
multiplied by the negotiated quote �m in the given scenario. In the end, the total number of 
points collected by a participant was the sum of points collected in all scenarios.

After that, they completed a questionnaire about their data sharing sensitivity. Spe-
cifically, they were asked to rate the following statements on a 7-point Likert scale (1 
– strongly disagree, 7 – strongly agree): 

1.	 I am sensitive about sharing the contacts stored on my phone.
2.	 I am sensitive about sharing the text messages stored on my phone.
3.	 I am sensitive about sharing the apps stored on my phone.
4.	 I am sensitive about sharing the photos stored on my phone.
5.	 I am sensitive about sharing the browsing history stored on my phone.

Additionally, participants were asked to complete NASA Task Load Index (NASA-TLX), 
which is a widely used, multidimensional assessment tool that rates perceived workload 
[41]. As part of this survey, they were asked to rate the effort they had to put into this 
experiment on a 20-point Likert scale.

Finally, the participants were debriefed about the purpose of the study specifically 
and informed that their data was never made publicly available on any website, despite 
the initial claim. All participants received a cash payment of between £5 and £10, directly 
depending on the number of points accumulated during the experiment, regardless of treat-
ment allocation, e.g. if they collected 658 points, they received £6.60; if they collected less 
than 500 points, they received £5.

6.3.3 � Participants

We recruited 132 participants from the University of Southampton. At the recruitment 
stage, they were informed that, during the experiment, they will be asked to download an 
Android application and make privacy-related decisions to earn between £5 and £10.

The participants were undergraduate, Master’s or Ph.D. students from a variety of disci-
plines (e.g. Engineering, Medicine, Law). Since university students typically have a good 
level of digital literacy and a variety of attitudes towards privacy, this sample was suitable 
for the purpose of evaluating agent-based negotiation. 37.12% of them identified as women 
and 62.88% identified as men. 45.45% of the sample was British; others were nationals 
of 32 different countries such as Romania (7.58%), Malaysia (6.06%) and India (5.3%). 
Their age ranged from 18 to 43 (mean: 21.69, median: 21, st. dev.: 3.78). The participant 
poll consisted of 18.18% Fundamentalists, 75% Pragmatists and 6.82% Unconcerned (as 

6  Balanced Latin square design is a type of study design in which multiple conditions are administered to 
the same participant over time, and the order of the conditions varies among the participants such that the 
effects of extraneous sources of variation are balanced.
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defined by Westin’s Privacy Segmentation Index) which is broadly consistent with the 
overall American population [64] – however attitudes to privacy may differ between the 
overall American population and the participants in out study.

The participants were randomly allocated into 4 treatments, i.e. there were 33 partici-
pants in each treatment. The allocations were performed such that any differences in pri-
vacy attitudes between the treatments were non-significant. To illustrate this, Table 3 pre-
sents the number of participants of each privacy type per treatment.

6.4 � Results

In this section, we present the results of the user study. In particular, we report on the 
impact of automated negotiation on data sharing and user’s post-sharing regret, aligning 
users’ decisions with their self-reported data sharing sensitivity, the effort required from 
the users and the accuracy of the proposed agents.

Table 3   The number of 
participants of each privacy type 
per treatment

Privacy Type / Treatment TIOLI MN A1 A2 Total

Fundamentalists 5 5 7 7 18.18%
Pragmatists 26 26 23 24 75%
Unconcerned 2 2 3 2 6.82%
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6.4.1 � Impact on data sharing

One aim of our research was to investigate how agent negotiation may influence users’ data 
sharing behavior. The results, based on participants’ own private data show that, on aver-
age, participants allowed access to data of the five data types over 2.5 times more often 
when they were able to negotiate. Figure 4 shows the percentages of how many times the 
participants allowed access to each of the data types in all scenarios. In particular, partici-
pants in treatment MN decided to share their list of installed applications 3.5 times more 
often than those in treatment TIOLI, and participants in treatment A2 shared their list of 
installed applications nearly four times more often than those in treatment TIOLI. The 
messages stored on the participants’ mobile phones in treatment MN were shared almost 
twice more often than in treatment TIOLI. In treatment A2, messages were shared nearly 
three times more often than in treatment TIOLI. These findings suggest that negotiation 
leads to a win-win situation, for both the user who receives higher payoffs from sharing 
more data, and for our hypothetical service provider who receives more data from them.

6.4.2 � Impact on regret

Based on the results, we can see that people are happily sharing certain kinds of data, and 
regret having shared others. However, the regret rate does not change when the negotiation 
agent is introduced. On average, the participants expressed regret after allowing access to 
their data in 15.96% cases. This is consistent with findings from related work [17], where 
in 10% of decisions, users were granting permissions reluctantly.

Figure 4 illustrates the percentage of times the participants were happy having shared 
their data of each type and how many times they regretted their decisions. The most shared 
resource was contacts (27.78%), the least shared one was the list of installed applications 
(3.55%). Nonetheless, there were no significant differences between the regret rates in the 
treatments. We consider this a positive outcome for the potential of automated negotiation 
in this area. That is, even though, as discussed in Sect. 6.4.1, users grant access to their 
data more often when a negotiation agent is involved, there is no significant increase in 
regret.

6.4.3 � Aligning choices with privacy preferences

Our results show that, when users are allowed to negotiate, not only does their sharing 
behavior change radically, but their choices also better reflect their privacy preferences. For 
each treatment, Figure 5 shows the mean average of the users’ self-reported data sharing 
sensitivity for granting each permission on 7-point Likert scale (see Sect. 6.3.2 for details). 
As expected, there are no statistical differences found between the treatments.

When we compare the reported sensitivity of each data type presented in Fig. 5 with 
users’ sharing decisions in Fig. 4, we observe a more marked correspondence for the nego-
tiation settings. Although the average scores hide a one-to-one correspondence between 
sensitivity scores and sharing actions, we can observe how often-shared data in these three 
treatments correspond with permissions of markedly lower sensitivity, such as apps, while 
access to photos and messages, which are both highly sensitive, is permitted far less often 
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than other permissions. The only outlier in this order seems to be the browsing history, 
which we believe is due to the fact that a number of participants did not have any browsing 
history available7, independent of the sensitivity.

6.4.4 � Accuracy of the negotiation agents

The last aim of our research was to examine the accuracy of the proposed negotiation 
agents. To do so, we calculated the accuracy by comparing the number of changes that the 
users made to the negotiated outcome.

Specifically, we define the accuracy as the difference between the accepted offer and 
the offer negotiated by the agent. Building on the notation from Sect. 5.1, if the initial offer 
is �1 = (�1

1
,… ,�1

m−1
,�1

m
) and the final offer is �k = (�k

1
,… ,�k

m−1
,�k

m
) , the difference 

between them, � , is calculated as:

where the first m − 1 issues are the permissions (i.e., contacts, messages, browsing history, 
photos and list of applications installed) and the mth issue is the number of points received 
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i
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Fig. 5   Mean average of self-reported data sensitivity scores on a 7-point Likert scale

7  This was verified by counting the number of items in the user’s browsing history.
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in exchange for them, which is ignored here since this is set by the service provider and not 
the user. Hence, the accuracy of the negotiated outcome is calculated as:

Figure 6 presents the accuracy of Agent 1, Agent 2 and the manual negotiation in each 
scenario. Results show that, in all scenarios except the first one (when the agent is still 
relying on Westin’s Privacy Segmentation Index categorisation), the users made the least 
changes to the default settings when Agent 2 was negotiating on their behalf. On average, 
offers proposed by Agent 2 were the most accurate (65.23%). After the first scenario, the 
choices of Agent 2 for the default settings were more accurate at accommodating the users’ 
privacy preferences than the manual negotiation.

Although, on average, the accuracy of Agent 1 (58.86%) is lower than the accuracy of 
manual negotiation (60.76%), overall, we can observe a rising trend of the accuracy of 
Agent 1. In particular, in the penultimate scenario, it exceeds the accuracy of both Agent 
2 and the default settings. This suggests that, with more learning, the individual approach 
could eventually outperform an agent which bases the preferences on a limited number of 
profiles.

Our experimental setup, in which participants were not aware of the agent, allows us to 
be confident that this accuracy is the result of correctly predicting preference, rather than 
a tendency of participants to “go along with” suggestions that they know are made by an 

1 −
�

m − 1

Fig. 6   The accuracy of Agent 
1 (A1), Agent 2 (A2) and the 
manual negotiation (MN) in each 
scenario

Table 4   Mean, median and 
standard deviation of the 
perceived effort of negotiation 
in each treatment, collected 
via the post-study NASA-TLX 
questionnaire

Effort / Treatment TIOLI MN A1 A2

Mean 4.19 5.33 5.88 3.55
St. dev. 4.09 3.54 3.82 2.88
Median 3 5 5 3
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agent. Although we detect some bias resulting from the defaults, this is apparent in all three 
conditions – since defaults in the first scenario were set randomly, we expected them to be 
aligned with user preferences 50% of the time; in fact, the slightly higher percentage in 
all treatments (MN: 55.15%; A1: 55.76%; A2: 52.73%) show that the defaults exert some 
influence and act as a means to promote exploration of the different options.

6.4.5 � Negotiation effort

Lastly, we measured the perceived effort of negotiation via the NASA-TLX questionnaire. 
Table 4 presents the mean, median and standard deviation of the results in each treatment. 
We can see that the effort required from the user supported by Agent 2 is not only less than 
in the take-it-or-leave-it approach but also during manual negotiation. This finding shows a 
potential for automated negotiation to be less demanding than the manual negotiation.

7 � Discussion and future work

In this paper, we propose a novel multi-issue negotiation framework, where two agents 
exchange partial and complete offers, bargaining over a number of issues in a bundle. An 
advantage of this approach is that it prevents competitive, zero-sum negotiations on iso-
lated issues and, instead, promotes mutually beneficial deals. Moreover, the protocol allows 
users to focus on issues that are important to them and leave out issues for which users find 
it difficult to determine a precise value and are more naturally determined by the counter 
party. This is especially important in negotiating privacy permissions, because the benefits 
of privacy protection are often uncertain and intangible [1] and, as a result, users find it dif-
ficult to express the exact willingness to pay for revealing certain information. It is easier 
for consumers to decide, through relative comparisons, which of the complete offers they 
prefer in order to assess the value of protecting their privacy [115]. In this way, users can 
easily explore the set of possible agreements, while the service provider, provided with 
information about monetizing the data (e.g. through advertising), has the ability to exer-
cise the final say. Such negotiations often occur in practice in a number of settings not 
necessarily limited to permissions management. For example, when negotiating insurance 
policies, buyers often specify certain conditions for the extent of cover, for which the seller 
completes the possible contract by proposing a price. Other examples include negotiating 
mortgages and broadband packages. For this reason, we believe that the partial-complete 
offer protocol generalises to other negotiation domains with similar individual-vendor 
relationships.

Furthermore, we demonstrate the applicability of the framework in a specific bargaining 
situation, which is the negotiation of permissions between a user and a service provider. 
In doing so, we assume that it is the user’s agent who starts the negotiation, specifying the 
requirements for a subset of important issues. The service provider’s agent is then able to 
submit a complete counter-offer based on the proposed offer. The user’s agent can either 
accept the complete offer or submit a new partial one. It can also break off the negotiation. 
Although this ensures that the service provider’s agent can always “price out” any unde-
sired partial offers, an equally valid use of this framework could be where the negotiation 
is initiated by the service provider’s agent. Then, the user’s agent could specify the condi-
tions, under which they would agree to the service provider’s conditions or “price out” any 
undesired proposals. Future work on this topic should investigate how this setting impacts 
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user’s data sharing, regret, preferences and effort, comparing to the setting we used in this 
paper.

In addition, we show that the framework can be used in a practical context through 
a user study with human participants and their private data. To this end, we developed 
an experimental tool to run on the participants’ own smartphones, which allowed them 
to negotiate various combinations of app permissions in exchange for monetary rewards. 
We compared negotiation to the take-it-or-leave-it approach through experimental evalu-
ation. The results of the user study suggest that users can be incentivised to share much 
more data when they are able to negotiate, with no increase in regret about their decisions. 
We also show that negotiation enables users to align their privacy choices more closely 
with their preferences. In particular, we found that the deals negotiated by the agents are 
more accurate than the baseline in that the resulting agreements are better aligned with the 
user’s actual preferences. These outcomes suggest that negotiation is a powerful interaction 
mechanism for achieving mutually beneficial data sharing agreements.

Moreover, we propose two variants of the user’s agent, which differ in the way the 
user’s preferences are elicited. Comparing the two agent implicit learning variants, results 
indicate that, with limited data, a profile-based variant might be better where users can 
be categorised into a limited number of types, but with more interactions, this can be fur-
ther personalised. This suggests that the profile-based variant could be effectively used at 
the beginning when the number of previous negotiations is very small. However, as the 
number of negotiations increases, the agent can be more effective personalising at offers 
based on a single user’s negotiation data. Alternatively, the negotiation could benefit from 
a variant that incorporates the two approaches at the same time. Future work should further 
explore different options of implicit preference elicitation.

As the main limitation of our study we consider the small number of participants in 
each treatment and, therefore, a limited amount of data. Although this sample size allowed 
us to prove the concept and make conclusions from our observations, it is hard to gen-
eralise findings based on a study of 132 participants. In addition, all the participants are 
university students, attending in-person in the same geographic location. While this experi-
mental design allowed us to observe the application of our framework in a controlled set-
ting, future work should explore negotiation in a real-life scenario, with a larger sample 
size that allows for more statistically significant results.

When we discuss this kind of negotiation, it is important to consider the broader ethical 
implications of it. Currently, many popular online services are indirectly funded through 
the collection of personal data which users share in return for access to the service and 
service providers monetise. Whereas in our study participants were told that their data will 
be posted on a public website, in a real-life scenario, personal information shared with the 
service provider might have been monetized to generate profit, e.g. by selling the data. In 
this paper, instead of modelling and using an actual service provider, we decided to explore 
the user’s agent side in a controlled setting without additional variables which introducing 
an actual service provider adds, and assumed that the service provider compensates the 
user with monetary rewards. This approach, however, raises the question of whether the 
proposed solution might promote this view, including settings where monetary incentives 
could lead users to act against their own best interest in terms of other rights and values. 
Despite the fact that the human is always in the loop, if a negotiation agent is provided by 
the service provider, there is a risk that persuasive technologies may be used to influence 
the behaviour of the user, e.g. based on information mined from other users, or in terms of 
presenting information to the user that makes clever use of cognitive biases (‘nudging’). 
One way of preventing this problem could be an appropriate legal framework regulating 
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the use of data negotiation agents, e.g. as part of the EU Artificial Intelligence Act [33], to 
prevent manipulation and exploiting users. Additionally, having a range of independently-
developed and open-source agent providers could allow users to choose an agent they con-
sider trustworthy and would like to be represent by when they exchange their personal data 
with online services.

In our experiment, the monetary rewards to participants created a certain element of 
‘gamification’, where reward was linked to earning more points during the negotiations. 
As a result of using negotiation, we observed a significant increase in the amount of data 
shared by the users, which may have only been to maximise their reward within our experi-
ment. On the one hand, if this approach was applied in practice, there is a risk of creating 
a ‘race to the bottom’ culture, where service providers could optimise the payoffs for pri-
vacy-reducing behaviour. This is particularly the case as negotiation is not used in a user-
to-user but user-to-platform context, where there is clearly a power imbalance between 
both sides. To mitigate this risk, the data valuation could be computed by an independent, 
non-profit organisation, e.g. a data trust [84], that would act as intermediary facilitating 
data sharing. Future work should take into account these issues when choosing how the 
negotiation mechanism is applied.

On the other hand, one aspect might also be gamification as users might tend to see the 
process of granting access to their data more like a game to maximize their profit. This, 
in turn, might distract users from the actual issue that private data is being made acces-
sible for service providers. This poses a question of responsibility of the platform owners 
facilitating the data selection process for a potential loss of reluctance when sharing data. 
In another study, when participants were asked about delegating their consent decisions to 
intelligent agents, they view those agents as potentially unfair and biased [81]. In order to 
become a valid delegation option, participants wanted reassurance that the development 
of the agent was controlled and regulated to reduce the risks of unwanted outcomes. Both 
regulation such as the Artificial Intelligence Act [33] and transparency through data trusts 
[84] could help autonomous agents engage with users whose trust is to be earned. Future 
work should consider the social responsibility of the agent’s actions.

From a user’s perspective, the willingness to share data also might strongly depend on 
the service that is requesting the data. One criterion might be where the service is located 
(e.g. US or EU) due to the data protection acts that apply. Also, some services might be 
perceived more trustworthy than others. To help users understand the level of risk, the 
user interactions could be designed such that in cases of concerning transactions, the 
agent would warn the user about potential negative consequences. To this end, future work 
should consider more realistic scenarios, where participants are asked to negotiate with a 
selection of specific services so that they can better understand the consequences of their 
action. Additionally, future work should explore more transparent interfaces, testing vari-
ous wordings of the warning messages and modelling user’s trust as part of the preference 
profile.

When it comes to the user interface design, another factor that might have influenced the 
results of our study was the interface through which the user was kept in the loop. In par-
ticular, when asked for approval, the user was able to see the ‘Share’ and ‘Don’t Share’ radio 
buttons, on the Take-It-Or-Leave-It screen, even though they could not use them. Although it 
is unclear whether this influenced their choices at all, it is possible that having these buttons 
provoked them to make certain approval or declining decisions that a different interface (e.g. 
simply listing the data types without radio buttons) would not. Future work should explore 
how the interface affects users’ decisions and their trust to the offers negotiated by the agent. 
For example, providing options to view the data to be shared could mean that the user would 
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spend more time making the decision manually (providing the agent with feedback for future 
decisions on behalf of the user), but it could also help providing more transparency into the 
data sharing.

It is also important to note that some of the data types we selected for the experiment 
are more sensitive than others. Photos or messages, for instance, might be highly personal, 
whereas the app list does not provide equally deep insights into the user’s private life. In fact, 
the agent could act autonomously for the data types that are not perceived sensitive (which 
the user should decide) but for the sensitive data, the user could be asked to make the deci-
sion manually. However, the formula that is used for generating the service provider’s ran-
dom quote in our study does not take this difference between the data types sensitivity into 
account. Instead, only the quantity of allowed permissions is used for proposing a quote. In 
reality, the offers companies make for getting access to pictures and messages might be signif-
icantly higher compared to the app list. Future work should also consider this when proposing 
a quote, to allow for investigating different permissions. In particular, when more information 
is shared, a more detailed analysis of the user can be made. Accordingly, it can be assumed the 
quotes not only increase linearly when the number of granted permissions increases. Future 
work should explore more appropriate valuation models for the negotiated data types and con-
sider how those models impact the user’s reactions to the offers.

Another limitation is that while the proposed variants of the user’s agent are both quite gen-
eral, our experimental setting is limited to reasoning about data types. Other issues that need 
to be considered during negotiation are the factors beyond data types, for example, the recipi-
ent, retention period, purpose, quality, and privacy risks. In addition, we noticed that, when 
expressing regret, users often did so for specific data points (e.g. specific contacts or photos). 
Therefore, it is clear that a model based on permissions alone is too coarse to accurately cap-
ture the privacy preferences. Combining a semi-autonomous agent with a more meaningful 
classification of data (perhaps using signals such as location, time of the day and relations to 
other users) is another avenue that warrants further exploration. Additionally, the data valua-
tion could be dependent on the purpose of data processing (e.g. the service provider specify-
ing the purpose as part of the negotiation). We also plan to study various designs of privacy 
agents that can learn to negotiate on users’ behalf, and engage users directly only when in 
doubt.

Moreover, in some of the settings in our study, requesting a new offer manually meant 
additional cost for the user. While this choice allowed us to study the user behaviour in those 
settings and compare them to the take-it-or-leave-it setting, we would like to acknowledge 
that punishing users for requesting a new offer affects the strategy that users need to pursue 
to maximize their total points. The consequences of this choice should be considered when 
designing a negotiation mechanism for a real-life scenario.

Finally, in our study, the agent’s user model was based on types derived from results of a 
short survey before the negotiations started. A more personalised model, derived from e.g. 
apps installed on the phone, data sensitivity and other factors, could increase the accuracy of 
the deal negotiated by the agent even further. Future work should aim to improve the accuracy 
of the agent.
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8 � Conclusions

To conclude, this paper presents a novel multi-issue negotiation framework with a new 
variant of the alternating-offers protocol, based on exchanges of partial and complete 
counter-offers. Moreover, we demonstrate how this framework can be used in bilateral 
negotiations of privacy permissions between users and service providers. In order for 
an agent to faithfully represent a user, we investigate two approaches to implicit prefer-
ence elicitation: one approach personalised to each individual user and one personalised 
depending on the user’s privacy profile classification. Furthermore, we compare them 
to the common take-it-or-leave-it approach, in which users are required to accept all 
permissions requested by a service. We do so through a user study with human partici-
pants who negotiate access permissions to private data stored on their own smartphones 
through the experimental tool we developed.

The results of this experimental evaluation provide evidence that negotiating agents 
are able to automatically negotiate on behalf of users, while optimally balancing 
between utility and the sum of incurred costs. Specifically, we find that users grant per-
missions 2.5 times more often when they are able to negotiate while maintaining the 
same level of decision regret. Moreover, we observe that negotiation can be less men-
tally demanding than the take-it-or-leave-it approach and that it enables people to better 
align their privacy choices with their actual preferences. We discuss our findings, which 
point to several avenues of future work on automated and negotiable privacy manage-
ment mechanisms.

This work sits within the wider agenda of privacy management that has received 
renewed momentum with the introduction of novel privacy laws such as the EU’s General 
Data Protection Regulation [32], requiring greater transparency and user empowerment, 
and with opportunities for multi-agent systems to provide technological solutions. Our ulti-
mate aim is to enable automated negotiation of the terms and conditions of personal data 
use. Building on approaches from the field of multi-agent systems, where automated nego-
tiation is widely researched [34], a software agent may eventually negotiate on behalf of 
the user, based on preferences that are elicited at a time that is convenient to the user. The 
work described in this article is an essential step towards addressing this broader vision.

In addition, while this paper focuses on combining negotiation and preference elicita-
tion techniques in the context of privacy negotiation, many of these techniques can be 
generalised to other settings. In particular, an interesting direction for future work is to 
apply the proposed user preference elicitation to other domains, and to compare it to 
other approaches, e.g. those developed as part of the Automated Negotiating Agents 
Competition (ANAC) [3, 50]. However, unlike our approach, the ANAC competition so 
far has assumed no noise in the user’s own preferences, i.e. the partial preference order 
is consistent. Nevertheless, another aspect of the challenge of this competition is oppo-
nent modelling (where the aim is to learn the utility function of the opponent), which 
uses similar techniques and where noise is more likely. Hence, it would be interesting 
to compare our approach to recent advances in opponent modelling, including machine 
learning techniques (e.g. [101]). There is also a wide area of research which considers 
eliciting user preferences through surveys, often applied in areas such as transporta-
tion, marketing and social sciences. In particular, discrete choice models [73] assume a 
probabilistic model and have shown to be effective in capturing preferences from partial 
orders. It would be interesting to compare our approach to using profiles and minimising 
constraint violations to existing approaches in these related areas.
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