
Search Algorithms for Automated

Negotiation in Large Domains

Thimjo Koça1*, Dave de Jonge2 and Tim Baarslag1

1Intelligent & Autonomous Systems Group, Centrum Wiskunde
& Informatica, Amsterdam, The Netherlands.

2Artificial Intelligence Research Institute, IIIA-CSIC, Bellaterra,
Spain.

*Corresponding author(s). E-mail(s): thimjo.koca@cwi.nl;
Contributing authors: davedejonge@iiia.csic.es;

T.Baarslag@cwi.nl;

Abstract

This work presents several new and efficient algorithms that can be used
by negotiating agents to explore very large domains. The proposed algo-
rithms can search for bids close to a utility target or above a utility
threshold, and for win-win outcomes. While doing so, these algorithms
strike a careful balance between being rapid, accurate, diverse, and scal-
able, allowing agents to explore spaces with as many as 10250 possible
outcomes on very run-of-the-mill hardware. We show that our methods
can be used to respond to the most common search queries employed
by 87% of all agents from the Automated Negotiating Agents Com-
petition between 2010 and 2021. Furthermore, we integrate our tech-
niques into negotiation platform GeniusWeb in order to enable existing
state-of-the-art agents (and future agents) to handle very large domains.

Keywords: automated negotiation, large domain, search algorithm

1 Introduction

As more and more processes and information are being digitized, the duration
and complexity of business processes can be reduced in new ways. Automated
negotiation is a promising example of such a technology that can bring benefits

1

2 Search Algorithms for Automated Negotiation in Large Domains

to various fields, including procurement [1], supply chain management [2], and
resource allocation [3].

Such negotiations can take place over many issues at the same time; for
instance, in the pharmaceutical sector it is common for a company to procure
hundreds of products from other vendors. For example, suppose Bob is inter-
ested to procure 100 pharmaceutical products from Sally – each characterized
by a unit price and a quantity. Even if there are just ten possible unit prices
and quantities to choose from per product, the outcome space of all potential
bids is already enormous with 100100 possibilities.

Fig. 1 In a negotiation domain with 100 products, it is easily possible to have an outcome
space of 100100 possible deals.

When Bob proposes a new offer to Sally, he will typically define a number of
criteria that his next offer must fulfill (e.g. targeting a utility goal, guaranteeing
certain utility bounds, or conforming to trade-offs between his own preferences
and Sally’s). Bob then faces the problem of searching an enormous outcome
space for a bid that best fits these criteria. Moreover, Bob and Sally keep their
preferences private, so to increase the chances in achieving an agreement, he
needs to: (a) exchange a high number of offers with Sally; (b) propose offers
that, over time, are qualitatively as diverse as possible, i.e. sample the outcome
space broadly to try and chance upon an offer to Sally’s liking. Hence, Bob
needs a scalable way to search the huge outcome space in a manner that is
timely, accurate, and diverse.

However, it is a challenging task to design a search method that satisfies
these four properties. First, the search process for a satisfactory bid typi-
cally translates to a non-tractable combinatorial problem that is impossible to
solve in an exact or even approximate manner. Second, there are inescapable
trade-offs between the desirable properties: for instance, searching through
exhaustive enumeration may be highly accurate and diverse, but will not be
scalable.

Currently, search mechanisms proposed by state-of-the-art agents and auto-
mated negotiation platforms perform poorly in very large outcome spaces (as
we will see in Section 5), because they assume that either: (a) the outcome
space is small enough to be enumerated and explored rapidly [4, 5], which
does not scale; (b) the outcome space be explored effectively by random sam-
pling [6–8], which is not true in very large spaces (see Section 5.3.2); or (c)
search goals can be defined deterministically for each individual negotiation

Search Algorithms for Automated Negotiation in Large Domains 3

issue in isolation [9], which leads to poor accuracy in finite domains and narrow
exploration of the outcome space.

In this work, we propose several algorithms that can explore outcome
spaces with as many as 10250 possible outcomes when the user’s preferences
are expressed by the widely-used additive utility function (i.e. with no issue
interdependencies) [10–14]. In particular, for agents that seek a certain level
of utility, we propose BIDS (Bidding using Diversified Search): an algorithm
that employs a dynamic-programming approach to exploit the additive struc-
ture of the utility function. For agents that seek offers lying within a utility
interval, we propose Sampling-BIDS: an algorithm that build upon BIDS to
sample the outcome space rapidly. Finally, for agents that aim for preference
trade-offs with their opponent, we propose IPS (IterativePareto Search) which
combines partial solutions iteratively to construct offers.

We show that our algorithms are accurate, i.e. they can identify approxi-
mate solutions with arbitrary error bounds to the associated search problems.
Their search is also diverse by exploring the outcome space broadly, i.e. by
offering a wide range of options to the opponent. Furthermore, by survey-
ing the search queries of participants of the Automated Negotiating Agents
Competition (ANAC) we show that our methods are generally applicable: our
algorithms can serve the three most common search queries employed by 87%
of ANAC agents — the utility-lookup query, the utility-sampling query, and
the trade-off query. Finally, we integrate our algorithms into the negotiation
platform GeniusWeb and show that state-of-the-art agents can negotiate over
domains that are 25 times larger than with their original search algorithms.

2 Problem Setting

We propose algorithms that tackle three search queries that are commonly
used by negotiating agents in a manner that is scalable, rapid, accurate, and
provides diversity. To do so, we need to first formalize each of the queries and
discuss the associated challenges.

2.1 Negotiation Model

Agents in our setting negotiate over a finite set of issues I = {1, . . . , n} and
each issue i ∈ I has an associated finite set of values Vi. All possible combina-
tions of values form the outcome space, which is denoted by Ω =

∏
i∈I Vi. For

instance, in a scenario where the dates of 100 different shipments I are nego-
tiated, the value set Vi for each shipment i would span 365 possible delivery
dates, resulting in an outcome space with 365100 possibilities. Each element
ω ∈ Ω is called a negotiation outcome and whenever it is convenient we will
denote the component of ω corresponding to issue i ∈ I by ωi ∈ Vi.

The private preferences of each party over Ω are expressed through a utility
function u : Ω → [0, 1]. We focus in this work on utility functions that are

4 Search Algorithms for Automated Negotiation in Large Domains

additive with respect to the utilities of each issue:

u(ω) =
∑
i∈I

λi · ui(ωi)

where λi ≥ 0∧
∑

i∈I λi = 1 are the weights defined for each issue, and ui : Vi →
[0, 1],∀i ∈ I are utility functions defined over each individual issue. Additive
utility functions are widely used [10–14] and, as we will see in Section 4, their
structure allows for some scalable, rapid, accurate, and diverse search of the
outcome space. Note that additive utility functions assume no dependencies
between individual issues, but they can still encode rather complex preference
structures as each ui can be defined arbitrarily. In the rest of this paper u
denotes an agent’s own utility function, while u′ denotes the utility function
of the opponent.

Given the structure of the domain, a negotiation protocol (e.g. the Alter-
nating Offers Protocol (AOP) [15]) regulates how the agents exchange offers
during the negotiation. We consider protocols that allow in each round the
communication of one or several bids, i.e. possible outcome(s) ω to agree upon,
or a special message — for instance, a message that indicates acceptance of
the opponent’s latest offer, or a message informing a walk-away.

2.2 Typical Search Queries

There are many negotiating agents in literature, each with their own nego-
tiation strategy and learning methodologies [18, 5, 12, 24, 19, 11]. However,
despite the richness of possible negotiating strategies, when an agent decides
on a bid to propose next, it generally complies to the following pattern: it
first sets some criteria that the proposed bid needs to satisfy – for instance an
appropriate utility target, a suitable utility interval, or a particular trade-off
with the opponent’s interests — and subsequently tries to identify the most
appropriate bids that meet one of these three search queries (illustrated in
Fig. 2).

The utility-lookup is the simplest among the queries. Agents define in each
round a utility target ut ∈ R and search for bid(s) with utility as close as
possible to the target utility (illustrated by the blue line in Fig. 2):

argmin
ω∈Ω

|u(ω)− ut| (1)

The target can be determined through a time-based strategy (e.g. Agent
K [16]), a behavior-based strategy (e.g. Nice-Tic-For-Tac Agent [17]), or
through some other criteria (e.g. through a resource-based tactic [18]).

The second query is the sampling-utility query within predefined utility
bounds. In each round, agents search for one or more bids with utility that
lies within a utility interval [umin, umax] ⊆ R (illustrated by the red rectangle
in Fig. 2):

S ⊆ {ω ∈ Ω : u(ω) ∈ [umin, umax]} (2)

Search Algorithms for Automated Negotiation in Large Domains 5

▪ Target utility
▪ Utility interval
▪ Trade-off

Fig. 2 Illustration of the three most common search queries over a utility diagram. The
x-axis shows the agent’s own utility and the y-axis the opponent’s utility. Dots represent
possible bids and the continuous curve represents the Pareto-frontier. The blue line illustrates
the possible picks for a target utility, the red rectangle depicts the possible options for the
utility-sampling query, and the green rectangle illustrates the trade-off query of maximizing
the opponent’s utility within the red rectangle.

Most works in the literature determine the bounds of the interval through a
time-based strategy (e.g. Agent M [7]).

The third query considers certain trade-offs with the opponent while gener-
ating a new bid. Agents search for bids that optimize some objective function
f : Ω → R, while aiming for at least a minimum utility ut for themselves
(illustrated by the green rectangle in Fig. 2).

argmin
ω∈Ω

f(ω)

subject to u(ω) ≥ ut

(3)

The objective function f can model the opponent’s preferences in some way,
for instance by estimating the opponent’s utility function (e.g. The Fawkes
Agent [19]) or by minimizing distance to the opponent’s offers (e.g. Similarity-
Tactic [20]). Estimations can be obtained to produce f , either by making use
of some opponent modelling algorithms [21], or using background knowledge
about the domain [22, 23].

The three queries are rather generic: in fact, when surveying the search
queries used by the participants of Automated Negotiating Agents Compe-
tition (ANAC) [10] since its inception (2010-2021), we find that 87% of all
participating agents use one of the three identified queries (see Table 1). Given
their ubiquity, it is important to have a generic, well-founded way to produce
answers to these queries, either as part of a well-known negotiation frame-
work (for instance Genius [4], or NegMAS [6]) or as a module available to
future agents. This would aid to decouple the negotiation strategies of agents
from their search methods, and as a result make the comparison of negotiation
strategies easier.

6 Search Algorithms for Automated Negotiation in Large Domains

T
a
b
le

1
T
y
p
ic
a
l
se
a
rc
h
q
u
er
ie
s
u
se
d
b
y
A
N
A
C

a
g
en

ts
.

S
e
a
rc
h

q
u
e
ry

%
o
f
a
g
e
n
ts

p
e
r
A
N
A
C

y
e
a
r

to
ta

l

2
0
2
1

2
0
1
8

2
0
1
7

2
0
1
6

2
0
1
5

2
0
1
4

2
0
1
3

2
0
1
2

2
0
1
1

2
0
1
0

u
ti
li
ty
-l
o
ok

u
p

23
%

57
%

14
%

17
%

4%
9%

1
1
%

2
0
%

3
3
%

1
3
%

2
0
%

u
ti
li
ty
-s
am

p
li
n
g

33
%

19
%

52
%

78
%

70
%

50
%

4
5
%

4
0
%

5
6
%

2
9
%

5
0
%

tr
ad

e-
off

33
%

19
%

5%
5%

13
%

27
%

2
2
%

3
0
%

1
1
%

2
9
%

1
7
%

ot
h
er

11
%

5%
29
%

0%
13
%

14
%

2
2
%

1
0
%

0
%

2
9
%

1
3
%

Search Algorithms for Automated Negotiation in Large Domains 7

2.3 Design Requirements of Search Algorithms used by
Negotiating Agents

Search algorithms that can answer the three discussed queries needs to pro-
vide a good balance between four requirements. First, the search need to be
scalable, since agents need to be able to negotiate in realistic scenarios, where
negotiation can take place over more than 100 issues (e.g. in fields such are
supply-chain management and procurement). Second, algorithms need to be
accurate so that negotiation strategies operate with minimal error. Third, since
there is usually a deadline providing pressure to come to a conclusion, search
algorithms need to be rapid so that the agents can exchange a high number of
offers and therefore increase their chances in achieving an agreement. Fourth,
the produced bids need to be diverse, so that there is a higher chance to
achieve a Pareto efficient agreement (i.e. an agreement beyond which parties
can improve their benefits only by harming their opponent).

Example 1 (Importance of diversity) Suppose a buyer negotiates with the seller to
obtain a TV, considering the issues of price (low, average, high) and quality (low,
moderate, high). The buyer aspires for a high-quality TV at low price, while the seller
seeks a high price and is indifferent about the quality. If the buyer concedes naively
among the two issues he might offer an average price for a moderate-quality TV,
or even concede to paying a high price for a low-quality TV. By not exploring the
outcome space properly, the option of a high-quality TV for a high price is missed,
which would be a better deal for the buyer and still acceptable for the seller.

Designing search algorithms that satisfy such requirements is challenging,
mainly because of two reasons. First, the optimization problems associated
with our three queries are hard to solve exactly and difficult to approximate
rapidly. Second, guaranteeing all four requirements at once is difficult because
often there are trade-offs between them. For instance, enumerating all possible
outcomes of an outcome space, as in GeniusWEB [4], provides high accuracy
and some diversity but is not scalable. Similarly, a search implemented through
random sampling, as in NegMas [6], is scalable, diverse, and rapid but becomes
rather inaccurate as the number of negotiation issues increases.

3 Related Work

Most works in the fields of automated negotiations focus on the design of
negotiation strategies and protocols and abstract away the method of searching
through the outcome space.

Jonker and Treur [9] propose the attribute-planning method, the earliest
outcome-space search algorithm we are aware of. The authors in each round
determine a utility target for the offer to be proposed. After that, they use
the set target and a heuristic to define a utility target for each individual
issue (additive utility functions are used). The method scales well and is rapid.
However, it assumes continuous values for each issue and it can have accuracy

8 Search Algorithms for Automated Negotiation in Large Domains

T
a
b
le

2
C
o
m
p
a
ri
so
n
o
f
se
a
rc
h
a
lg
o
ri
th

m
s
fr
o
m

li
te
ra
tu

re
w
it
h
re
sp

ec
t
to

th
e
fo
u
r
d
es
ig
n
re
q
u
ir
em

en
ts
,
a
s
w
el
l
a
s
th

ei
r
sp

a
ce

a
n
d
ti
m
e
co

m
p
le
x
it
y.

In
th

e
ta
b
le
,
|I
|r

ep
re
se
n
ts

th
e
n
u
m
b
er

o
f
n
eg

o
ti
a
ti
o
n
is
su

es
,
|V

|r
ep

re
se
n
ts

th
e
h
ig
h
es
t
n
u
m
b
er

o
f
p
o
ss
ib
le

v
a
lu
es

fo
r
o
n
e
is
su

e
(|
V
|=

m
a
x
i
|V

i
|)
,
a
n
d

|I
m
(d
)|

is
a
n
u
m
b
er

re
la
te
d
to

th
e
d
is
cr
et
iz
a
ti
o
n
o
p
er
a
to
r
d
th

a
t
B
ID

S
u
se
s
(s
ee

S
ec
ti
o
n
4
.1
)
fo
r
m
o
re

d
et
a
il
s.

S
c
a
la
b
le

R
a
p
id

A
c
c
u
ra

te
D
iv
e
rs
e

S
p
a
c
e

T
im

e
B
ID

S
✓

✓
✓

✓
O
(|I
|·|
I
m
(d
)|)

O
(1
)

A
tt
ri
b
u
te
-P

la
n
n
in
g
[9
]

✓
✓

✓
/
×

×
O
(1
)

O
(|I
|·|
V
|)

E
n
u
m
e
ra

ti
o
n

[4
]

×
×

✓
✓

O
(|I
|·|
V
|)

O
(|V
||I

|)
R
a
n
d
o
m

S
a
m
p
li
n
g
[6
]

✓
✓

×
✓

O
(1
)

O
(1
)

M
C
T
S

[2
4
]

✓
×

✓
✓

O
(|V
||I

|)
O
(|V
||I

|)
N
B

3
[2
5
]

✓
×

✓
✓

O
(|V
||I

|)
O
(|V
||I

|)
M

O
B
A
N
O
S

[2
2
]

✓
×

✓
✓

O
(|V
||I

|)
O
(|V
||I

|)

Search Algorithms for Automated Negotiation in Large Domains 9

problem when applied to discrete issues. Moreover, the heuristic used to alter
the target utility for each issue provides almost no diversity.

The well-known negotiation platform GENIUS [4] provides a default search
method through which all possible outcomes are enumerated during a search
process. Enumerating outcomes provides high accuracy and can be done in a
way that is also diverse. Nonetheless, the method is slow for moderately large
outcome spaces and cannot scale to large outcomes since it has an exponential
time complexity with respect to the number of negotiation issues.

In NegMas [6] the proposed search method is based on random sampling.
As a consequence, the method is scalable and has high diversity. However,
random sampling has an inherent trade-off between rapidness and accuracy (in
the probabilistic sense). In NegMas since we are in the context of negotiations
the method is tuned to be rapid and as a result it is not accurate on very large
spaces.

Participants of ANAC 2014 [26] were given the task to negotiate over large
outcome spaces, under nonlinear preferences. Several meta-heuristics were pro-
posed to implement the search, including simulated annealing [7] and a genetic
algorithm [8]. Similarly to random sampling, the proposed methods are scal-
able, provide high diversity and are tuned to be rapid. However, their accuracy
deteriorates as the number of negotiation issues increases.

Buron et al. [24] propose a bidding strategy that uses Monte-Carlo Tree-
Search (MCTS) to explore the outcome space. Their method is scalable,
accurate and provides diversity. However, it is heavily coupled with their
negotiation strategy and is also designed to operate under no time pressure.

De Jonge and Sierra [25] propose NB3, a multi-objective variant of Branch
and Bound, designed specifically for negotiations. It aims to search for good
proposals in large non-linear domains, taking into account the utility values of
multiple agents. Their algorithm generates a search tree, in which each node
ν represents a partial offer. For each of these tree nodes ν and each agent ai,
the algorithm calculates an upper bound ubi(ν) and a lower bound lbi(ν). The
upper bound ubi(ν) represents the highest utility for ai among all offers that
are extensions of this partial offer (i.e. among all branches that are descendants
of ν), while the lower bound lbi(ν) represents the lowest utility for ai among
all offers that are extensions of this partial offer. Furthermore, NB3 calculates
a so-called expansion heuristic h(ν), which depends on the lower and upper
bounds, and which, at each iteration of the algorithm, determines which node
will be expanded next. NB3 can be adapted to linear domains, however, as
we will see later does not scale as well as the algorithms we propose here.
Moreover, because it is designed as an anytime algorithm, it can be arbitrarily
inaccurate.

De Jonge et al. [22, 23] propose MOBANOS (Multi-OBjective ANd/Or
Search), a method to obtain the Pareto frontier of a multi-objective combina-
torial problem based on And/Or search [27] and an iterative combination of
partial solutions. The algorithm is designed to work over domains with non-
linear utility functions and hard constraints. It can be accurate and diverse,

10 Search Algorithms for Automated Negotiation in Large Domains

and scales well as long as the constraints do not involve too many variables.
While this certainly applies to linear domains (which have no hard constraints
at all), it turns out that it does not scale as well as our IPS algorithm, which
is specifically tailored to purely linear domains.

Amini and Fathian [28] compare the performance of different stochastic
search techniques in certain scenarios, with space sizes ranging from 59, 049 to
1, 048, 576 possible outcomes. Lastly, there is a body of works which assumes
dependencies between issues, represents the dependencies by graphs, and pro-
poses negotiating strategies (and as a consequence search techniques) over
these issues [29–31]. However, these methods do not scale to the space sizes
we are interested in.

4 Searching Very Large Outcome Spaces

We propose BIDS (Bidding using Diversified Search), Sampling-BIDS, and
IPS (Iterative Pareto Search) — three algorithms that exploit the additive
structure of utility functions to rapidly search very large outcome spaces while
providing accuracy and diversity. While BIDS answers the utility-lookup query,
Sampling-BIDS tackles the utility-sampling query, and IPS the trade-off query.
To provide tractable solutions, BIDS discretizes the codomain of the util-
ity functions and applies a dynamic-programming-based search to obtain an
approximate solution to the associated optimization problems. With the same
aim, IPS discretizes the codomain of the utility functions and identifies the
solution that best answers the trade-off query by iteratively constructing the
Pareto Front.

4.1 Looking for bid(s) that satisfy a utility target
through BIDS

We recall from Section 2.2 that the utility-lookup query is defined by:

argmin
ω∈Ω

|u(ω)− ut| (4)

A useful property of the utility-lookup query is that its solution can be
expressed through a recurrent relationship among the issues. To formalize the
idea we first need to consider partial outcomes: A partial outcome ω|I is an
outcome defined over only some issues I ⊂ I, while ΩP is the set of all partial
outcomes over all possible subsets of issues. Furthermore, given a utility func-
tion u : Ω→ [0, 1], we will denote by uP : ΩP → [0, 1] the extension of u over
ΩP :

uP (ω|I) =
∑
i∈I

λi · ui(ωi) (5)

We define also the concatenating operator + through which a value v ∈ Vj for
an issue j ∈ I \ I is attached to a partial outcome ω|I= (ω1, . . . , ωi):

ω|I+vj = (ω1, . . . , ωi, vj). (6)

Search Algorithms for Automated Negotiation in Large Domains 11

Given this and denoting by σk(ut) = (ω∗
1 , . . . , ω

∗
k) the solution of Eq. 1 for

a target utility ut when the first k issues of Ω are used, the recurrent equation
of utility-lookup query is given by:

ω∗
k =

{
argminω1∈V1

|u(ω1)− ut|, k = 1

argminωk∈Vk
|u[σk−1(ut − uP (ωk)) + ωk]− ut|, otherwise

(7)

Intuitively, if we suppose we know the solutions of Eq. 1 for k − 1 issues
and all possible utility thresholds no larger than ut, then to solve the problem
for k issues we have to simply pick the value of the kth issue that minimizes
our objective function.

An algorithm that uses (7) to solve Eq. 1 will have exponential time
complexity with respect to the number of negotiation issues since the utility
codomain is continuous and therefore the sub-problems created while solving
the original problem are almost always non-overlapping. In other words, to
provide a solution to recurrence (7), exponentially many sub-problems need to
be solved.

Example 2 (Non-overlapping sub-problems) Suppose we want to find a bid close to
utility target ut = 0.7 in a negotiation over only three products of the example
in Fig. 1. To calculate σ3(0.7), 100 sub-problems of calculating σ2(·) need to be
solved, each requiring yet another 100 partial solutions to σ1(·). In general, since each
issue-utility ranges over a continuous interval, there will be no overlap between the
sub-problems that need to be solved, resulting in 1003 calculations in the worst case.

The key to a tractable solution of Eq. 1 is to discretize the utility codomain
and induce optimal sub-structure to the problem. BIDS does exactly this (see
Algorithm 1) and as a consequence, can apply dynamic programming to cal-
culate an approximate solution. To discretize the codomain while preventing
negative utility thresholds from arising, BIDS uses the following discretization
mapping:

dp(ut) =

{
⌊ut⌉p, u ≥ 0,

0, otherwise
(8)

where ⌊⌉p : R→ Q rounds a real number at its pth decimal.
The table used by dynamic programming has |I|·|Im(d)| entries, where |I|

is the number of issues and |Im(d)| is the number of image points of d (i.e.
points in the grid defined over the utility codomain). As a consequence, the
space computational complexity of BIDS is O(|I|·|Im(d)|). Moreover, given
that there are no more than |V | possible values per issue, the time complexity
of an implementation of BIDS that computes the dynamic programming table
before the beginning of the negotiation and only searches the table in run-time
is O(|I|·|V |·|Im(d)|) for the table-construction and O(1) to search it during
run-time. Lastly, there are trade-offs between the approximation accuracy of
BIDS and its computational complexity.

12 Search Algorithms for Automated Negotiation in Large Domains

Algorithm 1 BIDS

Signature: BIDSk(ut)
1: if k = 1 then
2: σk(ut)← argminω1∈V1

|uP (ω1)− ut|
3: else
4: ω∗

k ← argminωk∈Vk
|uP [BIDSk−1(dp(ut − uP (ωk))) + ωk]− ut|

5: σk(ut) = ω∗
k +BIDSk−1(dp(ut − uP (ω∗

k)))
6: end if
7: return σk(ut)

4.1.1 Trading Computational Complexity for Approximation
Accuracy

For simplicity, assume we use a regular grid over the utility codomain, with
each point being 10−p apart from its closest neighbors and where p ∈ N is
the precision parameter which we can tune. Then the approximation error the
method introduces in each iteration is at most 10−p. Given that there are
|I| issues, the algorithm runs |I| iterations for each solution. Therefore, the
absolute error the method can introduce is |I|·10−p, which means the higher
the precision, the smaller the introduced error. On the other hand, having grid
points 10−p apart implies that the grid is composed of 10p points, which means
the space complexity of the algorithm is O(|I|·10p) and the time complexity
of the table-construction is O(|I|·|V |·10p). Consequently, the more precise the
algorithm is, the more space and construction time is going to require.

4.2 Using BIDS to implement the Sampling-Utility Query

As noted in Section 2.2, the equation of the sampling-utility query is:

S ⊆ {ω ∈ Ω : u(ω) ∈ [umin, umax]} (9)

BIDS can be used as a building block for an algorithm that addresses the
sampling-utility. Algorithm 2 presents Sampling-BIDS, a method that provides
ns samples within a specified utility interval I = [umin, umax] in scalable, rapid,
accurate, and diverse manner. The algorithm uses some arbitrary distribution
— typically uniform— to sample ns utility targets Ut ⊂ I (line 1 in the pseudo-
code) and then uses BIDS to identify bids the utility of which is as close as
possible to each of the targets. Its space complexity is the same as BIDS, i.e.
O(|I|·|Im(d)|), while the time complexity of an ”offline” implementation is
O(ns).

Search Algorithms for Automated Negotiation in Large Domains 13

Algorithm 2 Sampling BIDS

Signature: Sampling-BIDS(ns, [umin, umax])
1: Ut ← determineUtilSamples(ns, umin, umax)
2: B ← ∅
3: for ut ∈ Ut do
4: B ← B ∪ {BIDSn(ut)}
5: end for
6: return B

Signature: determineUtilSamples(ns, umin, umax)
1: Ut ← ∅
2: for i ∈ {1, . . . , ns} do
3: Ut ← Ut ∪ uniform(umin, umax)
4: end for

4.3 Trading off utility with the opponent using IPS

The trade-off query can be expressed as a constrained optimization:

argmin
ω∈Ω

f(ω)

subject to u(ω) ≥ ut

(10)

We focus on the most common form of the trade-off query, in which the
objective function represents a model of the opponent’s utility:

argmin
ω∈Ω

u′(ω)

subject to u(ω) ≥ ut

(11)

where u′(ω) =
∑

i∈I λi · u′
i(ωi) and u(ω) =

∑
i∈I λi · ui(ωi).

Agents that use this query, try to optimize a model of their opponent’s
preferences given some restrictions on their own utility.

We propose to tackle the trade-off query through IPS (see Algorithm 3),
an approach that combines the discretization idea introduced in Section 4.1
with the Pareto front construction of the MOBANOS algorithm [22, 23].

Example 3 (Application of IPS) To understand how IPS works, suppose we have a
domain with two issues {i1, i2}, four possible values per issue {1, 2, 3, 4}, a utility
function u′ that is to maximize, another utility function u that serves as a constraint,
and a utility threshold ut = 0.8.

IPS first generates all partial bids, composed only of i1, calculates and rounds
their utilities with respect to both u′ and u, and filters out dominated solutions (see
Table 3). The same procedure is followed for partial solutions defined over i2. Next, it
constructs the Cartesian product of the dominant partial bids, calculates and rounds
the utilities of the full bids and filters out dominated solutions (see Table 4). In this

14 Search Algorithms for Automated Negotiation in Large Domains

Partial solutions Utility values
(1 , ·) (0.48 , 0.5)
(2 , ·) (0.3 , 0.2)
(3 , ·) (0.6 , 0.3)
(4 , ·) (0.54 , 0.25)
(· , 1) (0.28 , 0.35)
(· , 2) (0.2 , 0.25)
(· , 3) (0.24 , 0.5)
(· , 4) (0.4 , 0.35)

Table 3 Example of applying IPS: First, calculate the rounded utilities of partial
solutions with values assigned only for issue 1 and remove dominated partial solutions.
Repeat the process for partial solutions defined over issue 2.

Pareto set 1 Pareto set 2 Product Utility values
(1 , ·) (· , 3) (1 , 3) (0.72 , 1)

X = (1 , 4) (0.88 , 0.85)
(3 , ·) (· , 4) (3 , 3) (0.84 , 0.8)

(3 , 4) (1 , 0.65)
Table 4 Example of applying IPS: Calculate the Cartesian product of the two Pareto sets
and calculate their rounded utilities. After, remove the dominated solutions.

way it constructs the entire Pareto frontier. Lastly, among the left bids, it identifies
the bid that maximizes u′ given that its evaluation according to u is at least 0.8.

4.3.1 Trading Computational Complexity for Approximation
Accuracy

As with the analysis for BIDS algorithm, assume we use a regular grid over
the utility codomain, with each point being 10−p apart from its closest neigh-
bors and where p ∈ N is the precision parameter (it can be tuned). Then
the approximation error the method introduces in each iteration is at most
10−p. Given that there are |I| issues, the algorithm runs |I| iterations for each
solution. Therefore, the absolute error the method can introduce is |I|·10−p,
which means the higher the precision, the smaller the introduced error. On the
other hand, having grid points 10−p apart implies that the grid is composed
of 10p points, which means the worst-case space complexity of the algorithm
is O(|I|·|V |·10p) and its time complexity is O(|I|·|V |·10p). In other words, the
more precise the algorithm is, the more space and time is going to require.

5 Experiments

Our algorithms permit the implementation of the three most used search
queries for outcome spaces. To evaluate the methods, we have implemented
them in GeniusWEB [4], and we have designed four experiments: In Experi-
ment 1 we investigate how scalable and rapid our algorithms are by allowing
some representative ANAC2021 participants to use them. In Experiment 2 we
isolate the search problem and compare BIDS with other scalable methods in

Search Algorithms for Automated Negotiation in Large Domains 15

Algorithm 3 Iterative Pareto Search

Signature: IPS(ut)
1: for i in I \ {1} do
2: Ri ← removeApproxDominatedElements(Vi)
3: end for
4: PS ← removeApproxDominatedElements(R1)
5: for i in I \ {1} do
6: PS ← removeApproxDominatedElements(PS ×Ri)
7: end for

8: return

{
argmaxω∈PS u′(ω)

subject to u(ω) ≥ ut

Signature: removeApproxDominatedElements(S)
1: D ← ∅
2: for ω ∈ S do
3: for ω′ ∈ S do
4: if ω = ω′ then
5: continue
6: end if
7: if dp[u

P (ω)] ≤ dp[u
P (ω′)] & dp[u

′P (ω)] < dp[u
′P (ω′)] then

8: D ← D ∪ {ω}
9: break

10: end if
11: if dp[u

P (ω)] < dp[u
P (ω′)] & dp[u

′P (ω)] ≤ dp[u
′P (ω′)] then

12: D ← D ∪ {ω}
13: break
14: end if
15: end for
16: end for
17: return S \D

terms of accuracy and diversity. In Experiment 3 we compare Sampling-BIDS
with other scalable methods in terms of accuracy. Lastly, in Experiment 4,
we compare IPS in terms of accuracy with other scalable methods. Note that,
ANAC agents are designed to operate with arbitrary utility functions and as
a result their search methods are more general. However, when utilities are
additive, our algorithms can be used to improve the agents’ performance.

The implementation of BIDS and Sampling-BIDS can be found at
https://gitlab.com/thimjo.koca/bids, while the impementation of IPS can be
found at https://www.iiia.csic.es/∼davedejonge/downloads.

5.1 Setup

We run simulations for scenarios with arbitrary outcome spaces, containing 5
to 2000 issues, with each issue having 10 possible values. We assign to each

https://gitlab.com/thimjo.koca/bids
https://www.iiia.csic.es/~davedejonge/downloads

16 Search Algorithms for Automated Negotiation in Large Domains

Agent Query Used-Method Our algorithm
AgentFO Utility-lookup Enumeration BIDS
AlphaBIU Utility-sampling Enumeration Sampling-BIDS
TripleAgent Trade-off Enumeration IPS

Table 5 Search queries and algorithms for a selection of ANAC2021 agent.

party an arbitrary utility profile over the generated spaces, i.e. an additive
utility with random weights and random issue utilities. For experiments 2, 3,
and 4, we generate 1000 queries for each. All our simulations were run on a
laptop with an Intel i7 core and 16GB of RAM.

In Experiment 1 we identify for each ANAC2021 participant the used search
query (see Table 5) and evaluate the gains in scalability of some representative
agents when using our methods with a precision p = 5. In particular, we
compare the scalability of AgentFO when using BIDS as opposed to its original
search method, AlphaBIU (the winner of ANAC2021) when using Sampling-
BIDS as opposed to its native enumeration method, and TripleAgent (third
place) when using IPS as opposed to using its own search method.

Next, to obtain some accuracy and diversity results for the utility-lookup
query, we compare BIDS to other scalable search algorithms in Experi-
ment 2. In particular, we compare it to attribute-planning [9], an adaptation of
AgentM’s [7] Simulated Annealing that answers the utility-lookup query, and
GANGSTER’s [8] Genetic Algorithm adapted to the utility-lookup query (for
all three search methods we use the parameters proposed by their authors).

In Experiment 3 we investigate the accuracy for methods that tackle the
utility-sampling query. In particular, we compare the accuracy of Sampling-
BIDS to the accuracy of AgentM’s [7] Simulated Annealing, and GANG-
STER’s [8] Genetic Algorithm.

Lastly, to obtain accuracy results for the trade-off query, we compare in
Experiment 3 IPS to Simulated Annealing, and Genetic Algorithm adapted for
the trade-off query. A version of NB3(for which discretization is used and with a
heuristic adapted for the linear case) is also included in the initial experiments,
however, search time for a single query is around 5 minutes, which is too high
for our setting. As a result, we excluded NB3 from our final scalability and
accuracy experiments.

5.2 Metrics to Quantify Scalability, Speed, Accuracy,
and Diversity

Each search algorithm is scored on a number of metrics. To measure scalability,
we count the highest number of issues for which an agent is able to exchange
at least one offer. To also have a sense of how rapid each method is, we run
negotiation sessions that last 2 minutes since ANAC2021 agents are designed
to participate in negotiations of that length.

Accuracy for the utility-lookup query is estimated by calculating the mean
absolute error of the query’s response from the defined target utility. More
specifically, assume we pose queries for n different utility targets Ut = {utj}nj=1

Search Algorithms for Automated Negotiation in Large Domains 17

and get one response per each {ω1, . . . , ωn}. Then the mean error, which we
use to measure accuracy is:

e =
1

n

n∑
j=1

|utj − u(ωj)|

For the utility-sampling query, we measure accuracy by counting the percent-
age of the posed queries that are responded correctly. For instance, suppose
we look for a bid that brings a utility of at least 0.7 according to the utility
function u. In case the search algorithm returns a bid ω with utility u(ω) < 0.7
the response is counted as inaccurate. Otherwise, u(ω) ≥ 0.7 and the response
counts as accurate. For the trade-off query, we use two metrics for accuracy, as
we: (a) count the percentage of the posed queries that satisfy the constraint;
and (b) compare the value of the objective function that IPS brings as opposed
to the rest of the scalable methods (we cannot identify the optimal bid because
of the domain size).

To estimate diversity for the utility-lookup query we quantify the change
for two consecutive bids composition, i.e. we calculate the variability (through
the standard error) of the concession rates among issues for two consecutive
bids. More specifically, we define variability v(ωj) of a bid ωj with respect to
its predecessor ωj−1 in the following way:

v(ωj) =
1

|I|

|I|∑
i=1

[ui(ω
j
i)− ui(ω

j−1
i)]

Then for a series bids S = {ω1, . . . , ωn} that answer queries we measure the
series variability v(S) as:

v(S) = SE({v(ω2), . . . , v(ωn)})

where SE stands for the standard error.
We do not estimate diversity for the utility-sampling query since the meth-

ods used are based on the algorithms used for the utility-lookup, hence their
diversity is quantified before. Note also that, for the trade-off query the oppo-
nent preferences are known (and codified in the objective function), hence
diversity is not relevant.

5.3 Results

5.3.1 Experiment 1 - Scalability and Rapidness

In the first experiment we investigate the scalability and rapidness of our
algorithms and compare them to the search algorithms used by ANAC2021
agents.

Our results show that (see Fig. 3) BIDS and Sampling-BIDS can enable an
agent to negotiate over 250 issues — over outcome spaces with 10250 possible

18 Search Algorithms for Automated Negotiation in Large Domains

AgentFO AlphaBIU TripleAgent
Agents

0

50

100

150

200

250

N
um

be
r

of
 N

eg
ot

ia
ti

on
 Is

su
es

5 10 10

250 250

200

Scalability
original
BIDS/Sampling-BIDS/IPS

Fig. 3 Scalability results for three ANAC2021 participants.

outcomes — and IPS can enable an agent to negotiate over 200 issues — over
outcome spaces with 10200 possible outcomes — within a 2-minutes session.
Meantime the original search algorithms used by ANAC2021 participants allow
them to negotiate upon a maximum of 10 issues — or over outcome spaces with
1010 possible outcomes. The poor performance of ANAC2021 comes as a result
of their search method, with each agent using exhaustive enumeration and
cannot negotiate over more than 10 issues. Our BIDS algorithms cannot allow
negotiations over more than 250 issues within 2 minutes since the initialization
of the dynamic-programming table takes too long. Lastly, note that within
GeniusWEB, IPS can generate at least one bid for domains composed of 2000
issues within the 2 minutes interval. That happens since in the beginning
the opponent model is unknown, all weights and issue utilities are identical,
making the whole domain indifferent with respect to the utility u′ used as the
objective function. As a result, all possible bids are dominated by the maximum
bid (with respect the constraint utility u) and search becomes extremely fast.
However, once the opponent is updated, IPS gets slow for domains with more
than 200 issues, which we report as the scalability limit for IPS.

The results of Experiment 1 support our claim over the scalability of our
methods. However, if we focus solely on scalability, similar results can be
achieved by using various other methods (Simulated Annealing, Genetic Algo-
rithms, Attribute-Planing). Nonetheless, apart from scalability given some

Search Algorithms for Automated Negotiation in Large Domains 19

time restrictions, search accuracy and diversity play a crucial role in the quality
of a search algorithm.

5.3.2 Experiment 2 - Accuracy and Diversity of BIDS

In the second experiment we isolate the search problem to evaluate the search
accuracy and diversity of BIDS algorithm and compare it with the other
scalable methods (the attribute-planning, simulated annealing, and genetic
algorithm) to get an insight of which algorithms can perform better in very
large outcome spaces. To do so, we define a series of utility targets from 0 up
to 1 with a regular step of 0.1 and use each search method to respond the
utility-lookup query.

50 75 100 125 150 175 200 225 250
Number of Issues in the Domain

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Av
er

ag
e

Ut
ilit

y
Er

ro
r

BIDS
Attribute-Planning

Simulated Annealing
Genetic Algorithm

Fig. 4 Mean standard error for each scalable search method as we vary the number of
issues in the outcome space. The smaller the error, the more accurate the search method is.

Our results on accuracy show (see Fig. 4) a clear ranking among the search
methods. BIDS is more accurate since the way it explores the outcome space
allows it to consider outcomes smartly and guarantee small error bounds (see
Error Analysis in Section 4.1.1). Attribute-planning comes second penalized
by the fact that it determines individual issue utility targets, which can lead
to higher errors in discrete spaces. To illustrate this, suppose that in a given
space for a particular issue ωi there are only 2 possible values that can bring
issue-utilities of 0.1 and 0.2 and that for that issue the weight is λi = 0.5. This
means that if attribute-planning assigns a target utility for this issue uti = 0.8,
it will introduce an error of 0.3. Lastly, the meta-heuristics perform poorly
with respect to accuracy, penalized by their randomness combined with their
trade-off between search-time and accuracy.

The results on diversity show (see Fig. 5) a different ranking. Here the
randomness used by Simulated Annealing and Genetic Algorithm gives them

20 Search Algorithms for Automated Negotiation in Large Domains

50 75 100 125 150 175 200 225 250
Number of Issues in the Domain

0.05

0.10

0.15

0.20

0.25

0.30

0.35
M

ea
n

Bi
d

Va
ria

bi
lit

y
BIDS
Attribute-Planning

Simulated Annealing
Genetic Algorithm

Fig. 5 Mean variability for each scalable search method as we vary the number of issues
in the outcome space. The higher the variability, the more diverse the search method is.

the lead; BIDS comes after with a diversity around the middle of best and
worst performing methods; and attribute-planning comes last penalized by the
very regular way its heuristic distributes concession among different issues.

To summarize, BIDS can scale to spaces with up to 250 issues. Moreover,
even though attribute-planning and the meta-heuristics can scale as high, our
method provides higher accuracy and satisfactory diversity, having overall a
better balance among the properties.

5.3.3 Experiment 3 - Accuracy of Sampling-BIDS

In the third experiment we isolate the search problem associated to the utility-
sampling query to evaluate the search accuracy of Sampling-BIDS algorithm
and compare it with the other scalable methods (simulated annealing, and
genetic algorithm) to get an insight of which algorithms can perform better
in very large outcome spaces. To do so, we define a series of utility thresholds
from 0 up to 1 with a regular step of 0.1 and use each search method to respond
the utility-sampling query.

Our results on accuracy show (see Fig. 6) a clear ranking among the search
methods. Sampling-BIDS is more accurate since the deterministic way through
which it explores the outcome space allows it to always identify bids the utility
of which are higher than the threshold. On the other hand, the probabilis-
tic nature of Simulated Annealing and Genetic Algorithm causes inaccuracies
which at very large domain sizes happen frequently (around 40% of the cases
for AgentM’s Simulated Annealing and 70% of the cases for GANGSTER’s
Genetic Algorithm).

Search Algorithms for Automated Negotiation in Large Domains 21

100 150 200 250
Number of Negotiation Issues

0

20

40

60

80

100

%
 o

f A
cc

ur
at

e
Re

su
lt

s
100 100 100 100

66
61 61 60

30 30 31
35

Accuracy
Sampling-BIDS
Simulated Annealing
Genetic Algorithm

Fig. 6 Percentage of search results above the set utility threshold.

To summarize, Sampling-BIDS can scale to spaces with up to 250 issues.
Moreover, even though the meta-heuristics can scale as high, our method pro-
vides higher accuracy and satisfactory diversity (as seen in Section 5.3.2),
having overall a better balance among the properties.

5.3.4 Experiment 4 - Accuracy of IPS

In the forth experiment we isolate the search problem associated to the trade-
off query to evaluate the search accuracy of IPS and compare it with the
other scalable methods (simulated annealing, and genetic algorithm) to get an
insight of which algorithms can perform better in very large outcome spaces.
To do so, we again define a series of utility thresholds from 0 up to 1 with a
regular step of 0.1 and use each search method to respond the trade-off query.

Our results on constraint accuracy show (see Fig. 7) a clear ranking among
the search methods. IPS is more accurate since the deterministic way through
which it explores the outcome space allows it to always identify bids the utility
of which are higher than the threshold. Differently, the probabilistic elements
of Simulated Annealing and Genetic Algorithm causes inaccuracies which at
very large domain sizes happen frequently (30−40% of the cases for Simulated
Annealing and 60− 70% of the cases for Genetic Algorithm).

Furthermore, our results on objective accuracy show (see Fig. 8) IPS have a
clear advantage with respect to Genetic Algorithm (ranging from 0.33 to 0.36
points of utility) and Simulated Annealing (ranging from 0.4 to 0.42 points

22 Search Algorithms for Automated Negotiation in Large Domains

50 100 150 200
Number of Negotiation Issues

0

20

40

60

80

100

%
 o

f A
cc

ur
at

e
Re

su
lt

s
100 100 100 100

72
66

62 61

27 30 31
38

Constraint Accuracy
IPS
Simulated Annealing
Genetic Algorithm

Fig. 7 Percentage of search results above the set utility threshold.

of utility) since IPS has theoretical accuracy guaranties (in our experiments
|I|·10−5), while the probabilistic nature of the metaheuristics can result in
bids arbitrarily far from the optimal one.

To summarize, IPS can scale to spaces with up to 200 issues. In addition,
even though the meta-heuristics can scale higher, our method provides higher
accuracy (both with respect to the constraint and the objective function),
having overall a better balance among the properties.

6 Conclusions and Future Work

This work presents several algorithms that exploit the additive structure of
the utility function to search very large domains while providing search accu-
racy and diversity. We find that our methods can increase drastically the
domain size in which negotiating agents can still function, while providing very
high accuracy and significant outcome diversity. Therefore, our algorithms can
enable state-of-the-art (and future) agents to negotiate over very large realistic
domains such as the ones found in procurement and supply-chain management.

Future work may build on this to evaluate the robustness of specific nego-
tiation strategies on the accuracy and diversity of the used search method.
Moreover, as we discussed, literature typically focuses on proposing negotiation
strategies without considering the complexity of the associated search problem.
Nonetheless, there are works, as the ones that participated in ANAC 2014 [26],

Search Algorithms for Automated Negotiation in Large Domains 23

50 100 150 200
Number of Negotiation Issues

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
iff

er
en

ce
 fr

om
 IP

S
ob

je
ct

iv
e

va
lu

e 0.42 0.41 0.41 0.41

0.33 0.33
0.35 0.36

Objective Function Accuracy
Simulated Annealing
Genetic Algorithm

Fig. 8 Difference in terms of objective function utility from the objective function utility
of the IPS result.

that are designed to negotiate over large spaces (albeit not as large as ours)
and propose negotiation strategies together with some search algorithms. It
would be interesting to investigate whether these negotiation strategies have a
competitive advantage when the same underlying search algorithms are used.
Lastly, all three methods could be modified to search for partial bids: while for
BIDS and Sampling-BIDS the adaptation is straightforward (we need to adapt
BIDS recurrent equation to account for partial bids), but it is not yet clear
how to adapt IPS such that it preserves its theoretical accuracy guarantees.

Acknowledgments

Tim Baarslag is funded by the Dutch Research Council (NWO), as part of
Vidi research project VI.Vidi.203.044. Thimjo Koça and Dave de Jonge declare
that they have no conflict of interest.

Data Availability Statement

The datasets generated during and analysed during the current study
are available in the Gitlab repository, https://gitlab.com/thimjo.koca/
data-processed-in-the-experiments-of-paper-on-outcome-space-search-algorithms/
-/tree/main.

https://gitlab.com/thimjo.koca/data-processed-in-the-experiments-of-paper-on-outcome-space-search-algorithms/-/tree/main
https://gitlab.com/thimjo.koca/data-processed-in-the-experiments-of-paper-on-outcome-space-search-algorithms/-/tree/main
https://gitlab.com/thimjo.koca/data-processed-in-the-experiments-of-paper-on-outcome-space-search-algorithms/-/tree/main

24 Search Algorithms for Automated Negotiation in Large Domains

References

[1] Byde, A., Yearworth, M., Chen, K.-Y., Bartolini, C.: Autona: A system
for automated multiple 1-1 negotiation. In: EEE International Conf. on
E-Commerce, 2003. CEC 2003., pp. 59–67 (2003). IEEE

[2] Mohammad, Y., Viqueira, E.A., Ayerza, N.A., Greenwald, A., Nakadai,
S., Morinaga, S.: Supply chain management world. In: International Con-
ference on Principles and Practice of Multi-agent Systems, pp. 153–169
(2019). Springer

[3] An, B., Lesser, V.R., Irwin, D.E., Zink, M.: Automated negotiation with
decommitment for dynamic resource allocation in cloud computing. In:
AAMAS, vol. 10, pp. 981–988 (2010)

[4] Lin, R., Kraus, S., Baarslag, T., Tykhonov, D., Hindriks, K., Jonker, C.M.:
Genius: An integrated environment for supporting the design of generic
automated negotiators. Computational Intelligence 30(1), 48–70 (2014)

[5] TU Delft: GeniusWeb platform. [Online; accessed 04.01.2022] (2019)

[6] Mohammad, Y., Nakadai, S., Greenwald, A.: Negmas: a platform for sit-
uated negotiations. In: International Workshop on Agent-Based Complex
Automated Negotiation, pp. 57–75 (2019). Springer

[7] Niimi, M., Ito, T.: In: Fukuta, N., Ito, T., Zhang, M., Fujita, K., Robu,
V. (eds.) AgentM, pp. 235–240. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-30307-9 15

[8] de Jonge, D., Sierra, C.: In: Fukuta, N., Ito, T., Zhang, M., Fujita,
K., Robu, V. (eds.) GANGSTER: An Automated Negotiator Applying
Genetic Algorithms, pp. 225–234. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-30307-9 14

[9] Jonker, C.M., Treur, J.: An agent architecture for multi-attribute negoti-
ation. In: International Joint Conference on Artificial Intelligence, vol. 17,
pp. 1195–1201 (2001). LAWRENCE ERLBAUM ASSOCIATES LTD

[10] Baarslag, T., Hindriks, K., Jonker, C., Kraus, S., Lin, R.: In: Ito, T.,
Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) The First Automated
Negotiating Agents Competition (ANAC 2010), pp. 113–135. Springer,
Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24696-8 7

[11] Fujita, K., Ito, T., Baarslag, T., Hindriks, K., Jonker, C., Kraus, S.,
Lin, R.: In: Ito, T., Zhang, M., Robu, V., Matsuo, T. (eds.) The
Second Automated Negotiating Agents Competition (ANAC2011), pp.
183–197. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/

https://doi.org/10.1007/978-3-319-30307-9_15
https://doi.org/10.1007/978-3-319-30307-9_15
https://doi.org/10.1007/978-3-319-30307-9_14
https://doi.org/10.1007/978-3-319-30307-9_14
https://doi.org/10.1007/978-3-642-24696-8_7
https://doi.org/10.1007/978-3-642-30737-9_11
https://doi.org/10.1007/978-3-642-30737-9_11

Search Algorithms for Automated Negotiation in Large Domains 25

978-3-642-30737-9 11

[12] Williams, C.R., Robu, V., Gerding, E.H., Jennings, N.R.: An overview of
the results and insights from the third automated negotiating agents com-
petition (anac2012). Novel Insights in Agent-based Complex Automated
Negotiation, 151–162 (2014)

[13] Fujita, K., Aydoğan, R., Baarslag, T., Hindriks, K., Ito, T., Jonker,
C.: In: Fujita, K., Bai, Q., Ito, T., Zhang, M., Ren, F., Aydoğan, R.,
Hadfi, R. (eds.) The Sixth Automated Negotiating Agents Competition
(ANAC 2015), pp. 139–151. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-51563-2 9

[14] Aydoğan, R., Fujita, K., Baarslag, T., Jonker, C.M., Ito, T.: Anac 2017:
Repeated multilateral negotiation league. In: International Workshop
on Agent-Based Complex Automated Negotiation, pp. 101–115 (2018).
Springer

[15] Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT press,
Cambridge (1994)

[16] Kawaguchi, S., Fujita, K., Ito, T.: Compromising strategy based on esti-
mated maximum utility for automated negotiation agents competition
(anac-10). In: International Conference on Industrial, Engineering and
Other Applications of Applied Intelligent Systems, pp. 501–510 (2011).
Springer

[17] Baarslag, T., Hindriks, K., Jonker, C.: In: Ito, T., Zhang, M., Robu,
V., Matsuo, T. (eds.) A Tit for Tat Negotiation Strategy for Real-Time
Bilateral Negotiations, pp. 229–233. Springer, Berlin, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-30737-9 18

[18] Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for
autonomous agents. Robotics and Autonomous Systems 24(3-4), 159–182
(1998)

[19] Koeman, V.J., Boon, K., van den Oever, J.Z., Dumitru-Guzu, M., Stan-
culescu, L.C.: In: Fujita, K., Ito, T., Zhang, M., Robu, V. (eds.) The
Fawkes Agent—the ANAC 2013 Negotiation Contest Winner, pp. 143–
151. Springer, Tokyo (2015). https://doi.org/10.1007/978-4-431-55525-4
10

[20] Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make
negotiation trade-offs. In: Proceedings Fourth International Conference
on MultiAgent Systems, pp. 119–126 (2000). IEEE

[21] Baarslag, T., Hendrikx, M.J.C., Hindriks, K.V., Jonker, C.M.: Learning

https://doi.org/10.1007/978-3-642-30737-9_11
https://doi.org/10.1007/978-3-642-30737-9_11
https://doi.org/10.1007/978-3-319-51563-2_9
https://doi.org/10.1007/978-3-319-51563-2_9
https://doi.org/10.1007/978-3-642-30737-9_18
https://doi.org/10.1007/978-4-431-55525-4_10
https://doi.org/10.1007/978-4-431-55525-4_10

26 Search Algorithms for Automated Negotiation in Large Domains

about the opponent in automated bilateral negotiation: a comprehensive
survey of opponent modeling techniques. Auton. Agents Multi Agent Syst.
30(5), 849–898 (2016). https://doi.org/10.1007/s10458-015-9309-1

[22] de Jonge, D., Bistaffa, F., Levy, J.: A heuristic algorithm for multi-
agent vehicle routing with automated negotiation. In: Proceedings of
the 20th International Conference on Autonomous Agents and MultiA-
gent Systems. AAMAS ’21, pp. 404–412. International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC (2021)

[23] Jonge, D.d., Bistaffa, F., Levy, J.: Multi-objective vehicle routing with
automated negotiation. Applied Intelligence (2022). https://doi.org/10.
1007/s10489-022-03329-2

[24] Buron, C.L., Guessoum, Z., Ductor, S.: Mcts-based automated negotiation
agent. In: International Conference on Principles and Practice of Multi-
Agent Systems, pp. 186–201 (2019). Springer

[25] De Jonge, D., Sierra, C.: NB3: A multilateral negotiation algorithm for
large, non-linear agreement spaces with limited time. Autonomous Agents
and Multi-Agent Systems 29(5), 896–942 (2015)

[26] Aydogan, R., Baarslag, T., Jonker, C.M., Fujita, K., Ito, T., Hadfi, R.,
Hayakawa, K.: A baseline for non-linear bilateral negotiations: the full
results of the agents competing in anac 2014 (2016)

[27] Marinescu, R., Dechter, R.: AND/OR branch-and-bound search for com-
binatorial optimization in graphical models. Artif. Intell. 173(16-17),
1457–1491 (2009). https://doi.org/10.1016/j.artint.2009.07.003

[28] Amini, M., Fathian, M.: Optimizing bid search in large outcome spaces
for automated multi-issue negotiations using meta-heuristic methods.
Decision Science Letters 10(1), 1–20 (2021)

[29] Ito, T., Hattori, H., Klein, M.: Multi-issue negotiation protocol for agents:
Exploring nonlinear utility spaces. In: IJCAI, vol. 7, pp. 1347–1352 (2007)

[30] Hadfi, R., Ito, T.: Modeling complex nonlinear utility spaces using util-
ity hyper-graphs. In: International Conference on Modeling Decisions for
Artificial Intelligence, pp. 14–25 (2014). Springer

[31] Marsa-Maestre, I., Klein, M., Jonker, C.M., Aydoğan, R.: From problems
to protocols: Towards a negotiation handbook. Decision Support Systems
60, 39–54 (2014)

https://doi.org/10.1007/s10458-015-9309-1
https://doi.org/10.1007/s10489-022-03329-2
https://doi.org/10.1007/s10489-022-03329-2
https://doi.org/10.1016/j.artint.2009.07.003

	Introduction
	Problem Setting
	Negotiation Model
	Typical Search Queries
	Design Requirements of Search Algorithms used by Negotiating Agents

	Related Work
	Searching Very Large Outcome Spaces
	Looking for bid(s) that satisfy a utility target through BIDS
	Trading Computational Complexity for Approximation Accuracy

	Using BIDS to implement the Sampling-Utility Query
	Trading off utility with the opponent using IPS
	Trading Computational Complexity for Approximation Accuracy

	Experiments
	Setup
	Metrics to Quantify Scalability, Speed, Accuracy, and Diversity
	Results
	Experiment 1 - Scalability and Rapidness
	Experiment 2 - Accuracy and Diversity of BIDS
	Experiment 3 - Accuracy of Sampling-BIDS
	Experiment 4 - Accuracy of IPS

	Conclusions and Future Work

