Vrije Universiteit Amsterdam
Faculty of Sciences

Warsaw University
Faculty of Mathematics, Informatics and Mechanics

Marcin Zukowski
Student number: 1289012

Parallel Query Execution in Monet
on SMP Machines

Master’s Thesis
Specialization: COMPUTER SCIENCE

Supervisors (Vrije Universiteit):
Prof. Henri Bal
Dr. Peter A. Boncz (CWI)

Supervisor (Warsaw University):
Dr. hab. Jerzy Tyszkiewicz

July 2002

‘o

The research described in this thesis was performed during the author’s internship con-
tract at Centrum voor Wiskunde en Informatica — National Research Institute for Math-
ematics and Computer Science in the Netherlands, within the theme Data Mining and
Knowledge Discovery, a subdivision of the research cluster Information Systems.

This thesis is ready to be marked.

Date: Author’s signature:

This thesis is ready to be verified by the second reader.

Date: Supervisor’s signature:

Abstract

Parallel execution is a popular method of increasing performance of database management
systems. This thesis describes our work on extending Monet — a novel DBMS for query-oriented
applications — with parallel query execution in shared-everything environment. We discuss
parallel implementations of relational algebra operators adapted to the Monet decomposed
storage model and CPU-optimized execution, concentrating on parallelizing cache-conscious
query processing algorithms. It turns out that this can be done with mixed success, depending
on the used hardware platform. For better analysis of our benchmark results we present a
Calibrator tool, that allows generic detection of various features of hierarchical memory systems
present in modern computer architecture. We extend this tool to obtain characteristics of the
memory subsystem in SMP environment. The obtained results are used to present possible
optimization strategies for both sequential and parallel algorithms.

Keywords:

parallel query execution, main-memory DBMS, decomposed storage model, SMP architecture

Contents

1. Introduction 1
2. Preliminaries 3
2.1. Database Introduction 3
2.1.1. DBMS Technology 3
2.1.2. OLTP and Query-Intensive Applications 4
2.1.3. Relational DBMSs 4

2.2. Modern Hardware and Parallelism 7
2.2.1. Hierarchical Memory Model 8
222, Parallelism 9
2.2.3. Parallel Features of Modern CPUs 10
2.2.4. Shared-Everything Machines 11
2.2.5. Shared-Nothing Systems 12

23. Parallel DBMSs 12
2.3.1. Benefitsand Problems 12
2.3.2. Parallel Query Execution 13
2.3.3. Exploiting Parallel Hardware 14

24. Monet, 14
241, Design Goals 14
2.4.2. Architecture 15
2.4.3. Binary Relations 16
2.44. CPU and Memory Optimized Code 17
2.45. The MIL Language i ittt e 18
2.4.6. Parallelization in Monet 20

2.5, SUMMATY 20
3. Operator parallelization 23
3.1. Imtroduction 23
3.2. Expression Evaluation 24
3.3. Selection 25
3.4, Aggregation 30
3.5. Sorting 35
3.6. Join ... 39
3.6.1. Partitioned Hash-Join 39

3.7. Attribute Projections L 41
3.7.1. Projections with Radix-Cluster 42
3.7.2. Radix-Cluster-Decluster 43
3.7.3. Projection Strategies for Algebraic Operators 48

il

5.

CONTENTS

3.8. Defragmentation Optimizations 49
3.9, Summary e e e 51
Hardware Characteristics 53
4.1. Calibrator e, 53
4.1.1. Measurement Methods, 53
4.1.2. Results, 93
4.2. SMP and Memory Throughput 54
4.2.1. Extending Calibrator. 54
4.22. Results 56
4.3. Optimization Strategies 58
4.3.1. Cache-conscious Algorithms 58
4.3.2. Instructions-Per-Byte Ratio 59
4.3.3. Partitioned Execution 60

4.4, SUMMATY o e e 63
Conclusions L 65

Chapter 1

Introduction

Monet is a novel Database Management System (DBMS) [8], designed specifically for query-
intensive applications such as on-line analytical processing, data-mining and multimedia re-
trieval. Its main design goals are adaptation to specific requirements of these applications and
exploitation of the full potential of modern hardware.

Monet uses the decomposed storage model [13] optimizing data access cost for typical query-
intensive access patterns. Its design as a main-memory DBMS and its column-at-a-time data,
processing model (as opposed to a tuple-at-a-time model) allow it to obtain good performance
by using algorithms designed to optimize CPU efficiency and minimize mMemory-access costs
introduced by hierarchical memory system.

In this thesis we improve Monet’s performance further by extending its parallel features.
Although parallel and distributed DBMSs have been studied extensively in the past [26], the
Monet-specific features introduce new challenges. Firstly, its partitioned data model brings
new problems not existent in traditional relational systems. Moreover, most recent research
concentrates on the shared-nothing architecture, while we choose SMP machines as our hard-
ware platform. We believe that with the dropping prices of such systems and introduction of
new families of multi-threaded CPUs, SMPs will become a typical solution either as standalone
systems or as nodes in large-scale shared-nothing architectures. It makes SMP parallelism a
logical first step towards fully parallel system. This leads to stating first objective of this
thesis:

Objective 1: parallelize query ezecution in Monet on off-the-shelf SMP machines

Obtaining maximum performance from commodity hardware requires adapting to its com-
plex architecture. Parameters like cache memory sizes can be used for tuning algorithms to
increase their efficiency. To allow application portability, an automatic and platform indepen-
dent way to obtain detailed hardware characteristic is necessary. Such a tool can be also used
to analyze algorithms performance. This leads to the second objective of this thesis:

Objective 2: create a generic tool for obtaining SMP characteristics

We present our work in these areas in the following chapters. In Chapter 2, we give a general
introduction to different aspects of presented research. We describe general DBMS technology,
modern hardware (especially parallel architectures) and most important Monet features. In
Chapter 3, we describe our work on parallelizing the fundamental query processing operators
from relational algebra in Monet. Moreover, we explain how to combine given algorithms to
obtain parallel execution of full SQL queries. In Chapter 4, we present tools to detect various
characteristics of modern hardware. We describe obtained information for our test platforms

2 CHAPTER 1. INTRODUCTION

and use it to explain results of our performance benchmarks. Moreover, we discuss possible
strategies of modifying programs for better performance. Finally, in Chapter 5 we conclude
this thesis and present possible research areas for the future.

Chapter 2

Preliminaries

This thesis connects knowledge from the different areas including parallel databases, modern
computer architecture and the Monet DBMS. Since we do not expect the reader to be familiar
with all of them, we start with a short 'walk-around’. We present a general overview and,
where appropriate, give a rationale for the choices made for our research environment.

The structure of this chapter is as follows. Section 2.1 presents a general overview on
database technology. Then, in Section 2.2 we proceed with description of the current hardware,
focusing on parallel systems. These two areas are connected in Section 2.3 where we present
parallel and distributed databases. Finally, Section 2.4 presents most important aspects (for
our research) of the Monet DBMS.

2.1. Database Introduction

This section provides a short introduction to database research. We describe the motivation
behind database technology development, DBMS architecture, SQL language and its theoret-
ical background. More detailed information can be found in literature overviews, e.g. [35].
Readers familiar with this field can skip it.

2.1.1. DBMS Technology

Data management is an important part of most computer programs. In the past, applications
used their private implementations of data access routines. This approach required extra effort
during software development and additionally tied application to physical data representation.
Moreover, applications routines were usually limited. Therefore, specialized technology for
data management was introduced.

Database Management System (DBMS) is a software layer allowing data storage and ma-
nipulation. Applications can use it as a "black-boz”, concentrating on what to do with the
data and not how. It greatly improves software design process and its maintenance. Moreover,
multiple DBMSs use the same interface, but achieve different performance in various tasks. It
allows choosing the best solution for a given problem.

Being application-independent, a DBMS can concentrate on safe and efficient data stor-
age, update and retrieval. DBMSs usually provide many useful additional features, including
optimized query execution, automatic parallelization, concurrency control, index structures,
data backup and recovery, security and authentication control.

Most DBMSs work in a client-server model. Since various clients can work on the same
database, it enables cooperation between multiple users and applications. However, concur-

4 CHAPTER 2. PRELIMINARIES

rent updates introduce the problem of data consistency, which is tackled with transaction
management. Moreover, centralized solution puts extra requirements on server processing and
storage capabilities.

2.1.2. OLTP and Query-Intensive Applications

DBMSs were at first used mostly for on-line transactional processing (OLTP) applications.
Such systems in typical case execute big number of queries, yet each of them is relatively
simple. Typical uses include lookup of data about specified customer, changing user’s password
on a Web site, adding new product to a list of ordered items or deletion of data about retired
employee. Each of these queries follows the tuple-at-a-time access pattern.

Completely different access pattern is present in the query-intensive applications, including
on-line analytical processing (OLAP), data-mining and decision support systems. Relations in
such applications often contain hundreds of attributes, while typical queries usually access only
few of them. An example may be a request to group all insurance company clients according
to their age and calculate probability of insurance claims caused by car accidents. Such a
query follows the column-at-a-time pattern.

Most DBMSs are optimized for the OLTP usage. Monet DBMS, presented later in this
chapter, adapts data storage and execution strategies to query-intensive applications require-
ments.

2.1.3. Relational DBMSs

Various database paradigms have been presented in the past. Most important nowadays are
relational and object-oriented databases. New trends in both hardware and software develop-
ment have led to introducing new areas like self-describing databases (e.g. XML), solutions
for multimedia, streaming applications and document storage.

In this thesis we concentrate on query execution in relational DBMSs (RDBMSs). It is de
facto standard nowadays — most important DBMSs (e.g. Oracle, PostgreSQL) belong to this
family.

The Relational Data Model

Data in the relational model is stored in structures described by a schema. It consists of mul-
tiple relations. A schema provides detailed information on relation structure: attributes , their
domain types, data constraints etc. It may additionally contain management properties like
definition of indices (data structures improving performance) or access rights. Each relation
consists of collection of elements called tuples. Since the set of relation’s attributes is fixed, and
number of tuples is volatile, relations are usually visualized as two-dimensional tables, limited
horizontally and unlimited vertically, where columns represent attributes and rows represent
tuples.

Figure 2.1 shows a relational schema for a database storing information about customers
and their orders. It consists of two tables:

Person with attributes: person identifier, name and city

Order with attributes: order identifier, person identifier, order value and postage cost.

2.1. DATABASE INTRODUCTION

Person

(pidl poamelpiy |

111

Blue

Amsterdam

Order

Lolio |l o vaiie o posiage|

11111

555

100

20

222

Black

Warsaw

22222

333

200

20

333

White

Amsterdam

33333

222

150

30

444

Green

London

44444

444

200

20

555

Yellow

Warsaw

55555

555

280

50

Figure 2.1: Example relational schema with tables Person and Order

66666

111

150

40

77777

111

300

30

88888

555

120

20

99999

222

250

30

SELECT Result
SUM(o_value) AS sum value, p_city T

FROM - - sum_value |p.
Person, Order 370 Warsaw

WHERE 350 Amsterdam
o_value<=240 AND Person.p_id=Order.p_id

GROUP BY 200 London
p_city

ORDER BY

SUM(o_value) DESC

Figure 2.2: Simple SQL query and its result

The SQL Language

As for the data management, RDBMSs use the Structured Query Language for interaction
with the clients. SQL statements, called queries, are defined by the SQL standard (previously
SQL92 [5], now SQL3). The most important SQL query types are SELECT, INSERT, UPDATE
and DELETE queries. Since we concentrate on query-intensive applications, consisting mainly

of data retrieval queries, we concentrate on the SELECT query type.

Figure 2.2 presents a simple SQL query and its output. This query asks for a sum of order
values for each city, taking into account only orders with the value smaller or equal to 240.

Algebraic Operators

Our example can also be presented using a sequence of relational algebra operators [12]. Con-
ceptually, each of them takes one or two source relations and returns a new relation as a

result.

First we present a grammar for such an algebra:

<RELATION> ::= <OPERATOR> | table(IDENT)

<OPERATOR> ::

project ({<EXPR:any>}*,

<RELATION>)

select (<EXPR:bool>, <RELATION>)
join(<EXPR:bool>, <RELATION>, <RELATION>)

{<EXPR:any>}*,

aggregate ({<ATTR>}*,

sort ({<ATTR>}*, <RELATION>)
<EXPR:T>
<ATTR> ::= IDENT

I
|
| join(<ATTR>, <RELATION>, <RELATION>)
|
|

Above description uses BNF extended with:

<RELATION>)

e {X}* means a list of zero or more elements X

e Y:Z means element Y of type Z

<ATTR> | IDENT.<ATTR> | CONST:T | IDENT({<EXPR:any>}*):T

6 CHAPTER 2. PRELIMINARIES

We introduce these operators in more details. We assume that each operator input is a
relation with attributes having unique names. For the operators creating new attributes we
will define their naming:

project(ExprList, rel) if the expression list contains only source attributes, it returns input
relation vertically limited to a specified collection of attributes, preserving their names.
Its formal notation is:

Hattn ooy QEETy, (rel)

In the generalized projection, the expressions may contain arithmetic functions (working
on the source attributes). It introduces new columns explicitly specifying their names.
It is denoted as:

HEmpn [AS namei),...,Expr, [AS namen](rel)

In our example query "SELECT SUM(o.value) AS sum value, p_city” defines that we
project sums of orders (giving it a new name) and a city name.

select(boolExpr, rel) returns input horizontally limited to tuples that match a given boolean
formula. It is denoted as:

O Egpr(Tel)

It preserves the attribute set of a relation. In our example "WHERE o_value<=240"
specifies that we take only orders with value smaller or equal to 240.

join(boolExpr, leftRel, rightRel) returns a subset of cartesian product of two input rela-
tions, limited to tuples that match boolean formula given. It is denoted as:

leftRel X ggy, TightRel = opgpr(leftRel x rightRel)

Result relation contains attributes from both inputs. If the attribute name sets are not
disjoint, they are additionally extended with the relation identifier as a prefix.

join(attr, leftRel, rightRel) is a special kind of join called natural-join. It is most common
join style in typical queries, used to combine information from other relations. It is
denoted as:

leftRel Wypr rightRel = leftRel NleftRel.attr:rightRelvattr rightRel

In our example "FROM Person, Order WHERE Person.p_id=Order.p_id” defines that
we perform join over Person and Order, returning only tuples in which person IDs in
both tables are equal.

aggregate(attrList, funcList, rel) can be seen as two operations. First we locate all groups
of tuples with the same combination of grouping attributes values. Secondly, we execute
all aggregate functions on each group. Typical aggregates include count(), sumf(),
avg(), min() and max(). Note that attribute collection may be empty, then aggregates
are performed for the whole relation. The result includes all grouping attributes and
corresponding results of aggregates, named using identifiers consisting on function name
and its position in the list (e.g. sum3). Aggregation is denoted as:

attn,‘..,attrngfuncl s funem

In our example, "SELECT SUM(o_value)” and ”"GROUP BY p_city” define that we per-
form summing of order value for each city.

2.2. MODERN HARDWARE AND PARALLELISM 7

- PROJECT
sum:as sum_value, picity.

PROJECT

SUMY as sum value, picity

~ AGGREGATE
{p_cty} {SUM(o_value)} -

AGGREGATE
pcity}; {SUM({o_value)

. SELECT

(Persan) (Order)

Figure 2.3: Two query trees for the example query

sort(attrList, rel) returns a permutation of tuples in the input relation with respect to
the value of a given sequence of sort attributes. This operator is not a part of the
“traditional” relational algebra, which is set-based, hence lacks the concept of tuple
ordering. Still, most real-life systems provide it. Sorting does not change the attribute
set of a relation. In our example, "ORDER BY SUM(o_value)” defines that we expect
result to be sorted descending with the sum of orders.

Note that our algebra does not allow using expressions as parameters for aggregate and
sort operators. This is due to the fact, that the same results can be obtained first by per-
forming a proper project step, followed by aggregate or sort using its output.

We concentrate on described operators in Chapter 3 where we present their parallel ver-
sions.

Query Trees

Any SQL query can be expressed as a tree of relational operators. In such a query-tree the root
node is a top-level operator which returns the final result, inner nodes are various relational
operators, and leaves represent physical tables. The tree shape determines query execution —
it is traversed bottom-up, calculating each node’s operator result. Often, multiple mappings
of an SQL query to a query-tree exist. Figure 2.3 presents two possible execution trees for
our example query. While their outputs will be the same, the second tree will probably have
smaller resource requirements, since preliminary order selection is performed before the join.
It reduces input and output of selection, but more importantly, it reduces the input of join
operator.

In Chapter 3 we will show how parallel implementations of single relational operators can
be efficiently combined to allow parallel execution of full queries.

Any SQL query can also be presented as a relational algebra expression. For example, the
second query tree from Figure 2.3 can be formally denoted as

l—ISU M(o_wvalue) as sum.value,p_city (p_city gSUM (o-walue) (P erson Mp.id (O-o_value<=240 (Order))))

2.2. Modern Hardware and Parallelism

CPU speeds, memory and disk sizes grow exponentially, with about 50% improvement a year,
according to Moore’s law (stated by Gordon Moore in 1965 [31]). However, this improvement

8 CHAPTER 2. PRELIMINARIES

Memory Page

Figure 2.4: Hierarchical Memory System (courtesy of Peter Boncz)

is not equally balanced between different hardware characteristics — progress in some of them
is much slower. For example, memory and disk latency times improve at the rate of ca. 1%
and 10% a year, respectively. Detailed analysis of this fact with description of its impact on
software efficiency will be presented in Chapter 4.

Due to this situation, some assumptions used by the designers of many ”classical” algo-
rithms do not hold anymore. A typical example is a memory access. RAM — random-access
memory — used to mean that accessing any area in the memory takes exactly the same amount
of time. Nowadays, with an introduction of the hierarchical memories (multiple cache levels)
it is not the case anymore. Therefore, new cache-conscious algorithms have been introduced
lately [20, 11]. In this thesis, we will adapt our solutions for parallel database processing to
these hardware developments.

2.2.1. Hierarchical Memory Model

With the fast development in CPU speeds, the relative performance of the DRAM memory
chips (which develop much slower) rapidly decreases. To accelerate access to the data addi-
tional cache memories made of SRAM have been introduced. First they were placed on the
motherboard, now they often are a part of a CPU chip. Figure 2.4 presents a hierarchical
memory scheme found in the modern CPUs.

The memory performance in this model may be influenced by multiple hardware parame-
ters:

capacity Sizes of memory chips at different levels can be used as a tuning information for
many algorithms

cache line size and number Caches can differ not only in size, but also in partitioning
strategy. FEach cache-memory is divided into cache lines. Their size and count give
total cache size. These values can have great influence on other factors — big cache lines
usually increase memory latency, yet big number of cache lines may result in less cache
misses.

latency In general, latency is an amount of time needed to transfer a single byte from sender
to receiver. For our purposes, the most important are memory latencies. Since the
memory system in modern CPUs is hierarchical, we can define various latencies. LI
latency (I11) is the time needed by CPU to access data from L1 cache. When CPU tries
to access data which is not in L1, LI miss occurs. The data has to be transferred from

2.2. MODERN HARDWARE AND PARALLELISM 9

L2 to L1 — the time consumed is called L2 latency (I12). If the data is not in L2 then an
(L2 miss), it has to be transferred from main memory, adding memory latency (Ingem)-
Therefore, access to data which is not in any cache costs I + lyo + 1 Mem. One should
notice that memory is not transferred in single bytes, but in full cache-lines.

cache associativity Modern caches usually keep a few (e.g. 4) possible positions for each
memory address. When a new cache line is fetched, its hash value is calculated by taking
a few bits from the physical address, and an LRU (least-recently used) strategy is used
to find final position in the cache. This strategy can be exploited by algorithms, for
example to increase the probability of reusing cached data.

address translation An important phase of memory access is translating an address from
application’s virtual memory area into physical addresses in computer’s main memory.
To speed up this mechanism modern CPUs contain a translation lookahead buffer (TLB)
— a kind of cache for recently used translations. Usually it consist of 64 entries. When
the logical address is not found in the TLB (TLB miss), an address translation has to
be performed. It can be either done in hardware (e.g. Athlon, Pentium 4) or in software
via operating system (e.g. Origin2000, Sun Ultra). The former case is usually fast, yet
the software approach can even exceed 50 CPU cycles.

throughput In general, throughput is as amount of data transferred from sender to receiver
in a specified period of time. For our purposes, we concentrate on the main memory
throughput, additionally checking this factor for the caches. Throughput strongly de-
pends on the latency. However, in many cases it can provide better performance than
expected by simply dividing cache line size by latency, because many cache lines can be
transferred in parallel.

Note that the time-related values may be measured using either real-time units (seconds) or
relatively to the CPU frequency (cycles). We emphasize the importance of the latter, to better
realize the imbalance in the various hardware parts development. If we look at the performance
values in seconds, we see they are improving. However, measuring them in cycles often shows
a dramatical decrease, leading to wasting a lot of CPU power.

2.2.2. Parallelism

Parallel processing and data distribution is a widely used technique for problems with grow-

ing computational and storage needs. It may be realized at different levels of the computer
architecture:

e inter-node parallelism — connecting multiple computers via network, usually with message
passing as the only way of communication

e intra-node parallelism — installing multiple processing units in one machine, sharing all
resources

e intra-processor parallelism — exploiting multiple execution units and simultaneous multi-
threading features of modern CPUs

This taxonomy differs from traditional ones by the last category. Low-level parallelism
available inside CPUs is a relatively new phenomenon, introducing new problems and chal-
lenges. We believe that with the progress in this area, designing algorithms exploiting these
features will become important.

The advantages of parallel systems over sequential ones include:

10 CHAPTER 2. PRELIMINARIES

speedup Ratio of the parallel execution time comparing to a sequential program. System
designers usually try to achieve linear speedup (equal to the number of computing units).

scale-up Ability to solve the same problem on bigger data in the same time.

replication Using multiple copies of the same data parallel systems offer better failure re-
sistance ~ failure of one node does not result in a loss of continuity of work. Moreover,
replication allows increased data availability — clients can choose the nearest copy for
better performance. It is especially important in wide-area networks (e.g. GRID sys-
tems [18]).

Parallel and distributed systems also face a number of challenges not present in sequential
systems:

hardware scalability A scalable system offers unlimited (or big) number of nodes resulting
in speedup/scale-up close to linear. Other aspects should not be strongly influenced by
the number of nodes. However, some architectures limit the number of processors used,
due to the hardware problems. Moreover, performance of parts of the system (e.g. disks)
may be degraded due to access interference of concurrently executing tasks.

algorithm scalability The performance of parallel algorithms often suffers from overheads:
communication costs, unparallelizable code costs (Amdahl’s law [4]) and bad load bal-
ancing caused by uneven data distributions and resources. Moreover, algorithms may be
inherently sequential, and hence hard or even impossible to parallelize.

consistency control With the introduction of a data replication, sophisticated consistency
protocols often have to be used, to guarantee the ACID properties of transactions.

cost Many parallel architectures require specialized hardware facilities (e.g. hlgh—speed net-
works [7]), usually significantly increasing overall cost.

software development Designing and programming parallel systems is much more complex
than sequential ones.

In the following sections we discuss these aspects of different parallel hardware platforms
in more details.

2.2.3. Parallel Features of Modern CPUs

Current scalar CPUs execute instructions by separating different operational stages (like fetch-
ing, decoding, executing) into a processing pipeline. This way, some of the execution stages
can be overlapped (inter-stage parallelism). Moreover, thanks to constantly increasing number
of transistors on a chip, CPU vendors incorporate multiple execution pipelines in processors.
In such super-scalar CPUs the same execution stage can be active for more than one instruc-
tion, which results in the intra-stage parallelism. To fully exploit the potential of the inherent
parallelism CPUs deploy few techniques [3]:

e non-blocking caches : cache misses do not result in blocking a specified cache unit.
Instcad, the request is forwarded to the higher-level cache (or main-memory) and the
cache can work on other requests

e out-of-order execution : many consecutive instructions can be executed at the same time,
provided the input of one does not depend on the output of another

2.2. MODERN HARDWARE AND PARALLELISM 11

e speculative execution with branch prediction : after meeting conditional branch instruc-
tion the CPU ”guesses” the value of the predicate and follows the appropriate instruction
sequence. If the ”guess” was incorrect, the pipeline has to be flushed and the proper in-
struction sequence has to be executed. To increase efficiency of branch prediction CPUs
are incorporated with prediction tables that record predicates output in the past.

Another idea for parallelism inside the CPUs were single-instruction multiple-data (SIMD)
[17] instructions. They allow performing simple operations on many elements at once. Modern
off-the-shelf CPUs are equipped with different SIMD instruction sets, e.g. MMX, 3dNOW and
SSE.

Parallel capabilities of CPUs can be further extended with introduction of simultaneous
multi-threading (SMT) [39]. In this technology, chips are equipped with multiple execution
units, having separate resources like registers, pipeline flushing mechanisms, subroutine return
prediction. Some resources stay shared, like branch target buffer and translation lookaside
buffer (extended with per-context identifiers). Also L1 and L2 caches stay shared. This leads to
a truly parallel execution model, in which many independent threads can work simultaneously.

In a few years SMT may become a standard for off-the-shelf CPUs (Intel Pentium 4 Xeon
CPUs already use this technology under the name of hyper-threading), giving them full-fledged
parallel features. This is an additional reason for concentrating on SMP machines in this thesis.

2.2.4. Shared-Everything Machines

In the shared-everything (SE) model, all processors have access to common memory (the same
address space), disks and input/output devices. System memory can be used as a communi-
cation medium. Two hardware architectures use this model: symmetric multiprocessor (SMP)
and cache-coherent non-uniform memory access (ccNUMA) machines.

In SMP machines, one node contains multiple processing units. Since all processors share
storage facilities (memory, disks), the problem of distributing data does not occur. It is also
easy to program and perform load balancing. However, SMP performance may be decreased
by resource interference — multiple tasks concurrently accessing e.g. disk may influence each
other’s performance. Moreover, SMP machines face one important problem — low scalability.
Because of limited bandwidth of the system bus, the cost of cache-coherence protocols and
inadequate memory-chips speeds! SMP systems can be scaled up to only 8-32 processors. Still,
important chip vendors continue research on processors working in an SMP architecture (e.g.
AMD’s Athlon MP or IBM’s Powerd CPUs). We choose the SMP architecture as a hardware
platform for our research.

The ccNUMA (or simply NUMA) architecture can be seen as a hybrid of SMP and dis-
tributed machine. It consists of many SMP nodes connected via fast network. Running
processes share the same address space. However, the memory access is non-uniform — access-
ing data allocated at the same node is much faster than transferring it from another node.
NUMA has both advantages and disadvantages over SMP machines. The biggest advantage
is better scalability — systems can even scale up to hundreds of CPUs (e.g. 512 in SGI Origin
3800). As for disadvantages, communication overhead results in increased difficulty of devel-
oping efficient programs. Moreover, the cost of NUMA machine is usually high due to the
specialized equipment used.

*some of these issues are addressed in Chapter 4

12 CHAPTER 2. PRELIMINARIES

2.2.5. Shared-Nothing Systems

The shared-nothing (SN) architecture consists of multiple nodes with private memory, disks
and input/output devices, connected via interconnection network.

For many applications, SN systems obtain performance as good as SE machines. Addition-
ally, SN architecture has one important advantage over SE — scalability. Using off-the-shelf
machines with little extra hardware, it is possible to assemble systems consisting of thousands
of nodes at a relatively small price. Moreover, SN offers multiple storage facilities, leading
to scale-up and possibility of data replication. SN drawbacks include harder software imple-
mentation due to complicated machine model, slower communication and additional costs of
consistency protocols.

For large-scale computing, SN architecture is now the most popular solution. It can be
used to create hierarchical systems, where each node of upper-level system is in fact a sepa-
rate parallel system. One typical combination is the SN/SE model, in which each SN node
is an SMP machine. The other is SN/SN, consisting of highly-integrated nodes, connected
internally with very fast network like Myrinet [7]. Such a hierarchy can be extended even
further. Probably the most complex example of the hardware used for parallel and distributed
programming are the GRID systems [18]. These comprise of nodes spread all over the world,
each consisting of multiple machines, each of which can be a parallel system. It introduces
architecture with enormous complexity, resulting in a new challenge for system designers.

2.3. Parallel DBMSs

Parallel databases have been studied intensively over the last two decades [26, 32]. In this sec-
tion, we describe benefits and problems of parallel DBMS (PDBMS), parallel query execution
and the relations between PDBMS and hardware.

2.3.1. Benefits and Problems

A PDBMS may improve its performance thanks to speedup and increase their capabilities
thanks to scale-up. Moreover, data replication allows improved failure resistance and increased
data availability. Another issue, especially important in wide-area systems, is transparent
access to data distributed over multiple nodes. ;

Another benefit comes from the fact that database queries are expressed using the standard-
ized language SQL. Since the DBMS maintains full control over how the query is executed,
parallelization can be introduced in transparent and automatic way. Moreover, a relatively
small number of possible relational operators allows preparing highly optimized solutions for
generic queries. This differentiate PDBMSs from the general parallel programming, where
automatic parallelization is often impossible.

PDBMSs share typical problems of parallel systems (Section 2.2), extended with:

data skew Query execution time for various datasets (even with the same size) may greatly
differ, because some values can occur more often than the others. It may influence load
balancing and makes prediction of operator costs harder.

concurrency control Preserving data consistency in PDBMSs requires new algorithmic so-
lutions. It is especially difficult in a distributed DBMS, with data partitioned over
multiple nodes and often replicated.

2.3. PARALLEL DBMSS 13

. cpul A A A a
vertical w2 BEBBBBEB|
parallelism 3 | DDDDDDDD]
cpu4 | CCCCCCCCCCLCCCCC |
time ———&

. cput | CCCCDDBBA
horizontal cpu2 | CCCCDDBBA
paralielism cpu3 | CCCCDDBBA

cpu4 | CCCCDDBBA
fimeg —erree e

H
N/
e e

cpul | DDDDDDDDA

mixec_i cpu2 | CCCCCCCCA
parallelism g3 [CCCCCCCCA join tree
cpu4 | | BBBBBBBBA]

fime —————

Figure 2.5: Parallel query execution strategies (courtesy of Peter Boncz)

Since many of these problems are application related, some of the recent work in DBMS
parallelization concentrates on domain-specific research, including data mining [41], decision
support systems [37] and geographical information systems (GIS) [34].

2.3.2. Parallel Query Execution
There are various mechanisms for parallel query execution:

intra-operator parallelization Parallel execution of a single algebraic operator. It is espe-

cially useful in the query-intensive applications where one operator can take minutes or
hours to execute.

intra-query (inter-operator) parallelization Some branches in an operator tree may be
executed in paralle]l. Moreover, partial results can be re-used.

inter-query parallelization Running multiple transactions as independent threads is a rel-
atively easy solution, provided by most DBMS vendors. It is useful especially for typical
OLTP usage. Moreover, for applications running many similar queries (like data-mining)
it is possible to re-use partial results between them.

In a query tree, operators can be classified as blocking and non-blocking. For blocking
operators, the output can be returned only after all the input tuples have been read (e.g. sort
operator). Non-blocking operators can return tuples right after reading it from input (e.g.
projection). For some operators, this classification depends on algorithm used. For example,
grouping by hashing (Section 3.4) is blocking, while grouping by sorting may be non-blocking
given sorted input. Moreover, some algorithms require an initial blocking phase, but then
proceed in a non-blocking way, e.g. build-probe hash join [33].

This classification allows for different strategies of distributing work between processors,
presented in Figure 2.5. Non-blocking operators bring vertical parallelism — each processor is
given an operator, executing query in a pipelined way. However, since various operators usually
differ in execution cost, it often leads to non-optimal performance, since some CPUs may be
stalled while awaiting for the data. In the horizontal parallelism, each operator is executed by
all processors. It usually obtains a good performance, however, it requires full materialization
of partial results. The mixed approach [40] allows combining these two strategies, resulting in
similar performance and minimizing cost of materialization.

14 CHAPTER 2. PRELIMINARIES

2.3.3. Exploiting Parallel Hardware

One of the early ideas for introducing parallelism in DBMSs were database machines, e.g.
DIRECT [14] and PRISMA [6]. They used hardware designed for database purposes, equipped
with specialized elements, like on-disk CPUs or sorting processors. However, due to a high cost
of this solution and because of low portability and short life-cycle of such a DBMS hardware,
this approach has been abandoned in middle eighties.

Nowadays, most of the research on PDBMSs concentrates on the shared-nothing architec-
ture. Distributed databases [32] consist of both wide-area systems using traditional networks
and highly-integrated cluster solutions, using specialized fast communication methods. Al-
though the general shared-nothing paradigm stays the same, different communication speeds
may influence algorithms used.

As for shared-everything machines, they are often used as nodes in distributed databases.
Recent research in this area concentrates on analyzing the differences between DBMS and typi-
cal scientific applications requirements, and its impact on performance of SMP systems [22, 16].
Moreover, some research is done on the new architectural trends, especially SMT technol-
ogy [25]

More detailed overview of the influence of parallel hardware architecture on DBMSs can
be found in [36].

2.4. Monet

The Monet DBMS [9, 8] is a research project in the database group of the Centrum voor
Wiskunde en Informatica (CWI) — National Research Institute for Mathematics and Com-
puter Science in the Netherlands. It is designed to fully exploit modern hardware features for
work with query-intensive applications. As such it powers the commercial data mining tools
of the CWI spin-off Data Distilleries. It has been also successfully adapted to other areas, in-
cluding geographical information systems (GIS), XML manipulation and multimedia retrieval.
Because of its flexibility, it was also a base for other experiments, e.g. scalable distributed data
structures [21].

In this section we present the most important features of Monet, relevant for the remainder
of this thesis.

2.4.1. Design Goals

The most important design objectives of Monet are:

e providing efficient DBMS for query-intensive applications — Monet is specifically designed
to obtain good performance in applications like on-line analytical processing and data
mining,.

e exploiting modern hardware features — Monet aims to achieving maximum performance
on current hardware architecture. It is realized thanks to CPU optimized code and
cache-conscious algorithms.

e supporting multiple data models and query languages — Monet is designed to allow map-
ping various data models (e.g. XML, objects) onto its native storage format. Moreover,
thanks to introducing intermediate execution layer — MIL — it allows translation and
execution of different front-end languages.

2.4. MONET 15

MIL sessions
MIL interpreter
executmn controf L session management
O’/O\'M;hent listener
O-O—0-C T
job-queue mz; :
thread management | ML parsifig-tables i
A | x

i
|
g i
MiLinterpreting |

g l extension modules

Figure 2.6: Monet software architecture (courtesy of Peter Boncz)

e extensibility to new domains — Monet may be extended with new data types, accelerator
structures and language primitives.

2.4.2. Architecture

Monet is designed as a main-memory database management system (MMDBMS). While per-
sistent data is stored in files, all intermediate results and temporary relations are kept in the
main memory. To allow using large-volume data, Monet relies on the operating system’s vir-
tual memory mechanisms. Such an approach proves to be effective in the applications Monet
is designed for. Since most OLAP-like queries access only few attributes from a relational
table, even data few times bigger than available memory can be processed efficiently.

Another important design decision in Monet is the use of the decomposed storage model [13].
In this strategy, all attributes of a relational table are stored in separate binary relations, in
Monet called Binary Association Tables—BATs. Section 2.4.3 describes this approach in more
details.

Monet provides only back-end functionality for different front-end applications. This is
made possible by an intermediate execution layer — Monet Interpreter Language (MIL), de-
scribed in Section 2.4.5.

The Monet architecture is presented on Figure 2.6. Three important parts can be identified:

e BAT kernel - a low-level layer, offering basic data structures and management functions.

e MIL interpreter — a layer for parsing and executing MIL queries. Provides support for
multiple concurrent transactions.

e extension modules — Monet is equipped with rich set of external routines, providing
additional functionalities, new data types, index structures etc. They can consist of
both binary routines as well as of MIL programs.

The multi-layer architecture allows performing optimizations at different levels. Front-
end applications can use strategical optimizations to exploit domain-specific knowledge. The
MIL interpreter supports the tactical optimization phase by removing common subexpressions,
introducing parallelism, etc. Monet kernel can perform operational optimization — choosing
different algorithms for performing relational operators.

Additionally, multi-level query execution allows reducing requirements on the kernel. Some
expensive operations executed by many DBMSs in every situation, in Monet can be performed

16 CHAPTER 2. PRELIMINARIES

on explicit demand. For example, the Monet kernel does not provide full transaction manage-
ment. Instead the trans module introduces MIL extensions providing this functionality when
necessary.

To illustrate possibilities of multi-layer solution, Monet is equipped with an SQL front-end
(developed by Niels Nes). It allows using Monet as an RDBMS server, providing transparent
relational data mapping and SQL to MIL translation.

2.4.3. Binary Relations

BATSs used in Monet consist of two columns: head and tail. Aligned values from both columns
are placed together in a memory as binary units (BUNs). A BAT descriptor consists of BUN
heap (continuous memory area) information as well as the head and tail column descriptors.
Figure 2.7 presents the implementation of BAT.

various
search

accelerator
7

| 1
“fixed integer
LR atom | offset.

Figure 2.7: The BAT data structure (courtesy of Peter Boncz)

Each column consists of tuples of fixed-size data types (e.g. integers, chars). Variable-size
data types (like strings) can be stored by saving an offset to an external heap structure in a
BUN. Additionally, there is a special column type VOID (virtual-OID). It is a virtual data
type for dense and ascending integer values. Such data is often found in tables translated
from the relational model into Monet’s BATs. This type saves memory and allows speeding
up several operations.

The advantages of using binary partitioning in Monet include:

e mapping flexibility — different front-end data structures can be mapped onto BATSs.
Figure 2.8 presents a translation of the relational scheme from Figure 2.1 onto binary
fragmented model. Similar mapping schemes can be applied not only for typical tabular
data, but also for complex structures, including XML and graphs.

e small memory requirements — only a relevant data are loaded into main memory.

e eflicient processing — while processing BATs all fetched data is (usually) processed, result-
ing in good I/O performance. Moreover, processing continuous memory blocks minimizes
number of cache misses.

However, binary fragmentation also brings problems. In particular, it incurs the cost of
data defragmentation. The result of one operator can consist of tuples belonging to one of the

2.4. MONET 17

Person ey Order
111 |Blue Amsterdam
222 |Black |Warsaw
333 |White | Amsterdam
444 | Green |London

565 | Yellow | Warsaw

88888555 | 120 20
98999] 222 {250 30
person_p_id person_p_name person_p_city order_o_id order p id order_o value order_o_postage
e B BE ;
10 | Blue 10 | Amsterdam
11 | Black 11 | Warsaw
12 | White 12 | Amsterdam
13 | Green 13 | London
14 | Yellow 14 | Warsaw

106 | 77777 106 | 111 106 | 300 106 130
107 | 88888 107 | 6585 107 {120 107 120
108 | 99999 108 | 222 108 | 250 108 | 30

Figure 2.8: Mapping relational scheme onto BATSs

relational table attributes, while the following operator may wish to use another one. In such
a situation an extra attribute projection is necessary. Still, thanks to the VOID columns, and
storing all attributes of the relation in aligned BATs, this operation can be done efficiently

in most cases. In Section 3.7 we will present efficient projection algorithms suited to modern
hardware characteristics.

2.4.4. CPU and Memory Optimized Code

Monet adapts its query execution strategies to current hardware characteristics and typical
OLAP query schemes. For this purpose it uses the following optimization ideas:

e simple data structures — all data is stored in BATS, which are consecutive memory areas,
seen by the program as an array. Accessing such a structure is extremely effective. As
for accelerator (index) structures, the main memory access model makes structures like
B-trees and linear hashing (efficient in disk DBMS) less effective than simpler T-trees
(variant of AVL) and bucket-chained direct hashing.

e aggressive code expansion — Monet uses different routines for the same operations on
different inputs. Looking at the source relations data types, as well as some special
information stored in BAT descriptors (e.g. sorted or dense fields) the proper function
implementation can be chosen. Code expansion is available thanks to using Mz tool [23].
With a little programmer’s effort some routines are expanded to hundreds of different
versions. Note, that such approach is impossible in traditional RDBMS, where there is
unlimited number of combinations of input data types. Monet approach, resulting in a
simple code, also enables good optimization on the compilation level, using e.g. loop-

unrolling, memory prefetching and even using specialized vector instructions of modern
CPUs (MMX etc.).

o full data materialization — Monet execution model consists of a series of consecutive
algebraic operators, with each of them fully materializing its result. Combined with code
expansion, it allows only constant number of decisions to be made during query execution.
It minimizes branch misprediction problem and therefore improves overall performance

18

CHAPTER 2. PRELIMINARIES

Extension modules. 2

Figure 2.9: The structure of MIL (courtesy of Peter Boncz)

on modern super-scalar computers. However, it puts additional requirements on available
memory sizes.

e cache-aware algorithms — Monet developers presented few efficient database algorithms,

adapting to current memory and CPU limitations, e.g. radix-cluster join [27], radix
decluster [8]

Together with the binary fragmentation strategy, CPU optimization introduces a new
problem. Since for each tuple a small number of instructions are performed, and usually only
data that has to be processed is loaded from memory, Monet operators can be characterized
with a low instructions per byte ratio. This puts higher requirements on memory bandwidth.
As we present in Chapter 4, during parallel execution it is even more important, introducing
scalability problems.

2.4.5. The MIL Language

Monet Interpreter Language (MIL) [10] is a procedural language, giving full access to Monet
core functionality. Such an approach allows relatively easy extension with new front-ends
(simply by writing top-level-language to MIL translator).

The structure of MIL is presented in Figure 2.9. Its most important features include:

BAT algebra: programs in MIL are expressed using column-wise algebra. It contains
features similar to traditional relational algebra, adapted for vertical fragmentation.

control structures: MIL contains most typical features of structural programming lan-
guages, including procedures, loops and comparison statements.

block structures: script can be divided into blocks, creating new (nested) variable scopes.
A sequential block, denoted by {..}, specifies that enclosed statements should be run
consecutively. A parallel block, denoted by {|..|}, runs statements inside the block in
parallel. Mixed combinations of both are possible.

command overloading: MIL allows multiple commands/procedures implementations for
different parameters.

simple data types: the only data types supported by MIL are atomic values (of fixed or
variable size) and BATSs (possibly nested).

2.4. MONET 19

o iterators: these are MIL constructs that execute a MIL statement for a number of tuples
in given relation.

Below we present the list of most important MIL primitives:

select (bat[H,T| A, str f, ...p;...):bat[H,T] — returns a subset of tuples from A for which
function f with a given tail of a tuple and specified parameters p; returns true

select (bat[H,T| A, T lo, T hi):bat[H,T] — version optimized for range-select. Returns all
tuples in which lo <= tail <= hi.

join (bat[H;,T1] A, bat[T1,T5] B):bat[H;,T5] — returns result of join of A and B where the
tail in A is equal to the head in B.

reverse (bat[H,T'| A):bat[T,H] — returns a reverse view of A — result’s head and tail columns
are switched. This is a zero-cost operation in MIL — new BAT descriptor is created, but
BUN heap remains the same (Figure 2.7).

mirror (bat[H,T] A):bat[H,H] - returns a mirror view of A — result relation consists of two
columns identical to A’s head. It is also zero-cost operation.

mark (bat[H,T| A, oid v):bat[H,void] — returns a pivot table, in which A’s tail column is
replaced by a special void column, containing ascending values, starting with v. It is a
zero-cost operation.

slice (bat[H,T] A, int lo, int hi):bat[H,T'] - returns a vertical slice of an A, taking tuples
with indices from lo to hi. It is a zero-cost operation.

group (bat[oid,T| A):bat|oid,0id] — performs grouping over A’s tail value, returning for each
A’s tuple its head and group identifier. Groups are identified by ID of one of the belonging
tuples — it allows fast lookup of the corresponding attribute values.

derive (bat[oid,T1] A, bat[oid, T3] B):bat[oid,0id] - takes grouped A and performs sub-grouping
according to the tail values in B. The result tail values are the new group identifiers.

sort (bat[H,T]| A):bat[H,T] - returns a permutation of A sorted according to the head value.

refine (bat[oid,T1] A, bat[oid,T5] B):bat[oid,0id] — refines ordering of tail-sorted A by sub-
sorting on tail values of B, where A and B head columns match 1-1.

pump operation, denoted as {f}(bat[void,oid] EXTENT, BAT[void,oid] GROUPING,
BAT[void,T] COLUM N):bat[void,R] — performs f aggregate function (e.g. SUM())
over values from COLUM N divided into disjoint groups identified by corresponding tail
value in GROUPING. The result consists of a BAT with head values from EXTENT’s
head and tail containing results of f for group identified by EXTENT"’s tail.

multi-join map or multiplex denoted as [f](bat[H,T1,] A, ..., bat[H,T},] A,): bat[H,R]
— performs implicit equi-join over head columns of given BATSs, and executes f for all
possible combinations of tail values. The result contains source head value and the result
of f. It is also possible to pass non-BAT variables and constants, as long as at least one
of the parameters is still a BAT.

20 CHAPTER 2. PRELIMINARIES

t1 := order_o_value.select(int(nil),240); # select: [order_oid, order_o_value]
t2 := tl.mirror.join(order_p_id); # project: [order_oid, order_p_id]
t3 := t2.join(person_p_id.reverse); # join: [order_oid, person_oid]
t4 := t3.reverse.mark(oid(0)) .reverse; # mark: [void, person-o0id]

t5 := t4.join(person_p_city); # project: [void, person_p_cityl

t6 := group(tb); # group: [void, group-oid]

t7 := t6.tunique.mark.reverse; # extent: [void2, unique-group-oidl
t8 := t3.mark(oid(0)) .reverse; # mark: [void, order_oid]

t9 := t8.join(order_o_value); # project: [void, order_o_value]
t10:= {sum}(t7, t6, t9); # sum: {void2, localsum]

t12:= t7.join(th); # project: [void2, person_p_city]
[print£] ("] %64 | %10s I\n", t10, ©12); # print result

Figure 2.10: MIL translation of the example SQL query

batloop denoted as Rel A@[N]batloop mil — an example of an iterator. It performs sequen-
tial scan over RelA executing mil statement for every tuple. If [N] is specified, the work
is divided among N independent threads. Inside the mil statement the tuple head and
tail can be referred to by using $h and $t, respectively.

For programming convenience MIL allows using special notation, allowing quasi object-
oriented style — a function call £(p1,p2,...,pr) is equivalent to p1.£(pa,...,pn).

Figure 2.10 presents a possible translation of SQL query described in Figure 2.2 into MIL.
It uses most of the described MIL primitives. As can be seen, a MIL program contains
more statements than corresponding relational formula. This is due to the extra projections
necessary due to the binary data partitioning.

2.4.6. Parallelization in Monet

Although Monet is not yet a full-fledged parallel DBMS, it contains the necessary features to
realize different types of parallel query execution.

An important Monet’s idea is its multi-threaded architecture. Monet kernel maintains a
collection of available threads, and distributes work between them. This element is sufficient
to create inter-query parallelism.

The MIL language supports execution of parallel blocks and parallel iterators. Additionally,
the lock module extends Monet with the implementation of traditional locks and semaphores.
These features allow inter-operator parallelism. Using a MIL Squeezer tool [29], Monet can
already detect possibly parallel paths in a query graph. For some queries it gives significant
performance improvement.

To allow distributed computation, Monet gives access to a socket layer. MIL scripts can
communicate with different hosts, sending data or MIL statements (remote code execution).

However, Monet lacks support for intra-operator parallelism. Since its main application
area are query-intensive problems, it is often the case that single algebraic operators consume
most query execution time. Therefore, in section 3 we will present parallelization strategies
for most important algebraic operators.

2.5. Summary

In this chapter we have presented the preliminaries required for the remainder of this thesis.
In Section 2.1 we have described the idea of the DBMS, relational data model, SQL lan-
guage and algebraic operators. In Section 2.2 we have presented features of modern hardware,

2.5. SUMMARY 21

concentrating on the hierarchical memory system, inherent parallelism of modern CPUs and
shared-everything and shared-nothing architectures. In Section 2.3 we gave an overview of
the parallel database technology, concentrating on strategies for parallel query execution and
adaptation to hardware architectures. Finally, in Section 2.4 we have described most impor-
tant aspects of the Monet DBMS — decomposed storage model, CPU and memory optimized
execution and MIL language.

Chapter 3

Operator parallelization

3.1. Introduction

In Section 2.1.3 we described the possibility of representing a typical database query as a
sequence of algebraic operators. The Monet SQL front-end first rewrites a query into a sequence
of such operators. Then each algebraic operator is translated into equivalent sequential MIL
code. In this chapter, we present our work on parallel versions of such translations.

First we present general ideas behind this translation process. Then we proceed with the
algebraic operators — for each we describe its mapping to sequential MIL code, then we present
a parallel version of it, and finally we give performance test results.

Pivot Relations

In our translations we assume that each operator creates a pivot. A pivot is a [void,oid]
BAT, storing in a head densely ascending identifiers of the produced relation (e.g. 0,1,2,...),
while in a tail keeping identifiers of the operator’s source. In effect a pivot tells for each tuple
in a result relation which tuples in the underlying relation produced it. Pivots are crucial in
the MIL query processing. Note that its use of a void column instead of an oid minimizes
storage cost and enables fast value lookup.

Horizontal Parallelism

As we described in Section 2.3, there are two basic strategies for parallel query execution:
horizontal and vertical parallelism. In this thesis we concentrate on the horizontal approach,
as it allows good load-balancing between CPUs. Its additional cost — full result materialization
~ is present in Monet anyway.

Data Fragmentation and Defragmentation

In an SMP environment data is available to all CPUs without the cost of transmission present
in shared-nothing architectures. Therefore it can be divided between CPUs in any convenient
way. Since Monet’s BATs are continuous memory areas, two general fragmentation strategies
are possible:

slice — a BAT is horizontally sliced into multiple chunks, without looking at the stored values.
In Monet it can be done using zero-cost slice() operator.

23

24 CHAPTER 3. OPERATOR PARALLELIZATION

partition — a BAT is divided according to some criteria basing on the values of stored data.
An example is rangesplit() operator — it tries to return balanced chunks containing
data from disjoint domain ranges.

We concentrate on the sliced solution, since the cost of partitioning is usually too high.

During parallel operator execution some presented algorithms produce partial results (usu-
ally one for each input slice or CPU). In such a situation creating a single pivot requires an
extra phase of data combining. In Section 3.8 we will discuss situations where it is possible to
skip this phase.

Before performing data slicing, we usually calculate proper slice boundaries using MIL
procedure make bounds (size, NSLICES). It divides given size into balanced ranges, returning
an [int,int] BAT containing beginning and end positions of them.

Concurrency control

The algorithms we present usually work using the divide and conquer strategy — after data
partitioning, the concurrently running threads do not interact with each other until they
finish their work. In cases when synchronization is necessary we use two primitives from the
lock module: lock set() and lock unset(), working as typical semaphore instructions. In
descriptions of our algorithms we usually assume that semaphore-type variable 1ck is available.

Hardware Platforms

For the benchmarks we have used two hardware platforms:

e 4-CPU Pentium III (Katmai core) with 550 MHz clock and 1GB memory
e 2-CPU Athlon MP with 1400 MHz clock and 1GB memory

In most cases we only present results for the Pentium machine. Results for the Athlon are
similar, yet the speedup is often better since this architecture suffers less from memory star-

vation?.

3.2. Expression Evaluation

We begin our description of algebraic operator translations into MIL with the project oper-
ator. However, in this section we concentrate on only one part of it — expression evaluation.
The other part — attribute projection — will be described in Section 3.7.

In our algebra, expression evaluation is used to perform arithmetic functions over existing
relation attributes, resulting in new relation columns.

Sequential Version

In general, every expression can be presented as a tree. Leafs in such a tree are relation
attributes or constants, while inner nodes are arithmetic functions. It can be automatically
translated into MIL using the simple mapping;:

£(EXPR$1, ..., EXPR$N) => [£] (EXPR$1, ..., EXPR$N);
In this mapping, as in the others presented in this chapter, we use capital letters to dis-

tinguish production rules from MIL statements. Figure 3.1 presents example SQL query, its
projection expression as a tree and equivalent MIL code.

'as presented in Section 4.2

3.3. SELECTION 25

SQL: Expression Tree:
SELECT
o_postage / (o_value - o_postage)
ROM
Order
MiL:

[/]1({order_o_postage,
{~]{order_o_value,
order_o_postage));

Figure 3.1: An example expression tree

Parallel Version

In our algebra, expression evaluation is not used as a standalone operator. Its result is usually
an input for some other operator. Therefore, it is possible to leave the output of this operator
fragmented. The parallel version of our example, running with NSLICES slices and NCPUS
threads is simple:

bounds := make_bounds (order_o_postage.count, NSLICES);

res := new(bat,int,NSLICES);

bounds@[NCPUS]batloop {

sl_postage := order_o_postage.slice($h,$t);

sl_value order_o_value.slice($h,$t);

sl_res [/1(s1_postage, [-]1(sl_value, sl_postage));
lck.lock_set();

res.insert(sl_res,$h);

1ck.lock_unset();

In the resulting res relation the head contains partial results, and the tail defines corre-
sponding position in the input relation. Note that this operation does not create a new pivot,
since for each source tuple there is exactly one tuple in the result. Therefore, obtained partial
results can be used directly as an input for the next operator?.

Benchmarks

We have conducted benchmarks using the EXTENDEDPRICE attribute from the LINEITEM rela-
tion from standard TPC-H [38] benchmark with a scaling factor (SF) equal to 1. It consists of
ca. 6 million tuples. We have executed different arithmetic functions on it, to see the impact
of the computation cost on the absolute performance and scalability.

'The results are presented in Figure 3.2. It shows execution of both sequential program and
parallel version using 1,2 and 4 threads. The top two diagrams present execution time, while
the bottom ones show the speedup of the parallel version. As we see, since parallel version
does not introduce any (significant) extra cost, the execution time using 1 thread is the same
as for sequential version. Moreover, with growing cost of the function, the speedup increases.
The reason for that — varying instruction-per-byte ratio — will be explained in Section 4.3.2

3.3. Selection

The selection operator returns a subset of the relation tuples that satisfy given predicate. In
our algebra it is denoted as select(boolExpr, rel).

2assuming that it uses the same number of slices

26 CHAPTER 3. OPERATOR PARALLELIZATION

Pentium i Athlon MP
5000 T T T T T T 1600 T T T T T T
4500 1 1 1400
4000
1200
. 3500 .
g 3 1000
o 3000 o
£ £
T 2500 T 800
£ 8
=1 =1
§ 2000 g 600
“ 1500
400
1000 4 .
------ - DA
500§ 200 3% 1
0] I H 1 I I 0 i) 1 1 1 1]
abs - sqrt floor cos tan sinh log abs - sgrt floor cos tan sinh log
Function Function
Sequential —— 1 Thread ---g&--- 2 threads -—--&--- 4 threads -~-e-~
Pentium il Athlon MP
¥ 1 T T T T T T H T T T
4
o 8T 2 F - Rt - At 4
35 | Lo G‘\"-v‘/ E e -
e - o
/‘e/
3 k7 B 1.5 + 1
a 25F 4 a
= oo
3 3
c%{ 2 I ——— R EE % 1@ = e = S - S |
1.5 E
1@ = £ & 5 = h 0.5 R
05 4
0 I] i 1 1 11 0 L i 1 H 1 11
abs - sqrt floor cos tan sinh log abs - sgrt floor cos tan sinh log
Function Function
Perfect - 1Thread -—-&--- 2 threads ----m--- 4 threads ~—o-—

Figure 3.2: Performance of expression evaluation on 4-CPU 550MHz Pentium III and 2-CPU
1400MHz Athlon MP: execution time and speedup

3.3. SELECTION 27

Sequential Version

SQL uses boolean expressions to define tuples to be selected. Such an expression can be
translated into MIL using the strategy presented in the previous section. If we use this solution,
execution of such a query will result in an additional boolean attribute specifying the output
of our expression for each tuple. Then we can use the MIL uselect() primitive to select all
IDs of tuples for which expression returned true. Such a strategy can be defined using the
following mapping:

SELECT(EXPR) => boolResult := EXPR;
pivot := boolResult.uselect(true).mark.reverse;

This mapping produces a new pivot table, in which the head defines new tuple ordering
and the tail is the tuple position in the source relation.

Described algorithm works well for general queries, however, it can be often optimized. MIL
provides two primitives for fast tuple selection: select(bat,val), which returns tuples with
tail equal to val, and select (bat,lo,hi), which returns tuples such that lo<=tail<=hi. The
uselect versions of these primitives return only head values for faster execution and smaller
memory footprint. These primitives can increase performance e.g. by exploiting special BAT
properties and existing index structures.

Let us compare two versions of the MIL translation of the "SELECT * FROM Rel WHERE
al<=100 AND a2+a3>=200" SQL query:

#multiplex version #optimized version
boolResult := tmpl := rel_al.uselect(nil,100);
fand] (tmp2 := [+](rel_a2,rel_a3);
[<=](rel_al, 100), tmp3 = tmp2.uselect(200,nil);
[>=1¢(tmp4d := tmpl.kintersect (tmp3);
[+] (rel_a2, rel_a3),
200));
pivot := boolResult.uselect(true) pivot := tmp4.mark.reverse;

.mark.reverse;

As we see, the two strategies can be combined. The kintersect primitive returns inter-
section of two BATs looking only at their head values.

Parallel Version

For parallel execution of select we use a simple divide-and-conquer strategy. It executes the
following steps:

1. sequential: divide the source relation’s size into equal ranges using make_bounds() pro-
cedure. We assume execution time for each tuple to be the same, hence it should result
in good load-balancing.

2. parallel (each CPU):

e take the next available range boundaries
e perform slice on all source relations (zero-cost operation)
e perform sequential select on private slices to obtain partial pivot

e store the BAT identifier of the obtained pivot in a common result collection, together
with information about its final position (sum of sizes of previously saved results)
in the result

28 CHAPTER 3. OPERATOR PARALLELIZATION

3. sequential: create result relation with the size of the sum of sizes of partial results
4. parallel: insert all partial results at the proper position in the final relation

The parallel version of our example working with NCPUS threads and using NSLICES slices
would look like this:

bounds :=make_bounds(rel_al.count, NSLICES); #step 1
&parres:=new(bat,int);
curpos:=0;
bounds@ [NCPUS]batloop { #step 2
sl_al:=rel_al.slice($h,$t);
sl_a2:=rel_a2.slice($h,$t);
sl_a3:=rel_a3.slice($h,$t);
boolResult :=
[and] (
[<=](s1l_al, 100),
[>=]1(
[+]1(s1l_a2, sl_a3),
200));
7 ppiv:i=boolResult.uselect (true);
1ck.lock_set();
slices.insert(ppiv, curpos);
Curpos:=curpos + ppiv.count;
1ck.lock_unset ()

}

result:=new(oid, void, curpos); #step 3

slices@[NCPUSIbatloop { #step 4
result.insert_into($h,$t);

}

pivot:=result.mark(0) .reverse;

This strategy faces a problem of an additional data copying phase (step 4). This is due to
the fact that Monet can only work with relations stored in a continuous memory area. Since
select output size in not known beforehand, it is impossible to place partial results directly in
final relation.

Benchmark Results

As a source relation we have taken LINEITEM. PARTKEY relation from standard TPC-H bench-
mark with a scaling factor (SF) equal to 1. It consists of 6 millions tuples from domain of 200
thousands possible values. We performed a simulation of the following SQL query:

SELECT partkey
FROM Lineitem
WHERE (partkey>=100000-BOUND) and (partkey<=100000+BOUND)
=> # generic translation
vi:=[<=] (lineitem_partkey, 100000+BOUND) ;
v2:=[>=] (lineitem_partkey, 100000-BOUND) ;
v3:=[and] (v1,v2);
v:=v3.uselect (true)
.mark.reverse;
=> # optimized tramslation
v:=lineitem_partkey.uselect (100000-BOUND, 100000+BOUND)
.mark.reverse;

We used a changing BOUND value to examine the influence of number of selected tuples
on the performance. We present two translations — the first is a generic translation using

3.3. SELECTION

Multiplex version

3000 T T T T
F-5o
2500 - A A It
D 2000 - g
£
@
£
_5 1500 + '!-E""-‘.‘l.’.l;
‘é - _!..I»!
8 -2
i 1000 + A
oo _Qe_e,&e-e—a@%ﬁew
, o-0-G@
500 -
0 1 1 i

H
0 02 04 06 08 1

Selectivity
sequential —x— 1 thread ---g---

Muitiplex version

T T ¥ T

4
35 [Teg -
G-ﬁ
1Sj“"e‘&s.
3r *e.ev.eﬂ_\
-
o 25+ .
3
el
£ 2
() :lua'g.,.‘*..-“i
15 F 3
1 =
0.5 - 4
O 1] 1 1 I3
0 0.2 0.4 0.6 0.8 1
Selectivity
perfect - - 1 Thread --—-&--
Multiplex version
T T H T
4
o
a5 - ~O‘G=®~Q_\ |
G\G‘e/&e
Gg. .
sl eﬁg_geg\b—T
.
>
B 25} o
B
j=3
o 2
@
% A.’.*".--‘BI‘-'H‘5~§~I~I~.-I|'.‘_
& 15 |
1
0.5 - ,
0 1 i1 i L.
0 0.2 0.4 0.6 0.8 1
Selectivity
2 Threads ----m--

29

Optimized version

700 T . . . —
a9
a \
.-, \
600 -
500 |
400 |-
| -
§ b o Q‘e‘g °
300 |- ‘,u' g E
".‘! g @,Qe'g
200 g~ J:2]
-4
oo ®
&
100 & 4
4] L 1 L i
¢ 02 04 06 08 1
Selectivity
2 threads -—-#--- 4 threads -——e—-
Optimized version
T T T T
4
35 i
3 __ . |
O n@\
25 i N
!
a,
2 @,
S0
- !.li‘ hcs \SE)%
15 - .y 0.7
e L \
BBaggat
1 Grerer .
saﬂaasﬁﬁaaegﬁﬂag
i
0.5 - N
0 L 1 ' i
0 02 04 06 08 1
Selectivity
2 Threads ----m--- 4 Threads -—-e-~
Optimized version
T T T T
4
35 | i
8.
3 fos” ™0 _
\'\.
25 | & |
©, o
2 g il
-2 -2 -1 CHEA
LS ©
15 F .‘-‘.a.‘ll-u-ulil‘.j
1
05 | 4
4] i I 1 i
0 0.2 04 0.6 0.8 1
Selectivity
4 Threads —-e--

Figure 3.3: Performance of multiplex and optimized selection on 4-CPU 550MHz Pentium
IIL: execution time, speedup and relative speedup

30 CHAPTER 3. OPERATOR PARALLELIZATION

multiplex primitive, while the other is the optimized Monet function performing range-select.
Figure 3.3 presents the results. The top diagrams present the execution time of a sequential
program, and parallel version running using 1, 2 and 4 CPUs, one execution thread for each
CPU. We performed tests with the parallel algorithm running on a single thread to see what
is the overhead of the data copying. The diagrams in the middle shows parallel speedup
comparing to the sequential version. The bottom diagrams present speedup of the parallel
algorithm executed on 2 and 4 CPUs with respect to its single-threaded execution.

The obtained results clearly show that extra data copying influences overall performance.
The single-threaded parallel algorithm significantly slows down with the huge number of se-
lected tuples. Moreover, the bottom diagrams present an interesting phenomenon. Although
the number of tuples additionally copied is the same for different number of CPUs, 2 and
4-threaded benchmarks slow down (relatively) with growing result size. In Chapter 4 we will
show that the reason for that is the bad performance of the memory subsystem, especially low
scalability of memory writing.

Comparing the performance of two presented versions, we see that the optimized version
obtains much better absolute performance. There are two reasons for that: it performs only
one data scan and it uses a CPU-wise optimized operator, which has all range-evaluation code
inlined, whereas the multiplex version performs a C routine call for each tuple. However, if
we look at the speedup, we see that optimized version has much worse scalability. This is
because it is more memory-bound, hence the hardware limitations influence it more. Another
issue is that the optimized version is more sensitive to the change of selectivity. It is because
for the non-optimized version the relative cost of uselect () is lower, due to a more expensive
execution of the multiplex primitive.

Additional experiments showed that the influence of extra data copying depends on the
complexity of the selection formula. For queries with a simple predicate, the overhead observed
was even larger than presented. For queries with multiple predicates®, its cost was better
amortized, resulting in much better speedup.

The problem of Oextra data copying in some cases could be solved by leaving the result
partitioned (as we did for the expression evaluation). However, since select introduces a new
tuple ordering, the solution is not as straightforward. In Section 3.8 we will show how this
problem can be solved in an efficient way.

3.4. Aggregation

The relational operator aggregate(attrList, funcList, rel) returns results of aggregate func-
tions performed over the source relation divided into groups with the same values of attributes
specified. These grouping attributes are also returned.

Conceptually, aggregation can be divided into two steps. The first is grouping — the process
of finding tuples sharing the same values of grouping attributes. The second phase is the
aggregate evaluation — performing aggregate functions for groups found.

T'wo special cases of an aggregation are possible. When grouping attributes are not spec-
ified, the aggregate functions are performed over the entire source relation, without group-
ing phase. When aggregate functions are not specified, only the unique combinations of
grouping attributes are selected. It is equivalent to the SQL statement ”SELECT DISTINCT
attrl,...,attrN FROM relation”.

In a traditional RDBMS the implementation of GROUP BY and following aggregation is
relatively straightforward. Two general strategies are possible:

%an example is presented in Section 4.3.3

3.4. AGGREGATION 31

e grouping by sorting — can be used when the relation given is sorted on the attributes
that take part in grouping, or by performing sorting before grouping. Having a sorted
relation, it is possible to simply scan it, detecting changes in the proper attributes values
and calculating the aggregate result. With this approach, the results for one group can
be returned immediately after moving to another one.

e grouping by hashing — this strategy is used when the given relation is not sorted, and the
cost of sorting is expected to be too high. In such a situation, for each combination of
grouping attributes the hash-value is calculated. For each distinct value the system keeps
in a hash-table all the necessary information for aggregate implementation. With this
approach, the results can only be returned when the whole relation has been scanned. It
is preferred when the expected number of groups is relatively small, making size of the
hash-table fit into main memory or even the cache.

In query-intensive applications, grouping by hashing is the preferred solution as group-
ings are usually performed over attributes with relatively small cardinality. In this thesis we
concentrate on parallelization of this strategy.

Sequential Version

The Monet DBMS, with its full binary-fragmentation strategy, requires dividing the aggregate
into three phases: grouping, aggregate evaluation and grouping attribute projection.

For the grouping, we need to perform a translation of the source relation IDs into the
corresponding group IDs. At first we use the group() operator on the first grouping attribute.
For the remaining columns we use the derive() function to change the group identifiers
within previously found groups. As a result we obtain a BAT [void,o0id] where the head value
corresponds to the source tuples identifiers, and the tail is a group identifier (ID of one of the
belonging tuples).

For the aggregate evaluation we use obtained grouping table, and exploit the pump MIL
construct {f}(extent, grouping, column). The column is a bat[void,any] storing source
attribute values. The extent is a bat[void,oid] containing new result IDs in a head and
unique group identifier in a tail. For each aggregate function it returns a new relation with
head from the extent and the result of the function for corresponding tuples in the tail.

The final step is the projection of values of grouping attributes, using the extent table.
In general, aggregate can be mapped into MIL using the following production rules:

AGGREGATE(rel, (al,...,aN), (£f1,...,fN)) =

grouping := GROUP(rel, al,...,aN);

extent := grouping.tunique.mark.reverse;

GRP_EVAL(rel, £1,...,fN));

GRP_PROJECT(rel, al, ..., aN));
GROUP(rel, al, t) => DERIVE(rel, rel_al.group(), t)
DERIVE(rel, g, a, t)) => DERIVE(rel, g.derive(rel_a), t))
DERIVE(rel, g, nil)) =g

GRP_EVAL(rel, fi(a), t)) => result_fil_ a := {f1}(extent, grouping, rel_a);
GRP_EVAL(rel, t)

GRP_EVAL(rel, nil)) =>

GRP_PROJECT (xel, a, t)) => result_a := extent.join(rel_a) ;
GRP_PROJECT(rel, g, t)

GRP_PROJECT (rel, a)) =>

32 CHAPTER 3. OPERATOR PARALLELIZATION

Parallel Version

For the parallelization of aggregation, the special features of various aggregate functions have
to be taken into account. Depending on the possibility of calculating global value of F()
using results calculated for relation R divided into slices R;, they can be classified into three
categories [19]:

distributive — there is a function G() for which F'(R) = G(F(R;)). For F() being one of
SUM(O), MINQO and MAX() we simply use G = F. For F=COUNT() we can take G=SUM().

algebraic — there is a function G() (possibly multi-valued) and a function H() such that
F(R) = H(G(R;)). As an example, for F=AVG() we can use G() calculating sum and
count for slices, and H() that sums both components, and divides the results for final
output

holistic - it is impossible to use constant-size storage for each sub-aggregate to count the
total result. An example of such a function is MEDIAN().

In general SQL queries include only SUM(), COUNT(), MIN(), MAX() and AVG(). For the last
one we have to calculate extra sub-aggregates, while for the rest we simply use the G function
presented.

The translation of an aggregation into parallel MIL code can be described by the following
algorithm:

1. sequential: divide the source relation’s size into equal ranges
2. sequential: prepare a global relation tot_ext[o0id,0id] for partial results of grouping

3. sequential: prepare global relations tot_aggrX[oid,any] for partial results of aggregates

4. parallel (each CPU):

(a) take the next available range boundaries

(b) perform slice on all source relations (grouping attributes as well as aggregates
inputs)
(c) calculate local grouping and extent using strategy from sequential version. For

mark () in extent calculation use lower range boundary to assure that it is unique.
Add extent to tot_ext.

(d) calculate local aggregate values. They are of type [void,any] where head is the
same as in extent. Add them to the proper tot_aggrX.

5. sequential: perform tot_ext unification by projecting tail to grouping attribute values,
and performing sequential grouping. It results in a BAT where the head value is an

oid present in partial aggregates and the tail is one of the heads that share grouping
attribute values.

6. parallel/sequential: for each table with partial aggregates perform sequential aggrega-
tion, using global group identifiers. Independent aggregates can be performed in parallel.

7. parallel/sequential: project grouping attributes.

As an example we present a parallel version of the query ”SELECT MIN(al),AVG(a2) FROM
rel GROUP BY gl,g2”, running with NCPUS threads using NSLICES slices:

3.4. AGGREGATION 33

bounds:=make_bounds(rel_al.count, NSLICES); #step 1
tot_ext:=new(oid,oid,NSLICES); #step
tot_min_al:=new(oid,int ,NSLICES); #step 3
tot_sum_a2:=new(oid,int ,NSLICES);
tot_cnt_a2:=new(oid,int ,NSLICES);
bounds@[NCPUS]batloop { #step
sl _gil:=rel_gi.slice($h,$t); #step 4.b
sl_g2:=rel_g2.slice($h,%t);
sl_al:=rel_al.slice($h,$t);
sl_a2:=rel_a2.slice($h,$t);
grp := group(sl_gi); #step
grp.derive(sl_g2);
ext := grp.tunique.mark(oid($h)) .reverse;
tot_ext.insert(ext);
tot_min_al.insert({min}(ext,grp,sl_al)); #step 4.d
tot_sum_a2.insert({sum}(ext,grp,sl_a2));
tot_cnt_a2.insert({countl}(ext,grp,sl_a2));

[Sv]

>

>
O

b

new_grp := tot_ext.join(rel_gl).group; #step b
new_grp.derive(tot_ext.join(rel_g2));

new_ext := new_grp.tunique.mark.reverse;

VAR result_min_al, result_avg_a2,
result_gl, result_g2;
{1 #step 6 £ 7
result_min_al := {min}(new_ext, new_grp, tot_min_al);
{
tmp_sum_a2 := {sum}(new_ext, new_grp, tot_sum_al);
tmp_cnt_a2 := {sum}(new_ext, new_grp, tot_cnt_a2);
result_avg_a2 := [/](tmp_sum_a2, tmp_cnt_a2);
}
result_gl := new_ext.join(rel gl);
result_g2 := new_ext.join(rel_g2);

i¥

Comparing to the sequential code, the parallel version faces the problem of unification of
both grouping tables and partial aggregate results. With the assumption of small number
of groups and large number of tuples, this cost is marginal. However, the problem with big
number of groups, mentioned for sequential execution, is still present.

Benchmarks Results

For evaluation of our algorithm, we have used queries performed over the LINEITEM relation
from the TPC-H schema with scaling factor equal to 1 (ca. 6M tuples). Figure 3.4 presents
different combinations of the grouping attributes used to see the impact of the number of
groups.

Figure 3.5 presents the benchmark results. Looking at the absolute time values, it can be
seen that with increasing number of groups the execution slows down. When the number of
groups exceeds the cache capacity (i.e. tens of thousands of tuples) the performance degrades
dramatically. In such a situation grouping by sorting would be an alternative.

The other observation is that the grouping parallelizes better than the selection. There
are few reasons for that. First of all, there is little additional data copying. Therefore only
for large number of groups the speedup factor is worse. The second reason is that in grouping
more CPU cycles are consumed for each tuple than in selection. As presented in Chapter 4,
algorithms scale better when they have bigger instruction-per-byte ratio. Finally, grouping
output is usually small, therefore the influence of slow memory writes is lower.

34

CHAPTER 3. OPERATOR PARALLELIZATION

Used LINEITEM attributes Cardinalities | Groups in total
linestatus 2 2
linestatus,returnflag 2,3 4
discount 11 11
linestatus,linenumber 2,7 14
linestatus,discount 2,11 22
linestatus,returnflag, linenumber | 2,3,7 28
quantity 50 50
discount,tax 11,9 99
quantity linenumber 50,7 350
discount,tax,linenumber 11,9,7 693
quantity,discount,linestatus 50,11,2 1100
quantity,discount,tax 50,11,9 4950
suppkey 10000 10000
suppkey,linestatus 10000,2 20000
suppkey,returnflag 10000,3 30000

Figure 3.4: Attributes of LINEITEM used for aggregation benchmark

Figure 3.5: Aggregation performance: execution time and speedup on 4-CPU 550MHz Pen-

20000 T T ¥ ¥ T T T H
4
18000 7 % PP00 000
35 “a
16000 : "o
14000 . 3r
3
= 12000 g 25 L
o] =%
£ 2
= 10000 E g -
2 o Bog. pafig g B BE---B BB
5 Z 8
8 8000 R
& 15 -
6000 g
1 Fe-a--oes-a SR E T
4000 g
2000 _ . 05
O " a sl) i 1} O " vaws ! i 1
1 10 100 1000 10000100000 1 10 100 1000 10000 100000
Number of groups Number of groups
Sequential —#— 1 Thread -—-&--- 2Threads ----a--~ 4 Threads --~o-

fium IIT

3.5. SORTING 35

3.5. Sorting

In a query represented as a tree of algebraic operators, sort is usually used as a root of this
tree to order the query result. However, some implementations of other operators use implicit
sorting, for example merge-join and grouping by sorting. In this section we describe a generic
solution for sequential and parallel sorting in Monet.

Sequential Version

Sorting in Monet faces similar problem as grouping — usually it is performed over multiple
columns. To allow its execution for binary fragmented data, MIL provides two primitives:
sort () that tail-sorts a given BAT, and refine () that performs sub-sorting of a sorted input
relation according to the values in another table. They are complementary — sort() allows
performing single-column sorting, but also is a first step of multi-column sorting, continued
by refine ().

In general, sort(attrList,rel) can be translated into MIL using the following mapping:

SORT (rel, al, t) => REFINE(rel, rel_ai.sort(), t).mark.reverse;
REFINE(rel, s, a, t) => REFINE(rel, s.refine(rel_a), t)
REFINE(xrel, s, nil) => s

The result is a BAT [void,0id] with tail values corresponding to the source relations head,
sorted according to sorting attribute values.

Parallel Version

For the parallel execution of comparison-based sorting there are usually two strategies:

range-partition and sort First all tuples are divided, according to their value, into multiple
non-overlapping ranges. Then each range is sorted locally, and the result is saved in the
proper position in the final output (known after partitioning). Since range sizes should be
balanced for good parallel execution, finding proper boundary values may be a problem.
Since it is equivalent to finding quantiles [2], various techniques may be used:

e sampling — we take random subset of the input relation and calculate range bound-
aries. This method gives only probabilistic guarantees.

e some index structures (e.g. balanced trees) allow relatively easy finding quantiles.

e using specialized structures, like histograms or ones described in [30], designed for
this purpose.

Since ordering is usually performed as a last stage of a query execution, it can not use any
pre-existing data structures. Moreover, finding good range boundaries may be impossible
for many datasets (due to data-skew). In some cases it can be solved by releasing the
constraint about non-overlapping of ranges.

slice, sort and merge In this strategy the data is divided into multiple chunks of the same
size (with possibly overlapping values). Then each chunk is sorted locally. In the final
step, multiple sorted datasets are merged into a final output. Since merging only works
well with limited number of sources, it is sometimes divided into multiple sub-steps.

36

CHAPTER 3. OPERATOR PARALLELIZATION

= slice()

5

2 8 sort()
1
9

1
1
CPU1 8
________________________________ 3
________________________________ 5
CPU2 7
oid ~ 8
slice(| 5 3 7 1 9
6 7 5 3
7 1 sort() 8 3
8 3 6 7 merge

FQ&S - Find Quantiles and Slice

Figure 3.6: Parallel sort ()

In our solutions for parallelizing sorting in Monet we mix these ideas. We use the merge-
solution for the sort() operation, since it works fine for any data distribution. For the
refine () we exploit the fact that the source relation is already sorted to perform fast range-
partitioning.

Single-column sort () is equivalent to the classical sort operation. The parallel strategy
for its execution is presented on Figure 3.6. It is based on the algorithm described in [20],
consisting of the following steps:

L]

create p slices of size ¢ = 1;5

let each CPU perform any sequential version of sort on its slice. Monet uses a CPU-
optimized version of quick-sort with reasonably cache-friendly access pattern.

divide all tuples into p approximate ranges using the following strategy. Let each CPU
create a sample of its tuples with size s, by choosing each (kg)th value, for1 <k < s. Now
one of the CPUs merges all these samples, and treats result as an equi-depth histogram
to choose p—1 quantiles. The difference between these quantiles and real ones is at most
2 tuples. Even with a small s, e.g. p* 100, it guarantees good load balancing.

each CPU takes values from every slice, that lay between quantiles p and p+ 1 — binary
search and slice. Now each CPU has at most p slices, with total size of at most ¢+ .

let each CPU perform p-way merge, saving the output in the known place in the final
result.

The operator refine () works on two relations A and B, usually of types [0id,o0id] and
[oid,any]. The first one is already sorted on tail which contains non-decreasing identifiers of
groups with the same values of already sorted attributes. It produces an [oid,o0id] relation,
where tuples with the same tail in A are resorted accordingly to the values in B. The result’s
tail values contains new identifiers of ordered groups.

For parallelization of this operator we propose the following strategy:

perform range partitioning on the tail of A, using binary search (look for non-overlapping
ranges).

3.5. SORTING 37

B C:=A.mirror.join(B)
oid it e [od [gd

1 6 1 1 1 6 refine() 1 1

2 3 6 2 6 2 6 2

3 2 15 3 15 | 4 3 2 16 | 3

sort()

4 s | 12 3 12 4 | 15 4 3 4

5 9 2 3 3 3 2 12 4 merge + 15 5

6 | 2 5 6| 3 16 | 1 16 1 renumber 145 | g
e sort()

7 7 5 7 3 7 7 |/ s 5 8 6

8 5 5 | 8 3 8 5 7 7 7 7

9 | 3 z 5 4 5 | 9 _ 10] 9
N refine()

0] 3 3 10 4 10 | 3 / 5 10

1] 1 @ 14 5 14| 7 14 | 11

12 4 9 6 9 3 ! 1] 12
-------- refine()

13] 5 4 6 4 3 } 9 13

14| 7 11 6 11] 1 13

5] 4 2 7 2 3 refine() 2 15

R 13 7 13 | 5 13 | 16

Figure 3.7: Parallel refine()

e if the sizes of slices divided according to found boundaries are well balanced, we can

simply perform sequential refine() on each of them, putting the result in the proper
place in the output.

e if the slices are not balanced, it means that there are some border values present in a
big number of tuples. For each of such values, we create an additional slice, and perform
single-column sorting within it, looking only on values from B’s tail (in A they are the
same). If the size of the slice is big, the parallel sort() presented earlier can be used.
For slices with "problematic’ values removed we perform sequential refine().

Figure 3.7 presents this strategy for relations A and B with 16-tuples each, using 4 slices.
As we can see in A’s tail values, creating balanced slices is impossible, therefore extra ones
were created for the tuples containing value 3. Since the total number of them was bigger
than the expected size, two slices were created, requiring a merge step (as in sort()). For
the boundary value 6 an extra slice was also created, but since it was small enough, a simple
refine() call could be used.

The example shows, that the requested number and size of slices may differ from the ones
created. For good load-balancing, the parallel version of refine() should create more slices
than executing threads, minimizing idle CPU time.

Benchmark Results

Figure 3.8 presents our benchmark results. For the tests we have used again the LINEITEM
table. Different collections of ordering attributes were used, starting with QUANTITY, and then
adding DISCOUNT, TAX, LINENUMBER and SUPPKEY (one in each pass). Results obtained show
that the speedup is far from perfect. There are two reasons for this. The first one is the ad-
ditional cost of the merging phase, observed by comparing performance of the single-threaded
parallel code with traditional sequential one. The other one is again the poor scalability of
memory throughput.

38

Figure 3.8: Sorting performance: execution time and speedup on 4-CPU 550MHz Pentium

Execution time (ms)

Speedup

CHAPTER 3. OPERATOR PARALLELIZATION

Pentium [l

40000 T

35000

30000

25000

20000

15000

10000

quantity+discount +tax

+linen. +suppkey

Attributes
Sequential —%— 1 Thread --—-&---
Pentium il
T T T
4
35+ 4
3+ 4
25 | 4
B
2 e
1.5 g [A, E7 ARSI [R, -
1
e g e At 3 N
0.5 -
L i i

0
quantity +discount +tax

Perfect -

+linen. +suppkey
Attributes

1 Thread ---&---

Execution time (ms)

Speedup

Athlon MP

20000 T

18000

16000

14000

12000

10000

8000

6000

4000

2000

Yem &

i i

0
quantity+discount +tax

+linen. +suppke’

Attributes
2 threads ---&--- 4 threads ~~o&--
Athlon MP
T T T
2

ehp

| I

0
quantity +discount +tax

2 threads ----m---

III and 2-CPU 1400MHz Athlon MP

+linen. +suppke’
Attributes

4 threads --e--

3.6. JOIN 39

Figure 3.9: Partitioned hash-join algorithm

3.6. Join

Join is the most expensive relational operator. In the general case, its output may be a
cartesian product of the input relations, hence its result size may be enormous. Fortunately,
most practical joins connect tables with a 1-1 or 1-N relationship. In such a case, the result
size is limited by the size of the larger input. Still, for N-M relationships, the result size may
be hard to predict.

Because of its complexity, join has been extensively researched in the past. Many imple-
mentations have been invented, both sequential and parallel [15, 33, 40]. The basic Monet join
implementations include merge-join, hash-join and theta-join (using T-tree index). Addition-
ally, for joins where one of the relations is dense on the join attribute, positional-join may be
used [8]. In this thesis, however, we concentrate on the new, cache-conscious join algorithms
introduced in Monet [28].

3.6.1. Partitioned Hash-Join

The process of performing partitioned hash-join can be divided into two steps. During the
first step, both source relations are partitioned into H separate clusters according to the value
of a hash function calculated over the join attribute. In the second, corresponding clusters
are joined using any traditional join method — Figure 3.9. This solution proves effective when
number of clusters is selected in such a way, that they are small enough to fit into cache
memories.

Radix-Cluster

During the clustering phase of partitioned hash-join a following problem may occur. If the
number of clusters H is too large, two factors can degrade performance. If H is bigger then
number of cache lines, cache-trashing can occur. Moreover, a big H can result in TLB misses.

The Radix-Cluster [27] algorithm solves these problems. It uses an idea known from the
radiz-sort [24, p.168]. For clustering tuples on B bits of hash value into H = 28 buckets, P
sequential passes are performed. Each i-th pass clusters tuples using B; bits of hash value,
dividing already existing groups into H; = 25 new ones. The numbers of bits in each pass
give B = 3L | B;, therefore H = [[; H;. Note that sets of bits used in different passes are
disjoint. Moreover, if bits in the consecutive passes are taken from the most-significant to the
least-significant, the final clusters are ordered on all B bits. The other important aspect is
that tuples within each cluster are ordered according to their position in the input.

40 CHAPTER 3. OPERATOR PARALLELIZATION

insert

result attribute

hash value

| join attribute
hash value
join attribute
result atribute

14130

19|32

---]19]34
---117]36

18]35

radix_cluster(2)
radix_cluster(2)

11135 insert

Figure 3.10: Parallel Hash-Join with Radix-Cluster

The strategy presented can use knowledge about cache sizes to adjust the number of bits
in each pass, so the number of cache-misses is minimized. Benchmarks [28] show that the cost
of extra data scans is compensated by a proper cache exploitation.

In the Monet, an equi-join of two relations using the Radix-Cluster strategy is made with
the following rule:

JOIN(A,B) => A_clust := a.radix_cluster (BITS);
B_clust := b.radix_cluster(BITS).reverse;
result := phash_join(a,b,BITS, ,hitrate,cutoff);

In this rule BITS are the numbers of bits in each Radix-Cluster step. The last two param-
eters are used for optimization: hitrate is an estimated number of corresponding tuples in B
for each tuple from A, and cutoff is an information that there is at most one corresponding
tuple in B for each tuple from A.

Parallel Version

We concentrate on presenting the parallel version of the partitioned hash-join using the Radix-
Cluster strategy.

The first idea for a parallel version of the algorithm was to preserve independence of the
clustering and join phases. However, creating a single relation storing the clustered input
requires either the specialized implementation of radix_cluster() or introducing an extra
operator that merges the clustered slices. In both cases it introduces additional overhead.

Figure 3.10 shows an algorithm that solves this problem. Each CPU first performs in-
dependent clustering on all inputs. Then, different clusters are assigned to the CPUs, and
each of them performs hash-join using multi_phash_join(), which is a modified version of
phash_join() that is able to process data partitioned over multiple sources. The result of the
join phase on each CPU is saved in a temporary relation. Next, these relations are copied into
the final result. This extra copying phase is necessary for the same reason as with the select
operator — the size of the output is impossible to predict in advance.

3.7. ATTRIBUTE PROJECTIONS 41

5000 T T T T T T
4
4500 |
T 35 .
4000 ¢ . L\NA\\&\
3k A -
— AL
€ as00 | 1 T
Py 25 T
[oN
£ 3
= 3000 - - Q
S Q2 G
=1 el & G
3 oo P -
% 2500 - _e,,.@"’"e 7 1.5 F E
7""6‘_ -
2000 ~ B BT = e = S Y S eR—
P P
SR
1500 ;u'&é,Aw~4¥ . 0.5 - b
1000 1 1 i O 1 b3 3
o] ™M 2M 3M 4M 0 1M 2M 3M 4M
Size of the output (number of tuples) Size of the output (number of tuples)
Sequential —x«— 1 Thread ----8--- 2 Threads --e-- 4 Threads --&---

Figure 3.11: Performance and speedup of hash-join with Radix-Cluster on 4-CPU 550MHz
Pentium II1

Benchmark Results

We performed our tests for join of two relations with 4M tuples with uniform distribution. We
used different combinations of the values to influence the size of the output. The results are
presented in Figure 3.11

The first diagram presents execution time. The difference between sequential code and
the parallel version comes from the optimizations made in multi_phash_join(). The second
diagram presents speedup with relation to this optimized version. The results are similar to
results of the select operation (Section 3.3). The speedups are a bit more stable, due to lower
impact of the memory writes.

3.7. Attribute Projections

During the execution of an operator tree, for each edge between two operator nodes the pivot
table is generated. It is a [void,oid] BAT storing identifiers of the parent relation in the
head and identifiers of the child relation in the tail. Note that the join operator creates two
such pivots, one for each input relation.

'To use attributes that are not directly available at the current execution level, one has to
traverse the operator tree downward, until reaching materialized relation. During this traver-
sal, the pivots of visited edges are combined into a path-pivot (also [void,oid]). Exploiting
the void column in a pivot head, it can be done using efficient positional-join. Having the
path-pivot ready, one can use it to fetch attributes from the relational table. Since they are
stored in [void,any] BATs (Figure 2.8), this can also be done using positional-join.

For example, let us go back to the second tree in Figure 2.3. Assuming that the select
and join opcrators were executed using translations described in this chapter, to project the
p-city and o_value attributes necessary for the aggregate node the following MIL code has
to be executed:

... we have calculated:

42 CHAPTER 3. OPERATOR PARALLELIZATION

7= result table

pivot

positional joins
' with clustered access

v

Ui N - O

g w1 W W

0o Wi e o

|

radix_cluster reverse.
(P=1,8=1,1I=2) mark.reverse

_ Source tsble

‘spanned’ cluster size in source
column is chosen such that it fits
the cache, as the positional joins
access them randomly

Figure 3.12: Projection using Radix-Cluster (thanks to Peter Boncz)

join_pivotL [voidJoin, oidPerson]
join_pivotR [voidJoin, oidSelect]
select_pivot [voidSelect, oidOrder]

p.city projection

join_p_city := join_pivotL.join(person_p_city); #[voidJoin, p_city]

o_value projection

path_pivot := join_pivotR.join(select_pivot); #[voidJoin, oidOrder]
join_o_value := path_pivot.join(oxrder_o_value); #[voidJoin, o_valuel

The only operations performed in this code are the positional-joins, in which for each tuple
in the left relation there is ezactly one tuple in the right relation, hence the result size is equal
to the size of the left operand. A parallel version of such algorithm is simple. The left relation
is first divided among CPUs and then each CPU performs a positional-join on its chunk of
data, putting the result in the proper position (the same as in source) in the final output.

The sequential and parallel executions of this algorithm are characterized by a random-
access memory pattern. When the size of a relation storing projected attribute exceeds the
available cache size, each lookup may generate a cache-miss. In general, for N tuples, we can
wait up to N X Lyem, where Lyen, is the main memory access latency.

'To improve performance in such situations, Monet introduces a new projection strategy,
described in the following subsections.

3.7.1. Projections with Radix-Cluster

Figure 3.12 presents the first idea of making the positional-join more friendly. It uses the
Radix-Cluster strategy (Section 3.6.1), to cluster the pivot tail before the positional-join
phase. With the proper number of clustering bits we can assure that all the projected values
for each cluster will fit into the cache. Performing positional-join in such a situation will result
in relatively small number of cache-misses. Note that this strategy introduces a new order of
tuples, hence it can not be used e.g. for the output of the sort operator.

The performance improvement in this strategy comes from the fact, that with the high
number of tuples in pivot (relatively to number of tuples in projected attribute relation) we
may benefit from cache-reuse. We will present an approximation of when such situation will

3.7. ATTRIBUTE PROJECTIONS 43

occur. Assume that one cache line can store S = H%H tuples, where ||L|| and ||T|| are the
sizes of the cache line and the projected attribute value, respectively. We define projection
hit ratio as an average number of times each tuple in projected relation will be used. If we
project pivot of size N over attribute relation of the size R this hit ratio is expressed as %.
Described algorithm may not be useful if % < % In such a situation it is possible that each
lookup in positional-join generates a cache-miss, since no cache lines are shared over projected
tuples. This would lead to N X Lyem time. Still, for big hit ratios we can expect the cost of
this algorithm to be % X Lymem. Note this cost decreases with increased cache-line size and
decreased tuple size.

Parallel Version

The parallel version of the algorithm described is simple. First we perform parallel Radix-
Cluster (described in the previous section), then for each cluster obtained we perform sequential
positional-join on one of the CPUs.

For implementation of the second phase of this algorithm we used new, more CPU-
optimized version of the positional-join, that accepts multiple BATs as an input.

Benchmark Results

Benchmark results are presented in Figure 3.13. The left diagram presents execution time,
while the right one shows obtained speedup comparing to a sequential version (empty points)
and to a single-threaded parallel version (filled points). We used different numbers of projected
attributes, to see what is the influence of both radix-cluster and join steps. The results
show, that even on a single CPU this new version is faster thanks to the code optimizations.
Moreover, the parallel performance grows with the number of projection columns. This is
thanks to efficiency of the projection phase — it is executed for each attribute, while the radix-
cluster part is executed only once. However, relative speedup decreases for big number of
columns. It shows, that CPU optimized code obtains worse speedup — this trend will be
described in more details in Chapter 4.

3.7.2. Radix-Cluster-Decluster

In many situations it is important to preserve the order of tuples during attribute projection.
An example is the result of the sort operator. In such a situation we can not directly use
the Radix-Cluster strategy presented, since it introduces a new data ordering. However, we
can exploit the radix cluster() property that tuples inside clusters preserve order from the
input.

The Radix-Cluster-Decluster algorithm presented in Figure 3.14 works as follows. The
source pivot table is first radix-clustered on its tail. Two head-aligned relations are derived
from the result. The CLUST_OUTPUTIDS stores in the tail the position of the projected value in
the final output. The CLUST_INPUTIDS keeps in the tail the identifiers of tuples in the projected
attribute table. Since its tail is radix-clustered we can use the positional projection (as in
Section 3.7.1) to obtain CLUST_VALUES, with the same void head column and projected values
in the tail. This relation together with CLUST_OUTPUTIDS is an input to radix_decluster
operator. It uses a strategy similar to the merge algorithm — it iterates over clusters from
CLUST_OUTPUTIDS and from each chooses all tuples with a tail belonging to a current window— a
continuous area in the result currently ready for writing. For selected tuples the corresponding
values from CLUST_VALUES are saved at the proper position in the result relation. The window
size is adjusted to the size of the cache, so random writes to the memory will minimize number

44

CHAPTER 3. OPERATOR PARALLELIZATION

100000 T T T T

@F 10000
3
£ 5
5 g
= [9)]
O
£
@ 1000 I
o :
B
1 frs
0.5 -
100 1 1] L i 0] I3 I 1 L
1 2 4 8 168 32 64 1 2 4 8 16 32 64

Number of projected columns

Sequential ---#---
Relative 2to 1 CPU ---

Parallel - 1 CPU ----8

Parallel - 2 CPU --e--

Number of projected columns

Parallel - 4 CPUs -4

Relative 4to 1 CPU ----a---

Figure 3.13: Performance of Radix-Cluster projection on 4-CPU 550MHz Pentium III

radix_cluster(P=1,H=2,I=1)

(CLUST_INPUTIDS)

mark.reverse

revexse.mark.reverse

_ result table

h i
. \HAl

{CLUST_OUTPUTIDS) (CLUST_VALUES)

positional joins with ¢l

i

(COLUMKS)

Figure 3.14: Projection using Radix-Cluster-Decluster (thanks to Peter Boncz)

3.7. ATTRIBUTE PROJECTIONS 45

mark
Jeverse

reverse RADIX DECLUSTER

e - .mark ‘o

reverse} &
T s
13 124
Lrut algl |V
______ ryE L ___.
cPU2 iy 5
= T 6; ,,,,,,,,,
2 7L
radix_cluster
(P=1,H=2,1=1)
{paraliel)

mark
Treverse

RADIX DECLUSTER

radix_cluster
(P=1,H=2,I=1)

Figure 3.16: Parallel Radix-Cluster-Decluster — Version B: poor cache reuse

of cache-misses. Since we write tuples at positions equivalent to pivot’s head column, we know
in advance that result relation will be dense. Thanks to that, in each scan over all clusters,
the entire window is filled, and then it is shifted for the next scan. Assuming that the number
of clusters is much lower than number of tuples in the global relation, the execution time of
such merging is linear [8].

Parallel Version

The first idea to parallelize Radix-Cluster-Decluster is presented in Figure 3.15. We perform
the paralle] radix-clustering on the pivot. Then each CPU takes a number of clusters and
performs sequential projection and decluster phase. The final radix_decluster operators on
all CPUs write into a common memory area. This is correct, because each position in the
result is written only once. However, multiple CPUs may write into adjacent positions stored
in the same cache line. In such a situation the cost of hardware cache-coherency protocol may
lead to serious performance degradation.

To avoid the cache-coherency problem, we present another version of the parallel Radix-
Cluster-Decluster, explained in Figure 3.16. In this algorithm we perform partitioning of the
data before radix-cluster phase. Then we proceed with sequential version of the algorithm on
each CPU. Since data in each partition comes from the disjoint set of the pivot’s head, all
threads will write into separate memory areas. Hence, the cache-coherence problem will be
eliminated.

This solution, however, brings a new problem. As we explained in Section 3.7.1, the Radix-

46 CHAPTER 3. OPERATOR PARALLELIZATION

mark
reverse

positional
distribute join

pivot RADIX DECLUSTER

I....,.....
(W WN o

radix_cluster
(P=1,H=2,1=1)

Figure 3.17: Parallel Radix-Cluster-Decluster — Version C

Clustered positional-join is efficient with a high hit ratio in the projected column. With the
input of size N fragmented into NCPUS chunks the hit ratio decreases from % to R*N—]CV,HJ?.
Therefore, data sliced for parallel execution results in worse positional-join performance. Ad-
ditionally, since multiple CPUs may read the same cache line, it may be influenced by cache-
coherency protocols as well.

The optimal strategy would be to separate the cache-lines between different CPUs at both
positional-join and decluster phase. In such case we would both maximize cache-reuse in the
former case, and avoid cache-coherence problems in the latter. For this reason we suggest a
new algorithm, presented in Figure 3.17. It can be divided into the following steps:

1. Let each CPU perform Radix-Cluster over part of the pivot. We obtain NCPUS partial
results, each of them consisting of H clusters.

2. Distribute clusters with the same radix-value between CPUs (zero cost operation — only
cluster pointers are moved), storing their source position.

3. Perform positional-join for each collection of clusters with the same radix value. Since

each cache line in projected attribute is accessed by only one CPU it will result in a good
cache re-use.

4. Redistribute clusters to their original position (zero cost operation)

5. Perform radix-cluster for each obtained slice, using the previously saved information
from original radix-cluster result. Again, each cache line is used by a single CPU, so no
cache-conflicts occur.

For all algorithms described above we have extended appropriate MIL primitives to allow
working on data contained in multiple BATs. Moreover we used highly optimized projection
and decluster routines to minimize the CPU cost and concentrate on memory-access.

Benchmark Results

We performed benchmarks for all three presented versions of the parallel Radix-Cluster-
Decluster. We measured times of projection of 3 attributes, each being a relation of 512K
tuples with uniform unique distribution. Note that Radix-Cluster phase in all algorithms is
done only once, hence differences in overall results are influenced mostly by the projection and

3.7. ATTRIBUTE PROJECTIONS 47

Performance of Radix-Cluster-Decluster Speedup of Radix-Cluster-Decluster
10000 T T

1000 }

Execution time (ms)

05 - 4
100 L o) !
1 2 4 1 2 4
Hit ratio in projected column Hit ratio in projected column

Sequential —x— Perfect -

Version A-1 CPU ---6--- Version A - 4 CPUs —-&---

Version B-1 CPU ----8--- Version B - 4 CPUs -~#&~-

Version G- 1 CPU —-2&-— Version C - 4 CPUs ---a-

Figure 3.18: Performance of Radix-Cluster-Decluster on 4-CPU 550MHz Pentium III

decluster steps, which are performed for each projected attribute. We performed the tests for
various pivot relations with different hit ratios.

The results are presented in Figure 3.18. The algorithms behave as expected:

e thanks to highly optimized code all parallel versions run about 10% faster than sequential
code on 1 CPU

e Version A of the algorithm obtains poor scalability due to cache conflicts

e Version B shows better performance than Version A. Moreover with higher hit ratio this
difference increases further. The reason for that is that the cost of fetching cache-line is
amortized by more re-uses of this cache-line.

e Version C is the best in terms of both performance and scalability.

One interesting property of versions A and B is that the first one is a bit faster on a single
CPU (thanks to better cache-reuse), while it is much slower with multi-threaded execution
(due to cache-coherency problem).

For better analysis of the presented algorithms we performed a detailed benchmark, looking
at the performance of various execution phases. We used projection of 2 attributes, with hit
ratio equal to 1. The results are presented in Figure 3.19. It contains additional radix_count ()
phase, which is an implementation step of Radix-Cluster, that finds all clusters with the same
radix-value in a tail and non-descending heads. The first observation is that Radix-Cluster cost
is the same for all algorithms, hence overall time difference comes only from projection and
decluster phase. Version A obtains good performance during projection but it is slow during
decluster. Version B is good in decluster, but a bit slower during projection phase. Version
C is efficient in both phases, and even with more synchronization points between processes it
gives the best performance.

48

CHAPTER 3. OPERATOR PARALLELIZATION

Radix-Cluster-Decluster analysis
Projecting 2 attributes, hit ratio 1

VERSION A
CPU 1
CPU2
CPU3
CPU 4

VERSION B
CPU 1
CPU2
CPU3
CPU 4

Process

VERSION C
CPU 1
CPU2
CPU3
CPU 4

0 50 100 150 200 250
Time (ms)

data organization A radix_count
radix_cluster postional_ioin

Figure 3.19: Analysis of Radix-Cluster-Decluster performance on 4-CPU 550MHz Pentium

III

3.7.3. Projection Strategies for Algebraic Operators

In this section we have presented three strategies for performing projection of data using pivot
tables:

positional-join — effective when the size of the projected attribute does not exceed the
cache size or when the pivot tail is ordered. For big relations leads to big number of
cache-misses. Preserves pivot ordering.

Radix-Cluster strategy — thanks to clustering of the pivot tail values it minimizes number
of cache-misses, resulting in good performance for big relations. However, it introduces
a new pivot ordering.

Radix-Cluster-Decluster — minimizes number of cache-misses, preserving the pivot order-
ing. However, due to the declustering phase it is significantly slower than Radix-Cluster.

For different algebraic operators different projection strategies have to be used:

expression evaluation — it does not introduce a new pivot, hence it does not require
a projection phase.

selection — since the selection algorithm used in the Monet is a sequential scan, its
pivot has tail values ordered according to the position in the source. Thanks to that
a positional-join will be effective, because it will not generate any unnecessary cache-
misses.

aggregation — aggregation requires projection to return aggregate attributes values.
Assuming that presented grouping-by-hashing is used and number of groups is small, a
positional-join is efficient.

3.8. DEFRAGMENTATION OPTIMIZATIONS 49

e sort — if the source relation is small enough to fit in the cache positional-join will be
efficient. However, when its size is too big, we have to use Radix-Cluster-Decluster, since
Radix-Cluster would destroy tuple ordering,.

e join — if both relations fit in the cache we can use a positional-join for both of them. If
one relation is too big, we use the Radix-Cluster strategy for it, while for the other we
use positional-join using new pivot ordering introduced by the Radix-Cluster. If both
relations exceed cache size we combine Radix-Cluster with the Radix-Cluster-Decluster.
We use Radix-Cluster strategy for the relation with projection cost expected higher (big-
ger size, more attributes), and the Radix-Cluster-Decluster for the other one, preserving
new pivot ordering. It can be presented in the following MIL pseudo-code:

pivot := join(relA_j, relB_j.reverse); # bat[oidA, oidB]

r_pivot := radix_cluster(pivot); # bat[oidA, oidB], tail clustered
pivot_B := r_pivot.reverse.mark.reverse; # bat[void, o0idB], tail clustered
project_radix_cluster(pivot_B, relB);

pivot_A := r_pivot.mark.reverse; # bat[void, oidA]

radix_cluster_decluster(pivot_A, reld);

Since Radix-Cluster-Decluster preserves head-ordering, the final projections of both re-
lations will share the head void column.

3.8. Defragmentation Optimizations

In this section we discuss how to optimize query execution by skipping the data defragmen-
tation phase present in described parallel implementations of the select and join operators.
Our benchmarks show that this step results in a significant overhead. Since it is a simple
memory copying, it is memory-bound, making this overhead especially visible during parallel
execution.

The necessity of creating an unfragmented pivot comes from the the fact, that the positional-
join algorithm works only if data is densely stored in a continuous memory area, making the
value search a simple array lookup. With the fragmented relation, selection of the proper
fragment would be necessary before the lookup. This overhead would cost O(logNSLICES)
if the slices were created using 'normal’ slicing. It can be optimized by slicing the data us-
ing a bit-mask of the identifier (most important bits) — then the fragment selection could be
performed in constant time. Still, it would decrease the performance significantly. For this
reason, Monet does not support fragmented BATs.

Figure 3.20 presents our optimization strategy for the most complex case — projection
performed over partitioned attributes basing on partitioned result of the join operator. It can
be generalized for all other situations. In our algorithm we exploit the fact, that in most cases
we replace simple positional-join with Radix-Cluster and Radix-Cluster-Decluster algorithms
presented in Section 3.7. In these algorithms the left relation in positional-join is tail-clustered
— for each cluster only a part of the right relation will be accessed. The problem occurs
if the cluster borders are different than the borders of the fragments of projected attribute
relation. In such a case, for the cluster that spans over multiple fragments we have to execute
a more complex positional-join algorithm, described above. Assuming that the right relation
is fragmented into NSLICES fragments, we have to execute such an operation for at most
NSLICES clusters from the right table. Since the overall number of clusters (usually hundreds
or thousands) is much higher than NSLICES, the more expensive algorithm will be executed
for a small fraction of data, making its cost negligible.

50 CHAPTER 3. OPERATOR PARALLELIZATION

E € -
S
5 e
i [l
o A W

Projection with Radix~Cluster

fragmented
join result - - .
source table |
616 : e
' 5 a —‘%’:0 a
13 {0 c i1
3 b 12 f
5 .C 13 f
e 4 1a
15 1c
...... 16 |e
851 4 bt 7 |8
4 4.1 6|11x -
radix_cluster(2,-1) r;\;er{(se positional join,
Jreverse distribute saving result directly in the output
mark Projection with Radix-Cluster-Decluster
.reverse -
0
1
mark :
reverse E 3
distribute redistribute 1 4 Radix-Decluster
{0 |3 00x[2 |1 | g o I
R 01x|0 |3 | b 01b
~>E2 1 10x|3 |4 c ! ‘d
i34 11x 11:7 g g9
4|8 4 16 e
-_C,P_U_lr_‘. ______________________ 4 |c
it cfolmontinistiotintindnoaludldhtiotinly A Wi Wil ndimbddutol - T . I S et A SR 5i¢c
CPUZE 2 o1x|5 12 e 6 [h
=6 |5 10x/ 6 h 7 |e
714 7 e h
radix_cluster(2,-1) d
c
positional join
mark
reverse

Figure 3.20: Cache-conscious projection of fragmented attribute relations using fragmented
join result

3.9. SUMMARY 51

During the positional-join in the Radix-Cluster, for each projected cluster we know its
position in the result relation. Therefore, we can save the projected value directly into final
relation, creating unfragmented result. The strategy for the Radix-Cluster-Decluster step does
not differ significantly from the one presented in Figure 3.17. The only difference is special
behaviour for some clusters during positional-join phase.

3.9. Summary

In this chapter we have described our work on parallelization of single algebraic operators.
As a starting point we took sequential algorithms based on [8]. We have used horizontal
parallelism strategy to create parallel versions of these. To allow execution using fragmented
relations we have introduced a group of modified MIL primitives able to work on multiple
sources. In Section 3.7 we have described the Monet-specific problem of attribute projections
and presented three possible algorithms to solve it, providing their parallel versions. We
have also discussed a possible strategy for query execution using fragmented operator results,
leading to increase in performance.

Benchmarks executed on two hardware platforms show significant performance improve-
ment in SMP environment. However, results are not perfect, mostly due to the memory
throughput limitations. This bottleneck will be described in more details in the next chapter.

Chapter 4

Hardware Characteristics

One of the ideas motivating the Monet design is the attempt to adapt to the characteristics
of modern hardware. In this section we present a Calibrator tool used to obtain detailed spec-
ification of the modern machines features. The new contributions are a number of Calibrator
extensions developed to measure memory throughput for varying number of CPUs, memory
(cache) levels and access patterns.

Using the Calibrator on our reference platforms we analyze limitations imposed by the
hardware and discuss their impact on the Monet performance, especially on SMP machines.

4.1. Calibrator

For the purpose of tuning Monet performance to hardware characteristics, a Calibrator program
is used. It was written by Stefan Manegold in the database research group at CWI. In this
section we present a short overview of this tool.

4.1.1. Measurement Methods

The Calibrator runs a collection of micro benchmarks that detect various characteristics in
a generic and platform independent way. For example, to measure the sizes of the cache
memories, it runs multiple loops repeatedly accessing the data within the specified memory
range. When the range grows, at some point the performance decreases — it means that the
algorithm reached the cache-size border. Similar ideas are used for the other cache properties:
latency, line size, line number and associativity, as well as for the TLB sizes and miss-latencies.
More details can be found in [27].

4.1.2. Results

Figure 4.1 presents the execution of benchmarks checking the cache latencies. It was performed
on our test machines: 2-CPU 1400MHz AMD Athlon and 4-CPU 550MHz Intel Pentium III.
For the Athlon the cache sizes were detected correctly. However, for the Pentium the L2
cache size in fact is 1024KB - it shows that the results sometimes are not accurate. Still, on
most architectures the results are equal to the actual values that may be obtained e.g. using
specialized CPU instructions [1].

Looking at the latency times measured in the absolute time, we see that the Athlon has
a better performance for the L1 and L2 access and a bit worse for the main memory access.
However, if we compare values measured in CPU cycles, we see that the access time to the main
memory on Athlon is more than two times longer — the CPU is idle for more than 200 cycles

53

54 CHAPTER 4. HARDWARE CHARACTERISTICS

1400MHz Athlon - cache miss latency 550MHz Pentium - cache miss latency
[64K] [320K] [16Kk] [640k]
1000 er————1—1 T 1400 1000 pr—r—r—-r=—1=r—r=rr-1 T 550
c(193.6) 271) LT s Rem—— L}aﬁ (101)
% 100 ¢ pemsy 140 5 § 100 L ;E 55 g
: g f AL
,E 3000 8 g & ﬁco 5
g) racos) 5 54182) ’, i REC
a . : o iy ; &
%“8'57) ry 5 (@6) 5 08> ieoscaooh beae®s | 2
=t ey S 8(14.55) @ S
€ 10t B 114 g S
g JReRs § 10t . 4§58 &
(6.429) e {9) c
Calibrator ¥0.9i ; o
Stefan.Manegold@cwi.ni, Calibrator v0.9i |
www.cwi.nl/~manegold Stefan.Manegold@cwi.nl,
e W T S Rt T N E 0 3 www.cwi.nl/~manegold
1k 4k 16k 64k 256k 1M 1 bbb L
memory range [bytes] 1k 4k 16k 64k 256k 1M
memory range [bytes]
stride: 16 ~—o-m
128 —x— 8 o stride: 16 --eaeee
64 i3 4 -ane [-Y QEem——— 8 G o
32 -em 32 e 4 -eom

Figure 4.1: Memory latency benchmark in the Calibrator

until the data is fetched. It presents the general trend in the current computer architecture —
the memory access time becomes a bottleneck.

This bottleneck greatly influences the design of efficient algorithms. As a simple example,
let us compare two basic data structures storing ordered data — sorted arrays and binary trees.
In a tree the value lookup, insertion and deletion operations take O(logn), and the data scan
O(n). For the array the lookup takes O(logn), for the other operations it is O(n). Before
the memory latency became a bottleneck, the trees were often an algorithm of choice. Let us
count the number of cache misses that may occur in all situations. In a tree, in the worst case
each pointer-jump induces a miss. Therefore, the number of cache misses for the first three
operations is O(logn), and for data scan it is O(n). Now let us look at an array, holding data in
a continuous memory area. Let S define number of data elements fitting inside one cache-line.
The number of cache-misses in an array for the lookup is O(logn —logS), since last logS steps
during binary-search will happen inside the same cache line. For the other operations it is
O(%). Additionally, on modern CPUs sequential access does not induce a cache-miss for each
cache-line (thanks to memory prefetching), additionally decreasing this value. As we can see,
depending on the operations performed on the structure, a simple array may be often a better
choice.

4.2. SMP and Memory Throughput

During the work on parallelizing algebraic operators (Chapter 3) the results obtained did not
scale perfectly. Preliminary tests related this to limitations of memory subsystems in our SMP
platforms, calling for further research in this area. In this section we present more detailed
problem analysis.

4.2.1. Extending Calibrator

Our objective was to determine memory throughput in different situations. The reason is
that the Monet algebraic operators are highly optimized for the CPU performance, usually
resulting in a small instructions-per-byte ratio. Therefore, their access pattern is similar to
simple memory accessing functions (e.g. memcpy()).

4.2. SMP AND MEMORY THROUGHPUT 55

Since we wanted to a create tool that would be portable, extensible and self-adjustable, we
decided to use the Calibrator as our base. An additional reason was that Calibrator already
delivered information about cache characteristics, useful for us as we want to measure difference
in performance at different memory levels.

The Calibrator has been extended with the following features:

e automatic CPU number detection: We detect the number of available CPUs in a generic
way. For this purpose we run a simple loop with growing number of threads (we only
detect powers of 2). When the execution time slows more then the specified threshold,
we expect to have crossed the boundary of available processors. The pthread library (a
POSIX standard) is used for threaded execution.

e memory throughput calculation: We created an additional Calibrator module allowing
measuring memory throughput with respect to different factors: number of CPUs, mem-
ory sizes, access patterns. The module runs specified benchmarking functions (e.g. read,
copy) on all combinations of memory levels (provided by Calibrator) and number of
CPUs (obtained with first extension). The results in the following section are created
automatically by this module

e incorporating into Monet DBMS: The Calibrator was designed as a standalone program.
For our purposes, we have decided to incorporate it into the Monet as a module. It
extends MIL language with three functions:

— calib.init () — runs Calibrator tests with given CPU clock frequency and maxi-
muI memory range

— calib_info() — gives results of Calibrator tests as a BAT, containing name of
parameter in the head and corresponding value in the tasl

— calib_free() — frees Calibrator allocated resources

During the implementation of the Calibrator extensions we discovered that the memory
throughput can greatly depend on the access pattern. Although we concentrate on sequential
access, still, the results can vary for different applications. There are three important factors,
influencing overall performance’:

e The types of operations performed in each iteration — reading and/or writing data,
comparisons, ”expensive operations” (e.g. function calls, computations)

e loop unrolling ratio — in "normal” loop execution the cost of the loop iteration may be
significant, especially with a short loop body. Therefore it is often possible to use loop
unrolling — multiple iterations packed into one. It is presented in Figure 4.2b. Loop
unrolling can be obtained manually, or by using optimization option available in many
compilers.

e number of cursors — modern CPUs can execute multiple memory load instructions in
parallel. This can be exploited by application using multiple cursors — abstract pointers
to traversed data. It is presented in Figure 4.2c.

Additionally architecture-dependent extensions are possible. They include hardware-prefetching
instructions and single-instruction multiple-data opcodes found in most of modern CPUs.
However, such solution is not portable, therefore we decided not to research it in this thesis.

note that the impact of these factors depends on the hardware platform used

56 CHAPTER 4. HARDWARE CHARACTERISTICS

(a) normal loop (b) unrolled loop (¢) multi-cursor
int i; int i; int i, N2=N/2;
for(i=0; i<N; i++) { | for(i=0; i<N; i+=2) { | for(i=0; i<N2; i-+) {

dst[i]=srcli]; dstli]=src]i]; dst[i]=src[i;

dst[i+1]=srcli+1]; dst[i+N2]=src[i+N2];
} }

Figure 4.2: Different access patterns for copy function

ll_copy() throughput on 4 CPUs Il_copy() throughput on 2 CPUs
T ¥ T T T T
- 2166.31 20 ~ 2105.66
00 +
= 200 o= -1 1906.08
g 2
2 @2
g .)
= 1500 “m- 1496.82 % 1500 + 4
= -
- a
£ =
g e 1059.18
£ 1000 g 1000 1 954.232
2 =
Q S
g . g - 634.509
= 500 4 543.28 = 500 F 503.778
- 402.112
7 789:643
O i I3 i1 1 O I i
1 2 3 4 1 2
Number of CPUs Number of CPUs
L1 cache ——s— L1 cache
L2 cache ---@--- L2 cache ~--g---
main memory ----&--- main memory ----&---
perfect speedup - perfect speedup -

Figure 4.3: Performance of Il_copy() on 4-CPU 550MHz Pentium III and 2-CPU 1400MHz
Athlon MP

Basing on described aspects, memory throughput module provides a collection of bench-
marking functions. The property of the function is specified by its name, following this pattern:

<t>_<fune>[_1X] [_cX]
Where:

e t is a type of data used, one of: 1-long (4-bytes), d~double or 11-long long (both
8-bytes)

e func specifies access pattern, possible values are: copy, read, write or triad (summing
two arrays into the third).

e _1X is an option specifying the ratio of loop unrolling

e _cX is an option specifying number of cursors used

4.2.2. Results

We performed extensive tests on our two test platforms described in Section 3.1. The results
show important limitations of both older (Pentium III) and modern (Athlon MP) CPUs.

4.2. SMP AND MEMORY THROUGHPUT

2500

Il _read() throughput on 4 CPUs

T

1l_read{) throughput on 2 CPUs

T ¥

57

- . 1400
2343.3 -4 1332.29
- - 1200 - 1242.54
8 2000 - 3
X]
om o0
2 g 1000
3 1500 | E]
o Q. "
5 5 80 746.926
£ 1000 | £ 600 i
= >
£ £ 400 - 5 382.647
L T O i = O = o Ll 7 *
2 sl - 591.065 2
7 374,988 200]
- 120.353
0 I 1 1 i3 0 i i
1 2 3 4 1 2

Number of CPUs Number of CPUs
L1 cache —x—

L2 cache ---g-r

main memory ----g---
perfect speedup -

L1 cache —%—

L2 cache ---g---

main memory ----2---
perfect speedup -

Figure 4.4: Performance of 1l_read() on 4-CPU 550MHz Pentium III and 2-CPU 1400MHz
Athlon MP

Figure 4.3. shows the performance of the 11_copy() function on both of our test platforms,
for different combinations of the number of CPUs and memory levels. We compare the results
with the 'perfect’ performance, in which the parallel execution obtains linear improvement.
Two important conclusions can be drawn:

1. the performance is different for various cache levels

2. the scalability (with respect to number of CPUs) is different for various cache levels.

We will explain those results in a more detailed way.

The memory throughput difference at various levels does not come as a surprise. It is
directly related to the CPU architecture. L1 and L2 are made of much faster SR AM memory
and are connected with CPU using an efficient bus. Moreover, the fact that L1 is integrated
with the CPU core additionally improves its throughput. These results clearly shows, that
computation on current computers is often memory-bound — increasing the cache size can
dramatically improve overall performance. However, due to high costs of the SRAM chips,
cache sizes stay relatively small with respect to the main memory size.

The scalability problems of the main memory come from the fact, that all CPUs share the
same memory subsystem. Therefore, although memory throughput is acceptable for 1 CPU,
in the SMP environment it leads to a per-CPU performance degradation. For example, on a
Pentium machine, there is virtually no difference in the main memory performance using 2
and 4 CPUs. As for the L1 and L2, each CPU has them integrated, therefore their throughput
is sufficient. However, private caches may lead to cache-coherence problems.

For the preliminary experiments we have used 1l_copy() function, which is influenced by
both memory reading and writing performance. To obtain more detailed information, we
conducted similar tests for 1l.read() and ll_write() functions. The results, presented in
Figure 4.4 and Figure 4.5, respectively, show other interesting properties:

e unequal speedup between reading and writing — on both machines 11_read() scales much
better. For the Pentium, the write throughput stays virtually constant.

58

1000

800

600

400

Memory throughput [MB/sec]

200

Figure 4.5:

CHAPTER 4. HARDWARE CHARACTERISTICS

Il_write() throughput on 4 CPUs li_write() throughput on 2 CPUs
' ‘ ‘ ' 1400 [e
B 488%3? . e+ 1316.99
L , = . 1200 | o 1214.33
3
2
o L
L s 1000
=]
2 800}
i Y
£ 600} -] 895869
< -1 542,734
- o
o
g 400 | -
881718 s 315.274
S 5 = =] 158.882 200 |- .
| L i I O 1 13
1 2 3 4 1 2
Number of CPUs Number of CPUs
L1 cache —x— L1 cache —x%—
L2 cache --&--- L2 cache ---&---
main memory ----&--- main memory ----g&---
perfect speedup - perfect speedup -

Performance of Il_write() on 4-CPU 550MHz Pentium III and 2-CPU 1400MHz
Athlon MP

e better cache performance scalability on Athlon systems — they are better balanced thanks
to differences in architecture: cache-coherence protocol (Athlon’s MOESI vs Pentium’s

MEST),

another bus protocol (Alpha EV6 vs GTL), smaller number of CPUs (4 vs 2)

and the use of automatic hardware prefetching in Athlon.

e looking at 1l_copy() performance with relation to 1l_read() and ll_write results, its
overall speedup is worse. The reason is the lower loop cost of 1l_copy — in each iteration
there are two memory transfers instead of one. This leads to better performance on a
single CPU (where computation is more CPU-bound) and worse speedup (for multi-CPU
computations are more memory-bound).

Described performance of current memory chips gives an explanation of the non-optimal
results of our algorithms described in Chapter 3.

4.3. Optimization Strategies

The results presented in this chapter lead to an important conclusion. Hierarchical memory
system and performance imbalance in various architectural features make creating efficient code
hard. For SMP machines it seems to be even more difficult, due to the observed throughput
limitations. In this section we provide possible solutions for this problem.

4.3.1. Cache-conscious Algorithms

With the introduction of hierarchical memory systems, the family of cache-conscious algo-
rithms becomes more important. They usually concentrate on minimizing the number of
cache-misses. In general, it can be obtained by using two strategies:

e improving data locality — with the introduction of cache-conscious data structures [11],
even traditional algorithms can obtain performance improvement. An example for this

4.3. OPTIMIZATION STRATEGIES 59

lteration cost and speedup

Speedup

1] 1 13)

96 128 160 192 224 256
Number of NOPs

Pentium - 4 threads ——#— Athlon - 2 threads —--8-—-

Figure 4.6: The relation between computation cost and speedup on 4-CPU 550MHz Pentium
111 and 2-CPU 1400MHz Athlon MP

may be a binary tree, where subtrees are clustered, i.e. some of connected nodes are
located in the same cache line. Such a tree can be traversed using traditional algorithms
— the only difference is memory allocation for nodes.

e algorithms with cache-conscious access pattern — in many cases combining both special
data structure and reorganizing algorithm’s behaviour can lead to performance improve-
ment [27, 20].

4.3.2. Instructions-Per-Byte Ratio

In the Monet CPU-optimized code, the problem of limited throughput on SMP machines
comes from the low IPB (instructions-per-byte) ratio. Figure 4.6 presents simulated behaviour
of functions with the same memory access pattern (simple data copying), but with changing
loop cost for each byte. This cost was simulated by inserting extra 'NOP’ (no-operation)
instructions in each iteration. Results show that speedup increases with bigger IPB ratio.
Note that "NOP’ is efficiently processed by the CPU (exploiting inherent parallelism), hence for
the 'real’ operations the number of instructions needed for good speedup will be lower.

This feature can be exploited in some algorithms. For example, let us look at two pro-
grams presented on Figure 4.7, describing two possible approaches of doing some arithmetic
expression on all tuples of some relation. The first one simulates Monet behaviour, with its
full-materialization strategy. It splits a simple dst:=2%src+7 statement into two independent
dst2:=2%src and dst :=dst2+7 steps. The second program performs the computation directly.

The second version reduces number of memory accesses and additionally spends more CPU
cycles per each access. Looking at the results from Figure 4.6 it will not only perform better at
single CPU, but also scale better on SMP machines. Of course, for this example the difference
will be small, yet for complex operations it may be significant.

Automatic creation of the code similar to the one in Figure 4.7b is not yet possible in
Monet. However, one may consider extending Monet with a module translating relational
algebra expression into a C code, generating optimal code on-the-fly.

Results presented in Figure 4.6 lead to another question: Is it possible to obtain the same
data throughput using more complicated calculations? For SMP machines the answer is often

60

(a) Monet behaviour

(b) optimized behaviour

int i;
for(i=0; i<N; i++) {
tmpl[i]=2*srcli];

int i;
for (i=0; i<N; i+=2) {
dst [i]=2%srcli]+7;

CHAPTER 4. HARDWARE CHARACTERISTICS

for(i=0; i<N; i++) {
dst[i]=tmpl[i]+7;

}

Figure 4.7: Difference between Monet behaviour (a) and optimal behaviour (b) for the dst
= [+1C ([*](src,2)) , 7); MIL statement

Iteration cost and throughput

700

"%G@%eé@@@%@@a'e@ T T T T T
%

600 | 599 |
l\‘n. ’ O%»G

500 - P, ®o0g i

] G@@
400 | "ee Seo, 4

300

200

Memory throughput (MB/sec)

100

128 160 192
Number of NOPs

96 224 256

Pentium - 1 thread —#—
Penitum - 4 threads —-&--—-

Athlon - 1 thread ---&---
Athlon - 2 threads o~

Figure 4.8: The relation between computation cost and memory throughput on 4-CPU
550MHz Pentium III and 2-CPU 1400MHz Athlon MP

"yes”. Figure 4.8 presents memory throughput calculated for changing loop cost. The results
show that with increasing loop cost, the performance on multiple CPUs stays constant up to
some point. It brings the following conclusions:

e on SMP machines code-optimization does not play as important role as in single-CPU
system, since execution is memory bound

e performing additional computation in SMP environment does not have to influence over-
all performance

4.3.3. Partitioned Execution

When performing multiple operations over the same data, there is another possibility of ex-
ploiting good cache performance. We divide the data into smaller chunks, and perform all the
operations on them. If the chunk is small enough to fit into cache memory, it stays there to
be directly reused by the following operators without causing main-memory traffic. Such an
approach can be applied on the MIL level. For the problem from Figure 4.7 it would create a
code similar to:

VAR cnt 1= src.count;

4.3. OPTIMIZATION STRATEGIES 61

Multiplex Optimized
3000 T T T 1000

900

2500 F
800

700
2000 - -
600
1500 |- - 500

400

Execution time (ms)

1000 | E

300

200 + B
500 | b

100 + b

0 1 4 1 0 1 | 1
1 4 16 64 256 1 4 16 64 256
Number of slices Number of slices
0% —-— 25% ---g-- 50% ---@-- 75% o 100% --e--

Figure 4.9: Impact of number of slices on SELECT execution on 1 CPU

VAR dst_bats := new(int,BAT);
VAR pos = 0
while(cnt>0) {
size T min(cnt,CACHE_SIZE){;
src_slice := Src.slice(pos,posﬂfﬁ%&—i); #0-cost operation

dst2_slice:= [*](src_slice,2);
dst_slice := [+](dst2_slice,7);
dst_bats.insert(i,dst_slice);
pos 1= pos + size;

Cend
},g?

It will create a BAT consisting of partial results of the computation. With the appropriate
operators, it can be later used without additional cost. Since this algorithm for the [+] oper-
ator reuses data stored in a cache memory, its performance will greatly increase. Additionally,
it creates access pattern that is better scalable on SMP machines.

We applied this strategy to the select operator tests used in Section 3.3. Figure 4.9 presents
the benchmark results for the code executed on 1 CPU. For the multiplex version we may obtain
a performance improvement. The version using optimized range-select operator does not
reuse any memory, therefore we only see the overhead on the slices processing. Implementing
partitioned execution on the C level (currently it is done in MIL) would minimize this overhead
and improve the performance of both versions.

To see the impact of the predicate complexity on the results we have performed additional
tests. Figure 4.10 presents the results of executing a a query with 4 predicates similar to
previous version. For the multiplex version the results do not change too much. However, for
the optimized version we see a good performance improvement. The reason for that is the use
of multiple predicates — during combining the outputs the cache is reused. Since range select
needs much less CPU work than multiplex version, it is more memory-bound, and obtains
much better improvement.

Memory benchmarks described in this section suggest not only better cache performance,
but also its better scalability. Therefore we performed additional tests to measure the speedup
of the strategy described. Figure 4.11 shows the difference in the speedup of the traditional
algorithm (continuous lines) and the partitioned execution (points), using number of slices
giving the best results. We see, that the latter obtains better performance, especially for the

62 CHAPTER 4. HARDWARE CHARACTERISTICS

Multiplex Optimized
12000 T T T 7000 T T T
10000 6000 Fe-e 1
e
5000 ¢—00my O .
F 8000 - i . e
g . N
QE’ 4000 o By *‘; 1
= 6000 - . . ©
£ Tml X
5 3000 g g
@ B
< Ben
Gi 4000 - g B
2000 - g
2000 - 1 1000 &
O 1 I 1 O i i 1
1 4 16 64 256 1 4 16 64 256
Number of slices Number of slices
0% —x— 28% e 50% ---m--- 75% oo 100% -0

Figure 4.10: Impact of number of slices on multi-predicate SELECT execution on 1 CPU

Multiplex Optimized
4.5 g T T T 4.5 T T T T
4 ER00:0-0 0 gugrg: 4 a8
©9-0.6.0-¢.¢, . ;{P ue.s\&e&A
7 LN
as | 35 ¢ e ooy

°| | 3\ _
25 F - 25 -

o
é F(.,H»! -..E."i'."li~g-l“l'
2 P Bttt 2 T T 2 &
5] i
15 B 1.6 i &
R EFEEEEEEstag e Ua
e = - B
1 — = 1
05 B 0.5 - B
0 1 . i H 0 1 i I 1.
0 0.2 0.4 0.6 0.8 1 0 062 04 06 08 1
Selectivity Selectivity
traditional 1 thread ---&--- 2threads ----m-- 4 threads --o--

Figure 4.11: Speedup difference between traditional and partitioned multi-predicate SE-
LECT execution

4.4. SUMMARY 63

Multiplex Optimized
4.5 T T 1 T 4.5 T T T T
4 4
B0 = o i
35 - E 35 B
a 3r B 3 Q-0-B.g -
§ 6-e-0.g, 060000,
2 25+ . 25 - y
[7)
. 2
% - &E-BauSeBEgta gl
& 45t E 15 |
1 1
05 E 0.5 |- B
0 i] 1 1 0 i i i 1
[0} 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Selectivity Selectivity
traditional 2 threads ----m-- 4 threads ~~o--

Figure 4.12: Relative speedup difference between traditional and partitioned multi-predicate
SELECT execution

optimized range-select version. Figure 4.12 additionally presents a relative speedup of 2 and
4 CPU version comparing to the single-threaded execution. Again, we see that especially for
optimized code the improvement is significant.

The results obtained show a big potential of the presented strategy. In the Monet it
additionally has one important benefit. The partial results of the operators are proportional
to the size of the data. Therefore, using many slices, at the same time less memory has to be
allocated.

4.4. Summary

In this chapter we have investigated detailed hardware features influencing our research. In
Section 4.1, we started with the description of a Calibrator tool, used for obtaining detailed
characteristics of various parts of the hierarchical memory system. We presented results for our
test machines and discussed their influence on the programs performance. Section 4.2 presents
our extension to the Calibrator measuring the memory throughput at different hierarchy levels,
showing the limitations of the current memory chips, especially in SMP systems. This bad
memory performance gives an explanation for non-optimal results of benchmarks in Chap-
ter 3. Finally, Section 4.3 discusses possible strategies of improving algorithms performance
by adapting to the described hardware features.

Chapter 5

Conclusions

This thesis presents various aspects of parallel query execution in the Monet DBMS. There are
three levels of parallelism in DBMS: inter-query, intra-query and intra-operator parallelism.
We concentrated on the last option, since the first two were already available in the Monet
thanks to its multi-threaded execution and a MIL Squeezer tool.

To allow intra-operator parallelism we have described different operators in the relational
algebra and presented parallel execution algorithms for each of them. Moreover, we have
discussed the attribute projection — an extra step in query-execution in the Monet, necessary
due to its decomposed storage model. We have performed performance benchmarks on two
SMP platforms: Pentium III and Athlon MP.

The results of the performed benchmarks were often below our expectations. It inspired
us to perform detailed analysis into the hardware features of our SMP platforms. We have
presented a Calibrator tool with new extensions that generically obtains various features of
the hierarchical memory system present in modern computer architecture. We have conducted
extensive experiments showing bad scalability of memory throughput in our test platforms.
We presented various optimization techniques that take this bottleneck into account and allow
increasing application performance.

Contributions

The most important contributions of this thesis include:

e parallel algorithms for algebraic operator ezecution using the decomposed storage model
on shared-everything architecture

e efficient parallel versions of cache-conscious Radiz-Algorithms

Calibrator extensions allowing detecting various characteristics of the SMP platforms

algorithm optimization strategies for the SMP environment

Future Work

We conducted experiments on the performance of single algebraic operators. Integration of
the presented solutions into the SQL front-end requires more work. Moreover, inter-operator
dependencies analysis may result in additional optimizations.

Intra-node parallelism is only a first step towards a fully-parallel DBMS. Execution in the
shared-nothing architecture requires more investigation. An interesting area of research would

65

66 CHAPTER 5. CONCLUSIONS

be hybrid and hierarchical parallel systems, especially with respect to combining cache-efficient
execution on SMP machines with high-performance network communication.

Acknowledgments

This thesis was made possible thanks to the joined master’s program of my home university
in Warsaw and the Vrije Universiteit in Amsterdam. I would like to thank my supervisors at
both universities — Henri Bal and Jerzy Tyszkiewicz, as well as people organizing this project
— Femke van Raamsdonk and Piotr Rybka.

My adventure at CWI started thanks to Martin Kersten. He offered me a position in
his research cluster and was always a source of good ideas and advices, both in research and
?real”-life.

My ”guardian angel” at CWI was Peter Boncz — although he was busy with his PhD thesis,
he taught me a lot about Monet and helped me in improving my writing style. His hacking
skills were often an inspiration for me. I would like to thank other people at CWI, especially
Stefan Manegold and Niels Nes, for help and friendly working environment.

During my stay in Amsterdam I spent a lot of time with my polish friends: Michat and
Gosia. Thanks for a lot of adventures and good luck in your research career!

I would like to thank my family. My parents were my first teachers, showing me the
importance of knowledge. My sisters and their love always helped me in hard times.

Finally, thanks to Agnieszka for encouragement, help and patience during this difficult
year.

67

Bibliography

1]

(17]

Advanced Micro Devices. AMD Processor Recognition - Application Note, January 2002. http:
//wiw.amd . com/us-en/assets/content_type/white_papers_and_tech_docs/20734.pdf.

Rakesh Agrawal and Arun Swami. A One-Pass Space-Efficient Algorithm for Finding Quantiles.
In Proc of the Int’l. Conference on Management of Data, December 1995.

Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A. Wood. DBMSs On A Modern
Processor: Where Does Time Go? 1999.

Gene M. Amdahl. Validity of the single-processor approach to achieving large scale computing
capabilities. In AFIPS Conference Proceedings, pages 483-485, April 1967.

American National Standard for Information Systems. Database language SQL. ANSI X3.135-
1992, November 1992.

Peter M.G. Apers, Carel A. van den Berg, Jan Flokstra, Paul W. P. J. Grefen, Martin L. Kersten,
and Annita N. Wilschut. PRISMA/DB: A Parallel Main Memory Relational DBMS. IEEE Trans.
on Knowledge and Data Eng., 4(6):541-554, December 1992.

Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L. Seitz,
Jakov N. Seizovic, and Wen-King Su. Myrinet: A gigabit-per-second local area network. [EEE
Micro, 15(1):29-36, May 1995.

Peter A. Boncz. Monet. A Next-Generation DBMS Kernel For Query Intensive Applications. PhD
Thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands, May 2002.

Peter A. Boncz and Martin L. Kersten. Monet. An Impressionist Sketch of an Advanced Database
Systems. 1994.

Peter A. Boncz and Martin L. Kersten. MIL Primitives For Querying a Fragmented World. The
VLDB Journal, 8(2), October 1999.

Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious structure layout. In
SIGPLAN Conference on Programming Language Design and Implementation, pages 1-12, 1999.

Edgar F. Codd. Relational database: a practical foundation for productivity. Communications of
the ACM, 25(2):109-117, 1982.

George P. Copeland and Setrag Khoshafian. A Decomposition Storage Model. In Proc. of the
ACM SIGMOD Int’l. Conf. on Management of Data, pages 268-279, May 1985.

David J. DeWitt. DIRECT - A Multiprocessor Organization for Supporting Relational Database
Management Systems. IEEE Trans. on Computers, 28(6):395, June 1979.

David J. DeWitt. Multiprocessor Hash-Based Join Algorithms. In Proc. of the Int’l. Conf. on
Very Large Data Bases, 1985.

Xing Du, Xiaodong Zhang, Yingfei Dong, and Lin Zhang. Architectural Effects of Symmetric
Multiprocessors on TPC-C Commercial Workload. Journal of Parallel and Distributed Computing,
61:609-640, 2001.

Michael J. Flynn. Some Computer Organizations and Their Effectiveness. IEEF Transactions on
Computing, C(21):948-960, September 1972.

69

70

[18]

[19]

[26]
[27]
(28]
29]
[30]
31]
(32]

[33]

[34]

BIBLIOGRAPHY

lan T. Foster and Carl Kesselman. The GRID: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, San Mateo, CA, USA, 1998.

Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh. Data Cube: A Relational
Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Total. In Proc. of the IEEE
Int’l. Conf. on Data Engineering, pages 152-159, New Orleans, LS, USA, February 1996.

David R. Helman and Joseph J4J4. Sorting on Clusters of SMPs. August 1997.

Jonas S. Karlsson and Martin L. Kersten. Scalable Storage for a DBMS using Transparent Distri-
bution. Technical Report INS-R9710, Centrum voor Wiskunde en Informatica, Amsterdam, The
Netherlands, December 1997.

Kimberly Keeton, David A. Patterson, Yong Q. He, Roger C. Raphael, and Walter E. Baker.
Performance Characterization of a quad Pentium Pro SMP using OLTP workloads. In Proc. of
the Int’l Symp. on Computer Architecture, Barcelona, Spain, July 1998.

Martin L. Kersten, Frans H. Schippers, Carel A. van den Berg, and Peter A. Boncz. Mx docu-
mentation tool. 1996.

Donald E. Knuth. The Art of Computer Programming. Volume & - Sorting and Searching. Addison-
Wesley, Reading, MA, USA, 2 edition, 1997.

Jack L. Lo, Luiz Andr Barroso, Susan J. Eggers, Kourosh Gharachorloo, Henry M. Levy, and
Sujay S. Parekh. An analysis of database workload performance on simultaneous multithreaded
processors. In Proc. of the Int’l Symp. on Computer Architecture, pages 3950, July 1998.

H. Ly, B. Ooi, and K. Tan. Query Processing in Parallel Relational Database Systems. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1994.

Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Optimizing database architecture for
the new bottleneck: memory access. The VLDB Journal, 9(3):231-246, December 2000.

Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Optimizing Main-Memory Join On
Modern Hardware. IEEE Trans. on Knowledge and Data Eng., 14(3), 2002.

Stefan Manegold, Arjen Pellenkoft, and Martin L. Kersten. A Multi-Query Optimizer for Monet.
In Proc. of the British National Conference on Databases, Exeter, United Kingdom, July 2000.

Gurmeet S. Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Approximate Medians and other
Quantiles in One Pass and with Limited Memory. 1999.

Gordon E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8), April
1965.

M.Tamer Ozsu and Patrick Valduriez. Principles of Distributed Database Systems. Prentice Hall,
Englewood Cliffs, NJ, USA, 2 edition, 1999.

Donovan A. Schneider and David J. DeWitt. Tradeoffs in Processing Complex Join Queries via
Hashing in Multiprocessor Database Machines. In Proc. of the Int’l. Conf. on Very Large Data
Bases, August 1990.

S. Shekhar, S. Ravada, V. Kumar, and D. Chubb. Load-Balancing in High Performance GIS:
Declustering Polygonal Maps. Lecture Notes in Computer Science, 951:196-206, 1995.

Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Concepts. McGraw-
Hill, Inc., New York, San Francisco, Washington, DC, USA, 4th edition, 2002.

Leonid B. Sokolinsky. Choosing multiprocessor system architecture for parallel database systems.
2000.

Pedro Trancoso, Josep-Lluis Larriba-Pey, Zheng Zhang, and Joseph Torellas. The Memory Per-
formance of DSS Commericial Workloads in Shared-Memory Multiprocessors. In Intl. Symp. on
High Performance Computer Architecture, San Antonio, TX, USA, January 1997.

BIBLIOGRAPHY 71

[38] Transaction Processing Performance Council. TPC Benchmark H version 1.4.0, 2002. http:
//www.tpc.org/tpch/spec/tpchl140.pdf.

[39] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous Multithreading: Maximizing
On-Chip Parallelism, June 1995.

[40] Annita N. Wilschut, Jan Flokstra, and Peter M. G. Apers. Parallel Evaluation of Multi-Join
Queries. In Proc. of the ACM SIGMOD Int’l. Conf. on Management of Data, May 1995.

[41] Mohammed J. Zaki and Ching-Tien Ho. Large-Scale Parallel Data Mining. Springer-Verlag, Berlin,
New York, etc., August 2000.

