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Abstract

In the last years, Peer-to-Peer systems have been in the centre of the interest of the
internet community. The goal of AmbientDB is to provide full relational database
functionality for autonomous devices connected in ad-hoc network. This thesis focuses
on one of many aspects of the system - Query Processing. The main goal is to formulate
a query processing framework and implement a network simulation of it.






Chapter 1

Introduction

Relational databases have played a central role in information technology during the
last 30 years. They typically follow a centralistic architecture, or in the case of dis-
tributed databases, a fixed and well-planned topology. During the last years, Peer-to-
Peer systems like Napster have been in center of the interest of internet community.
The main idea of such systems is to create a decentralized community of machines,
pooling their resources. Addition of such systems are: scalability, robustness and lack
of need for a central administration. The idea in the new field of P2P databases is to
combine the best of these two worlds: powerful query processing functionality and the
ad-hocness and scalability of P2P systems.

Information technology continues to expand to diverse sectors of our lives. We can
now find computers also in devices where we do not expect them. Almost all electrical
appliances have some processor or chip with their own memory and own logic given
by a program. A common household is full of such devices like phone, PDA, PC,
laptop, digital camera, stereo, microwave, central heating,... . According to the vision
of ”ambient intelligence”, such devices will become more and more connected to each
other with new wireless communication technologies such as Bluetooth and 802.11.
The applications running on them as well as their user interfaces and applications will
become more intelligent and provide automatic cooperation between these connected
devices. Such a network could be very heterogeneous with big differences between nodes
and with different ways of connecting separate nodes. Its topology should preferably be
dynamically self organized. The organization of such a network could be peer-to-peer
where no centralized control exists and each node can be a client and a server at the
same time.

This thesis explores data management and in particular query processing over such
dynamically organized P2P networks. In peer-to-peer systems each peer can share data
with other peers.

In peer-to-peer systems, each node can be different and the overlaying distributed
database system has to use a strategy which is aware of hardware limitations and
provides transparency to hide different hardware and data representations.
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Figure 1.1: AmbientDB Architecture
AmbientDB
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Local DB is a wrapper around any (external) data store.

1.1. AmbientDB

The AmbientDB [4] is a project at CWI performed in association with Philips, where
the target is to support ambient intelligent applications for networked devices. The
goal for AmbientDB is to provide full relational functionality for autonomous devices.
The intention is to enable such devices to cooperate in an ad-hoc way with other Am-
bientDB devices. Mobile devices have typically few resources (CPU, memory, network)
so AmbientDB should take these limitations into account. The AmbientDB architec-
ture shown in Figure 1.1 includes a network peer-to-peer protocol, Distributed query
processor, local DB component and schema integration.

1.1.1. Assumptions

We now outline the main assumptions made in the AmbientDB for query processing.

Topology

The topology of the network is a connected graph, where nodes are devices and edges
are connections between them. This topology is very general and for communication
will be used an overlay tree topology - a spanning tree G(V,E). The node posing a
query is (from its own viewpoint) the root of this tree. For each node n there exist an
isomorphic graph G’(V,E) where n is the root node. An important assumption for now
is that while a query executes, none of the participating devices will disconnect. The
AmbientDB project will need to address this issue in the future, as in P2P networks
participating devices connect and disconnect in a dynamic fashion.
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Global Schema

Each device can have different data representations. However, we suppose a wrapper
on each database that masks these differences and provides the view that all nodes
have the same database schema. The goal of the system is to answer global queries
over the schema where the global table contents are the union of the table content of
all nodes on the tree. The global schema integration should work without centralized
administration. New connected node first updates own schema if its version is smaller
than actual version in the network.

Resources

Resources may be very scarce on some nodes. Small devices have small memory, and
our proposed algorithms have to respect this limitation. Also some nodes are assumed
to have a high network latency and a scarce network bandwidth. Overall, we assume
that network cost will be the dominant factor in query processing. This justifies the
use of the ns2 simulator 7, 1] , which only measures network cost.

Replication

Some data tuples will be replicated over the network. Query processing has to be aware
of possible existence of duplicates of each item.

Upscaling

The amount of cooperating devices can be potentially large.



1.2. Related work

First, file sharing P2P systems are introduced and then relational database systems
are discussed.

1.2.1. File sharing

P2P systems are widespread for file sharing. Well known are Napster, Gnutella and
KaZaA and they support searching files that name contains a given string.

Peer-to-peer systems architecture can be categorized in one of the following groups
[18]:

Chained Architecture Servers form a linear chain that is used for answering queries.
When a user submits a query, the local server attempts to satisfy the query alone.
However, if the local server cannot find the maximum number of results, it will
forward the query to the remote server along the chain.

Full Replication Architecture Forwarding queries to other servers can be expen-
sive. The full replicated architecture avoids these costs by maintaining a complete
index on each server, so that all queries can be answered at a single server.

Hash Architecture Index is hashed to different servers. When a user submits a
query, we assume that it is directed to a server that contains at least a part of
the result. That server then asks the remaining servers involved for the rest of
the result and when the result arrives, it is merged in usual fashion to produce
the result.

Unchained Architecture This architecture simply consists of a set of independent
servers that do not communicate with each other. A user, who logs in to one
server, can only see the files of the users on the same server.

Napster uses a central server to maintain a list of shared files and keeps information
about active connected peers. When a file is required then it is downloaded directly
from the owner of the file.

Gnutella system is fully decentralized. Each node keeps connections with its neigh-
bors and forms an overlay network. The topology of this network is a spanning graph.
Queries are propagated to neighbors by a TTL (time-to-live) protocol, and after n hops
are discarded. This controlled query flooding decreases the probability of successful
search. Query flooding is the reason why Gnutella has lack of scalability. With the
rising number of nodes, the number of queries rises. Then there are more queries per
node and the response is as slow as the slowest link.

KaZaA combines the main ideas of Napster and Gnutella. Its overlay network is
built from more powerful nodes called ”SuperNodes” and other nodes are connected



to their nearest SuperNode. SuperNodes maintain lists of files of their neighbors and
handle their queries like in Gnutella. Supernodes are selected automatically, but the
precise protocol has not been disclosed.

Distributed Hash Tables (DHT)[11] are proposed to improve string searching queries
in Peer-to-Peer file-sharing systems. The indexing scheme is to split each string into
"n-grams”: distinct n-length substring. These items are inserted into the hash index,
indexed by n-grams. String required in query is also split into n-grams. Condition
for result of containing these n-grams is not sufficient, because these n-grams may not
occur consecutively and in the correct order. To achieve final result items have to be
directly tested for substrings.

P2P filesharing systems are popular and large scale, but they do not support com-
plex queries.

1.2.2. Relational databases

A vision of future usage of Data management for P2P systems is presented in [2]. This
model assumes that data in a P2P network are stored in local relational databases.
Network topology is defined by a set of acquaintances. Each acquaintance describes
coordination formulas defining dependencies between the two databases.

Piazza system [8, 10] is built at the University of Washington and its vision is
peer data management system (PDMS) that provides “semantic mediation” between
environment of thousands of peers, each with its own schemes. Rather than requiring
the use of a single, uniform, centralized mediated schema to share data between peers,
Piazza allows peers to define semantic mappings between pairs of peers. In turn,
transitive relationships among the schemes of the peers are exploited so the entire
resources of the PDMS can be used. In this M.Sc. thesis, schema integration problem
is not solved yet.

Sensor networks [5] are networks of very small devices such as temperature sensors,
motion detectors lights, or door locks. Typical queries are historical queries (typically
aggregate queries) or snapshot queries (query the state in a given time). In [14], a query
language, that executes aggregation queries on tree network topology, is proposed.
Sensors run Tin’s and they are connected to an ad-hoc network. Devices can identify
each other and route data without prior knowledge about the network topology. Tiny
AGregation (TAG) queries are distributed into the network by piggybacking on the
existing ad-hoc networking protocol. Sensors route data back toward the user thought
a routing tree. As data flows up this tree, it is aggregated. Our QP framework is
inspired with this “in network” paradigm.

Pico DBMS [3] is an example of an implementation of query processing with hard-
ware limitations imposed by smartcards. Smartcards have very slow write operations
and very little RAM. The proposed query execution model does not require RAM and
Select-Project-Join queries are executed by pipelining.
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Traditional distributed database technology works on a known collection of par-
ticipating sites and communication technology. Peer-to-peer systems do not have this
assumption. Federated database technology works on a heterogeneous schema, but
schema integration is made by static wrappers and statically configured combinations
of databases.

A parallel DBMS aims for improving the query performance by parallel and dis-
tributed computation. A dataflow architecture offers the possibility to exploit the
inter-operator parallelism and pipelining by allocating different relational operations
to different sets of processors. Teradata, GAMMA [6], and PRISMA are examples of
parallel DBMSs that were implemented. [17] studies inter-operator parallelism strate-
gies on PRISMA. Assumptions for such systems are different from our work: Par-
allel machines are well-tuned, well-controlled and well-connected. Dataflow usually
works with point-to-point communication between all nodes. This is not sustainable in
internet-scale and with the worse quality of internet connections. We inspire us with
an dataflow architecture on systems such as PRISMA.

Article [13] gives an overview over new trends in distributed query processing.
Distributed systems could be very large. That is why new techniques that presume
replication and caching of data and that reduce communication costs are necessary.

1.3. Problem Statement

1.3.1. QP Framework

This thesis is focuses on one of many aspects of Peer-to-Peer systems - Query pro-
cessing. The main goal is to formulate a query processing framework and implement a
network simulation for it. We inspire our QP framework with the dataflow architecture
and “in network” processing.

1.3.2. Outline

This Thesis is organized as follows. Chapter 2 summarizes the foundations of Relational
Algebra. In Chapter 3 we propose the design of a Distributed algebra and a distributed
query processing framework. In Chapter 4 we describe the implementation of our
prototype simulation on the network simulator ns2. Experimental results are presented
in Chapter 5. Future work and conclusion is in Chapter 6.



Chapter 2

Preliminaries

2.1. Relational database concepts

Definition: A database is a structured collection of data. Relational database is one
with relations as data structures. Relation R is defined over n sets D1, D, ...D,, is a set
of n-tuples (tuples) (dy,ds, ..., d,) such that d; € Dy,dy € Do, ...,d, € D,. dyi,ds,...,d,
are attributes and Dy, Ds, ..., D,, are domains.

2.2. Relational algebra

Relational algebra consists of five fundamental operators that operate on relations and
their product is again relation.

Selection (Unary operator) Selection returns a subset of relation R that satisfies
boolean formula F'.
or(R)

Projection (Unary operator) Projection returns a vertical subset of relation. The re-
sult contains only those attributes which are enumerate in projection parameters.
The projection of relation R over S, where S is subset of attributes of relation
R:
s (R)

It is possible to define projection with or without duplicate elimination, because
this definition does not specify it.

Union (Binary operator) The union of two relations R and S is the set of all tuples
that are in R, or in S, or in both.

RNnS={z:ze€SVvzeR}



Set difference (Binary operator) The set difference of two relations R and S is the
set of all tuples that are in R but not in S.

R\S={z:x € RNz ¢S}

Cartesian product (Binary operator) The Cartesian product of two relation R and
S is the set of tuples that are created by concatenation of one tuple from R and
one tuple from S, for all tuples of R and S.

Rx S

Additional operations are derived from fundamental operations.

Join Join is derived from Cartesian product and selection. The join of two relations
R and formula F is denoted as

R[XIFS:O'F(RXS)

Natural join Natural join is equi-join of two relations over a set of attributes R and
S with the same domain.
R A DX S

Aggregate Functions Aggregate operators are extension of projection.
ms,54) (R)

Where S is subset of attributes of relation R and f is function operation on
domain of attribute A.

Properties:
Commutativity
RxS=5SxR
R S=5S><R
Associativity
(RxS)xT=Rx(SxT)
(R S)<xT =R (SxT)
Idempotence

OF (UFQ (R)) = OF1AF, (R)
T Ay (7TA2 (R)) = TTA1NA2 (R)
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Distributivity

e Projection (Selection) and join
To(R Dp(a,,5;) S) = T (mar (R) by(a,,8,) 7o (S))

op(c)(R ™ya,,8;) S) = 0cr (04 (R) >ya,,8;) 08 (S))

where

A'=CNA\A,B =CnNB\B;,C"=Cn(A;UB;y)
and A and B are sets of attributes over which are relations R and S defined.

e Projection (Selection) and union
7T0(R U S) = Wc(R) U Wc(S)

Op(C) (R U S) = 0p(0) (R) U Jp(c)(S)

11






Chapter 3

Design

AmbientDB provides global query processing functionality over a peer-to-peer network
with its global abstract algebra as query interface. Let us assume a P2P network with
participating nodes N; and table instance 7; for each table T in the global schema.
The global abstract algebra works on a global schema of abstract tables, each of which
can take one of the following forms:

Local table (LT) is table T; in isolated view on one node T;
Distributed table (DT) Ty is defined over a set of nodes Q as Ty = union(1;),Vi € Q

Partitioned table (PT) is a specialization of the distributed table, where all partic-
ipating tuples in each 7; are disjunct between all node.

Queries follow a three-level translation (Figure 4.2). User queries are given in Ab-
stract global algebra (Tab. 3.1). Operators of this abstract global algebra are trans-
lated to concrete global algebra operators. Concrete operators have a fixed processing
strategy, and are processed on one or more bidirectional waves that consist of dataflow
algebra operators, which form the lowest level of our query processing framework.

3.1. Abstract Global Algebra

Select Returns new table that contains only those tuples from the input table that
evaluates condition to be true. The new table has the same attributes as the
input table.

Project Returns a new table consisting of columns corresponding to all projections.

Order Returns a new table where tuples occure in order given by evaluation of ex-
pression orderby.

13



AmbientDB algebra translation

Abstract
global algebra

=

Concrete
global algebra

&

Parallel dataflow
execution model

Figure 3.1: 3-level Algebra Translation

Aggregation Aggregation returns a new table consisting of both the computed ag-
gregates and the groupby projections, with one tuple for each combination of
groupby expressions in the source table.

fnc = SUM, COUNT, AVG, MIN, MAX ...

Join returns a new table consisting of columns of both tables left and right except
those columns that are in expression key proved to be equal.

abstract global algebra
Select(Table t; Expr cond)—Table
Aggr(Table t; List<Expr> groupby)—Table
Join(Table left,right;Expr cond)—Table
Order(Table t; List<Expr> orderby)—Table
Project(Table t; List<Expr> resultColumns)—Table

data model
Column(String name; int type)
Key(bool unique; List<Column> columns; Table table)
Table(String nme;List<Column> cols;List<Key> prim,forgn)

expressions

Expr(int type)

Expr::ConstExpr(String printedValue)
Expr::ColumnExpr(String columnName)

Expr: :0peratorExpr(String opName, List<Expr>)

Table 3.1: The Abstract Global Algebra

The artificial column NODEID is added to each table. It holds the node identifier
of the node where the tuple is stored (or one of the nodes if the tuple is replicated).

14



3.2. Concrete Global Algebra

The concrete global algebra (Tab. 3.2) contains corresponding operations to the ab-
stract global algebra plus two extra operations partition and union. Operations of the
concrete global algebra correspond with a particular execution strategy.

concrete global algebra

(T, T2 € {DT, PT})
Union(T; t; List<Expr> key, result) LT # create LT from DT/PT by merging
Partition(DT t; List<Expr> key) —»PT # create PT from DT by finding duplicates

selectycq; (LT) —LT joinjpeqi (LT,LT) —LT aggriocqi (LT) —LT
selecty;s: (T1)—T1 ag8rmerge (T1)—LT
joinproadeast (LT, T1) =Ty
joingpyi¢ (LT1,T1) =Ty aggrgist (T1) —DT
order;,eq; (LT) —LT unionmerge (T1)—LT
joingoreignkey (T1,DT) =Ty
orderg;s: (T1)—T1 partition(DT)—PT uniongjjm, (T1) —LT

Table 3.2: The Concrete Global Algebra

There are local executions variants (local) executed only at query node and dis-
tributed execution variants (dist), where the operation is broadcast on the network
and executed on all nodes. Each node executes the operation on its partition of a
partitioned table or distributed table. This process then produces again a PT or DT.
Local and distributed variants exists for aggr, select and order.

Join has more variants:

local

broadcast One of the join tables is broadcast to all nodes and joined in each node
with its local table partition.

foreignkey For equi-joins on a foreign key, we can deduce from the referential in-
tegrity in each node, that all matching tuples can be found locally. Thus, this
strategy only broadcast the query, and each node performs a local join like the
dist strategy.

split In this variant of broadcast join, where the join predicate contains an equality
condition on NODEID, tuples are routed only to the nodes indicated in the
NODEID of the ”broadcast” table.

All join, union and aggr suppose their inputs to be ordered.

The union has two variants in concrete global algebra: unionmerge and unioneim.
UNEONmerge 18 Processed “in network”. First, the query is broadcast, then each node
merges its own local table with the input-stream provided by its children. unione,, is
also processed “in network” and it eliminates duplicated tuples.

15
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Figure 3.2: Query processing in two waves: the first wave
Query propagation (down - in direction from the root node to the leaves)

Aggriecar computes aggregation locally on LT. Aggrgs: produces distributed table
with aggregates only over a local partition. Aggrmerge computes aggregates during
propagating in network.

Other concrete algebra operations are

partition The operation partition() creates a partitioned table from the distributed
table T = UT;.

3.3. Dataflow Algebra

3.3.1. Query processing on a tree topology

The main idea of our query execution algorithms, described later, is processing in
waves. A wave is a data stream that is propagated from one node to another node in
the direction of the wave.

down A wave from the root node to the leaves is propagated from the node which
received this wave to all its child nodes. (broadcast)

up A wave from the leaves to the root is propagated from the node that received waves
from each of its children to the parent node. (merge)

16
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Figure 3.3: Query processing in two waves: the second wave
Result merge (Up - in direction from the leaves to the root node)

Figure 3.2 demonstrates a downward wave propagating a query. Each node that
receives this query, forwards it to its child nodes and processes it on its local database.
An example strategy that behaves like this is selecty;s;. Figure 3.3 gives the upward
wave, gathering the results. An example strategy that behaves like that is union,erge-

3.3.2. Pipelining operations

As it was presented in the section Assumptions, we want to propose a framework that
works on a tree topology and does not require uncontrollable memory resources. The
solution chosen here is data processing by pipelining. Pipelining is sequential processing
of one or more input data streams to one or more output data streams. Data is read
sequentially and each item is read exactly once.

All operations presume that input streams are ordered by a hyperset of key at-
tributes.

Processing by pipelining has two additional advantages:

e It reduces I/0O cost, because intermediate results need not be written back to the
disks.

e The first tuples of the resulting operations can be produced earlier.

On ordered streams of tuples we can define pipeline operators. The output of
the pipeline operator is the product of the corresponding set operation on the input
streams.

17



3.3.3. Dataflow Algebra Operations

The dataflow algebra (Table 3.3) contains operators that work with data streams in a
pipelined fashion.

[ | Dataflow Algebra Operators

scan(Buffer b) —»Dataflow
select (Dataflow d; Expr cond; List<Expr> result)—Dataflow
aggr(Dataflow d; List<Expr> groupBy,aggr)—Dataflow
order(Dataflow d; List<Expr> orderby,result) —Buffer
topn(Dataflow d; List<Expr> orderby,result, int n) —Buffer
join(Dataflow d;, dp; List<Expr> key;,key,,result)
# merge-join on dataflows ordered on key
merge(Dataflow d;,d,; List<Expr> key)—Dataflow
# merges key-ordered dataflows, returning tuples in order
# adds t.#cnt: number of consecutive tuples with equal key
# and t.#nr: which ascends 0,1, etc.. in each such chunk
split(Dataflow d; List<Buffer><bi..bp>;

List<Expr>< fi..fp>)—Dataflow
# returns equal stream, inserts tVi: f;(t) = true in b;

. Blo(m(n(B

8

ot

Table 3.3: The Dataflow Algebra

scan creates a datasteam from a buffer or LT

select scan the input datastream, outputting only those items from datastream that
fulfill the condition.

aggr makes an output stream with aggregated items sorted from the input stream.

order Order makes a buffer from an input datastream. Items in this buffer are ordered
by expressions in the orderby-list.

join This operation joins items from inputs streams d, and d; that fulfill the condition.

merge Merge makes from multiple key-ordered input datastreams one ordered output
datastream and adds two attributes to each item: cnt and nr. Cnt holds the
number of tuples with equal key value and nr is rank of items within each group.

split This operation makes n buffers, and fills each with items from the input datas-
tream that fulfill the corresponding condition from the list of expressions.

3.4. 3-level Algebra Translation

The abstract global algebra is a standard relational algebra. A query is transformed
to a low-level wave plan which implements a particular execution strategy. A query
may have many equivalent and correct transformations and each can lead to different
consumptions of computer and network resources.

18



3.4.1. Translation from Abstract Algebra to Concrete Algebra

Any table in the leaves of an abstract global query graph is resolved to either a LT,
DT or PT. According to this, abstract operators are instantiated to concrete operators.
Thus we get concrete algebra signatures for the operators in the leaves and we also
know the type of the result. The end result have to be a LT. This bottom-up conversion
of abstract operators in a query plan to concrete operators is the main mechanism to
translate a global abstract query into a global concrete query.

Not all concrete signatures are implemented (i.e. join(DT, DT) — DT). In this
case we can continue by recursion with translation. We have joingeqs; (LT, DT — DT)
and we can use the union for translation DT to LT.

One abstract global query has more possible translations in the concrete global
algebra. The task of query rewriter is also to chose the optimal query with the lowest
execution cost. The execution cost is expressed as a weighted combination of 1/0,
CPU, and communication costs. We assume that the communication cost is dominant
and we can simplify it and ignore local processing cost(I/O and CPU costs). Inputs for
estimating execution costs are statistics and formulas for estimating the cardinalities
of results of operations.

Some concrete algebra operations require ordered input. So, the rewriter should
insert order operations automatically. Such operations are: unioneym, UNiIONmerge,

a'ggrmerge and jOinbcast (jojnsplit) .

Union

The Concrete Algebra operation Union does not have an equivalent in abstract global
algebra. The union is introduced as an auxiliary operation. We can eliminate a DT or
PT from the result by using operation union.

UNLONeim (DT T) is equivalent to unionmerge(PT T).

When a query requires ordering by (cy, ¢o, ..., ¢,,) then it replaces this ordering by
(€1, €y ey Cp, primarykey).

The partition operation can be used in the case, we have a DT but we want to use
UNEONmerge instead of unione;m. This can be beneficial in the case that the size of the
tuple is much bigger than the size of the key attributes and there are a lot of duplicated
tuples. Then using partition() can reduce communication. During processing the
operation partition only key attributes are sent.

Select

Select has two variants local and distributed. Which variant will be chosen depends
on the abstract table in query.

e select(DT)—DT
selectqisy (DT T)

19



e select(LT)—LT
selectipea (LT T)

e select(DT)—LT
UNLONmerge (Select s (DT T))

o select(PT)—LT
UNTON ey (select gy (DT T))

or
UNLONmerge (Selectyisy(PT T))

or
UNLONmerge (S€lECtgis (partition(DT T)))

Sort

General sort algorithms require memory for all sorted tuples. To sort distributed
tables while respecting our restrictive memory requirements, the ordery;s; sorts only
local table partitions in each node. We can use the unionme,4 operator for merging
the sorted sequences into a global result that is streamed to the root (query node).

Aggregation

Abstract global algebra aggregation has multiple concrete global algebra operations:
ag9Tiocal; AGYGTdist, AGYTmerge-

Aggregation can be processed by pipelining, if the input stream is already sorted
on the groupby attributes. So, if there is an aggr in a query without previous sorting
on its groupby attributes, the processor needs to add an orderys (for DT, PT) or
orderioeq (for LT) before the aggr.

We give translations of aggr(T) from abstract algebra to concrete algebra

e with elimination of replicated tuples:

if table T is a partitioned table:

aggrmerge(aggTdist(PT T))

if T is a DT only, then we can still do:
aggT’merge(aggrdist(pa'f'titiOn(DT T)))
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or
ag9Tiocal(Unionelim (DT T'))

e without elimination:
a'ggrmerge(aggrdist(DT T))

The choice depends on T being a DT or PT and the estimated number of groupby
values.
Join

When joining two local tables, we can use join,. directly. When joining a LT with
DT or PT, we can use uniong(joineest:(LT, XT)) with x=merge if XT=PT and x=elim
if XT=DT.

The most difficult case is a join of two distributed tables A and B. Here we must
make a join of the union of all local tables with schema A with union of all local tables
with schema B.

Ax B = (U(AlaAZa ,An)) > (U(Bl’BQ’ e Bn)) -

A xBUA xB,U..UA xB,UA; xB,U...UA, x B,

For A pa B it is necessary to join on all combinations of local tables A; and B;. But
without transferring data, we can process only those combination A; and B; where
¢ = j. It is necessary to transfer one table A; or B; to node where is another one or
transfer both tables to one place and process partial join A; > B; there.

We have the following alternatives to translate a global abstract join to concrete
algebra:

e With joinlocal

JOIMocal (UNE0Nmerge (PT(T1)), unionmerge(PT(13)))

o With j0in toreignkey, for foreign key join

un’ionmerge(jOinforeignkey(PT(Tl)7PT(TQ)))

e With jOinbroadcast'

unionmerge (jOinbroadcast (PT (Tl) ) LT(TQ)))
o Joingpy; is similar to a joiNeroadcast-

21



Legenda

[split (<ROUTE(nodel d) ==c1, ROUTE(nodel d) ==c2>, <c1, c2>) |
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Figure 3.4: The 3-wave Partition Operator
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Figure 3.5: Wave Plans for most Concrete Operators

3.4.2. Translation from Concrete Algebra to Dataflow Opera-

tors

Concrete algebra operators are translated to a dataflow execution plan. We will discuss
only partition in particular, other operations are defined in the figure 3.5. Local variants
of operators are processed without communication on the query node(Figure3.5 a,b).
other variants use usually the first wave for query propagation(Query flood in Figure
3.5 ¢). Operators producing DT or PT have only this one wave, the result is distributed
over all nodes as DT or PT (Figure 3.5 d,f). Joinyes:(LT, DT) has one wave. The
table LT is broadcast in this wave to all nodes and the result is again distributed over
all nodes as DT or LT. Union operators (unionmerge and unione;, Figure 3.5 g) have

two waves: query propagation and result merge.
The partition (Figure 3.4) is processed in three waves.
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e CLAIM WAVE - down

Each node receives a data stream from the parent node and merges with the
ordered local table. The split makes from this stream two streams: one with
all tuples and the other with tuples that come from the local table and cnt==
(there are no equal tuples from the parent). The second data stream is stored
in the buffer X. The first data stream is selected on the condition nr==0 (this
condition makes the claim stream unique) and split into identical data streams,
which are sent to the child nodes.

Leaves: The first wave finishes in the leaves. Leaves have no child nodes, so
execution is terminated by the split that creates the buffer X.

Each node has a buffer X with tuples from LT which are candidates for partici-
pating in the new PT.

e CHECK WAVE - up

When the Claim wave comes to the leaves, the second wave starts from the leaves
to the root node. Leaves start the check wave by sending the content of the buffer
X to their parent node.

Each inner node first merges the data stream from child nodes and the result
is split in two streams: one on the condition nr>1 and the second output with
all tuples where nr==0. The first data stream, which contains tuples that have
been claimed twice, is written to buffer Y and the second stream is merged with
the content of the buffer X and the result is sent to the parent node.

The buffer Y contains information about tuples which after the Claim wave were
in the buffer X, but in the Claim wave it was discovered that multiple nodes have
claimed them. In the buffer Y we store also information about source nodes for
each tuple (a NODEID field).

e INVALIDATE WAVE - down

This wave starts in the root node, which sends the content of the buffer Y to the
child nodes. Each tuple from the buffer Y is routed to the source node N;, where
we create a new buffer Z;

Zi={r;c e Xi Nz €Y}, Vi€ Q}

Each node n; merges the incoming data stream with its own buffer X; and the
result is split to two streams. Omne on the condition that tuple source is the
local node and cnt==1. The second data stream on the condition that the tuple
source is different from the local node. This stream is merged with the buffer
Y; and tuples are routed by split to the corresponding child nodes. The first
stream is written to buffer Z;, which makes up the new partitioned table, after
the invalidation wave has finished.

23



Implementation notes

It is not necessary to send all tuples, but only key values.

Data that are sent in the Claim wave and the Check wave are sorted by the key
attribute.

The Check wave and the Invalidate wave can start before the preceding wave is
finished.

Instead of materializing Z, we can make a bit in a bitmap column of LT to identify
which tuples participate in the PT with low storage overhead.

The NODEID should be implemented in such a way that ROUTE(id) can be
efficiently determined. One solution is to use concatenations of child numbers as
NODEIDs.

Size of the buffer X and the buffer Z is limited, because it contains less or equal
number of items as local table, but the size of the buffer Y is not limited. The
invalidation wave can start before previous waves are finished. The content of the
buffer Y is merged with the incoming stream in the described implementation of
partition, but it can be sent to child nodes before. The invalidation wave comes
to the node.
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Chapter 4

Implementation

In order to obtain insight into the correctness and performance of our QP framework
we decided to implement a simulator. Assumptions allows to easily task the framework
on a wide variety of network configurations and load. In this simulation, we only obtain
network costs for queries, which provides efficient feedback as we assume network costs
to be dominant. In order to reduce the work of creating this simulation, we decided
to implement a number of hardcoded queries rather than a general-purpose query
interpreter.

4.1. Network Simulator ns2

ns2 [7, 1] is a discrete event simulator targeted to networking research. ns2 provides
support for simulation of TCP, routing, and multicast protocols over wired and wireless
networks.

ns2 is an object-oriented simulator written in C++. Its front-end is OTcl inter-

Simulation
Results

Simulation
OTecl Script

OTcl Interpreter

C++ Libraries

\
\
\ /
\
!
\

Figure 4.1: Network simulator ns2
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preter. The simulator consists of class a hierarchy in C++ and OTcl and there is
one-to-one correspondence between them. Clients create new simulator objects in the
interpreter. ns2 uses these two languages (C++ and OTcl) for two different tasks:
OTecl is used for configuration and setup. C++ is used for processing each packet of
the flow and changing the behavior of the existing C++ class. It is possible to invoke
OTecl procedures from C++4 code and vice versa.

4.2. Data Structures

4.2.1. Agents

Agents represent endpoints at which network-layer packets are constructed and con-
sumed. The class Agent is implemented partially in OTcl and partially in C++.
It supports packet generation and receiving and following functions are implement by
C++ Agent class:

void recv(Packet*, Handler*) is the main entry point of the Agent which re-
ceives a packet. It is invoked by upstream nodes when sending a packet.

The Agent::allockpkt () method allocates a new packet, fills in its common and
IP headers. Appropriate TCP-layers headers fields have to be filled in them.

class PartAgent is a subclass of standard build-in class Agent. Data structures
and methods of the class PartAgent are described later. Each node of our tree
consists of 1 or more agents. The agent which is connected to the parent node (with
0 for root node) is denoted as main. This main agent contains data and information
about the query processing state. Other agents are used only for sending and receiving
packets.

We use a synthetic database in this simulation, which we now fill with a uniformly
distributed integer values. These values are stored in a linked-list. Each data_item
contains a key value, a partition flag(used in the partition operator to denote of a
tuple of a DT participates in a PT) and a pointer to the next data_item.

Each main agent also contains information about its child nodes. This information
is again stored in a link-list of child_items. Each child_item contains a pointer to the
child agent and a link-list with received data items.

4.2.2. Tree Topology

The tree topology is defined and initialized in OTecl code. Thus, network topology
can be generated as a TCL script. C++ methods are called during the initialization
and they initialize the same topology on C++ objects. The OTcl part of the code
defines nodes and connections between nodes. Each node of the tree is composed of 1
or more agents. Each agent is used for exactly one connection. Leaf nodes have only
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one agent for the connection with their parent node. Inner nodes have one agent for
the connection with their parent node and one agent for each child node.

4.2.3. Packet

Each sent packet has the same structure. The size of the packet is defined in file ns-
default.tcl. There is method Agent::allockpkt() for allocation of a new packet. This
method allocates a new packet and fills its IP headers. The access() method returns
a pointer to the TCP headers that should be filled. This part of the packet is used to
carry data, because ns2 does not support any other way to transfer real data.

4.3. Communication

PartAgent is inherited from Agent. It uses two Agent methods: send and recv. These
two methods are modified as follows:

We have a method newSend which calls the original method send. This method
also prepares data items to a packet and sends the packet, when it is full or at the end
of the wave (marked by special symbol).

The method recv parses data items carried by the packet and calls a method for
processing the data items. It decides which method to use for processing according to
agent’s position in the tree, direction of the wave, and value of the data item.
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4.4. Algorithm

Commands, which are programmed in C++ and used in OTcl code, are parsed by
the command method. Arguments of command are stored in an array. Following
hardcoded operations are implemented: partition, select, aggregation and join. These
operations work with partitioned or distributed tables. There we again only describe
partition in detail.

4.4.1. Partition

The methods are illustrated at figure 4.3.

1l.wave All nodes, except for leaf nodes, use the mergeOwnDown method for process-
ing. It merges the incoming stream of data items with its own set of data items.
This method also marks local items, in case that the same key value occurs also
in the incoming stream.

Method distrSendDown is used for sending items to child nodes. It sends data
item to all child nodes, and calls method newSend for each child node.

The direction of the wave is changed in the leaf nodes. So, the method leafSend is
used in leaf nodes. It marks local replicated data items and starts a new wave in
upward direction. It sends its own data items which are not marked as replicated
in this new wave.

The method sendInvalidation sends invalidation requests, which were generated
during the upward wave. This method finds in which branch the receiver of the
invalidation is and sends this request to the child node, which is the root node of
that branch.

2.wave The sendUp method is called in method recv during the wave upward for all
agents. This method is not called for the receiving agent but for main PartA-
gent of the same node. The sendUp method adds this item to the end of the
linked-list which belongs to the calling agent. Then it starts taking the minimum
items of all linked-lists of received data from all child nodes. It stops when at
least one linked-list is empty. When the same item occurs in more than one
linked-list then it generates an invalidation request for all such nodes except the
first one. The Invalidation request is generated by calling the method sendInval-
idation. The items are merged with data items stored in the node by method
mergeOwnSendUp.

The mergeOwnSendUp method merges its own non-replicated items with incom-
ing data streams from all children and sends the result using the newSend method
to the parent node.
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Figure 4.3: Schema of simulation of operation partition
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3.wave Invalidation requests received in packets or directly from function sendInvali-
dation are routed to the corresponding nodes again by function sendinvalidation.
This function also marks corresponding items in local table if the invalidation
request belongs to the node.
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Chapter 5

Evaluation

5.1. Scenario

As the P2P system has up to now been an academic exercise only, we formulate a
number of usage scenarios where such a P2P DBMS might be used in the future. In
each scenario, we define the system parameters and a set of queries to allow conducting
a number of experiments.

For each scenario description we will deduce a typical network size and physical
characteristics of the network, nodes and data.

Each node can be described by size of memory, size of RAM, processor and network
connection. We can also describe data stored in the node: size of data stored in the
node and which schemata are not used in the node.

Scenario “Household” In this scenario we will assume household with common
home devices. There will be approximately tens of devices. The devices can be divided
to groups according to hardware properties:

Size Devices Memory | Connection
big Computer, laptop, ... 10-50GB

medium PDA, mobile phone,digital camera, ... | 2-100MB

small refrigerator, central heating, ...

very small | light sensors, temperature sensors, ...

Global data schema

tables:

Addressbook(ID_addr, name, nickname, phone_number, addr_street,
addr_town, addr_Post_nmr)

Artist(ID_artist, name, country, style)

Album(ID_album, ID_art, name, year, style)
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Songs (ID_song, name, style, ID_album, ID_artist,lenght)
Common_resources (Id_res, name, amount)

Organiser(Id, action, type, description, time_begin, time_end, place)
logs:

log_phone_calls(phone_number, time, duration)
log_played_songs (time,ID_song,volume, response, ID_user)
log_resources(ID_res, amount, buy_date, exp_date)
log_motion(time, room, motion)

log_lights(room, ID_light, intensity, time_begin, time_end)
log_temperature(room, time, temperature)

log_heating(room, time, intensity)

Data extracting

e Some data items are created consciously as new meeting in Organiser or new

address in Addressbook.

e Some data items are created after some action. Such as when the light being
turn on then is written into log that light was turn on in time t.

e Some data items are created periodically. For example, every minute a value of
a temperature sensor is generated.

Schema on devices

Computer, laptop All

Refrigerator log_resources, Common _resources
mobile phone, phone | Addressbook, log_phone_calls
PDA Addressbook, Organiser

PMa3-player, stereo Song, log_played_songs

Queries

e SQL query Create list of songs from Beatles

SELECT DISTINCT S.name

FROM Songs S, Artist A

WHERE S.ID_art=A.ID_art AND A.name=’Beatles’
ORDER BY S.name

Outline of execution plan

UNLONmerge (S€lECtdist (JOIN foreignkey (PT S, DT A)))
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or
UNLON iy, (S€leCt 4ist (0IN foreignkey (DT S, DT A)))

Network simulation
UNIONmerge (PT)

or
UNTON i (DT)

e SQL query Give me a list with people and total time phoned with them, sorted
by the most often to the least.

SELECT A.name, sum(L.duration)

FROM Addressbook A, log_phone_calls L
WHERE A.phone_number=L.phone_number
GROUP BY A.name

ORDER BY sum(L.duration)

Outline of executing plan
Orderlocal(aggrmerge(jOinforeignkey(DT A, PT L)))

or
Ordelrlocal (aggrlocal (unionelim (.7 Oinforeignkey (DT A, DT L) ) ))

Network simulation
agg’rmerge (PT)

or
UNGON ey (DT)

e SQL query Lets assume that we have table Relevant with all users and param-
eter of similarity of our music preferences. We want to make list of songs
ordered by my expected preferences.

SELECT A.name, S.name, sum(R.parameter*L.response)
FROM Relevant R, log_played_songs L, Songs S, Artist A
WHERE R.ID_user=L.ID_user AND L.Id_song=S.Id_song

AND S.ID_artist=A.ID_artist

GROUP BY L.ID_song

ORDER BY sum(R.parameter*L.response)

LIMIT 100

Outline of executing plan
Orderlocal(aggrmerge(jOinbcast(LT R, PT JL)))
where

JL := joinforeignkey(PT L, jOinforeignkey (DT S, DT A))
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Network simulation

ag9gTmerge(J0iNpcast (LT, PT))

5.2. Benchmarks

For each scenario, a set of typical queries and data operations is given. For each set of
queries and each data distribution another query execution strategy can be better. For
comparing individual execution strategies we can change the following input properties:

e number of nodes
e network topology
e query set
e data distribution among nodes
e ratio of replicated data
ns2 allows measure only communication costs:
e number of messages (or bytes)

e total communication time

5.3. Results

Abstract global algebra operators are translated to concrete global algebra operators.
Only some of them use “in network” processing.

Local versions of operators are processed locally in the query node without com-
munication costs.

Distributed versions of operators need communication only for query propagation
to all nodes.

Operators processed “in network” are the only interesting ones for measuring com-
munication costs. So the following operators are discussed: partition, unionmerge,
UNLONelim, AYGTmerge aNd JOIMpeas- In Our experiment, we were measuring the number
of messages and the total communication time.
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5.3.1. Partition

We measured the relation between communication costs and the percentage of unique
items and the total number of nodes. All nodes were the same. The first graph (Figure
5.1) shows that the total number of messages seems to depend linearly on the number
of nodes.

msg = O(n)

There are four curves, each for a different percentage of replication. In the next graph
(Figure 5.2), there is a dependence of the total communication time on the number of
nodes, again for four different replication percentages.

total time = O([ f(logz(n)]))

for well-balanced graph where each inner node has three child nodes. The total com-
munication time depends on the depth of the tree.

5.3.2. Select

Two basic variants of the translation of abstract global algebra operation select to con-
crete global algebra are proposed in chapter Design. We made measurements to com-
pare unioneym(selectysy(DT)) — LT and unionmerge(selectyiss(PT)) — LT. These
experiment compared these two variants and their dependence on the percentage of
unique items in distributed table.

The first graph (Figure 5.3) represents the relation of the number of messages on
the percentage of unique items. In the worst case, when there are no duplicated items,
UNTONmerge(PT) behaves the same as unionem, (DT). In other cases, unionyerge(PT)
has less communication costs. The difference between these two strategies is more
obvious when we compare the number of messages rather than the total communication
time (Figure 5.5).

5.3.3. Aggregation

We were comparing two variants for aggregation: First variant is aggriocqr(unioneyim (DT))
and the second is aggTmerge(aggraist(PT)). We used a database with 100% of unique
items, |DT| = |PT|. We measured the relation between the number of messages and
the size of the groupby set. In the first variant the result does not depend on the size
of the groupby set. In the second variant the result depends on the size of the groupby
set and the shape of the curve is similar to the unione,,(DT) in graph Figure ?7?.

5.3.4. Join

We implemented only unionmerge(j0inpcast(LT, PT)), which is from communication
costs viewpoint the same as aggrmerge(J0iNbcast (LT, PT))
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Figure 5.3: Dependence of the number of messages on the percentage of unique tuples

J0iMocal(LT) and unionmerge(J0in foreignkey (DT)) are not interesting from the view-
point of communication. We measured the relation between the number of messages
and the size of table LT. In Figure 5.7, there is a relation between the size of LT and
the total number of messages. The result depends linear on the size of LT.
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Chapter 6

Conclusion

In this M.Sc. thesis, we have formulated a generic query processing framework for
peer-to-peer databases. Thus, we think it is feasible and promising to bring complex
query functionality to P2P systems.

A prototype on network simulator ns2 was implemented. Experiments on this
prototype confirmed that algorithm is usable and correct. Experimental results on
data with uniform distribution correspond to what we would expect.

As such, we regard this prototype as a tool and starting point for future experiments
and research. Testing non-uniform input data or real data inputs could be the next step
in the examination of the proposed query processing strategy. Also, new algorithms
for efficient P2P query processing could be intended in our framework and form an
additional topic of future research.
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