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Abstract—When two agents settle a mutual concern by
negotiating with each other, they usually do not share their
preferences so as to avoid exploitation. In such a setting, the
agents may need to analyze each other’s behavior to make
an estimation of the opponent’s preferences. This process
of opponent modeling makes it possible to find a satisfying
negotiation outcome for both parties. A large number of such
opponent modeling techniques have already been introduced,
together with different measures to assess their quality. The
quality of an opponent model can be measured in two different
ways: one is to use the agent’s performance as a benchmark
for the model’s quality, the other is to directly evaluate its
accuracy by using similarity measures. Both methods have
been used extensively, and both have their distinct advantages
and drawbacks. In this work we investigate the exact relation
between the two, and we pinpoint the measures for accuracy
that best predict performance gain. This leads us to new insights
in how to construct an opponent model, and what we need to
measure when optimizing performance.

Keywords-Intelligent agents, Multiagent systems, Machine
learning

I. INTRODUCTION

A negotiation between two agents is a dialogue in which
both agents aim to reach an agreement better than their
status quo. A major challenge in automated negotiation is
that agents usually keep their preference information private
to avoid exploitation [1], [2]. When the agents have limited
knowledge of the other’s preferences, the agents may fail to
reach an optimal outcome as they cannot take the opponent’s
desires into account [3].

In order to improve the efficiency of the negotiation and
the quality of the outcome, agents may construct a model of
the opponent’s preferences, which aids them in estimating
the information that is kept private [1]–[3]. Over time, a large
number of such opponent models have been introduced, based
on different learning techniques and underlying assumptions,
and multiple methods have been used to compare their quality.
The different evaluation methods for opponent models make
it hard to compare different approaches, as each method
has its unique scope of application, together with different
advantages and drawbacks. From an engineering perspective,
it still remains unclear which opponent model to choose in
a particular negotiation setting.

Traditionally, there are two popular ways to measure the
quality of an opponent model:

1) Performance measures evaluate the quality of the
outcome, usually measured in utility gain, or distance of
the agreement to the Pareto frontier. With this method,
the success of an opponent model is expressed in terms
of the negotiation result (as opposed to the whole
negotiation process).

2) Accuracy measures aim to determine the quality of a
model in a more fundamental way, by quantifying how
well the opponent model represents the real preferences
of the opponent, using a certain similarity measure. An
example is the correlation between the estimated and
the real outcome space, or the percentage of correctly
inferred Pareto optimal outcomes.

There are various authors that evaluate their opponent
model with performance measures (e.g. [1]–[3]). Using a
performance measure has one very important quality: it
measures exactly what needs to optimized, namely the net
effect an opponent model has on the negotiation result. On
the other hand, because performance measures are only able
to demonstrate improvement of the end result, they may not
provide insight into why or how an opponent model works;
that is, they measure the result obtained by the negotiation
agent as a whole, of which the opponent model is only a
single component. This makes the performance measure very
sensitive to the specifics of the experimental setup. Moreover,
there is usually no clear upper bound in performance gain,
so it remains unclear what the highest attainable result is.

Other authors prefer to use accuracy measures to evaluate
their model (for example [4]–[7]). The main advantage of
this approach is that it directly assesses the quality of a
model, independent of other factors such as bidding strategy
or acceptance strategy. Secondly, it is easier to compare
accuracy results between different experimental setups, and
to track the accuracy of a model over the course of the
negotiation. This, in turn, can reveal valuable information
about the reasons for a model’s success.

There are also drawbacks of using accuracy measures
in negotiation, two of which we will address in this paper.
First, it is currently unclear what effect a more accurate
opponent model has on the negotiation outcome. It could
very well be that from some point, increased accuracy does
not translate into better performance. An 80% accurate model
for example, could perform just as well as a perfect model.



Second, there are many accuracy measures to choose from,
and it is currently unknown which accuracy measure should
be selected to ensure a good overall end result; that is, we
would like to know what accuracy measure best predicts an
improvement in performance.

Our work bridges the gap between both approaches by
considering opponent models from both a performance and
an accuracy perspective. We first test many current opponent
modeling techniques in different negotiation settings, measur-
ing both their accuracy through time and their performance.
We then analyze how changes in accuracy translate into
performance differences. Moreover, we review all ways to
measure the accuracy of an opponent model, and we pinpoint
the best predictors for good performance.

The remainder of this paper is organized as follows. Sec-
tion II describes the setting and terminology used throughout
the paper. In Section III we introduce our research questions
and experiments, followed by a discussion of the results in
Section IV. Finally, Section V discuses related work and
Section VI provides directions for future work.

II. PRELIMINARIES

In this work we focus on bilateral automated negotiations,
where agents take turns in exchanging offers using the
alternating offers protocol. The agents seek to reach an
agreement while at the same time aiming to maximize their
own utility. A negotiation scenario consists of the negotiation
domain, which specifies the setting and all possible bids
(also called the outcome space, denoted by Ω), together
with a privately-known preference profile for each party. A
preference profile is described by a utility function u(ω),
which maps each outcome ω ∈ Ω to a utility in the range
[0, 1]. We assume a common discrete time line, with a
deadline after a specified number of rounds N . Both agents
receive utility 0 if they do not succeed in reaching an
agreement in time.

We discuss opponent models that attempt to estimate the
opponent’s utility function uop(ω) while relying solely on the
information gathered during the negotiation. Many existing
models and measures assume the agent’s utility function
is linear additive [3], [8]–[10]. Alternatively, agents may
have non-linear preferences (e.g., [11]); however, we restrict
ourselves to linear additive preference profiles in this work,
as to the best of our knowledge, there exists no large set of
comparable models for non-linear preferences.

Linear additive functions make explicit that different issues
can be of different importance to a negotiating agent and
can be used to efficiently calculate the utility of a bid. The
utility u(ω) of an outcome ω ∈ Ω is computed as a weighted
sum (as specified by the issue weights wi) of value weights
ei(ωi):

u(ω) =

n∑
i=1

wi · ei(ωi). (1)

III. MEASURING THE QUALITY OF OPPONENT MODELS

As outlined in the introduction, the aim of this work is to
answer three research questions:

1) How does the accuracy of opponent models depend
on negotiation factors, such as domain size, or time?

2) What is the relationship between the accuracy of an
opponent model and its expected performance gain?

3) What accuracy measures are the best predictors for
performance gain?

To answer these questions, we first outline our selection of
opponent models (Section III-A) and the accuracy measures
incorporated in our method (Section III-B). Next, we discuss
the experimental setup (Section III-C and III-D).

A. Selection of Opponent Models

We compare a large set of state of the art opponent models,
which were applied in the Automated Negotiating Agents
Competition (ANAC) [12], [13]. ANAC is a yearly inter-
national competition in which negotiation agents compete
on a set of scenarios that are unknown beforehand. Our
reason for including this set of models is threefold: first, they
represent the state of the art; second, to our knowledge,
they are the largest set of techniques designed for one
common setting consistent with ours; and finally, their code
is publicly available. Table I gives an overview of all models
evaluated in this work, including three theoretical baselines.
We distinguish four types of opponent models:

1) Bayesian models estimate the opponent’s preferences
by first generating a set of candidate preference profiles.
Next, Bayesian learning is used to continually update
the model, based on certain assumptions about the
opponent’s concession function. For these models,
we also include Perfect variants, which use perfect
knowledge about the opponent’s concessions, but are
still unaware of the opponent’s exact preferences.

2) Frequency models estimate both the issue and value
weights separately. The issue weights are estimated
based on how often their value is changed between
sequential bids. The value weights are derived from
the frequency they are offered.

3) Value models are similar to the frequency models,
except that the issue weights are assumed to be equal.

4) Theoretical baselines are used to compare the quality
of the models. The Perfect Model and Worst Model act
as an upper and lower bound on quality respectively,
while the Opposite Model functions as a baseline, since
it serves as a good initial guess of the opponent’s
preferences.

Each model was isolated from existing negotiation agents
(as indicated in Table I), and then generalized to be compat-
ible with any bidding strategy, as in [14]. The advantage of
using this approach is that we can interchange the opponent
modeling component of each negotiation strategy, so that we



can compare the performance of different opponent models
while keeping the bidding and acceptance strategy fixed.

Bayesian Models
Bayesian
Scalable
Model [3]

Estimates the issue and value weights separately,
using Bayesian learning. The opponent is assumed
to concede a constant amount per round.

IAMhaggler
Bayesian
Model [8]

A Bayesian model in which the opponent is assumed
to use a particular time-dependent strategy and only
unique bids are used to update the model.
Frequency Models

HardHeaded
Frequency
Model [9]

Learns the issue weights based on how often the
value of an issue changes. The value weights are
estimated based on the frequency they are offered.

Smith Frequency
Model [10]

Learns the value weights based on frequency they
are offered. The issue weights are estimated based
on the distribution of the values.

Agent X
Frequency
Model

A variant of the HardHeaded Frequency Model that
takes the opponent’s tendency to repeat bids into
account.

N.A.S.H.
Frequency
Model

Learns the issue weights based on how often the best
value for each issue is offered. The value weights
are estimated based on their frequency.
Value Models

Agent LG Value
Model

Estimates the value weights based on the frequency
they are offered.

CUHKAgent
Value Model

Counts how often each value is offered. The utility
of a bid is the sum of the score of its values divided
by the best possible score. The model only uses the
first 100 unique bids for its estimation.
Theoretical Baselines

Opposite Model Defines the opponent’s utility as one minus the
agent’s utility.

Perfect Model Perfect knowledge of the opponent’s preferences.
Worst Model Defines the estimated utility as one minus the real

utility.

Table I
OVERVIEW OF OPPONENT MODELS.

B. Selection of Accuracy Measures
We compare the accuracy of opponent models by evaluat-

ing how well the models estimate the opponent’s preferences
when provided with various negotiation traces. In effect,
we treat the opponent model as an isolated component
that receives offers as input, and yields an estimate of the
opponent’s preference profile as output, which (hopefully)
gets increasingly accurate with every processed bid.

When we assess opponent model accuracy, we require an
accuracy measure that quantifies the similarity between the
opponent’s actual preference profile uop and the estimation
u′op. As there is no current standard for accuracy measures,
we surveyed all accuracy measures currently in use, as shown
in Table II. The first two sets of measures are derived from
literature, to which we have added a set of metrics based on
the Pareto optimal frontier.

Many of the measures in Table II are formulated in terms
of the combined properties of the opponent’s utility space
and the agent’s own utility space – together called the bid
space. We define the real bid space B as

B = {(uown(ω), uop(ω)) | ω ∈ Ω} .

Outcome Space
Pearson correlation
of bids [6]

Pearson correlation coefficient between real
and estimated preferences.

Ranking distance
of bids [4], [6]

Ranking distance between real and estimated
preference.

Average difference
between bids

Average difference between the real and
estimated utility of all bids.
Issue Weights

Pearson correlation
of issue weights [6]

Pearson correlation coefficient between real
and estimated issue weights.

Ranking distance
of issue weights [6]

Ranking distance between real and estimated
issue weights.

Average difference be-
tween issue weights [7]

Average difference between the real and
estimated issue weights.
Pareto Frontier

Average difference
of Pareto frontier

The average difference between the real and
estimated utility of the Pareto bids.

Percentage of found
Pareto bids

Percentage of real Pareto bids that are also
estimated to be a Pareto bid.

Percentage of correct
Pareto bids

Percentage of estimated Pareto bids that are
also real Pareto bids.

Difference in Pareto
frontier surface

Absolute difference in surface under the real
and estimated Pareto frontier.

Table II
OVERVIEW OF ACCURACY MEASURES.

The estimated bid space B′ is defined in terms of the
estimated opponent utility function u′op:

B′ =
{(
uown(ω), u′op(ω)

)
| ω ∈ Ω

}
.

To quantify how well u′op approximates the opponent’s
preferences, we might consider the differences between u′op
and uop directly. Alternatively, we can analyze the resulting
bid spaces B and B′, or we might concentrate on subsets.

Outcome space accuracy measures quantify the difference
between uop and u′op by considering all bids in the outcome
space Ω. A straightforward measure that has been used is
the average distance between bids metric, which calculates
the average absolute difference between uop and u′op over
Ω. However, as models are usually only concerned with the
ranking of outcomes, a more suitable metric is the Pearson
correlation of bids that measures the correlation between two
outcome spaces, which is defined as follows:

dp(uop, u
′
op)=

∑
ω∈Ω

(uop(ω)−uop)(u′op(ω)−u′op)√∑
ω∈Ω

(uop(ω)−uop)2
∑
w∈Ω

(u′op(ω)−u′op)2

, (2)

where uop and u′op denote the real and estimated average
utility over all outcomes. Alternatively, the ranking distance
of bids compares all pairwise preference orderings:

dr(uop, u
′
op) =

1

|Ω|2
∑

ω∈Ω,ω′∈Ω

c≺u,≺u′(ω, ω′), (3)

where c≺u,≺u′ is the conflict indicator function, which is
equal to one when the ranking of the outcomes ω and ω′

differs between the two profiles, and zero otherwise.



Issue weight accuracy measures quantify the difference
between the issue weights of uop and u′op. The underlying
idea is that these variables are most important to estimate
correctly. The metrics used are identical to the metrics above.

Pareto frontier accuracy measures focus only on the simi-
larity between two Pareto frontiers. This is more challenging
since their sizes can be different, so two sets of Pareto
frontiers cannot be compared in the same way as outcome
spaces or weight vectors. The average difference of Pareto
frontier metric calculates the difference in utility over all
Pareto bids of bid space B. The percentage of found Pareto
bids measure gives the percentage of Pareto optimal bids of
space B that are also in B′. Conversely, the percentage of
correct Pareto bids metric yields the percentage of Pareto
optimal bids in B′ that are correct (i.e.: in B).

Finally, we introduce the difference in Pareto frontier
surface measure, which is defined as follows: we take all
outcomes in Ω that form the estimated Pareto frontier in B′;
we then map these points onto B. Finally, we compute the
absolute difference in surface below these points and the
actual Pareto frontier, as shown in Figure 1.

Figure 1. Visualization of the difference in Pareto frontier surface.

C. Quantifying the Estimation Accuracy

The goal of our first experiment is to quantify the
accuracy of opponent models, both in different domains
and through time. We outline in detail below the factors
of the experimental setup that we believe are important to
consider.

Influence of the Opponent Model on the Opponent’s Actions

When an agent uses an opponent model, it indirectly
influences the opponent in two ways: first, a model may
influence the time of agreement, as a more accurate model
may lead to better offers, resulting in earlier agreement;
second, a model may cause changes in the opponent’s
strategy.

Both factors influence the bids presented by the opponent,
and thus the information available for the model. To ensure
every model learns from the same information, and therefore
can be compared with the others, we selected non-adaptive
opponents that never accept a bid.

Influence of the Opponent’s Strategy on the Opponent Model

Opponents differ in how well their behavior corresponds
to a model’s assumptions. For instance, a model that assumes

that the opponent concedes will likely have problems mod-
eling a very competitive agent. Therefore, we should select
a balanced set of opponents to avoid favoring any model.
One of the defining factors here is how much information
an opponent reveals over time. For example, a conceding
opponent reveals more of its preferences than an agent who
makes random bids. Furthermore, we should include agents
that strongly violate the modeling assumptions as to evaluate
the robustness of the models. Taking both factors into account,
we selected the following agents:

1) Conceding agents select a bid depending on the current
time t ∈ [0, 1] according to a target utility of the
form ut = Pmax · (1 − t1/e) [15]. We selected four
agents with Pmax = 1 and different concession rates
e ∈ {0.1, 0.2, 1.0, 2.0}. These agents make up the
predictable opponents.

2) Random agents offer a random bid above a target
utility m, where we selected m ∈ {0, 0.25, 0.50, 0.75}.
This type of agent and the others below form the
unpredictable opponents.

3) Conceding agents with an offset are time-dependent
agents [15] that do not start with their best bid. For
this category we use a linear concession rate (e = 1)
and starting point Pmax ∈ {0.7, 0.8, 0.9}.

4) Non-conceding agents start with a minimum target
utility that increases to the maximum over time. The
target utility is calculated as follows: ut = Pmin +
(1 − Pmin) · t. We use four agents with parameters
Pmin ∈ {0, 0.25, 0.50, 0.75}.

Influence of the Scenario on the Opponent Model
We distinguish three features of the negotiation scenario

that can significantly influence how well the opponent model
is able to estimate the opponent’s preferences:

1) Domain size. The total possible bids directly relates to
the amount of parameters of the preference profile.

2) Bid distribution. The bid distribution is defined as
the average distance to the nearest Pareto optimal bid.
A scenario with a high bid distribution has a high
percentage of outcomes far from the Pareto frontier.

3) Opposition. The opposition is defined as the distance
from the Kalai-Smorodinsky point to the point of
perfect satisfaction (maximum utility for both parties).
The higher the opposition is, the more competitive the
domain.

We made sure to select a balanced set of scenarios that
display all characteristics. We chose five domains based on
their size: Itex vs Cypress [12] (small: 180 bids), Employer
contract [16] (small: 3125 bids), ADG [12] (medium: 15625
bids), Supermarket [12] (large: 98784 bids), and Travel [13]
(large: 188160 bids). For each domain we created a set of
scenarios varying in bid distribution and opposition. As we
defined three levels of degree for both factors, 45 scenarios
are used in total.



For the experiment, we ensured that each model processes
exactly the same opponent traces, using a maximum amount
of N = 5000 rounds. For the three groups of deterministic
agents we recorded their (unique) negotiation trace, amount-
ing to a total of 495 unique traces. For the random agents
we recorded five different traces per agent, thus 900 traces
in total. Combined, this amounts to 1395 traces that were
used to train every opponent model.

D. Quantifying the Accuracy/Performance Relationship

The goal of the second experiment is to investigate
the relation between accuracy and performance measures,
thereby answering our final two research questions. For this
experiment, we used a realistic set of opponents whose
acceptance strategies are enabled. With realistic opponents,
every negotiation is unique, so for this investigation we
had to scale down the experimental setup. We selected
a set of bidding strategies and scenarios where using a
good opponent model would have added value; i.e., tough
bididng strategies with limited learning capabilities (i.e.,
no opponent model), and large, competitive negotiation
scenarios. We selected four of the top bidding strategies
from ANAC: Agent K2, HardHeaded, IAMhaggler2011,
and The Negotiator; and four time-dependent agents with
concession rate e ∈ {0.1, 0.2, 1.0, 2.0}. These eight bidding
strategies were combined with all thirteen models (the
models in Table I and the two Bayesian models with perfect
strategy knowledge) and no model. Each agent competed
five times against all opponents (the eight bidding strategies
without model) on five scenarios: Grocery [12], Employment
contract [16], Travel [13], Small Energy, and Supermarket
(both used in ANAC 2012).

Each agent played both sides of the five scenarios using
a round-based protocol of 1000 rounds. Since 112 agents
competed 5 times against 8 opponents on 5 scenarios for
both preference profiles, 44800 matches were ran in total.

IV. EXPERIMENTAL ANALYSIS

We will now answer our three research questions by
analyzing the results of both experiments. Each section
corresponds to one of the research questions.

A. Evaluating the Estimation Accuracy of Opponent Models

As outlined in Section III-C, we measured the accuracy of
a large set of opponent models to answer our first research
question, the results of which are shown in Figure 2–4.

Accuracy over Time

The graphs in Figure 2 show the average accuracy of
the opponent models over time. The left graph shows
the accuracy over time when playing against predictable
opponents; the right graph shows the results again the
unpredictable opponents.

First of all, it is surprising to see that many of the state of
the art models actually become less accurate over time. The

main cause of this phenomenon is that the bids presented
later on in the negotiation are incorrectly handled. The
value models and frequency models for example, treat every
received bid the same way, independent of the time it is
received. In effect, this means that when the opponent is
conceding, the models increase the estimated utility of less
preferred outcomes. This does not hold for the CUHKAgent
Value Model, which incidentally also performs best, as this
model only takes the first 100 unique bids into account.
For Bayesian models, the problem is that they assume very
particular opponent behavior, which is likely to become
increasingly invalid as time progresses, and they perform
very poorly as a result. When we disregard this shortcoming
by considering the perfect Bayesian models, they perform
better, and their accuracy then increases monotonically over
time. However, even in this case, they come second to the
CUHKAgent Value Model by a large margin.

Another interesting result is that despite their simplicity,
the frequency models and value models perform best against
both types of opponents. We believe that this due to the
small number of assumptions they make; i.e., only assuming
that values with high utility are offered relatively more often.
As the right graph illustrates, these models are rather robust,
even though it is clear from the final accuracy that it is harder
to model unpredictable agents.

The lesson to take away from this is that to be robust,
opponent models need to minimize their assumptions about
the opponent’s behavior. Of course, every model needs to
make certain educated guesses, but when it does, the model
should at least be highly adaptable, paying close attention
to the opponent’s strategy. The predictions should be revised
if, over time, the opponent behavior does not seem to fit the
assumptions anymore.

Accuracy per Opponent

We now analyze in more detail the accuracy of the
best performing models in every category against different
opponents; that is, the best value model (CUHK Value Model),
the best frequency model (Smith Frequency Model), and the
best performing Bayesian models (Perfect Scalable Bayesian
Model and IAMhaggler Bayesian Model). The results are
shown in Figure 3. While the best value model perform best
on average, there is no opponent model that dominates all
others.

An interesting result is that the technique of the best value
model to only take a limited amount of bids into account
does not always pay off. The model performs poorly against
the non-conceding agents, who show their most preferred
values later in the negotiation. This means that the model
can be fooled, which can be a concern in practice.

Accuracy per Scenario

We are also interested in exactly how the specifics of the
negotiation scenario influences accuracy. We focus on the



Figure 2. Pearson correlation over time against predictable (conceding) opponents and the unpredictable opponents (other agents). The numbers above a
cluster of lines are ordered from high to low accuracy.

Figure 3. Accuracy of four opponent models against different types of opponents, measured using two accuracy measures.

same four opponent models as above, and evaluate their
accuracy against predictable opponents. Figure 4 summarizes
the results. Note that we consider the average accuracy over
all four models here, but we have verified that our conclusions
also hold for each model individually.

One of the first observations is that there is a high variance
in accuracy over different scenarios, and each factor seems
to be equally important to consider. This underlines the
importance of using a balanced set of negotiation scenarios.
Clearly, domain size is a significant factor, as the domain
size relates directly to the amount of unknown variables to
be learnt. But also for the bid distribution and opposition
we find a strong correlation with learning accuracy. The
reasons for both are very similar: when the bid distribution
or opposition is low, there are many outcomes of similar
utility because the average distance to the Pareto frontier is
small. This in turn, entails that the values of an issue are
relatively close to each other in utility, which is harder for
the models to learn than more extreme preferences.

B. Evaluating the Accuracy vs. Performance Relationship

Our second goal was to investigate the relationship between
accuracy and performance of opponent models. Figure 5
visualizes the results for two accuracy measures: Pearson
correlation of bids and difference in Pareto frontier surface.

Figure 4. Accuracy of the best opponent models on varying scenarios.

The performance is expressed in terms of obtained utility by
the agents that employ the opponent models, normalized such
that the Worst model’s performance is zero, and the Perfect
model’s performance is 1. Using no model falls somewhere in
between, since this is still better than using a wrong model.

The first thing to notice is the cluster of the best performers:
the value and frequency models. The performance of these
models is already quite close to that of the perfect model. To
put it differently, we cannot anticipate a significant improve-
ment from any other preference modeling technique over
what is already achieved by these rather simple techniques.

The other types of opponent models also form clusters
in the diagram. The (Perfect) Bayesian Model perform even
worse than not using an opponent model; and only slightly
better than simply assuming opposite preferences.

The almost linear relationship between accuracy and



Figure 5. Accuracy versus performance for all opponent models. Accuracy is measured using the difference in Pareto frontier surface (range [0, 1], where
0 is best) and Pearson correlation of bids (range [−1, 1], where 1 is best).

performance is the second thing that stands out. This shows
that there is always added value to increasing the accuracy
of an opponent model, even when the accuracy is already
high. Nevertheless, the added value will necessarily be small,
as the performance is already at 90% of its upper limit when
the accuracy is at 70%.

An interesting comparison can be made with the results of
the previous experiment. Figure 2 clearly shows the decrease
in accuracy over time of many of the frequency and value
models. How is it that they still manage to perform close
to optimally? The reason is that many negotiations end in
agreement, and this occurs somewhere before the deadline by
definition. In these cases, the models are updated with less
bids of poor value for the opponent. Therefore, the deciding
factor in the success of the value and frequency models lies
in their higher initial accuracy.

Finally, it is interesting that the results for the Pearson
correlation of bids and difference in Pareto frontier surface
metrics are in fact very similar when we ignore their
orientation. Despite that the latter only measures the quality
of the Pareto optimal frontier instead of the full outcome
space, it seems to be a suitable predictor for performance as
well. We explore this idea further in the next paragraph.

C. Evaluating the Usefulness of Accuracy Measures

Our final goal was to find a strong predictor for perfor-
mance of opponent models, since there are so many different
accuracy measures to pick from. Towards this end, we applied
all of the accuracy measures shown in Table II and analyzed
their correlation with performance; see Figure 6.

The dark line represents the predictive power of each
accuracy measure, which is defined by the absolute corre-
lation coefficient |ρ| between the accuracy measure score
and the model’s performance. We take the absolute value
because some accuracy measures are negatively correlated
with performance, while others are positively correlated.

The light grey line indicates what portion of the bid space
is learnt by each accuracy measure. For this, we calculate the

Figure 6. Absolute correlation between accuracy measure scores and two
other measures: performance and “Pearson correlation of bids”.

absolute correlation coefficient |ρ| between each accuracy
measure and the Pearson correlation of bids. At the lower
end of the scale we see the accuracy measures that only
consider issue weights, which means they are not correlated
at all with learning the space as a whole. These measures
should not be used to make predictions about performance
because they do not convey enough information about the
accuracy of a model.

We found three measures that correlate strongly with per-
formance, as indicated by the dark grey line, and therefore are
good performance predictors; these are: difference in Pareto
frontier surface, Pearson correlation of bids, and Ranking
distance of bids. These measures codify sufficient information
about the relationship between the real preferences and the
learned preferences, and therefore, we can translate these
notions to statements about performance. The performance
of the top three measures are significantly better than the
other measures (one-tailed t-test, p < 0.01).

Even though it only quantifies the similarity of the Pareto
frontier, the difference in Pareto frontier surface metric
performs best of all (one-tailed t-test, p < 0.02). This means
that for an opponent model, it is sufficient to predict which



bids are Pareto optimal. The reason being that the Pareto
frontier is a crucial component of the outcome space, and that
many bidding strategies seek Pareto optimal agreements. It is
less computationally expensive to calculate than the ranking
distance of bids, and it has the lowest standard deviation
between the runs. Furthermore, it is defined for all inputs, in
contrast to the Pearson correlation measures, whose results
are undefined when all bids are estimated to have the same
utility. Therefore, we recommend the difference in Pareto
frontier surface as a suitable measure for accuracy.

V. RELATED WORK

We consider two categories of related work. The first
category consists of work evaluating the accuracy of op-
ponent models. Carbonneau et al. [5] calculate the Pearson
correlation between the real and estimated utility of the
opponent’s next bid. Hindriks and Tykhonov [6] extend this
approach by measuring the Pearson correlation of the whole
outcome space and discuss analogous definitions for the
ranking distance. Our method incorporates both measures.

An alternative approach is to measure the distance between
elements of two preference profiles. For example Jazayeriy
et al. [7] introduce such measures for the learning error of
issue weights. We have incorporated these measures in our
method, and we also apply the same measures to quantify
the similarity between two full bid spaces.

Finally, there exist accuracy measures tailored to specific
learning methods. Buffett and Spencer [4] for example, define
a metric for opponent models that use Bayesian learning. The
measure is defined as the average likelihood that the correct
hypothesis is chosen from the set of candidate hypotheses.
Since we employ models that are based on a wide range of
learning techniques, we do not incorporate measures specific
to a particular learning method.

The second category of related work quantifies the relation-
ship between accuracy and performance. In [1], Coehoorn
and Jennings introduce a model that estimates the opponent’s
issue weights and investigate the influence of small prediction
errors on performance. Our method takes this a step further,
as we analyze the relation between an exhaustive set of
accuracy measures – including accuracy of the issue weights
– and performance.

VI. CONCLUSION AND FUTURE WORK

In this work we have evaluated a large set of accuracy
measures to identify the best method to predict the perfor-
mance of opponent modeling techniques in negotiation. We
introduced a procedure to quantify the accuracy of state of
the art opponent models and we identified their strengths
and weaknesses. One of our main conclusions is that there
is an almost linear correspondence between accuracy and
performance of models when we employ the proper accuracy
measures. Moreover, the best models are close to being

perfectly accurate, which means there is only limited room
for improvement with regard to performance.

Surprisingly, the accuracy of most opponent models decays
over time due to the incorrect handling of the opponent’s
less preferred bids, which are usually offered at a later stage
of the negotiation. Especially then, good strategy prediction
is needed in order to be effective at preference modeling.

Finally, we analyzed how well accuracy measures can
predict the performance of an opponent model. We concluded
that three measures in particular are useful predictors of
performance, and we found that this can be best achieved by
limiting the analysis to difference in Pareto frontier surface
between the real and the learned bid space.
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