
BDCC:
Exploiting	Fine-Grained	Persistent	

Memories	for	OLAP
Peter	Boncz

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

NVRAM

• System	integration:
– NVMe:	block	devices	on	the	PCIe bus
– NVDIMM:	persistent	RAM,	byte-level	access

• Low	latency	
– Lower	than	Flash,			
– close	to	DRAM
– Asymmetric	(r<w)

• Fine-grained	access
– 512byte	for	NMVe
– NVDIMM:	cache-line

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

NVRAM:	DB	impact

• Back	to	the	5-minute	rule:
– Restoring	old	balance	of	latency	and	bandwidth?

• Many	challenges	in	OLTP
– index	structures,	(in-page)	logging
– ensure	consistency,	prevent	leakage,	control	wear

èwhat	about	OLAP?
Should	we	re-think	warehouse	storage	for	low-
latency	persistent	memories?

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

VLDB	Journal 2016
Volume	25,	Issue	3	
p.	291- 316

BDCC: Bitwise Dimensional Co-Clustering

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC:	how	tables	are	stored

bdcc	column	ordering	è works	in	column	stores

partition	1

partition	2

partition	3

partition	10
partition	11

partition	12

partition	100
partition	101

bdcc

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Bitwise	Interleaving	=
Z-Ordering

space	filling	curve

Computationally	cheaper
than	eg Hilbert	Curve

Almost	as	nice	properties

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC	- Data	Order

• any	bit	interleaving	of	dimensions	possible
• round-robin	=	Z-order
• major-minor =	classical	MD	index	(eg DB2)
• any	bitmix in	between

• our automatic algorithms	use
• round	robin	bit	interleaving
• clustering	depth	based	on	column	densities,	
typically	32KB	(SSD)	and	512KB	(HDD)	blocks

7

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC	- What	is	it?

• Multi-dimensional indexing
– table indexing:	not	multi-media	(audio,image)	indexing	here	J
– limited	amount	of	dimensions	(up	to	5..7)

• Multi-table clustering	(co-clustering)
– indexing	on	dimensions	from	other tables..
– ..reachable	over	foreign-key	relationships
– and	exploiting	common	indexing	dimensions	among	tables	in	operators	

• Grouping	into	MILLIONS of	very	small	groups
– scattered access	patterns	è Flash IO	friendly!
– clustering:	because	millions	not	possible	with	partitioning

• Column-store optimized

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC	- The	Idea

Q1

Q2

Q3

Q4

How	does	this	help:
• selection?
• order	by?
• Aggregation?	
•FK	join?

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

What	BDCC	gives	you
Accelerates

• Most	Selections ->	selection	push-down,	correlations
• Most	Groupings
• All	Foreign	Key	Joins (no	matter	if	dimensions	are	involved)

• even	removes	joins,	turning	them	into	selections
• Certain	Order-by

Mostly	through	strong	reduction	of	memory	usage
while

• No	storage	overhead:	every	tuple stored	once
• Bulk	update-friendly
• Easy	to	parallelize query	processing

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Two	Stages	of	the	Project

• Bitwise	Dimensional	Co-Clustering	(BDCC)
– I/O	level	clustering	and	indexing
–Query	processing	via	PartitionSplit,	PartitionRestart
published	in	VLDBJ	2016

• Deep	Dimensional	Co-Clustering(DDC)
– additional	I/O	block	clustering
–Query	processing	via	DDC-Recluster()
unpublished	yet..	WIP

11

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC	Structures

• BDCC	dimension
– mapping	to	consecutive	integers
– balancing	through	histograms	and	Hu-Tucker

• BDCC	table
– re-ordered	primary	copy
– additional	_bdcc_	order	attribute

• BDCC	count	table
– summary	table	(_bdcc_,	_count_)
– cluster	access	index

12

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC	Structures

13

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC	Structures

14

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC	Structures

15

“Dimension	Use”	è
“Dimension	Use”	è
“Dimension	Use”	è

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC	Structures

16

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC	Structures

17

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Example

“count	total	ordered	items	from	Germany	per	day	and	supplier”

SELECT o_orderdate, s_name, count(*)

FROM NATION, SUPPLIER, ORDERS, LINEITEM

WHERE n_nationkey=s_nationkey

AND s_suppkey=l_suppkey

AND l_orderkey=o_orderkey

AND n_name='Germany'

GROUP BY o_orderdate, s_name

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Relational	Algebra	Plan

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Relational	Algebra	Plan

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC-scan
Scans	a	BDCC	table	

In	any	desired	
dimension	order
Here:
1:	orderdate
2:	customer	nation
3:supplier	nation

At	a	desired	granularity	using	bitmasks	

3+2+3	bits	set	è use	8	bits	(256	groups)

Pushes	down	
selections:
[0,7]=	all
[0,3]	=	all
[5,5]	=	germany

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC-scan

• extracts _bdcc_ bits è _gid_ column
d3s3c3d2s2c2d1s1c1è d3d2d1c3c2s3s2s1

• delivers tuples ordered on _gid_
• performs selection pushdown ([lo-hi])

Basic Idea:
• BDCC-scan delivers sorted stream

but sorting is free! As fast as a normal scan
• carefully controlled scatter access pattern

we clustered on |_bdcc_| bits, but can BDCC-scan with less

BDCC:	Bitwise	Dimensional	Co-Clustering	– Google	Talk	-- 23	May	2017	-- Peter	Boncz

BDCC	FetchScan

23

• uses	count-table to	find	the	needed	_bdcc_	ranges
• fetches	tuple ranges	in	a	particular	order
• returns	an	ascending	_gid_	column	in	the	tuples

BDCC:	Bitwise	Dimensional	Co-Clustering	– Google	Talk	-- 23	May	2017	-- Peter	Boncz

BDCC	- Query	Processing

• Partition-wise operator	execution
– hash	based	join,	grouping/aggregation
– better	cache	utilization

• Sandwich	Operators	è PartitionSplit & PartitionRestart
– sideways	information	passing:	PartitionRestart.cross-partition?	(_gid_	change)	

è HashAggr/Join.flush()	&	PartitionSplit.next-partition()

24

BDCC:	Bitwise	Dimensional	Co-Clustering	– Google	Talk	-- 23	May	2017	-- Peter	Boncz

BDCC	- Performance
Sandwich	Operators

• Micro-Benchmarks	(TPC-H	SF10,	LINEITEM-ORDERS)

25

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Relational	Algebra	Plan

Selection	Pushdown	+
Dimension	Join	Elimination

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Relational	Algebra	Plan

Selection	Pushdown	+
Dimension	Join	Elimination

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Co-Clustering	Close-up
Part
dimen
sion

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Co-Clustering	Close-up
Part
dimen
sion

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Common	Path =	Co-Clustering
Part
dimen
sion

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Common	Dimension =	Accelerated	Join

Part
dimen
sion

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC:	All	FK	Joins	Accelerated!
Part
dimen
sion

Date
dimen
sion

Nation
dimen
sion

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC	- Schema	Design

• Semi-automatic
• Input:	CREATE	INDEX()	and	FOREIGN	KEY()

• Schema	traversal	along	foreign	key	paths
• propagation	of	„Index“	dimensions
• weighted	according	to	FK	paths

• automatic creation	of	dimensions	and	tables
• round	robin	bit	interleaving
• clustering	depth	based	on	column	densities,	
typically	32KB	(SSD)	and	512KB	(HDD)	blocks

34

BDCC:	Bitwise	Dimensional	Co-Clustering	– Google	Talk	-- 23	May	2017	-- Peter	Boncz

BDCC	- Optimizer

• IDU:	Interesting	Dimension	Uses
• all	dimensions	determined	by	join,	sort	or	
aggregation	attribute

• IDO:	Interesting	Dimension	Orders
• all	dimension	order	permutations	of	each	IDU

• MDO:	Maximal	Dimension	Orders
• Pruning	of	dominated	sort	orders	of	IDOs

• MDOs	represent	„interesting	orders“	for	
enumeration

35

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC	Performance
• TPC-H	SF100	execution	time	for
BDCC,	cold	buffer	pool

36

much	better	
power	scores	with	
much	less	memory

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC	Performance
• TPC-H	SF1000	execution	time	for
BDCC,	cold	buffer	pool

37

much	better	
power	scores	with	
much	less	memory

BDCC:	Bitwise	Dimensional	Co-Clustering	– Google	Talk	-- 23	May	2017	-- Peter	Boncz

BDCC	- Updates

• Batch	Update	Support
• in-memory		buffer
• „log-structured	merge“

38

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

BDCC	Updates
• TPC-H	SF100	update	set

39

•60%	bulk	append	
speedup	comp.	to	
cluster	trees	
(ordered	projections,	
using	PDTs)

• for	many	update	
sets,	BDCC	only	
merges	with	
previous	updates	
instead	of	PDT	merge	
with	full	table

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Deep	Dimensional	Clustering	(DDC)

• Idea:
– Make	_bdcc_ have	as	many	bits	as	possible	
– For	I/O	(BDCC-scan)	only	use	the	major	bits	(groups	of	~32KB)
– Note,	inside	the	32KB	tuple block,	there	is	more	clustering

• Inside	a	cache	line	tuples tend	to	belong	to	the	same	group

– Idea:	exploit	this	locality	(these	deep	bits)	in	operators
• For	really	cheap	cache	partitioning
• make	joins	cache-conscious again

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

DDC	Extensions

41

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

DDC	Performance

42

BDCC

DDC

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Conclusion

• BDCC	&	DDC
– clever	ordering	of	tables,	and	co-ordering of	tables
– millions	of	tiny	groups	(NVRAM	friendly!)	
– All	the	goodies	in	one	go:

• fast	selections	(even	cross-table	propagation)
• fast	joins,	fast	groupbys,	fast	sorts	(little	RAM	needed)

– Sideways	info	passing	sandwich	operators
• No	need	for	new	join/aggr operators

– QOPT	framework	that	extends	interesting	orders
– Updatable	using	LSM	ideas	– data	is	stored	only	once	

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Dimension	Construction

Dimension	=	set	of	bins

• Range-Binning	of	a	
domain

• Histogram-based	
approach
– Needs	frequency	
information

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Assigning	Bin	Numbers:	Naïve	Way

• Skew/frequent	values	(èsingle-value	bins)
value frequency code c2 c1
(null) .70 000 00 0
HBO .15 001 00 0

Bachelor .08 010 01 0
Master .06 011 01 0

PhD .01 100 10 1

value frequency code
(null) .70 000

Polytech .15 001
Bachelor .08 010
Master .06 011

PhD .01 100

value frequency code c2
(null) .70 000 00

Polytech .15 001 00
Bachelor .08 010 01
Master .06 011 01

PhD .01 100 10

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Hu-Tucker	Binning

• Frequency-based	Bin	Number	Assignment

Hu-Tucker =	Order	Respecting	Huffman Coding

value frequency code c3 c2 c1
(null) .70 0000 000 00 0
HBO .15 1000 100 10 1

Bachelor .08 1100 110 11 1
Master .06 1110 111 11 1

PhD .01 1111 111 11 1

value frequency code c3 c2
(null) .70 0000 000 00
HBO .15 1000 100 10

Bachelor .08 1100 110 11
Master .06 1110 111 11

PhD .01 1111 111 11

value frequency code c3
(null) .70 0000 000
HBO .15 1000 100

Bachelor .08 1100 110
Master .06 1110 111

PhD .01 1111 111

value frequency code
(null) .70 0000

Polytech .15 1000
Bachelor .08 1100
Master .06 1110

PhD .01 1111

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Hu Tucker	Dimension	Binning

but	why	is	this	relevant?

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Variety in	Data	Density	of	Columns
• l_linestatus 0.25 b/tuple
• l_comment 30 b/tuple

Factor	120	difference

What	is	the	optimal	BDC	bin	size?
- Depends	on	disk	block size
- Depends	on	column	density

What	to	do	if	a	query	accesses	
multiple	columns	of	very	
different densities?

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Granularity	Tuning	in	BDCC

1. Is	an	issue	during	table	creation
– A	dimension	is	used	in	multiple	tables
– each	table	needs	a	different	granularity

2. Is	an	issue	during	query	execution
– Table	is	clustered	at	some	granularity
– Given	a	set	of	columns to	scan:

at	what	granularity	to	scan	the	table?

BDCC:	Exploiting	Fine-Grained	Persistent	Memories	for	OLAP	– HardBD 2018,	Paris

Z-Ordering	for	Column	Stores
there	is	a	column-store	specific	argument	for	bit	interleaving,	also:
• suppose	BDCC-scan(T,C1) is	efficient	at	8 bits,	needing	sorted	access	to	supplier	(s)
• suppose	BDCC-scan(T,C2) that	selects	other	columns	C2 that	are	on	average	much	

smaller	than	those	in	C1,	is	efficient	only	up	to	5 bits	granularity

Takeaway:	column	stores	need	a	variable	access	granularity	
• Major-minor	clustering	leaves	the	minor	dimension	unusable	for	thin	columns	(C2)
• Bit-interleaving	(Z-ordering)	allows	thin	column	scans	to	profit	from	all	dimensions

: d3d2d1c3c2c1s3s2s1 : d3s3c3d2s2c2d1s1c1

BDCC-scan(T,C1) d3d2d1c3c2c1s3s2s1 d3s3c3d2s2c2d1s1c1

BDCC-scan(T,C2) d3d2d1c3c2c1.L.… d3s3c3d2s2c2d1s1c1

Bit5			Bit8 Bit5			Bit8Fast	I/O	access	until..

Major-minor	clustering Z-Ordering
key	shape:

