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Abstract

In the numerical technique considered in this paper, time-stepping is performed on a set of semi-coarsened
space grids. At given time levels the solutions on the different space grids are combined to obtain the asymptotic
convergence of a single, fine uniform grid. We present error estimates for the two-dimensional, spatially constant-
coefficient model problem and discuss numerical examples. A spatially variable-coefficient problem (Molenkamp–
Crowley test) is used to assess the practical merits of the technique. The combination technique is shown to be more
efficient than the single-grid approach, yet for the Molenkamp–Crowley test, standard Richardson extrapolation is
still more efficient than the combination technique. However, parallelization is expected to significantly improve
the combination technique’s performance. 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The long-term aim of the present work is to make significant progress in the numerical solution
of large-scale transport problems: systems of partial differential equations of the advection–diffusion-
reaction type, used in the modeling of pollution of the atmosphere, surface water and ground water. The
three-dimensional nature of these models and the necessity of modeling transport and chemical exchange
between different components over long time spans, requires very efficient algorithms. For advanced
three-dimensional modeling, computer capacity (computing time and memory) still is a severe limiting
factor (e.g., see [8]). This limitation is felt in particular in the area of global air pollution modeling where
the three-dimensional nature leads to huge numbers of grid points in each of which many calculations
must be carried out. The application of sparse-grid techniques might offer a promising way out.
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Sparse-grid techniques were introduced by Zenger [10] in 1990 to reduce the number of degrees of
freedom in finite-element calculations. The combination technique, as introduced in 1992 by Griebel
et al. [4], can be seen as a practical implementation of the sparse-grid technique. In the combination
technique, the final solution is a linear combination of solutions on semi-coarsened grids, where the
coefficients of the combination are chosen such that there is a canceling in leading-order error terms.
As shown by Rüde in 1993 [7], the combination technique can be placed in a broader framework of
multivariate extrapolation techniques.

We show that for our two-dimensional hyperbolic problems the combination technique requires
∼ h−2 cell updates to reach an accuracy of O(hp logh−1) while the single grid requires∼ h−3 cell
updates to solve up to an accuracy of O(hp). Thus the combination technique is, asymptotically, more
efficient than a single-grid solver. Another appealing property of the combination technique is that it
is inherently parallel, i.e., it constructs the final solution from∼ (logh−1)d−1 independent solutions
(d is the dimension of the problem) which can be computed in parallel. Parallel implementations of
the combination technique were shown to be effective in [2,3].

Although we are ultimately interested in advection–diffusion-reaction equations, in the current
work we restrict the attention to pure advection and leave the diffusion and reaction processes to
future research. In a number of articles the combination technique has already been analyzed both
analytically and numerically, see for instance [1,3,4,7]. However, in these references elliptic differential
equations are considered, not hyperbolic equations like the time-dependent advection equation we are
considering. In [5] the combination technique is shown to be promising for a constant coefficient
advection equation. The current paper differs from [5] in that it focuses on error analysis while [5]
focuses on numerical results. Furthermore, in [5] only constant coefficients are considered. Although
we do not present error analysis for spatially variable coefficients, we do analyze this case numerically
with the Molenkamp–Crowley test. The time-dependent coefficient case we analyze both numerically
and analytically. When the combination technique is used to solve a differential equation, then a
representation error and a combined discretization error are introduced. In [6] a detailed analysis
is given of the representation error. In the current paper we focus on the combined discretization
error.

The organization of the current paper is as follows. In Sections 2–4 we derive leading order error
expressions for the error that is introduced when we solve an advection equation with spatially
independent coefficients, with the combination technique. In the derivations we account for time-
dependent coefficients and for intermediate combinations. In Section 5 we give some estimates for the
asymptotic efficiency of the combination technique relative to the single-grid approach. In Section 6
four numerical test cases are analyzed, one of these is the Molenkamp–Crowley problem. The error
estimates made in the earlier sections are verified and the combination technique is compared with
the single-grid technique in terms of efficiency. The conclusions are summarized in Section 7. The
main conclusion is that without parallelization—although marginally—the combination technique
is already more efficient than the single-grid approach for a generic advection problem, such as
the Molenkamp–Crowley test. Without parallelization, the combination technique still falls behind
standard Richardson extrapolation, something which has also been concluded by Rüde [7] for elliptic
problems.
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2. Discretization error

In order to understand the combined discretization error we must first have a clear understanding of
the discretization error itself. This section is devoted to the analysis of the error in the numerical solution
that is due to spatial discretization. The temporal discretization errors are neglected. In the notation
of functions only the relevant variables are printed, e.g., the functionf (x, y, t) can be referred to as
f (x, y, t), f (t), f (x, y) or simply asf , depending on context. The focus lies on the pure initial value
problem for the spatially-constant coefficient, 2D advection equation

ct + a∂xc+ b∂yc= 0. (1)

Eq. (1) is considered fort = 0 up tot = 1 and spatially discretized with finite differences on the domain
[−1,1] × [−1,1]. We denote the discretization of the advection operatora∂x + b∂y by aDx + bDy . The
corresponding spatially discretized equation reads

ωt + aDxω+ bDyω = 0. (2)

Hereω= ω(t) still denotes a continuous function in time and space. The operatorsDx andDy are defined
in terms of shift operators (see Section 2.2). We define the (global) discretization errord(t) according to

d(t)≡ ω(t)− c(t). (3)

We introduce the truncation error operatorE according to

E ≡ aDx + bDy − a∂x − b∂y. (4)

The discretization errord can be seen to satisfy

dt +Ech + aDxd + bDyd = 0,

with general solution

d(t)= e−
∫ t

0
(a(t ′)Dx+b(t ′)Dy)dt ′d(0)+ (e−

∫ t
0
E(t ′)dt ′ − I)c(t). (5)

Whena andb are independent of time then (5) reduces to

d(t)= e−t (aDx+bDy)d(0)+ (e−tE − I)c(t),
which we expand as

d(t)=
∞∑
i=0

(−tE)i
i! e−t (a∂x+b∂y)d(0)+

∞∑
i=1

(−tE)i
i! c(t). (6)

2.1. Structure of the discretization error

In general, when the initial profile is error free it can be seen that a dimensionally split discretization
of orderp gives rise to a discretization error given by

d(t)=
∞∑
i=1

t i

i!
( ∞∑
j=p

(
αjah

j
x∂
j+1
x + βjbhjy∂j+1

y

))i
c(t), (7)
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where the constantsαj andβj are the error constants in the truncation error. Eq. (7) can be rewritten in
the generic form

d(t)=
∞∑
i=p

(
hixAi(t)+ hiyBi(t)

)+
∞∑
j=p

∞∑
k=p
hjxh

k
yγj,k(t), (8)

showing that the discretization error consists of terms proportional tohpx , h
p+1
x , . . . andhpy , h

p+1
y , . . . and

hpx h
p
y , h

p+1
x hpy , h

p
xh
p+1
y , hp+1

x hp+1
y , . . . .

2.2. Third-order upwind discretization

To introduce spatial discretizations we make use of the shift operators

Shxf (x, y)≡ f (x + hx, y)=
∞∑
i=0

(hx∂x)
i

i! f (x, y),

Shyf (x, y)≡ f (x, y + hy)=
∞∑
i=0

(hy∂y)
i

i! f (x, y),

where we have supposedf to be aC∞ function. We focus on the third-order upwind biased scheme
which is given by

Dx =


1
6S−2hx − S−hx + 1

2 + 1
3Shx

hx
, a > 0,

−
1
6S2hx − Shx + 1

2 + 1
3S−hx

hx
, a < 0,

Dy =



1
6S−2hy − S−hy + 1

2 + 1
3Shy

hy
, b > 0,

−
1
6S2hy − Shy + 1

2 + 1
3S−hy

hy
, b < 0.

This yields the discretization error

d(t)=
∞∑
i=1

t i

i!
( ∞∑
j=3

(−2)j − 3(−1)j − 1

3(j + 1)!
(
aj+1

|a|j h
j
x∂
j+1
x + b

j+1

|b|j h
j
y∂
j+1
y

))i
c(t), (9)

providedd(0)= 0. Neglecting O(h4
x) and O(h4

y) but including O(h3
xh

3
y) for later reference, Eq. (9) leads

to the following leading order expression:

d(t)= − t

12

(|a|h3
x∂

4
x + |b|h3

y∂
4
y

)
c(t)+ t2

144
|ab|h3

xh
3
y∂

4
x ∂

4
yc(t)+ O

(
h4
x

)+ O(h4
y). (10)

This leading-order result makes sense only whent, a, b and the derivatives ofc(t) are moderate.
The O(h3

xh
3
y) term will turn out to be important since it gets amplified by the combination tech-

nique.

2.3. Time-dependent coefficients

To handle time-dependent coefficients we expand (5) as

d(t)=
∞∑
i=0

(− ∫ t0 E(t ′)dt ′)i
i! e−

∫ t
0
(a(t ′)∂x+b(t ′)∂y)dt ′d(0)+

∞∑
i=1

(− ∫ t0 E(t ′)dt ′)i
i! c(t).
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Ford(0)= 0, the time-dependent equivalent to (10) then reads

d(t) = − 1

12

( t∫
0

∣∣a(t ′)∣∣dt ′h3
x∂

4
x +

t∫
0

∣∣b(t ′)∣∣dt ′h3
y∂

4
y

)
c(t)

+ 1

144

( t∫
0

∣∣a(t ′)∣∣dt ′)( t∫
0

∣∣b(t ′)∣∣dt ′)h3
xh

3
y∂

4
x ∂

4
y c(t)+ O

(
h4
x

)+ O
(
h4
y

)
. (11)

3. Combination technique

The two-dimensional combination technique is based on a grid of grids as shown in Fig. 1. Grids
within the grid of grids are denoted byΩl,m where upper indices label the level of refinement relative
to theroot grid Ω0,0. The mesh widths inx- andy-direction ofΩl,m arehx = 2−lH andhy = 2−mH ,
whereH is the mesh width of the uniform root gridΩ0,0. We denote the mesh width of the finest grid
ΩN,N by h. Note thathx andhy are dependent on the position(l,m) in the grid of grids whileh is not.

In the time-dependent combination technique a given initial profilec(x, y,0) is restricted, by injection,
onto the gridsΩN,0,ΩN−1,1, . . . ,Ω0,N and ontoΩN−1,0,ΩN−2,1, . . . ,Ω0,N−1, see Fig. 1. The resulting
coarse representations are then all evolved in time (exact time integration is assumed in the current paper).
Then, at a chosen point in time, the coarse approximations are prolongated withqth order interpolation
onto the finest gridΩN,N , where they are combined according to (13) to obtain a more accurate solution.
The notation is summarized in Fig. 1.

We use thê symbol to denote the grid functions that are constructed with the combination technique.
Considering the exact solutionc, the combination technique, as introduced in [4], constructs a grid

Fig. 1. Grid of grids.
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function ĉN,N on the finest gridΩN,N in the following manner,

ĉN,N ≡ ∑
l+m=N

PN,NRl,mc− ∑
l+m=N−1

PN,NRl,mc.

The corresponding so-calledrepresentation errorrN,N is

rN,N ≡ ĉN,N −RN,Nc. (12)

Likewise, considering the semi-discrete solutionsωl,m, the combination technique constructs an
approximate solution̂ωN,N on the finest gridΩN,N from the coarse-grid approximate solutions according
to

ω̂N,N = ∑
l+m=N

PN,Nωl,m − ∑
l+m=N−1

PN,Nωl,m. (13)

Let dl,m denote the discretization error on gridΩl,m, i.e.,

dl,m ≡ ωl,m −Rl,mc. (14)

The total erroreN,N = ω̂N,N −RN,Nc present inω̂N,N is written as

eN,N = rN,N + d̂N,N ,
where thecombined discretizationerror d̂N,N = ω̂N,N − ĉN,N is given by

d̂N,N = ∑
l+m=N

PN,Ndl,m − ∑
l+m=N−1

PN,Ndl,m. (15)

In [6] a detailed analysis is given of the representation errorrN,N . In the current paper we focus on the
combined discretization error̂dN,N . In Section 6 on numerical results it will become apparent that the
representation errorrN,N is negligible compared to the combined discretization errord̂N,N .

4. Combined discretization error

4.1. Effect of the combination technique on a single error term

Inspection of (7) shows that the discretization errordl,m can be expanded as

dl,m(t)=
∞∑
i=0

∞∑
j=0

hixh
j
yR

l,mθi,j (t)c(x, y, t), (16)

where the powers oft and the spatial differential operators are hidden inθi,j (t). Eq. (16) allows us to
concentrate on powers ofhx andhy . Sincehx = 2−lH andhy = 2−mH we can rewrite (16) as

dl,m(t)=
∞∑
i=0

∞∑
j=0

Hi+j εl,mi,j (t), (17)

where

ε
l,m
i,j (t)≡ 2−il−jmRl,mθij (t)c(x, y, t). (18)
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Insertion of (17) into the expression for the combined discretization error (15) yields

d̂N,N =∑
ij

H i+j ε̂N,Ni,j ,

where

ε̂
N,N
i,j ≡ ∑

l+m=N
PN,Nε

l,m
i,j − ∑

l+m=N−1

PN,Nε
l,m
i,j .

We now focus on the contribution that a single error termεl,mi,j makes to the combined discretization error,

i.e., we analyzêεN,Ni,j The error termsεl,mi,j are prolongated onto the finest gridΩN,N with interpolation

of orderq, yielding interpolation errorsζN,N,l,mi,j and grid functionsξN,N,l,mi,j that are free of interpolation
errors, i.e.,

PN,Nε
l,m
i,j = ξN,N,l,mi,j + ζN,N,l,mi,j .

The latter two superscripts inζN,N,l,mi,j andξN,N,l,mi,j denote from which grid these grid functions originate.

For ε̂N,Ni,j this leads to the splitting

ε̂
N,N
i,j = ξ̂ N,Ni,j + ζ̂ N,Ni,j .

4.1.1. Error without interpolation effects
According to (18) we have

ξ
N,N,l,m
i,j ≡ 2−il−jmRN,Nθi,j c,

hence

ξ̂
N,N
i,j =

( ∑
l+m=N

− ∑
l+m=N−1

)
2−il−jmRN,Nθi,j c,

which is equivalent to

ξ̂
N,N
i,j =

(
N∑
l=0

2−il−j (N−l) −
N−1∑
l=0

2−il−j (N−1−l)
)
RN,Nθi,j c

=
(

2−iN + 2−jN [1− 2j
]N−1∑
l=0

2l(j−i)
)
RN,Nθi,j c. (19)

For i = j this yields

ξ̂
N,N
i,j = (2−iN + 2−iN [1− 2i

]
N
)
RN,Nθi,ic, (20)

while for i �= j
ξ̂
N,N
i,j =

(
1

2j − 2i
[
2−jN(2i+j − 2i

)+ 2−iN (2j − 2i+j
)])
RN,Nθi,j c. (21)

Eqs. (20) and (21) lead to the following order estimates:

ξ̂
N,N
i,j =


O
(
2−jN ) if i = 0, j �= 0,

O
(
2−iN ) if j = 0, i �= 0,

O
(
N2−iN ) if i = j �= 0,

O
(
2−min(ij)N

)
if i �= j , i �= 0, j �= 0.

(22)
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4.1.2. Additional error due to interpolation
In leading order the interpolation error is given by

ζ
N,N,l,m
i,j = (λlhqx∂qx + λmhqy∂qy

)
ξ
N,N,l,m
i,j ,

or equivalently,

ζ
N,N,l,m
i,j =HqRN,N(2−(q+i)l−jmλl∂qx + 2−(q+j)m−ilλm∂qy

)
θi,j c,

where theλl and λm are coefficients dependent onl and m, respectively, and on the choice of
interpolation. For the combined interpolation errorζ̂ N,Ni,j we have

ζ̂
N,N
i,j = HqRN,N

( ∑
l+m=N

− ∑
l+m=N−1

)
2−(q+i)l−jmλl∂qx θi,j c

+HqRN,N
( ∑
l+m=N

− ∑
l+m=N−1

)
2−(q+j)m−ilλm∂qy θi,j c.

For the first term,( ∑
l+m=N

− ∑
l+m=N−1

)
2−(q+i)l−jmλl∂qx θi,j c,

we obtain(
2−(q+i)NλN +

N−1∑
l=0

(
2−(q+i)l−j (N−l) − 2−(q+i)l−j (N−1−l))λl)∂qx θi,j c,

which, in absolute value, is bounded from above by

|λ|max

∣∣∣∣∣
(

2−(q+i)N +
N−1∑
l=0

(
2−(q+i)l−j (N−l) − 2−(q+i)l−j (N−1−l)))∂qx θi,j c

∣∣∣∣∣.
Likewise, the second term,( ∑

l+m=N
− ∑
l+m=N−1

)
2−(q+j)m−ilλm∂qx θi,j c,

is in absolute value bounded from above by

|λ|max

∣∣∣∣∣
(

2−(q+j)N +
N−1∑
m=0

(
2−(q+j)m−i(N−m) − 2−(q+j)m−i(N−1−m)))∂qy θi,j c

∣∣∣∣∣.
Together these bounds lead to the following order estimates, in the same way as the estimates in the
previous section were obtained:

ζ̂
N,N
i,j =


O
(
Hq2−qN ) if i = 0 or j = 0,

O
(
HqN2−jN ) if q + i = j ,

O
(
HqN2−iN ) if q + j = i,

O
(
Hq2−min(i,j)N

)
if 0 �= j �= q + i and 0�= i �= q + j .

(23)
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4.2. Leading-order results

By combining the order estimates (22) for a single error term and Eqs. (20) and (21) with the structure
of a dimensionally split discretization error (8), we see that in the discretization error the following terms
are of particular interest:

d = t(αpahpx ∂p+1
x + βpbhpy ∂p+1

y

)
c+ t2αpβpabhpx hpy ∂p+1

x ∂p+1
y c+ O

(
hp+1
x

)+ O
(
hp+1
y

)
, (24)

where we have omitted the upper indicesN,N . To obtain the corresponding expression for the combined
discretization error we use (20) and (21). The effect of the first and second terms in (24) is given by (21)
with i = p, j = 0 andi = 0, j = p, respectively. The effect of the third term in (24) is given by (20)
with i = j = p. Working this out leads to the following leading-order expression for the combined
discretization error

d̂ = t
(
αpah

p∂p+1
x + βpbhp∂p+1

y

)
c+ t2αpβpabHphp

(
1+ (1− 2p

)
log2

H

h

)
∂p+1
x ∂p+1

y c

+ O
(
hp+1 log2

1

h

)
. (25)

More specifically, for the third-order upwind scheme,

d̂ = − th
3

12

(|a|∂4
x + |b|∂4

y

)
c+ t2

144
|ab|H 3h3

(
1− 7 log2

H

h

)
∂4
x ∂

4
y c+ O

(
h4 log2

1

h

)
. (26)

4.3. Mapping of error terms

We illustrate the effect of a single term of the discretization error on the error that is observed on the
finest grid after applying the combination technique. We view the combination technique as a mapping
that maps terms from the discretization error onto a leading-order error term on the finest grid. We
assume that the order of the prolongationq is greater than the order of the discretizationp. The order
estimate (22) shows that, fori �= j , i �= 0, j �= 0, we have a mapping according to Table 1. While the
discretization error’s leading-order terms, proportional tohpx andhpy yield error terms of O(hp), the cross-
derivative term proportional tohpx h

p
y surpasses these and yields the new formal leading-order error term

proportional tohp logh−1.

Table 1
Mapping of error terms from the semi-coarsened grids to the finest
grid

Error term on{Ωl,m} Effect onΩN,N

hix or hiy O(hi)

hixh
j
y O(hmin(i,j))

hixh
i
y O(hi logh−1)
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4.4. Additional error due to interpolation

From the order estimates (23) we find that:
• if q �= p then the contribution of the interpolation error is

O
(
Hphq

)
, (27)

• if q = p then the contribution of the interpolation error is

O
(
Hphp log

H

h

)
. (28)

According to (27) the interpolation leaves the leading-order result (25) unaffected, provided the order of
interpolationq is greater than the order of discretizationp. Whenq = p, according to (28), the effect
of the interpolation is of the same order as the second term in the leading-order result (25). Forq < p

the interpolation error is in fact larger than the leading-order result (25) itself. Thus choosingq < p is
not sensible since it leads to an order reduction in the error. Choosingq = p is acceptable when the
parameters of the combination technique are such that the second term in (25) is dominated by the first
term. When this is not the case,q must be chosen larger thanp.

4.5. Intermediate combinations

When the combination technique is used in conjunction with a time-stepping technique, as we do, then
we can choose to make intermediate combinations. With intermediate combinations the algorithm is as
follows:

1. The initial solution is restricted to the semi-coarsened grids.
2. A number of time integration steps is performed on the semi-coarsened solutions.
3. The semi-coarsened solutions are prolongated onto and combined on the finest gridΩN,N .
4. The combined solution is projected back onto the semi-coarsened grids.
5. Steps 2–4 are repeated until the time integration is completed (in the last loop, step 4 is then

omitted).
We will now analyze the influence of intermediate combinations on the error, specifically we consider
M − 1 intermediate combinations made at timest/M,2t/M, . . . , (M − 1)t/M . For a single semi-
coarsened gridΩl,m onto which an intermediate solution was restricted att/M , we have, according
to (6),

dl,m
(

2t

M

)
=

∞∑
j=0

(−(t/M)E)j
j ! e−(t/M)(a∂x+b∂y)Rl,md̂N,N

(
t

M

)
+

∞∑
i=1

(−(t/M)E)i
i! Rl,mc

(
2t

M

)
.

(29)

Due to the leading order result (25) we have

e−(t/M)(a∂x+b∂y)Rl,md̂N,N
(
t

M

)
= t

M

(
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)
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)

log2
H
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M

)
+ O

(
hp+1 log2

1

h

)
.
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Here we have used e−(t/M)(a∂x+b∂y)c(t/M) = c(2t/M). In the first summation in (29), terms withj > 0
will only contribute in higher order becauseE is a power expansion in mesh widthshx andhy. Hence
we can neglect thej > 0 terms in (29) for a leading-order result, yielding

dl,m
(

2t

M

)
= t

M

(
αpah

p∂p+1
x + βpbhp∂p+1

y

)
Rl,mc

(
2t

M

)
+ t2

M2
αpβpabH

php
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1+ (1− 2p
)
log2

H

h

)
∂p+1
x ∂p+1

y Rl,mc

(
2t

M

)
+ O

(
hp+1 log2

1

h

)
+

∞∑
i=1

(−(t/M)E)i
i! Rl,mc

(
2t

M

)

+ O
((
hpx + hpy + hpx hpy

)(
hp + hp log2

1

h

))
. (30)

The above expression immediately leads to the leading-order result for the combined discretization
error d̂N,N (2t/M) taking into account an intermediate combination att/M . The first two terms and the
O(hp+1 log2(1/h)) term carry over intôdN,N (2t/M) without alterations since we neglect representation
errors. The summation yields the two terms in (25) as was argued in Sections 4.1 and 4.2. The last O-term
translates according to the rules stated in Section 4.1. Thus, (30) yields the following for the combined
discretization error̂dN,N (2t/M) taking into account an intermediate combination att/M :

d̂N,N
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)
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[
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x + βpbhp∂p+1

y

)
RN,Nc

(
2t

M

)
+ t2

M2
αpβpabH

php
(

1+ (1− 2p
)

log2
H

h

)
∂p+1
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+ O
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h
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hp + hp log2

1

h

))
. (31)

By induction this leads to the following result for the combined discretization error att , taking into
account intermediate combinations att/M,2t/M, . . . , (M − 1)t/M ,

d̂N.N (t) = t
(
αpah

p∂p+1
x + βpbhp∂p+1

y

)
RN,Nc(t)

+ 1

M
t2αpβpabH

php
(
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)
log2

H

h

)
∂p+1
x ∂p+1

y RN,Nc(t)

+ O
(
hp+1 log2

1

h

)
, (32)

i.e., the term proportional tohp logh−1 is attenuated by a factor 1/M . For the third-order upwind
discretization equation (32) yields

d̂ = − th
3

12

(|a|∂4
x + |b|∂4

y

)
c+ t2

144M
|ab|H 3h3

(
1− 7 log2

H

h

)
∂4
x∂

4
y c+ O

(
h4 log2

1

h

)
. (33)

4.6. Qualitative behavior of the error

Provided the effects of interpolation can be neglected the error in the combined solution is given
by (32). The competition between the two terms in (32) is determined by the time up to which we
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integrate, the number of combinationsM , the coefficientsa andb, the root mesh widthH , the number of
grids (through log2(H/h)), the order of discretizationp (throughαp,βp and 2p) and by the derivatives
of the exact solution. Given this multitude of dependencies it seems likely that in general both terms can
be important in describing the error.

Whena ≈ b (i.e., advection diagonal to the grid) or when the exact solution has a large cross derivative
∂p+1
x ∂p+1

y c compared to the derivatives∂p+1
x c and∂p+1

y c, then the second term in (32) gains importance.
Since this term represents the additional error due to using the combination technique, rather than a single
grid, we see that the combination technique is less well suited to problems witha ≈ b or with large cross
derivatives. Both are features of a problem that is not grid-aligned, i.e., the combination technique works
better for grid-aligned problems.

We mention two mechanisms that will attenuate the second term in (32). First, the semi-coarsened
grids used in the combination technique need to be sufficiently fine to describe the solution. This requires
H to be small and thus attenuates the second term in (32), which hasHp as a prefactor . Second, it is
a practical observation that a number of intermediate combinations(M − 1) is needed to successfully
apply the combination technique, causing a further reduction of the second term by a factor 1/M .

4.7. Time-dependent coefficients

Up to now the results in the current section are valid for coefficients that are independent of time. We
now state the leading-order results for time-dependent coefficients. The statements about the interpolation
error still hold. The leading-order expression for the combined discretization error becomes
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)
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(
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)
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)
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log2
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+ O
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. (34)

For third-order upwind discretization this yields

d̂ = −h
3
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WhenM − 1 intermediate combinations are made, the combined discretization error is given by

d̂ =
( t∫
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(
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(
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For third-order upwind discretization this yields

d̂ = −h
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5. Asymptotic efficiency

When making efficiency comparisons the number of cell updatesC is used as a measure of required
computational work. On a single grid this is simply defined as the product of the number of cells and the
number of time steps required. Within the combination technique it is the sum of products of numbers of
cells and time steps required on all grids within the grid of grids.

Due to the CFL restriction the time step2t must satisfy

2t � αmin
(
hx

|a| ,
hy

|b|
)

for some constant value ofα. The cost estimates presented in this section are based on2t =
0.1min(hx, hy), as are the numerical results in Section 6. Note that the time steps on the different grids
within the combination technique are not equal, larger steps are taken on coarser grids. In other words,
within the combination technique the average CFL number (averaged over the semi-coarsened grids) is
larger than the CFL number on the single grid. We identify a combination technique with a root mesh
widthH = 2 · 2−LR, whereLR is theroot level,and a finest mesh widthh= 2 · 2−LR−N , whereN is the
sparseness level.The number of grids within a combination technique is given by

2N + 1 = 2 log2

(
H

h

)
+ 1.

5.1. Computational work

Assuming the time interval[0,1] and the spatial domain[−1,1] × [−1,1] for a single grid with
h= 2 · 2−L the number of cell updates required is given by

C1 = 5 · 23L.
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For the combination technique the number of cell updates is given by

CCT = ∑
l+m=N−1,N

2l+m

2t

= ∑
l+m=N−1,N

2l+m

0.1 · 2min(2−l ,2−m)

=
{

5 · 23LR
(
5 · 22N − 4 · 23N/2

)
, for N even,

5 · 23LR
(
5 · 22N − 11

4 · 2(3N+1)/2
)
, for N odd.

(38)

For fixedLR the combination technique has asymptotic complexity

CCT ∼ 22N ∼ h−2 (39)

while the single grid has asymptotic complexity

C1 ∼ 23L ∼ h−3. (40)

5.2. Efficiency comparison

For fixedLR the combination technique has, according to (25), the following asymptotic error:

d̂ ∼ hp log2

(
h−1)∼ 2−pNN

while a single grid of mesh widthh= 2 · 2−L has the following asymptotic error:

d ∼ hp ∼ 2−pL.
If we require a single grid to yield the same error as the combination technique for a givenN , i.e., we put

N2−pN ∼ 2−pL,
then we obtain

L=N − log2N

p
.

According to (40) this yields, for the complexity of the single grid,

C1 ∼ 23N
(

1

N

)3/p

∼ h−3
CT

(
log2

(
h−1

CT

))−3/p
,

while according to (39), the complexity of the combination technique is given by

CCT ∼ 22N ∼ h−2
CT

showing that, asymptotically, the combination technique reduces the three-dimensional single-grid
complexity to a two-dimensional complexity, while obtaining the same level of accuracy.

6. Numerical results

6.1. Numerical setup

All the numerical results presented in this paper were obtained with the classical fourth-order explicit
Runge–Kutta method using2t = 0.1min(hx, hy) which satisfies the CFL condition for all considered
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test cases. We have verified that the time-discretization error is always negligible compared to the spatial
discretization error. For spatial discretization we have used third-order upwind discretization as described
in Section 2.2, the prolongations are done with fourth-order interpolation. All analytical error predictions
for the combination technique refer solely to the combined discretization error. The interpolation and
representation errors due to the combination technique are neglected. Boundaries are handled as in
chapter 5 of [9], i.e., the exact solution is prescribed on the inlet boundaries and first order upwind
discretization is used on the outflow boundaries. As a result boundary errors are introduced. These errors
are not included in our analysis and were found to be insignificant for most of our numerical tests. See
Section 6.4.1 for a further discussion of boundary errors.

6.2. Test cases

We consider the following four test cases:
(1) Horizontal advection, characterized bya = 1

2, b= 0.
(2) Diagonal advection witha = b= 1

2.
(3) Time-dependent advection with

(a, b)=


(0,2), 0� t < 1

4,
(2,0), 1

4 � t < 1
2,

(0,−2), 1
2 � t < 3

4,
(−2,0), 3

4 � t < 1.

(4) The Molenkamp–Crowley test case witha = 2πy, b= −2πx.
Test cases (1)–(3) have as initial profile

c(x, y,0)= 0.014((x+0.25)2+(y+0.25)2), (41)

which is depicted in Fig. 2(a), while test case (4) has as initial profile

c(x, y,0)= 0.014((x+0.5)2+y2), (42)

which is depicted in Fig. 2(d). All test cases are integrated up tot = 1 and have−1 � x, y � 1. In [9]
solutions for the Molenkamp–Crowley test case obtained with various numerical methods are presented,
given the initial condition (42). Our single grid solver is an implementation of the solver outlined in
chapter 5 of [9]. Compared to the other solvers in [9] this solver is not the fastest but proved to be highly
robust.

Besides initial profiles, Fig. 2 displays a number of typical error profiles observed in the numerical
solutions of the test cases. The single-grid technique (SG) results in Fig. 2 were obtained on a 513× 513
grid corresponding toL = 9 and the combination technique (CT) used a grid of 9 grids given by
Lr = 5 andN = 4, i.e., the combination technique also produced its solutions on a 513× 513 grid. The
results for the combination technique with intermediate combinations (ICT) were obtained by making
8 combinations.

Fig. 3 illustrates the performance of the single-grid and the combination technique on the test cases.
The number of cell updates is plotted along the horizontal axis, which is a direct measure of the required
CPU time, see Section 5.1. Any additional CPU time required to make the 7 intermediate combinations
to obtain the ICT results was neglected, which is fully justified for the limited number of combinations
considered here. The error is shown in theL∞ norm, the results for theL1 norm are similar. In obtaining
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Fig. 2. Initial profiles and numerically observed errors for the single-grid technique (SG), the combination
technique (CT) and the combination technique with intermediate combinations (ICT), applied to the diagonal,
time-dependent and Molenkamp–Crowley test cases.
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Fig. 3. Numerically observed (obs) and analytically predicted (pred) performance of the single-grid technique
(SG), combination technique (CT), combination technique with intermediate combinations (ICT) and Richardson
extrapolation (RE) applied to the test cases.

Fig. 3 the combination technique hadLr = 5 fixed andN = 2,3,4,5. The single-grid results were
obtained usingL= 7,8,9.

In Fig. 4 the effect of the number of combinations is shown on theL∞ error due to a combination
technique characterized byLr = 5 andN = 4. In Fig. 4 only test cases (2)–(4) are considered because
for test case (1) the error is independent of the number of combinations.

Except for numerically observed results, Figs. 3 and 4 also contain analytical predictions. For test cases
(1) and (2) these were obtained from (10) for the single grid, from (26) for the combination technique
and from (33) for the combination technique with intermediate combinations. For test case (3) the error
predictions were obtained from (11) for the single grid, from (35) for the combination technique and from
(37) for the combination technique with intermediate combinations. Note that test case (4) is not time-
dependent but spatially dependent. The error predictions that we have derived are not valid for spatially
dependent coefficients.
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Fig. 4.L∞ error versus number of combinations for three test cases.

6.3. Results

6.3.1. Horizontal test case
We do not show any error profiles for the horizontal test case. For this test case the single-grid error

and the errors due to the combination technique with and without intermediate combinations are all
practically equal and are almost perfectly described by the analytical prediction (10). The combination
technique does not introduce any additional error relative to the single grid because the second term in
(26) vanishes due tob = 0. The combination technique works very well for this fully grid-aligned test
case, as can be seen in Fig. 3(a). Fig. 3(a) also shows that intermediate combinations do not improve the
efficiency for the horizontal test case. In fact, the ICT results coincide with the CT results.

6.3.2. Diagonal test case
For the diagonal test case, error profiles are shown for the combination technique and the single

grid in Figs. 2(b) and (c), respectively. We see that for this test case the error due to the combination
technique is somewhat larger than the single grid error and has a different shape. Fig. 3(b) shows that
the combination technique is more efficient than the single grid approach. This figure also shows that
the combination technique can be made more efficient by applying 8 combinations. Fig. 4(a) shows how
the error due to the combination technique decreases as the number of combinations is increased. The
ICT error converges to the single-grid error as the number of combinations is increased. The first couple
of combinations strongly decrease the error, a further increase in the number of combinations does not
decrease the error much further.

6.3.3. Time-dependent test case
For the time-dependent test case the error profiles for the CT and the ICT are plotted in Figs. 2(e)

and (f), respectively. We see that making intermediate combinations influences both the shape and size of
the error. Note that Figs. 3(b) and (c) are similar, i.e., just like the diagonal test case the time-dependent
test case is solved more efficiently with intermediate combinations (ICT) than without (CT). However,
the reason for the efficiency of the ICT is somewhat more complex for the time-dependent test case than
for the diagonal test case. As we can see from Fig. 4(b) the ICT error does not decrease monotonically
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with the number of combinations and this is correctly predicted by our theory. We can see that when a
multiple of four combinations is made the ICT error becomes equal to the single grid error. This follows
from (37) due to the fact that the product of integrals in the summation in the second term is always
zero when a multiple of four combinations is made. When a multiple of four combinations is made the
time-dependent test case is effectively split into two horizontal and two vertical advection problems and
these are solved very well by the combination technique, as we know from the first test case.

For the time-dependent test case the agreement between predicted and observed error is very good
for the single grid and the ICT. For the combination technique without intermediate combinations the
agreement is a little weaker. This can be understood as follows. The combination technique tends to
amplify cross-derivative terms in the single-grid error and of these amplified terms only one is included
in our analytical predictions, viz. the second term in (26). The discrepancy between the predicted and
observed CT errors is to be ascribed to the amplified cross-derivative terms that are not included in our
analytical predictions. These terms are proportional to a second or higher power oft and are therefore,
according to Section 4.5, inversely proportional to a first or higher power ofM if M combinations are
made. Hence, the terms that cause the discrepancy are significantly smaller for the ICT than for the CT,
especially for higher numbers of combinations.

6.3.4. Molenkamp–Crowley test case
Error profiles the Molenkamp–Crowley test case are shown in Figs. 2(g), (h) and (i) for the SG, CT

and ICT, respectively. We see that the CT error is larger than the SG error, but intermediate combinations
help considerably, i.e., the ICT error lies much closer to the SG error than to the CT error. Fig. 3(d)
shows that the Molenkamp–Crowley test case is a tough case to solve efficiently with the combination
technique. Fig. 3(d) shows that CT is less efficient than the single-grid technique, whereas ICT is more
efficient in solving the Molenkamp–Crowley test case. For completeness, Fig. 4(c) shows how the ICT
error decreases with increasing number of combinations. It is interesting to note that the ICT performs so
much better than the CT for the Molenkamp–Crowley test case. This is not really surprising since this test
case is clearly not well suited to any semi-coarsened grid because it models advection in all directions.
Therefore the CT solution, which is constructed from solutions on semi-coarsened grids, is not very
accurate either. By allowing sufficient intermediate combinations the test case is split into problems that
do have a dominant direction of advection and therefore are more suited to some semi-coarsened grid.
The corresponding ICT solution is also more accurate.

6.4. Implementational issues

6.4.1. Boundary complications
The L∞ errors for the Molenkamp–Crowley test case were determined after the solutions were

restricted to the 33× 33 root grid. We were forced to do this because at high accuracies the fourth-
order interpolation produced wiggles near the boundaries that dominate the combined discretization error.
These wiggles do not appear in the nodes of the root grid, because for those nodes no interpolation is
necessary. However, at very high resolution wiggles near the boundaries appear in the nodes of the root
grid as well. In particular, forLR � 6 the wiggles are of equal or greater magnitude than the combined
discretization error itself. The cause for these wiggles lies in the fact that the discretization near the
boundaries is of lower order which obstructs the cancellation of errors required by the combination
technique to function properly. An illustration of wiggles near the boundary is shown in Fig. 5(b). The
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(a) (b)

Fig. 5. Implementational issues; Molenkamp–Crowley test case. (a) Performance of the combination technique
with 8 combinations (ICT) for root levels 4–7. (b) Error profile due to a combination technique with root level 5,
sparseness level 6 and 8 combinations.

above difficulties were not observed for the other test cases because there the solutions are almost zero
near the boundaries. We also ran the Molenkamp–Crowley test case for the initial profile (41) shown
in Fig. 2(a) which stays away from the boundaries. This removed the problems near the boundaries but
introduced a similar wiggle in the origin. We believe that this wiggle is also due to an order reduction
caused by the switching of the upwind discretization stencil in horizontal and vertical directions due to
the sign change of the coefficients in the origin.

6.4.2. Choosing an optimal root mesh-width
All numerical results for the combination technique were obtained with a root mesh widthH = 1

16
corresponding to a root levelLR = 5. This choice was made to optimize the performance of the
combination technique when applied to the Molenkamp–Crowley test case. This is illustrated in Fig. 5(a).
In this figure the performance of the combination technique with 8 combinations which hasLR +N = 10
fixed (ICT) is compared with the single-grid performance (SG). We see that forLR = 5 the performance
of the ICT is optimal, although performance forLR = 6 is comparable. The optimal choice forLR is only
weakly dependent on the sparseness levelN , therefore we could safely useLR = 5 throughout for optimal
performance. To see that the optimalLR varies slowly withN consider the following argument. We
found that, to solve the Molenkamp–Crowley test efficiently, the additional error due to the combination
technique had to be of comparable magnitude as the single-grid error. According to our error analysis for
constant coefficients (26) this implies

h3 ∼H 3h3 log2
H

h

which leads to

H ∼
(

1

N

)1/3

,
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Fig. 6. Error profile present in anN = 9 Richardson extrapolant.

showing thatH needs to decrease only slightly when the sparseness level, and thus the number of grids
in the combination technique, increases.

6.5. Richardson extrapolation

In [7] Rüde points out that simple Richardson extrapolation is in fact more efficient than the
combination technique for the solution of a smooth Poisson problem. To see how Richardson
extrapolation would perform for the Molenkamp–Crowley test case, we considered the following
Richardson extrapolant

ω
N,N
R ≡ 8

7ω
N,N − 1

7P
N,NωN−1,N−1,

which cancels the leading third-order term in the error expansion (10). The new leading-order terms
are proportional toh4∂5

x c andh4∂5
y c and are thus of a dispersive nature which is shown in theN = 9

error profile for Richardson extrapolation in Fig. 6. The Richardson extrapolant has an asymptotic
error

dRE ∼ h4
RE

while it has the same asymptotic complexity as a single grid,

CRE ∼ h−3
RE.

If we consider a combination technique and a Richardson extrapolation of equal complexity, i.e., we
put

CRE ∼ CCT

then we obtain

hRE ∼ h2/3
CT

which leads to

dRE ∼ h8/3
CT . (43)
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According to (26) the combination technique has

d̂ ∼ h3
CT logh−1

CT. (44)

Comparison of (43) with (44) shows that in the limith→ 0 the combination technique shall be more
efficient than Richardson extrapolation.

In Fig. 3(d) the numerically observed performance of Richardson extrapolation (RE) is compared with
that of the single grid (SG) and the combination technique with intermediate combinations (ICT) when
applied to the Molenkamp–Crowley test case. Fig. 3(d) clearly shows that Richardson extrapolation is
very efficient for the Molenkamp–Crowley test case, much more so than the combination technique, even
though we expect the combination technique to be superior to Richardson extrapolation in the asymptotic
limit h→ 0. For the Molenkamp–Crowley test case, without parallelization and on grids of practically
relevant mesh width, the combination technique can not compete with Richardson extrapolation. Note
that Richardson extrapolation and the combination technique strive for higher efficiency in different ways.
Richardson extrapolation generates a higher-order solution for a marginally larger complexity, while the
combination technique requires lower complexity for a marginally larger error.

7. Conclusions

We have derived leading-order expressions for the error that is introduced when a spatially constant
coefficient advection equation is solved with the combination technique. In our derivations we
have accounted for time-dependent coefficients and for intermediate combinations. When a constant
coefficient advection equation

ct + acx + bcy = 0 (45)

is solved on a grid of mesh widthh, this will introduce an errord into the numerical solution which is in
leading order given by

d = tφhp(|a|∂p+1
x + |b|∂p+1

y

)
c+ O

(
hp+1), (46)

wherec is the exact solution,p is the order of discretization andφ is an error constant. We have shown
that when we solve (45) with the combination technique, we obtain an errord̂ which is in leading order
given by

d̂ = tφhp
(|a|∂p+1

x + |b|∂p+1
y

)
c+ 1

M
t2φ2|ab|Hphp

(
1+ (1− 2p

)
log2

H

h

)
∂p+1
x ∂p+1

y

+ O
(
hp+1 log2

1

h

)
, (47)

whereH is the mesh width of the coarsest grid in the combination technique andM is the number
of combinations. We see that the leading-order term from the single grid error (46) reappears in
the combination technique error (47) and is accompanied by a new term which is formally of order
hp logh−1. Focusing only on the order in terms ofh, this new term has to be identified as the leading-
order term in (47). The numerical experiments suggest, however, that the term proportional tohp in
(47), which is also present in the single-grid error, is of equal importance as the new term proportional
to hp logh−1. The additional error due to the combination technique, corresponding to the second term
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in (47), is proportional to 1/M . This suggests that the error due to the combination technique can be
strongly reduced by making several of intermediate combinations. The numerical results confirm this.
For our test case that has time-dependent coefficients it turns out that the number of combinations has
to be chosen such that the problem is split up in problems which have a constant direction of advection.
This agrees with our error analysis. Finally, the combination technique proved more efficient for grid-
aligned problems than for non-grid-aligned problems, which follows from numerical observations and
from analysis.

For the Molenkamp–Crowley test simple Richardson extrapolation proved more efficient than the
combination technique, even though the combination technique is expected to be more efficient in the
asymptotic limith→ 0. Rüde made the same observation for a smooth Poisson problem in [7].

When going to three spatial dimensions (or even higher dimensional problems), the combination
technique will perform significantly better. Furthermore, very significant gains in performance can be
obtained when the combination technique is parallelized.

Appendix. Notation

ΩN,N finest grid of mesh widthh= 2−NH .

Ωl,m semi-coarsened grid of mesh widthshx = 2−lH , hy = 2−mH .

Ω0,0 root grid of mesh widthh=H .

c continuous, exact solution.

Rl,m restriction operator that maps ontoΩl,m.

PN,N prolongation operator that maps ontoΩN,N .

ωl,m semi-discrete approximate solution onΩl,m.

h mesh width of gridΩN,N .

H mesh width of root gridΩ0,0.

d discretization error:d ≡ ω− c.
E truncation error operator:E ≡ aDx + bDy + d/dt .

Dx,Dy finite difference approximations of∂x, ∂y.

a, b advection speeds inx andy direction.

x, y spatial coordinates.

t time coordinate.

Shx x shift operator:Shxf (x, y)≡ f (x + hx, y).
Shy y shift operator:Shyf (x, y)≡ f (x, y + hy).
l,m grid indices: 0� l,m�N .
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ĉN,N sparse grid approximation of exact solution:

ĉN,N ≡ ∑
l+m=N

Rl,mc− ∑
l+m=N−1

Rl,mc.

ω̂N,N sparse grid combination of numerical solutions:

ω̂N,N ≡ ∑
l+m=N

ωl,m − ∑
l+m=N−1

ωl,m.

rN,N representation error:rN,N ≡ ĉN,N −RN,Nc.
eN,N total error:eN,N ≡ ω̂N,N −RN,Nc.
θi,j expansion coefficients of the discretization error:

dl,m =
∞∑
i=0

∞∑
j=0

hixh
j
yR

l,mθi,j c.

ε
l,m
i,j error term:εl,mi,j ≡ 2−il−jmRl,mθi,j c.

ξ
N,N,l,m
i,j error without interpolation effects:ξN,N,l,mi,j ≡ 2−il−jmRN,Nθi,j c.

ζ
N,N,l,m
i,j additional error due to interpolation:ζN,N,l,mi,j ≡ (λthqx∂qx + λmhqy∂qy )ξN,N,l,mi,j .

λl, λm constants dependent on the choice of interpolation.

αp,βp constants dependent on the choice of interpolation.

p order of spatial discretization.

q order of interpolation used in prolongation.

N sparseness level of combination technique.

M total number of combinations.

C1 number of cell updates on a single grid.

CCT number of cell updates within the combination technique.

ω
N,N
R Richardson extrapolant:ωN,NR ≡ 8

7ω
N,N − 1

7ω
N−1,N−1.

dRE error in Richardson extrapolant:dRE ≡ ωN,NR −RN,Nc.
CRE number of cell updates required for Richardson extrapolation.
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