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Abstract

Due to the recent trends in computer hardware, especially processors, parallel query ex-
ecution is becoming more and more important in modern database management systems
(DBMS). In this master thesis, we discuss the implementation of a parallel query execution
system based on a new family of operators that was firstly presented in the Volcano DBMS.
We combine this approach with a highly efficient vectorized in-cache execution model used in
the VectorWise DBMS. We present different strategies of incorporating new operators into
an execution tree. Finally, we propose possible optimizations and measure the performance
of implemented solutions.
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Chapter 1

Introduction

1.1. Motivation

Constant development of computer hardware requires new approaches to software design.
New performance opportunities and performance bottlenecks have to be identified in all
layers of the hardware stack (super-scalar CPUs, cache memories, main memory, disk).
This also applies to query processing in relational database systems.

In this thesis, we focus specifically on the VectorWise database management system.
VectorWise is a novel DBMS designed to fully exploit modern hardware architectures.
Its main areas of applicability are query-intensive applications such as on-line analytical
processing or data-mining.

The VectorWise DBMS is already capable of inter-query parallelism i.e. it can work on
several queries concurrently. However, parallelization of a single query (intra-query paral-
lelism) is not currently supported. This is a significant drawback, which, when considering
the common availability of multi-core CPUs, limits performance capabilities of this DBMS.
This leads to the objective of this thesis:

Objective. Design and implement efficient intra-query parallelism in the VectorWise DBMS.

In this master thesis we

(i) describe an implementation of the Xchange family of operators that introduce intra-
operator parallel query execution in the VectorWise DBMS,

(ii) develop strategies and transformation rules to rewrite a given non-parallel query exe-
cution tree into its optimal or close to optimal parallel counterpart,

(iii) measure performance of the implemented solutions.

We present a novel approach to incorporating the vectorized execution model (see section
2.2.1) into the so-called Volcano model (sec. 2.3.1). We also show the applicability of
our design in the VectorWise DBMS by measuring its performance in the TPC-H bench-
mark [TPC].
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Chapter 2

Query processing

2.1. DBMS architecture

A simplified organization of a relational DBMS consists of:

client application - which issues the SQL query,

query parser - which builds an internal representation of the parsed query (a tree),

query normalization - which checks for the semantical correctness of the tree,

query rewriter - which rewrites the query tree into another which is estimated to have
the lowest execution cost,

query executor - in which we construct all the operators (the building phase) and actually
processes the data,

buffer manager / storage - which handles storing data on persistent media.

The organization of the VectorWise DBMS is a little bit more complicated. This DBMS
consists mainly of the execution engine (the query executor layer). It does not parse user’s
SQL queries, but uses an open-source DBMS (Ingres) for that purpose (figure 2.1.1a).

After parsing the SQL query, and checking for its correctness, Ingres DBMS generates an
optimized query execution tree or QET (see the next section) and passes it to the VectorWise
DBMS. In order to do that, Ingres keeps track of all the tables and indices created by a
user. It also maintains statistics (e.g. cardinality, value distribution) about the stored data.

The rewriter module in the VectorWise DBMS is responsible for preparing and opti-
mizing query execution trees for processing. For example, it assigns the data types to the
relational attributes, introduces lazy evaluation of some expressions or eliminates dead code.

From the perspective of this master thesis, two components are of the most importance.
The parallel rewriter and the query executor. In the parallel rewriter (from now on abbrevi-
ated to rewriter) we construct a parallel query execution plan, which is afterward processed
by the query executor module.
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Figure 2.1.1: Query processing in the VectorWise DBMS.

2.2. VectorWise DBMS

The VectorWise DBMS stresses data analysis (data warehousing, reporting, information
retrieval etc.) as its main area of applicability. It is designed to exploit the performance
potential of modern computers. Contrary to typical database engines it benefits from new
processor features such as SSE, out-of-order execution, chip multi-threading or increasingly
larger L2/L3 caches. The VectorWise DBMS uses a vectorized in-cache execution model.

2.2.1. Vectorized execution model

Most database engines use the iterator model in their query execution layers with a standard
open(), next(), close() interface. Queries are represented as a tree of operators, where the
operators are taken from the Relational Algebra, e.g. Scan, Select or Join. During the
evaluation of a query tree tuples are pulled up through the query tree, by calling next()
on the query root (which leads to subsequent next() calls to on its children, etc.). A
query plan thus consists of a set of relational operators that operate in a “pipeline” fashion
(figure 2.1.1b).

Traditional database management systems operate on a single tuple at a time. Be-
cause the next() method is called to produce a single tuple, which usually represents just
a few bytes of data, instructions related to query interpretation and tuple manipulation
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outnumber data manipulation instructions. It increases the instructions-per-tuple ratio.
Moreover, for every tuple there are multiple function calls performed, which results in a low
instruction-per-cycle factor. The reason for this low efficiency is that query plans are pro-
cessed at run-time. Hence, function calls needed for interpretation are late-binding function
calls, as query plans in all their details are (C/C++) objects that are linked together at
run-time. Late-binding function calls, in turn, impede many of the most profitable com-
piler optimizations such as inlining function bodies, loop optimizations, etc. Absence of
such optimizations cause a code pattern where modern CPUs achieve only low instruction
per cycle throughput

To avoid the overhead present in the tuple-at-a-time model, the VectorWise DBMS uses
a vectorized in-cache execution model, which reduces the instructions-per-tuple cost. In
this model, operators work on vectors of values (one dimensional arrays of values, e.g. 1024
values), which are the basic data manipulation and transfer units.

Primitives

In the VectorWise DBMS all operations on data are performed using short and highly
specialized functions called primitives. This DBMS defines a large number of those com-
ponents ∗. Each primitive implements code that is easy to optimize for compilers and which
fully exploits modern CPUs features like SIMD instructions, pipelined execution, branch
prediction, or hardware prefetching.

Below we provide an example of a primitive routine that adds two vectors of integers
and checks for the overflow [Żu09].

void map add in t vec in t vec ( int ∗ r e s u l t , uint ∗ input1 , uint ∗ input2 , int n) {
ulong over f l ow = 0 ;
for ( int i = 0 ; i < n ; ++i ) {
ulong l 1 = input1 [ i ] ;
ulong l 2 = input2 [ i ] ;
ulong r e s = l 1 + l 2 ;
over f l ow |= r e s ;
r e s u l t [ i ] = ( int ) r e s ;

}
i f ( over f l ow > 0xFFFFFFFFUL) {
return STATUS OVERFLOW;

}
return STATUS OK;

}

The for loop does not suffer from branch mispredictions and does not contain any data
dependencies. It is easy to unroll and is an easy subject to SIMDization. Figure 2.2.1
presents the efficiency of such a primitive, which also partially answers the question about
the optimal vector size. The best results are obtained for the sizes such that all vectors
used in the query plan fit into the L1 cache memory †.

∗Thousands of such functions (for each operation and input types) are generated using macro expansions.
†The most frequently used vector sizes are 1024, 2048 or 4096 values.

8



 0.01

 0.1

 1

 10

1 32 1 32K 1M

E
xe

cu
tio

n 
tim

e 
(s

ec
)

Vector size (tuples)

Total
time

icc -O0

 1

 10

 100

1 32 1 32K 1M
O

pe
ra

tio
n 

tim
e 

(c
yc

le
s/

tu
pl

e)

Vector size (tuples)

Memory-intensive
primitive

icc -O1

1 32 1 32K 1M

Vector size (tuples)

Cache-intensive
primitive

icc -O2

Figure 2.2.1: Primitive routine efficiency. Impact of the vector size and different optimiza-
tions on the time and the number of cycles per tuple. Courtesy of Marcin Żukowski.

2.2.2. Column Store

VectorWise is a column-oriented DBMS. The values of one column are stored consecutively
on a disk (contrary to a row-oriented DBMS in which values of one record are consecutive).
This design enables us to read only relevant data (only the necessary subset of all columns)
and avoid interpretation overhead, which in row-oriented DBMS systems is mainly spent
on extracting the data from a row.

Multiple disc accesses when adding or modifying a record are the major drawback of this
representation ‡ . Therefore, column-oriented DBMS are mainly used for read-intensive
large data repositories.

2.2.3. Cluster Trees

The VectorWise DBMS exploits the idea of cluster trees, which we introduce in this section.
Cluster trees are not a tree-like data structure, rather refer to a data ordering strategy, in
which we co-order tables that have foreign key relationship. The foreign key relationship
paths, which can be clustered, form a tree that is a subset of the schema graph. Cluster
trees allow us to build much more efficient query execution trees that replace some expensive
hash join operations with their faster merge-based counterparts. In this section, we also
present the concepts of join indices and join-range indices.

Join Index

The idea of join indices is introduced in [Val87]. Let A and B be two relations. A join index
is an abstraction of the join of two relations. We assume that each tuple of a relation is
uniquely identified by a so-called Stable ID (SID), We denote by ai (bi respectively) a tuple

‡This problem is partially solved by in-memory differential structures [HZN+10].
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from relation A (resp. B), for which its SID equals i. Then, the join index on A and B is
the set

JI = {(ai, bi) | f(tuple ai, tuble bi) is true}

where f is a Boolean function that defines the join predicate.

Clustering Join Indices

While generally useful, join indices also have some limitations. Traditional DBMS exploit
foreign key joins between tables having a join index using a nested loop index join. This
method requires log(N) random disk accesses for each tuple, which is unacceptable in the
VectorWise DBMS. Other approaches i.e. using the merge join or the hash join algorithms
also involve some drawbacks. In the former case, both input streams to the merge join have
to be sorted, which is almost always slower than the hash join algorithm §. In the latter
case, the problem of the hash table not fitting RAM arises. Table clustering solves these
problems.

The idea of cluster trees is to store a table in the physical order corresponding to the
tuple order in some other table. More formally, let A be a table sorted on some attributes
(denoted as Sort Key or SK). Let B also be a table referencing A by means of a foreign key
constraint. We say that B is clustered on A if B is kept in the sort order of A. An example
of this situation together with a join index is depicted in Figure 2.2.2.

We can consider a table a node in a graph and the relation of being clustered (or having
a join index between tables) as an edge. In this representation tables form a tree-like
structure. This tree is called cluster tree.

Sometimes we do not need all the information stored in a join index and its approxima-
tion is also sufficient. If tables are clustered, then values in both columns of a join index
are known to be non-decreasing. We can divide a join index into chunks and store only the
information about minimum values (for SRC and DST columns) inside each chunk. We call

§This will probably change in the future. See section 3.5 and [KKL+09].
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this structure a join-range index. The average size of a chunk can be a configurable param-
eter allowing us to store this structure in RAM. Since we have some freedom in specifying
a set of chunks for a join-range index, we put one additional requirement on this structure:

Property. Two consecutive chunks never separate tuples having the same value on JK
attributes.

This means that a chunk border never separates a group of the same values. This
property is used later on in section 5.3.

2.3. Related work

Over the recent two decades significant efforts have been made in order to design efficient
algorithms for parallelization. We can distinguish two major trends (i) algorithms based
on sequential implementations and (ii) algorithms based on data partitioning.

Among the algorithms belonging to the first group, developed solutions reduce the
number of both data and instruction cache misses, exploit capabilities of modern CPUs
or eliminate the problem of data skew. For example [KKL+09] focuses on two popular
join algorithms – hash join and sort-merge join and presents an implementation that takes
advantages of latest processor features.

An important contribution to the approach based on data partitioning, on which we
base our solution, is the Volcano model proposed in early 90s [GCD+91]. The idea of
incorporating this concept into the VectorWise DBMS was firstly presented in [Żu09].

A vector-based partitioning was used in [HNZB07] to successfully parallelize a query
without join operators. However, it is unclear whether this approach is efficient and general
enough for queries with join operations.

[WFA95] discusses and evaluates four different strategies of parallel query execution of
multi-join queries. The conclusions presented cannot be directly applied for our purposes
as the tested approaches uses different (non-Volcano) execution models.

Cieslewicz et al. in [CRG07] proposes using parallel buffers for reducing both data and
instruction cache misses. The Volcano model uses a similar approach, but also exploits the
advantages of a pipelined execution analyzed in [BZN05].

A metric which balances the estimated query execution time and the total execution cost
of a parallel query execution tree was proposed in [GHK92] and [vB89]. The cost calculus
formulas were adapted and applied to our execution model from [GHK92].

A study on different thread synchronization libraries and their applicability for database
systems under various usage scenarios is presented in [JPA08].

2.3.1. Volcano model

The proposed solution to parallelization of a single query is based on the Volcano model. In
Volcano’s design, all parallelism issues like partitioning and flow control are encapsulated in
and provided by a new family of operators and are independent of data manipulation issues.
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The module responsible for parallel query execution is called Xchange. It implements (i) a
number of new operators (described in chapter 4) which conform to the same open(), next(),
close() iterator interface and can be inserted at any place in a query tree and (ii) a procedure
for finding the optimal parallel execution tree (chapters 5 and 6). Other operators are
implemented and executed without regard to parallelism. This is an important advantage
from the engineering point of view, as parallelism may be implemented orthogonally to
other parts of the systems.
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Chapter 3

VectorWise Algebra

In this chapter, we give a short introduction to a subset of relational query processing opera-
tors implemented in the VectorWise DBMS. A more detailed description of operators, their
algorithms, optimization techniques (especially for large data sets) can be found in [Gra93].
A VectorWise specific description can be found in [Żu09].

In the following sections we use the term column as a synonym of attribute. We also
introduce a concept of streams. Streams are anonymous inputs (an operator does not know
what other operator produced its input or whether it was produced from a complex subtree
or a simple table scan) that allow combining any number of operators to evaluate a complex
query.

Operators form a query execution trees and operate in a demand-driven schema. The
return value of the next call is a pointer to the vector of data and the size of the vector.

3.1. Project

The Project operator is used for (i) introducing new columns with values based on other
columns, (ii) renaming columns, (iii) filtering entire columns. It exports only those at-
tributes that were explicitly used in the projection list.

We use the following notation for the Project operator: Projectprojlist (if not required

we omit the projlist parameter). The projection list is a comma-separated list of projections,
where <projection> ::= <column_id> | <column_id> ’=’ <expression>.

Output: Columns explicitly named in the projection list.

3.2. Select

Selection is used to choose only those tuples that match a specified predicate (and filter out
those that do not).

The Select operator is denoted by: Selectbool expr . The boolean expression bool expr

can be an arbitrary (possibly nested) expression returning a boolean result.
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Output: Select propagates exactly the same columns as its child.

3.3. Aggregation

Aggregation provides an important statistical concept to summarize information about large
amounts of data. The idea is to represent a set of items by a single value or to classify items
into groups and determine one value per group.

The Aggregation operator is denoted by: Aggrgrpby list,aggregate list . The grpby list is
a list of attributes. If empty, global aggregation is performed. The aggregate list is a list
of named aggregate expressions, including sum, min, max and count. Average (avg) is not
supported and has to be simulated by using the results of the sum and count functions in a
post-computation (e.g. in the Project operator which is a parent of the Aggregation opera-
tor) The bodies of aggregate functions need to be simple columns, without any arithmetic.
If aggregate list is empty, a duplicate elimination is performed.

Output: Aggregation returns all the group-by keys and aggregate functions.

Commutative property of SQL’s aggregating functions

If an Aggregation operator processes only a subset of data (this subset may be a result
of data partitioning performed during parallelization) the output data carries only partial
results. For example the minimum function is calculated for separate parts of the data and
does not yield the global minimum. Those partial answers are obviously incorrect from the
global point of view.

This problem can be solved if a common property of max, min and sum functions is
exploited. Those functions are commutative so computing the global answer from partial
results suffices.

For the count function we have to calculate the sum of its partial answers as the car-
dinality of disjoint subsets of data that sum up to the original set is the sum of partial
cardinalities.

The only exception, average function, is tackled by postponing its computation and
operating only on its necessary components - sum and count functions, which are commu-
tative.

3.4. Ordered Aggregation

The OrderedAggregation operator is an optimized version of the Aggregation operator for
the situation when the input stream is clustered. We say that a sequence a0, a1, a2, . . . of
data (e.g. a stream) is clustered if

∀i≤jai = aj → ∀k≥i∧k≤jak = ai

i.e. when two tuples with the same values on the key columns are not separated by a tuple
having a different value.
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The OrderedAggregation operator is denoted by: OrdAggrgrpby list,aggregate list

Output: See the Aggregation operator.

3.5. HashJoin

The algorithm of the HashJoin operator builds a hash table with the values from the right
(or inner) data stream. Then, the values from the left (or outer) stream are passed through
the operator in a pipelined fashion. For each of the tuples a decision about whether to pass
it further to the parent operator is based on the content of the hash table (the tuple may
or may not have a matching counterpart in the build input). Concluding, the outer data
stream is executed only after the hash table is fully computed (is materialized).

We say that a flow is materialized if it is fully processed before any tuple can be used by
the parent operator. Materializing the data does not scale well. The intermediate data has
to fit into RAM as otherwise a few orders of magnitude slower disk-resident swap memory
has to be accessed.

Another processing schema, in which a tuple, after being processed by a given operator,
can be instantly passed to the parent operator, is called a pipelined execution (see [BZN05]
for a detailed analysis).

The HashJoin operator is denoted by: HashJoinkeysA,keysB . Two sets of columns (of

the same cardinality) keysA and keysB define the relational operation.

Output: The hash operators generate tuples matching the relational operation. It outputs
all attributes of the left operator plus all attributes of the right operator.

3.6. MergeJoin

The second commonly used join method is the merge-join. All merge-based joins assume
two inputs ordered on the same sequence of keys, and perform operations on them based
on the values of the key columns. Merging the two inputs is similar to the merge process
used in sorting.

The MergeJoin operator is denoted by: MergeJoinkeysA,keysB .

Output: See the HashJoin operator.

3.7. Sort

Sorting is frequently used in database systems. In the VectorWise DBMS Sort operator is
used mainly for presenting to the user sorted reports or listings and less often for query
processing in sort-based algorithms such as merge-join. This can, however, change because
of the increasing importance of sort-merge join operator, which better exploits modern CPU
features and therefore may overtake HashJoin algorithms in the near future [KKL+09].
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The Sort operator is denoted by: Sortsort columns .

Output: Sort returns the same shape of the table as its input, with tuples sorted on the
sort columns.

3.8. TopN

TopN has the same behavior as the Sort operator. It is used to return the first N tuples
from a flow according to some sorting order. It is denoted by: TopNsort columns,N .

3.9. Reuse

The Reuse operator supports non-tree query graphs (DAGs). Reuse executes the underlying
query only once, and buffers the tuples so they can be read by many consumers. This
optimizes execution of query plans which have to recompute costly subtrees.
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Chapter 4

Xchange operators

In this chapter we present the family of Xchange operators, which are solely responsible for
introducing parallelism into a query execution tree. Each of those operators provides the
same interface as any other operator i.e. a standard set of open(), next(), close() methods.
Hence, from the implementation point of view, those operators are indistinguishable from
any other operator. We can insert any of the Xchange operators into a query execution tree
without having to change its parent or its child.

An Xchange operator provides a control flow in a parallel QET. It can split one data
stream into many, each handled by a different thread, or join multiple streams into one.

From now on by a stream we understand a flow of data processed by a separate thread.

4.1. Examples of Intra-query parallelism

Before defining all the Xchange operators in more detail in this section, we present an
example of intra-query parallelism with a XchgUnion operator. We focus on a simple query
with an execution tree that consists of a single path only.

4.1.1. Parallelizing Aggregation

An SQL query that can be rewritten into the execution plan in figure 4.1.1a is presented
below:

SELECT returnflag,sum(extprice * 1.19) as sum_vat_price
FROM lineitem
WHERE shipdata <= ’2000-01-01’
GROUP BY returnflag

In the execution plan, the Scan operator reads returnflag, shipdata and extprice
columns from the lineitem table. The Select operator passes only those tuples that meet
the “WHERE” condition. The Project operator calculates the new sum vat price column,
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whereas the Aggregation operator groups tuples that have the same value of returnflag
and calculates the sum of their sum vat price values.

Aggr

Project

Select

Scan

(a)

Aggr′

XU(2)

Aggr

Project

Select

Scan′

Aggr

Project

Select

Scan′

(b)

Figure 4.1.1: Parallelization introduces 2 additional operators, executes the Aggr-Project-
Select-Scan path in parallel and reduces by half the scan range in the Scan operators.

For this specific query we know that the output (the number of returned tuples) of
the Aggregation is small. This is because the returnflag column has a very limited set
of distinct values, which can be checked in relation attribute’s histograms∗. Moreover, the
histograms can indicate that the input to the Aggregation operator is large (i.e. there are
many tuples meeting the shipdata <= ’2000-01-01’ condition).

In the described circumstances, the rewriter can decide to insert the XchgUnion operator
on top of the Aggregation operator and to divide its execution subtree between its children.
The XchgUnion operator consumes data from its subtrees and produces a single flow of
data. The children operators are executed by different threads and operate on distinct
subsets of data.

Depending on whether the input data is divided between the threads, we may or may
not have to add additional Aggr operator on top of the XchgUnion operator. In the simplest
approach the Scan operator divides its input ranges equally between threads as presented
in (4.1.1).

range [a..b) =


range [a .. a+ (b−a)∗1

n ) for the first thread

. . . . . .

range [a+(b−a)∗(n−1)
n ..b) for the n-th thread

(4.1.1)

In another solution, the input is dynamically split and distributed on demand, which
introduces additional overhead, but tackles the problem of load imbalances. A more sophis-
ticated approach divides the input with respect to its content †.

The lack of additional Aggregation operator (operator Aggr′ in figure 4.1.1b) results in
an incorrect plan. This error can be much easier noticeable for the SELECT count(*) FROM
lineitem SQL query. Each Aggregation operator returns the cardinality of the data it
∗Histograms are used to predict cardinality and the number of rows returned by a subtree. They are

indispensable part of every data optimization process.
†The latter solutions are described in section 5.3.
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is clear to see that each Aggrega-
tion and HashJoin operator are
separate objects.

Figure 4.2.1: Different representations of operator tree with XchgUnion and Xchg operators.

operates on (a half of the whole input). As a result, the XchgUnion operator produces two
answers (with values that sum up to the correct answer), instead of one (as expected). The
new Aggregation operator computes the global answer out of two partial answers calculated
only on a subsets of data. For details please refer to section 3.3.

4.2. Xchange operator definitions

In this section we define the operators from the Xchange family of operators.

4.2.1. Xchg(N:M) operator

The Xchg(N:M) operator provides a flow control in a QET. It transforms N data streams
into M data streams, hence it is a synchronization point between N +M threads.

Figure 4.2.1 presents two different ways of representing Xchg(N:M) operator in a QET.

In this document, we use the more concise 4.2.1a representation. Figure 4.2.1b presents
how the same QET maps into an operator tree. From this perspective each stream is
processed by an independent set of operators. The only exception are Xchange operators
that work on and synchronize multiple streams.

In the example query, when traversing the tree in the top-down manner, we encounter
the XchgUnion (or Xchg(3:1) - see the next section) operator that splits the processing
between three Aggregation operators. Below, the Xchg operator changes the number of
streams in the data flow from three to two, so that the workload is spread between two
HashJoin operators.
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4.2.2. XchgUnion (Xchg(N:1)) operator

Each query execution tree has to produce a single stream as its output. Therefore, this
operator is present in every parallel tree as the top-most among Xchange operators. There
is no difference between the XchgUnion and the Xchg(N:1) operators, but because of its
importance it is given a special name.

4.2.3. XchgBroadcast (Xchg(1:M)) operator

This operator distributes the child’s output to many consumers. All consumers are guar-
anteed to consume all the input data (contrary to any other Xchange operator) and to
consume it in the same order as the data was produced. The XchgBroadcast operator is
especially useful to assure that a given subtree in an execution tree is executed only once.

4.2.4. XchgHashSplit operator

Data produced by the XchgHashSplit operator is mutually disjoint between streams. This
operator splits the data produced by its children in a content-aware manner. The decision
which consumer a given tuple will reach is made with respect to the list of columns K
passed as a parameter to this operator. As a result, we obtain a useful property of the
output data:

Property. If any tuples t1 and t2 from the operator’s input are equal on columns from K
they will reach the same consumer.

As additional computation is performed, this operator has larger computation cost than its
non-hashing counterparts.

4.2.5. XchgDynamicSplit

The XchgDynamicSplit operator is similar to the XchgBroadcast operator. However, each
tuple is consumed only once. This operator is used to provide a load balancing mechanism
for scenarios where children process data at different speed.

4.2.6. XchgDynamicHashSplit

The XchgDynamicHashSplit operator joins the idea of the XchgHashSplit (partitioning
the input) and the XchgDynamicSplit (distributing a piece of data to only one consumer)
operators.

4.2.7. XchgFork

XchgFork is an extended version of the Xchg(1:1) operator. XchgFork operators are paired,
which provides new possibilities for the flow control. A pair of XchgFork operators is used
together with binary operators, where it is put between the operator and its children. The
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Figure 4.3.1: Xchg(2:3) operator.

first next() call issued on any of the XchgFork operators from a given pair, triggers execution
of both subtrees of a binary operator.

4.3. Xchange operator - implementation

4.3.1. Producer-Consumer schema

All Xchange operators comprise of producer(s) and consumer(s), which are separate logical
objects. An Xchange operator is responsible for creating and managing a number of buffers
(typically proportional to the number of consumers times the number of producers), which
temporarily store the data consumed from the children operators. A new thread is created
for each of the producers. This implies that also every consumer operates in a separate
thread (because it is either the main thread or it is a (possibly non-direct) child of some
producer).

Let us now focus on figure 4.3.1 which presents the internal structure of the Xchg(2:3)
operator. This schema can be analyzed together with the example presented in figure 4.2.1b
(the parent operators become the Aggregation operators and the children operators become
the HashJoin operators).

This Xchange operator is a synchronization point between five threads (two producers
and three consumers). Child operators return vectors of data (as the output of the next()
function calls), which are processed by producers and copied into local buffers. Producers
are responsible for choosing the destination for the new vector of data and for the copying
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process. Once a vector is processed, a producer may issue a new next() call on its child. In
the meantime, consumers (when asked for in the next() call issued by the parent operator)
return the data stored in buffers. This is an O(1) operation consisting only of setting the
pointers to the data.

4.3.2. Producer - description

Algorithm 1 Producer part 1 - acquiring buffers
Once started, each producer acquires first buffer(s). The synchronization routines (mu-
tex lock(), mutex unlock(), cond wait(), cond signal()) used in the listings, are the standard
Pthread implementation, although [JPA08] proposes different libraries, which may result in
better performance.

1: num buffers← num produced buffers(producer)
2: mutex lock(lock);
3: for i← 0 TO num buffers do
4: buffer[i]← producer find empty buffer(producer);
5: while buffer[i] == nil do
6: cond wait(producer cond, lock)
7: buffer[i]← producer find empty buffer(producer);
8: buffer[i].state← PRODUCED
9: buffer[i].write pos← 0
10: buffer[i].for consumer ← i
11: mutex unlock(lock);

Firstly, each producer has to obtain its initial buffers (listing 1). In the first line, a
producer determines the number of buffers it will maintain at once (those buffers will be
marked as PRODUCED). For hashing operators (e.g. XchgHashSplit) the num buffers
variable becomes the number of consumers as a given tuple my reach any of the consumers.
Producers in other Xchange operators maintain only one buffer at a time.

Afterward, each producer performs a loop with the following operations (listing 2):

(i) calls next() method on its child operator (line 3), the data variable becomes the pointer
to the data returned by the child operator, whereas the n variable becomes the size of
the data returned (it may be smaller than the default vector size as some operators
(e.g. Select, Aggregation) do not always produce a full vector). If n equals zero the
data flow has finished (line 5),

(ii) in line 6 hashing operators determine the addressee of each tuple form the data vector.
This information is stored in selection vector. Consumer i will receive the following
tuples:

{selection vector[i][0], . . . , selection vector[i][vector count[i]− 1]}

(iii) if any of the producer’s buffers is full, a consumer is notified and producer tries to
obtain a new empty buffer (lines 9 to 31),

(iv) the data is copied into buffers that are now known to have enough free space (line 33).
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Algorithm 2 Producer part 2 - the main producer’s loop
A generic producer’s code shared by all operators from the Xchange family of operators.
Specific implementations differ only in the release buffer method.

Require: Producer owns buffers[0] to buffers[num buffers− 1]
which are obtained using Algorithm 1.

1: loop // The main producers loop
2: num buffers relased← 0
3: n, data← child.next();
4: if n == 0 then
5: break from inner loop
6: vector count[], selection vector[]←process(data, n)
7:

8: for i← 0 TO num buffers do
9: if buffer[i].write pos+ vector count[i] > BUFFER CAPACITY then
10: if num buffers released == 0 then
11: mutex lock(lock)
12: num buffers released← num buffers released+ 1
13: release buffer(buffer[i], producer);
14: buffer[i]← nil;
15: if num buffers released > 0 then
16: cond broadcast(consumer cond)
17: loop // Loop until all buffers are acquired
18: num buffers to wait← 0
19: for i← 0 TO num buffers do
20: if buffer[i] == nil then
21: buffer[i] = producer find buffer(producer);
22: if buffer[i] == nil then
23: buffer[i].write pos← 0
24: buffer[i].state← PRODUCED
25: else
26: num buffers to wait← num buffers to wait+ 1
27: if num buffers to wait == 0 then
28: break from inner loop
29: else
30: cond wait(producer cond, lock)
31: mutex unlock(lock)
32: for i← 0 TO num buffers do
33: copy data into buffers(buffer[i], selection vector[i], vector count[i])
34: mutex lock(lock);
35: num working producers← num working producers− 1
36: for i← 0 TO num buffers do
37: release buffer(buffer[i], producer);
38: cond broadcast(consumer cond);
39: mutex unlock(lock);
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4.3.3. Consumer - description

A consumer in the next() method performs (Algorithm 3):

(i) if consumer has not acquired any buffer yet or consumer’s old buffer has been con-
sumed, it tries to obtain a full buffer (line 1)

(a) if a buffer is consumed by all its addressees it is marked as EMPTY and a producer
is notified (lines 6 to 9),

(b) consumer searches for a new buffer (line 13)

(c) if a there is no buffer ready for consumption but at least one producer is working
consumer retries the attempt after some time (lines 14 to 16)

(d) consumer obtained a new buffer and marks it as consumed (lines 21 to 24)

(ii) the buffer is being consumed - the data is returned from the currently owned buffer
(lines 28 to 31).

4.3.4. Buffers - description

An ANSII C definition of a buffer is given below.

typedef struct {
Expr ∗∗data ; /∗ Data p l a c e h o l d e r . ∗/
Buf f e rS ta t e s t a t e ; /∗ EMPTY, FULL, PRODUCED, CONSUMED. ∗/
s l ng product id ; /∗ Time o f product ion . ∗/
s l ng wr i t e po s ; /∗ Producers w r i t i n g p o i n t e r . ∗/
s l ng for consumer ; /∗ Addressee . ∗/
s l ng consumers done ; /∗ # of consumers t h a t f i n i s h e d

read ing from t h i s b u f f e r . ∗/
} Buf f e r ;

Each buffer is owned either by a producer or by a consumer (or possibly many consumers). If a
buffer is owned by a producer, the access is exclusive. However, a single buffer may be concurrently
read by many consumers (this happens for example in the XchgBroadcast operator).

A buffer may be in four different states:

• EMPTY - the buffer is not owned by any consumer nor producer. It also does not hold any
data. This is the initial state of every buffer. An empty buffer may be obtained by a producer.

• PRODUCED - the buffer is being written into. It is exclusively owned by a producer, which
copies its child’s data into the buffers empty area (indicated by write pos).

• FULL - the buffer was PRODUCED, but the producer is unable to find enough free space to
write a new vector of data. The buffer is marked as FULL and waits for a consumer.

• CONSUMED - the buffer is being read from. It is owned by at least one consumer, which
passes data to its parent (which is an O(1) operation). Then each consumer updates its
current read pos pointer.
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Algorithm 3 Consumer - implementation of the operator’s next() method.
A generic consumer’s code shared by all operators from the Xchange family of operators.
Specific implementations differ in buffer is done, and consumer find buffer methods.
1: if buffer == nil OR consumer.buffer read pos == buffer.write pos then
2: // We have to acquire a new buffer
3: mutex lock(lock);
4: if buffer 6= nil AND consumer.buffer read pos == buffer.write pos then
5: buffer.consumers done← buffer.consumers done+ 1
6: if buffer is done(buffer) then
7: buffer.state← EMPTY
8: buffer.consumers done← 0
9: cond signal(producer)
10: buffer ← nil
11:

12: if buffer == nil then
13: buffer = consumer find buffer(consumer)
14: while buffer == nil AND num working produces > 0 do
15: cond wait(consumer cond, lock)
16: buffer = consumer find buffer(consumer)
17: if buffer == nil AND num working producers == 0 then
18: // All producers have finished. No more buffers will be created.
19: mutex unlock(lock);
20: return 0
21: // Now buffer 6= nil
22: buffer.state← CONSUMED
23: consumer.next buffer ← buffer.product id+ 1
24: consumer.buffer read pos← 0
25: mutex unlock(lock);
26:

27: // Return data from buffer
28: returned tuples← buffer.write pos− consumer.buffer read pos
29: returned tuples←MIN(returned tuples, vectorsize)
30: set pointers for returned data(buffer, consumer.buffer read pos)
31: consumer.buffer read pos← consumer.buffer read pos+ returned tuples
32: return returned tuples
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Microbenchmarks

The optimal size and the number of the buffers is an interesting optimization problem. On the
one hand, larger buffers reduce the number of synchronizations both for producers and consumers.
On the other hand, large buffers materialize more data (deteriorating advantages of the pipelined
execution) and consume more memory.

Also, a higher number of buffers balances temporal differences between the speed of producers
and consumers (if at some point consumers are faster than producers they may obtain previously
filled in buffers, also temporarily faster producers may benefit from a spare set of empty buffers).
This reduces the chance of a producer or a consumer having to wait for a buffer in a specific state,
but increases the memory usage.

Figure 4.3.2 presents the analysis of the optimal buffer size for a particular query, which consists
of an Array-XchgUnion-NullOp query tree. Both the Array and the NullOp operators are imple-
mented for debugging purposes only. The Array operator generates a sequence of values, whereas
the NullOp operator consumes data, without processing it or passing it further. In this scenario, the
majority of computation is performed by the XchgUnion operator, which is used to parallelize the
Array operators. This is an extreme situation in which data production and parent operators are
instantaneous. Nearly 100% CPU time is spent in the Xchange operator. In real queries the parent
and child subtrees perform work. This means that the relative overhead of the Xchange operators
is smaller.

The number of producers used times the amount of data a single thread processed was constant.
The number of buffers was three times the number of producers. The horizontal axis presents the
size of one buffer. The size is defined in vectors of 1024 values (e.g. 4096 values fit into the buffersize
of 4). The test was performed on a machine with two quad-core 2.8GHz Nehalem processors; hence
with 8 cores.

We also measured the impact of the size of the buffer in the ideal situation, which almost
completely eliminates the overhead (which is already very small) of the consumer’s parent operator.
For this purpose we changed the implementation of the XchgUnion operator so the consumer in-
stantly returns its buffer to the pool of empty buffers (returning only a fraction of the data from this
buffer). This change results in an incorrect implementation, but allows as to measure the impact of
a producer not having to wait for an empty buffer.

The execution time (measured in the number of CPU cycles) for this query is presented in
figure 4.3.2a. Adding new threads resulted in better speedups, but was only possible if buffers were
big enough. Increasing the level of parallelism results in additional overhead (thread locking, thread
notifying, searching for a new buffer), which has to be compensated by less frequent synchronization
(which is on a per-buffer basis). The green squares presents the minimum size of a buffer required
by 4 (resp. 6, 8) producers to overtake 2 (resp. 4, 6) producers.

Figure 4.3.2b presents the number of thread preemptions caused by a failure in acquiring a lock.
The lock contention decreases with larger buffers (as expected). There are also only small differences
between 4, 6 and 8 threads. The explanation is that smaller execution time compensates for a higher
probability of a lock being already acquired by a different thread.

Figure 4.3.2c shows the average waiting time, which at some point increased by a factor of 5
after changing from 6 to 8 producers. In this benchmark, the consumer shared the CPU with a
producer (there were 8 CPUs and 9 threads - 8 threads for producers, one thread for consumer). As
a result, 8 producers were faster than a single consumer and had to wait for an empty buffer.

This load imbalance is clearly visible when comparing figures 4.3.2a, 4.3.2c and 4.3.2d. The con-
sumer’s parent operator (NullOp) is an operator performing hardly any computation. Nevertheless,
even this simple operator introduces some overhead and makes the consumer slower. In the “ideal”
situation we obtain better speedups for much smaller buffer sizes. Consumer is able to return empty
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buffers to the pool fast enough and producers do not have to wait for a buffer. Also, the average
time required to acquire the lock is not as much dependent on the number of threads.

The most important conclusion derived from this benchmark is that the buffer size has to
increase with the number of threads used. The execution time functions obtained their minimums in
the proximity of the buffer size of 200 vectors (figure 4.3.2a the rightmost green square). Currently
however, we support buffers of a fixed size only. In the implementation of the Xchange operators,
because of the memory usage concerns we used buffers of the size of 50 vectors. Smaller buffers
also decrease the start-up delay in the plans and does not impact the benefits of the pipelined
execution [BZN05].

27



1e+09

1e+10

1e+11

1 10 100 1000

C
P

U
 c

yc
le

s

buffer capacity (# of vectors)

Optimal buffer size

1 producer
2 producers
4 producers

6 producers
8 producers

(a) Query execution time as a function of the buffer
size. The green square indicates the minimum
buffer size required by X threads (X ∈ 4, 6, 8) to
overtake X − 2 threads.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1  10  100  1000

F
a
ilu

re
s
 t
o
 a

c
q
u
ir
e
 t
h
e
 l
o
c
k

buffer capacity (# of vectors)

Preemptions caused by lock contention

1 producer
2 producers
4 producers

6 producers
8 producers

(b) The number of failures in acquiring the lock
(thread is preempted).

 10000

 100000

 1e+06

 1  10  100  1000

C
P

U
 c

y
c
le

s

buffer capacity (# of vectors)

Avg mutex acq waiting time

2 producers
4 producers

6 producers
8 producers

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1  10  100  1000

C
P

U
 c

y
c
le

s

buffer capacity (# of vectors)

Total mutex waiting time

2 producers
4 producers

6 producers
8 producers

(c) Lock contention. The average and the total time spent on waiting for acquiring the lock.

1e+09

1e+10

1e+11

1 10 100 1000

C
P

U
 c

yc
le

s

buffer capacity (# of vectors)

Optimal buffer size

1 producer
2 producers
4 producers

6 producers
8 producers

10000

100000

1e+06

1 10 100 1000

C
P

U
 c

yc
le

s

buffer capacity (# of vectors)

Avg mutex acq waiting time

2 producers
4 producers

6 producers
8 producers

(d) An experiment with a very fast consumer.

Figure 4.3.2: Impact of different buffer sizes on the performance (note: log-log scale used).
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Chapter 5

Rewriter

5.1. Parallelizing Query Execution Trees

The number of all possible subtrees and all possible parallelizations for these trees is too large for
exhaustive search. We use a two-phase optimization strategy, which addresses this problem. In
the first phase, we search for the tree with the lowest total execution cost. In the second phase,
we search for an optimal parallelization of the previously found tree. This approach may seem
arguable, as some parallel trees are not considered at all. However, it is justified by at least three
arguments [WFA95]: (i) we cannot assume that parallelism will to a large extent compensate for
increased total amount of work (ii) the schedule with minimal total costs is likely to have small
intermediate results, so that the additional processing introduced by Xchange operators will be
small as well, (iii) two-phase optimization reduces the optimization time, by reducing the number
of possible moves (it limits the search space).

The first phase of the two-phase optimization is done by standard query optimization and is
performed by the Ingres DBMS. The second phase: finding a suitable parallelization for a given tree
is the subject of this section.

5.1.1. Objective of Optimization

The general objective of query optimization is [GHK92], [vB89]:

Objective. For a given query Q, a space of execution plans E, and a cost function that assigns a
numeric cost to an execution plan p ∈ E, find the minimum cost execution plan that computes Q.

In multiprocessor machines a higher degree of parallelism decreases the execution time. However,
the total processing cost is increased as additional control and communication overhead is introduced.
Extra work can be traded for reduced response time, but this cannot be done at any expense. Hence,
the optimization problem involves a tradeoff between the execution time and the total processing
cost.

In practice, we consider two conditions that constrain throughput degradation or cost-benefit
ratio [GHK92]. Let the work and response time costs of the optimal-work plan be Wo and To and
Wp and Tp for a considered plan respectively.

• System’s throughput cannot degrade more than by a factor of k (a configurable parameter)
i.e. Wp has to be lower than k ∗Wo.
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• The ratio of the decrease in the response time to additional work required has to be lower
than k i.e. To−Tp

Wp−Wo
< k.

Choosing an appropriate plan at runtime is a difficult task that requires knowledge about the
effects of the increased total processing cost and the reduced execution time on the query response
time and system throughput. In order to obtain this knowledge, simulation experiments under
several load conditions and using query execution plans with differing costs and execution times
should be performed.

5.1.2. Elements of optimization

Finding an optimal query execution plan is a NP-hard optimization problem. Procedures that find
the best solution operate on:

• A state which is an object of the search space (described in section 5.2).

• A set of transformations for changing states in the search space (described in section 5.3).

• A search strategy that chooses the next rule to be applied (described in section 6.4).

• A cost function which evaluates the computed solutions (described in section 6.5).

5.2. A state in a search space

We define a set of transformations for a query execution tree. We denote this rewriter’s rule by P
and introduce the following notation.

PT
K,S,C(X)|L

The P rule rewrites a given subtree (defined by X operator) and takes five parameters: L, T ,
K, S and C. A state in a search space is defined by the < X,L, T,K, S,C > tuple. In the next
paragraphs, we describe those parameters in more detail.

T parameter denotes the number of threads that can work in parallel. It is initially set to the
maximal allowed level of parallelism (which can vary in dynamically changing environment).

If the P rule decides about parallelization of a given operator, it usually decreases the number of
threads that are allowed to be created in the operator’s subtree. However, we can exploit properties
of some operators in order to use this parameter more wisely. Fully materializing operators (like
Aggregation or HashJoin) are especially interesting.

For the Aggregation operator, before producing any output, the whole input has to be stored
inside hash tables. As a result, operators working below and above Aggregation in a QET never
work in parallel.

The HashJoin operator executes and fully materializes its right side input before starting to
execute its left side. Because of that, creating T threads on both left and right side, will not exceed
the limit for the overall number of threads working in parallel.

In transformation rules we also use Z variable to denote a possibility of creating any number
(usually greater than one and not greater than T ) of threads allowed in a child operator.
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L parameter represents the number of streams the P rule has to produce.

The whole query execution tree has to produce a single stream. We use the family of Xchg
operators to control the number of streams each operator is working on.

K parameter is used to denote if and how the output streams have to be partitioned. It is a
(possibly empty) set of column names (attributes). A set of tuples is partitioned (i.e. each tuple is
given an identifier defining its partition) if:

∀i,j(∀c∈KΠc(ai) = Πc(aj))→ Part(ai) = Part(aj)

i.e. if any two tuples (ai and aj) equal on a the columns from K (Πc(ai) = Πc(aj)) are given the
same partition identifier Part(ai) = Part(aj).

If K is an empty set, streams do not have to be partitioned. Otherwise, for K 6= ∅, any two
tuples from two different streams are different on columns from K. Additionally, since the property
of being partitioned is only valid for multiple streams, K 6= ∅ implies L > 1.

Corollary 5.2.1. If data is partitioned on K and L ⊆ K then it is also partitioned on L.

C parameter enforces P the rule to keep the stream clustered i.e.:

∀c∈C,i,jΠc(ai) = Πc(aj)→ ∀i≤k≤j Πc(ak) = Πc(ai)

Uniquely clustered stream. If a stream S is both clustered and partitioned we say that S is
uniquely clustered on C ′ = C ∩K i.e.:

(i) its sequence of data is clustered on C ′ (i.e. tuples have to match only on columns from C ′)

(ii) it has a disjoint set of tuples with any other stream (S′) with respect to C (i.e. ΠC′(S) ∪
ΠC′(S′) = ∅ )

In practice we only encounter C = K.

S parameter enforces the P rule to keep streams of data sorted on columns from S. Operators
that base on an assumption that their input is sorted on some set of columns set S to a list of
these columns. This parameter assures that the sortedness will not be violated after applying any
transformation.

5.3. Transformations

For each operator and requirement (defined by the parameters) we present a set of transformations.
Only those transformations that may reduce execution time are presented.

Firstly, we focus on transformations that operate on unsorted data. For those operators we do
not focus on clustering either. This is why we abbreviate PK,C,S notation to PK . Also, we put
PK(grpby)(X) if K = grpby and abbreviate PK(∅)(X) to P(X).

5.3.1. Aggregation

For transformation (5.3.1.1) we simply delegate the parallelization of the tree to the child operator.

Requirements: L = 1
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PT (Aggrgrpby,aggr)|1

A

→ Aggrgrpby,aggr

PT (A)|1

(5.3.1.1)

In transformation (5.3.1.2) we make the Aggregation operator parallel by enforcing it to produce
multiple streams. Effectively, we reduce the problem to a different one. Streams have to be unified
(as P has to produce a single stream), by XchgUnion operator. Finally, we assert correctness by
adding an additional Aggregation operator with a modified list of aggregates aggr′ (see section 3.3).
The T parameter is reset to T − Z as we have already created Z threads.

Requirements: L = 1 ∧ T ≥ 2 ∧ S = ∅

PT (Aggrgrpby,aggr)|1

A

→ Aggrgrpby,aggr′ |1

XU(Z)|1

PT−Z(Aggrgrpby,aggr)|Z

(5.3.1.2)

In transformation (5.3.1.3) T input streams are partitioned by the grpby columns as a result an
additional Aggregation operator is not needed.

Requirements: L = 1 ∧ T ≥ 2 ∧ S = ∅ ∧ grpby 6= ∅

PT (Aggrgrpby,aggr)|1

A

→ XU(Z)|1

Aggrgrpby,aggr|Z

PT−Z
K(grpby)(A)|Z

for 2 ≤ Z ≤ T (5.3.1.3)

In transformation (5.3.1.4), for L 6= Z Xchg operator is required to produce the correct number of
streams. In a special case when L = Z we avoid adding an Xchange operator.

Requirements: L > 1 ∧K 6= ∅ ∧ grpby 6= ∅ ∧K ⊆ grpby

PT
K(Aggrgrpby,aggr)|L

A

→



XCHG(Z:L)|L

Aggrgrpby,aggr|Z

PT−Z
grpby(A)|Z

for ∧ 2 ≤ Z ≤ T + L ∧ Z 6= L

Aggrgrpby,aggr|L

PT−L
grpby(A)|L

for ∧ 2 ≤ Z ≤ T + L ∧ Z = L

(5.3.1.4)

Transformation (5.3.1.5) resolves the requirement to produce L streams partitioned on K.

Requirements: K 6= ∅

32



PT
K(Aggrgrpby,aggr)|L → XHSK(Z:L)|L

PT+L−Z
∅ (Aggrgrpby,aggr)|Z

(5.3.1.5)

5.3.2. Select

For the Select, operator parallelization can be either delagated to its child (transformation (5.3.2.1))
or, for partitioned streams, the XchgHashSplit operator can be used (transformation (5.3.2.2)).

PT
K(Select)|L

A

→ Select|L

PT
K(A)|L

(5.3.2.1)

Requirements: L > 1 ∧K 6= ∅

PT
K(Select)|L

A

→ XHSK(Z:L)

Select|Z

PT−Z
K(∅)(A)|L

(5.3.2.2)

For streams that have to be partitioned, decision about which transforation to use is an interest-
ing question from a perfomance point of view. On the one hand, postponing partitioning the data
enables Select operators to work in parallel. On the other hand, partitioning is enforced on a larger
volume of data.

5.3.3. Project

The Project operator is especially interesting if forced to produce partitioned streams. If streams
do not have to be partitioned, parallelization is delegated to the Project’s child (transformation
(5.3.3.1)).

Requirements: K = ∅

PT
K(∅)(Project)|L

A

→ Project|L

PT
K(∅)(A)|L

(5.3.3.1)

If K 6= ∅ we can always use the (5.3.3.2) transformation.

Requirements: K 6= ∅

PT
K(Projectprojlist)|L

A

→ XHSK(Z:L)

Projectprojlist|Z

PT−Z
K(∅)(A)|Z

(5.3.3.2)
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Algorithm 4 Check the applicability of transformation (5.3.3.3)
Returns DEPS - a new list of columns for partitioning the data.

1: DEPS ← ∅ // A set of columns K depends on
2: for p in reverse(projlist) do
3: if p is of a form “k =< expr >” for any k ∈ K ∪DEPS then
4: C ← columns used in < expr >
5: DEPS ← DEPS \ {k} ∪ C
6: K ← K \ {k}
7: return DEPS

Additionally, if we update the set of columns that is used in partitioning, transformation (5.3.3.3)
is applicable.

PT
K(Projectprojlist|L)

A

→ Projectprojlist|L

PT
K′(A)|L

(5.3.3.3)

In this transformation, we investigate the projection list (projlist) of the Project operator.

Additionally, each projection can use column identifiers defined previously in the projection list.
Algorithm 4 computes a set of columns that are used to compute columns from K. Moreover, this
set is the smallest possible, which is important to reduce the execution cost.

5.3.4. Scan

The Scan operator can either split the data statically or dynamically (using the XchgDynamicSplit
or the XchgDynamicHashSplit operators).

Requirements: K = ∅ ∧ C = ∅

PT
K,C(Scan)|L → Scan|L(Data divided statically) (5.3.4.1)

PT
K,C(Scan)|L → XDS(L)|L

Scan|1

(5.3.4.2)

Requirements: K 6= ∅ ∧ C = ∅

PT
K(Scan)|L → XDHSK(L)|L

Scan|1

(5.3.4.3)

The parallelization when C 6= ∅ uses ClusterTrees and join-range indices, which are described in
section 6.6.

In practice, while searching for the optimal parallel QET we always favour static scan to dynamic
partitioning. In the basic implemenation of the dynamic operators Static partitioning performs
significantly better when comparing to our, basic, implemenation of the dynamic operators. The
better implementation has been postponed for the future work (sec. 9).
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5.3.5. HashJoin

Let K1 and K2 be sets of columns used for the join condition in the left and right respectively. Let
K ′1 ⊆ K1 and K ′2 ⊆ K2.

For a single stream we can always delegate the parallelization to child operators (transformation
(5.3.5.1)) or use XchgUnion operator and force HashJoin to produce multiple streams (transforma-
tion (5.3.5.2)).

Requirements: L = 1

PT (HashJoin)|1

A B

→ HashJoin|1

PT (A)|1 PT (B)|1

(5.3.5.1)

In transformation (5.3.5.2) we reduce the problem to a different one.

Requirements: L = 1 ∧ T > 1 ∧ S 6= ∅

PT (HashJoin)|1 → XU(Z)|1

PT (HashJoin)|Z

(5.3.5.2)

If the HashJoin operator is forced to produce multiple streams, its left and right children have
to produce multiple streams. We especially focus on parallelizing HashJoin’s left side, which is
assumed to be more profitable (as building the hash table from the smaller input is faster), although
a symmetrical transformation is also valid.

In order to preserve correctness, we can either duplicate right streams using the XchgBroadcast
operator, or enforce these streams to be partitioned on the key columns.

In the former case (transformation (5.3.5.3)), each HashJoin operates on the same output from
the right child. In this scenario, each operator duplicates the work of creating its own instance of
hash table significantly increasing, the total execution cost ∗.

Requirements: L > 1

PT
K(HashJoin)|L

A B

→ HashJoin|L

PT+L
K (A)|L XBC(L)|L

PT+L
K(∅)(B)|1

(5.3.5.3)

In the latter case (transformation (5.3.5.4)), unique input is split between all HashJoin operators.
It is a correct transformation since, each operator receives all and only those tuples for which a hash
function returns the same value on columns from K1 or K2.

∗Computing this table only once and distributing it between all HashJoin operators for read-only access
is discussed in sec. 9.
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PT
∅ (HashJoin)|L

A B

→ HashJoin|L

PT
K(K1)(A)|Z PT

K(K2)(B)|L

(5.3.5.4)

Multiple, partitioned streams. If the HashJoin operator is required to produce multiple,
partitioned streams many different transformations are available.

The simplest way of meeting such requirements is to use XchgHashSplit operator as presented
in (5.3.5.5) transformation.

PT
K(HashJoin)|L XHSK(Z:L)|L

PT+L−Z
K(∅) (HashJoin)|Z

(5.3.5.5)

Transformation (5.3.5.6) does not add the XchgHashSplit operator, but tries to delegate data
partitioning to child operators. This is not always possible. If the HashJoin operator forces its left
and right child to produce data partitioned on K, then the output data is also partitioned on K (as
required). However, in order to ensure correctness, K has to be compatibile with the join condition,
meaning that, the data has to also be partitioned on K1 and K2.

PL
K(HashJoin)|L

A B

→ HashJoin|L

PT
K(K′

1)
(A)|L PT

K(K′
2)

(B)|L

(5.3.5.6)

Correctness of transformation (5.3.5.6). If ∃c∈Kc 6∈ K1 ∪K2 (K has a column that is not
present in the join condition), we do not allow this transformation. Clearly, column c may not exists
in both A and B subtrees (but certainly c belongs to at least one of those). Let us assume that
c 6∈ Columns(A). The transformation can still be correct if c is a primary (or foreign) key column
that has its corresponding column in B. However, if it was the case, then most probably c would
have been mentioned in the join condition (which breaks our initial assumption).

Because of that, we simply state that transformation (5.3.5.6) may be applied if

K ⊆ K1 ∪K2

Using corollary 5.2.1 we put K ′1 = K1 and K ′2 = K2.

Deadlock hazard. Transformations 5.3.5.4 and 5.3.5.6 may, under certain circumstances, lead
to a deadlock. Xchange operators assume that all their parents will sooner or later consume data
prepared for them and, as a result, change full buffers into empty. However, for the HashJoin
operator we may decide not to evaluate its left child if its right child returns no data (as the result
of this join operation is known beforehand - an empty set of tuples) we result in a deadlock.

If XchgHashSplit operator tries to output two streams of data, one of which is consumed and
one is not, buffers get clogged.

In figure 5.3.1 the XchgHashSplit operators produce two streams for the HashJoin operators
(HJ and HJ ′). Let’s assume that the right XHS operator returns no data (dashed line). Because
of the optimization mentioned before, the HashJoin (HJ ′) operator decides not to evaluate its left
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HJ

XHS

HJ′

XHS

returns ∅

Figure 5.3.1: Deadlock condition.

child (dotted line). However, the left HashJoin operator is still evaluating its left child (the XHS
operator). The XchgHashSplit operator produces data both for left and right HashJoin. The non
consumed data (prepared for HJ ′) eventually fills all the buffers. Producers of the XchgHashSplit
operator cannot obtain an empty buffer. We result in a deadlock.

5.3.6. MergeJoin

The MergeJoin operator requires the input streams to be sorted. In the family of Xchg operators
only XchgBroadcast and XchgFork preserve this property. Therefore, if any other Xchg operator is
used below MergeJoin on its left or right side, the data has to be explicitly sorted.

The Sort operator has two major disadvantages of being computationally expensive and ma-
terializing the whole input. As a result, we do not consider transformations introducing the Sort
operator as promising.

Transformations that do not require the Sort operator broadcast either the left or right input
introducing data partitioning on the second child. Alternatively, we can enforce children operators
to produce uniquely clustered, sorted streams.

Replacing MergeJoin with HashJoin In our transformation rules we do not change existing
operators to different ones. However, strict limitations in dealing with MergeJoin make replacing
this operator with HashJoin feasible. A simple benefit of using HashJoin is a much wider set of
transformations available.

Single, no-partitioned stream. For a single, no-partitioned stream we delegate reduce the
problem to a different one (transformation (5.3.6.1)).

PT (MJ)|1 → XU(T)|1

PT (MJ)|T

(5.3.6.1)
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Multiple, no-partitioned streams. Transformation (5.3.6.2) does not parallelize B subtree
as all transformations would require the Sort operator.

PT (MJ)|L

A B

→ MJ|L

PT
S (A)|L XBC(L)|L

B

(5.3.6.2)

Transformation (5.3.6.3) requires both flows to produce uniquely clustered sorted streams. Those
requirements enforced on child operators assert correct output streams provided that two correspond-
ing input streams (joined to produce one output stream) are clustered in the same manner.

PT (MJ)|L

A B

→ MJ|L

PT
K,S,C(A)|L PT

K,S,C(B)|L

(5.3.6.3)

Multiple, partitioned streams. Again, the simplest solution is to use XchgHashSplit oper-
ator and reduce the problem to a transformation for a no-partitioned stream.

PT
K(MJ)|L → XHSK(Z : L)|L

PT
K(∅)(MJ)|Z

(5.3.6.4)

Another solution delegates the requirement to produce sorted, partitioned streams to one of
MergeJoin’s children. This is a correct transformation since the data partitioning is done only in
one child.

PT
K(MJ)|L

A B

→ MJ|L

PT
K,S(A)|L XBC(L)|L

B

(5.3.6.5)

Multiple, uniquely clustered sorted streams. The most complicated situation happens
when MergeJoin operator is required to produce multiple uniquely sorted streams.

The simplest solution is to behave similarly to HashJoin and parallelize only this child that
operates on columns from C.

PT
K(∅),S,C(MJ)|L

A B

→ MJ|L

PT
K(∅),S,C(A)|L XBC(L)|L

B

(5.3.6.6)
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5.3.7. TopN

TopN is used mainly as the topmost operator. It is commutative (see section 3.3) so we can easily
divide its computation between multiple threads with a cost of additional TopN operator.

Transformation (5.3.7.1) presents this operation.

PT TopN|1

A

→ TopN|1

XU(Z)|1

PT−Z(A)|Z

(5.3.7.1)

5.3.8. Ordered Aggregation

Ordered Aggregation requires the input to be clustered. Therefore, transformations on this operator
set the C parameter in the P rule. We assume that the groupby set of columns is non-empty (as
otherwise the OrderedAggregation is indistinguishable from normal Aggregation).

A single stream.

For transformation (5.3.8.1) we simply delegate parallelization of the tree to the child operator.

PT
K(∅)(OrdAggrgrpby,aggr)|1

A

→ OrdAggrgrpby,aggr

PT
K(∅),C(grpby)(A)|1

(5.3.8.1)

Transformation (5.3.8.2) is equivalent to (5.3.1.2). As the input streams to the bottom OrdAggr
operator may not be uniquely clustered the output of the XchgUnion operator may be incorrect.
Hence we have to add an additional Aggregation operator (again we exploit the commutative prop-
erty of Aggregation sec. 3.3). What is more, the child is enforced to produce clustered streams.

PT
K(∅),C(∅)(OrdAggrgrpby,aggr)|1

A

→ Aggrgrpby,aggr′ |1

XU(Z)|1

OrdAggrgrpby,aggr|Z

PT−Z
K(∅),C(grpby)(A)|Z

(5.3.8.2)

We can also rewrite the problem to a different one issuing transformation (5.3.8.3).

PT
K(∅),C(∅)(OrdAggrgrpby,aggr)|1

A

→ XU(Z)|1

PT−Z
K(∅),C(∅)(OrdAggrgrpby,aggr)|Z

A

(5.3.8.3)
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Multiple, non-partitioned, non-clustered streams.

We avoid adding an additional Aggregation operator if the child operator is known to produce
uniquely clustered streams. Then a given group of tuples reaches particular instance of OrderedAg-
gregation enabling it produce the correct output.

PT
K(∅),C(∅)(OrdAggrgrpby,aggr)|L

A

→ OrdAggrgrpby,aggr|L

PT−Z
K(grpby),C(grpby)(A)|L

(5.3.8.4)

Multiple, partitioned or clustered streams.

If OrderedAggregation is forced to produce partitioned (on K) or clustered (on C, which equals
K) streams, then we have to take a look at its grpby set of columns. If K (or grpby) functionally
depends on grpby (or K) then it is safe to delegate the transformation.

5.3.9. Reuse

The Reuse operator is inevitably connected with binary, especially join, operators. Assuring validity
of transformations parallelizing the Reuse operator is an non-trivial task. First of all, if one of the
Reuse operator is parallelized its counterpart also has to be parallelized (as the number of streams
to both operators has to the same).

Figure 5.3.2a presents a part of a sequential plan, whereas 5.3.2b presents a parallel version of
this plan with statically partitioned data. The sequential plan returns one tuple (its value equals to
100), whereas the parallel plan does not return any tuples (the HashJoin operators do not find any
matching tuples).

HJy=x

Project[y=x+99]

Reuse

Reuse

x = {1, ... , 100}

(a) Sequential plan.

XU

HJy=x

Project[y=x+99]

Reuse

Reuse

x = {1, ... , 50}

HJy=x

Project[y=x+99]

Reuse

Reuse

x = {51, ... , 100}

(b) Invalid parallel plan.

Figure 5.3.2: Problems with parallelizing the Reuse operator

Transformations of the Reuse operator require performing an additional check. We remembering
the list of keys used in the join operator. If, on our way down to any of the Reuse operators, we
had noticed that any of the keys had been altered (e.g. by the Aggregation operator or, as in the
example from figure 5.3.2b, the Project operator), then the parallelization is invalid.

Queries from the TPC-H benchmark, which used the Reuse operator (see section 7.1), could not
have been parallelized in this manner (there is always Project or Aggregation operator on a path
between the Reuse and a join operator that affects the a key used in the join predicate).
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5.3.10. Transformations with S parameter.

If the P rule has the S parameter set, we will not use any of the Xchg operators except for Xchg-
Broadcast and XchgFork, which are the only operators that do not change the sortedness property
of a stream.

XchgBroadcast operator may only be present for joining operators. Transformation 5.3.10.1 is
valid both for MergeJoin and for HashJoin. Also, a symmetrical transformation with the Xchg-
Broadcast operator in the left subtree exists.

PT
K,C,S(Join)|L

A B

→ Join|L

PT
K,C,S(A)|L XBC(L)|L

B

(5.3.10.1)

Transformation (5.3.10.2) makes both children of a Join operator work in parallel. Thanks to
that, the access to data from the left subtree is reduced. Also this transformation may be used

PT
K,C,S(Join)|L

A B

→ Join|L

XF(id)|L

PT
K,C,S(A)|L

XF(id)|L

PT
K,C,S(B)|L

(5.3.10.2)
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Chapter 6

Cost model

A cost model is an essential component in query optimization. It predicts a cost of an execution
plan allowing us to choose supposedly the best.

In this section, we assume that for a given operator, the type of its input (e.g. strings, integers)
and estimates about its cardinalities we are able, to some extent, to estimate the response time.
The response time can be measured in seconds but also in the number of CPU cycles. In practice
this is a non-trivial task, since a function providing cost estimates is multi-dimensional. The most
obvious correlation is between the response time and the size of data to be processed. However,
cache influence (its size, hierarchy), memory access patterns, processor capabilities, other queries
currently executed definitely cannot be neglected.

For the purposes of this thesis, a simple model for cost estimates was implemented. This imple-
mentation depended mainly on estimated cardinalities and the type of the data.

6.1. Estimating response time.

In this section, we present a cost model that represents the tradeoffs amongst the aspects of parallel
execution, which are presented in [GHK92]. We adapt this example to our execution model and
express it entirely using Xchange operators.

A concept of time descriptor.

For a given operator tree P, we define time descriptor t = (pf , pl), where pf (resp. pl) is the estimated
time of producing the first (last) tuple by P. Time descriptor incorporates information about data
dependencies in P.

Property. If S is the set of all subtrees in P and S′ the minimal subset of S that has to be finished
before P outputs the first tuple, then ∀T∈S′pf ≥ s′l.

This means that the value of tf cannot be lower than the maximum tl of all subtrees of P that
materialize its flow. We call S′ materialized front of P.

6.1.1. Resource contention free execution

Firstly, we focus on estimating response times in a contention free environment. Unary operators
may execute in either pipelined or materialized execution schema. For both composition methods,
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we derive formulae for the resulting time descriptor t.

Unary operators.

For the pipelined schema, we assume that time of producing the first tuple ∗ is negligible. On the
other hand, if an operator materializes its flow, we state that the time of producing the last tuple
(tl) equals the time of producing the first tuple (tf ). This is a reasonable approximation as the
parent operator has an instant access to the materialized (and already processed) data.

Therefore, pipelined execution of two operators P and C (producer and consumer) is described
by time descriptor t = (tf , tl) equal to

(tf , tl) = (pf + cf , pl + cl) = (pf , pl + cl)

If P is a materializing operator then

(tf , tl) = (pl + cl, pl + cl)

Binary operators.

For binary operators, as they have a different operation schema, we define resulting time descriptor
t separately.

HashJoin. Let A and B be left and right children of the HashJoin operator. Also let Tbuild be the
cost of creating the hash table and Tprobe be estimated cost of the probing phase in which HashJoin
operates in a pipelined schema (see 3.5). Then

(tf , tl) = bl + Tbuild + (af , al + Tprobe)

where the addition to a scalar is defined by

a+ (b, c) ≡ (b+ a, c+ a)

The operator firstly processes its right side (hence bl), then materializes the flow in its hash table
(bl + Tbuild), and then it processes its left child starting from af and finishing at al + Tprobe. Again
we assumed that the cost of producing the first tuple is negligible.

MergeJoin operator’s cost model is simpler since both left and right (A and B) children operate
in a pipeline. If Tmerge is merging cost, then

(tf , tl) = (af + bf , al + bl + Tmerge)

6.2. Estimates in parallel execution

An interesting situation in cost calculus is related to transformations derived from (5.3.10.2). In
those situations XchgFork enables both left and right subtrees of a binary operator to operate in
parallel. The HashJoin operator does not proceed with the left subtree until its hash table is built.
Hence, we cannot benefit more than min(bl+Tbuild, af ) that can be subtracted from the left subtree’s
execution time. The time descriptor is given by

(tf , tl) = (bl + Tbuild + af , al −min(bl + Tbuild, af ) + Tprobe)

∗from the VectorWise DBMS perspective this is also time of processing the first vector.
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For MergeJoin operator, we save min(af , bf ) at most. Hence

(tf , tl) = (af + bf , al + bl) + Tmerge −min(af , bf )

6.3. Resource contention

In the previous section, we assumed no resource contention. This allowed us to derive a simple cost
calculus for a given operator tree. Now, we relax this assumption.

Apart from synchronization overhead, parallel execution introduces context changing overhead,
memory access penalty (cache invalidation, memory access congestion). There are also other factors
like data skew or computation skew, which affect our estimations of the response time.

Because of that, we introduce a parallel execution penalty, which is expressed by a scalar. The
penalty differs depending on the type of execution. We consider two types of parallel execution (i)
independent parallel execution (IPE) and (ii) dependant parallel execution (DPE). IPE is present be-
tween materialized frontiers of a given operator, whereas we assume DPE when referring to pipelined
execution.

Both IPE and DPE suffer from having to share resources and data or computation skew, albeit
only DPE has to synchronize. Because of that, we use a simplification and calculate the cost penalty
only for dependent execution. We denote this penalty as γ(k).

Now, without presenting how to obtain this value we adjust our cost calculus to incorporate
resource contention. Also, in order to avoid exponential penalty propagation, the overhead is
added only in transformations actually introducing parallelism and requiring synchronization i.e.
for Xchange operators. Xchange operators work in a pipelined schema. Thus, if P is the child
operator with time descriptor (pf , pl) and C is the Xchange operator, then

(tf , tl) = ((pf + cf ), pl + cl + (pl + cl − pf − cf ) ∗ γ(k))

6.3.1. Cost penalty calculation

The purpose of introducing a time descriptor was to distinguish between synchronized and unsyn-
chronized execution. Execution of materialized frontiers is done independently, whereas the pipelined
execution requires synchronization from Xchange operators.

Synchronization overhead model. For each Xchange operator, given a time descriptor t
we know that tf time is spent in a subtree that finally gets materialized and does not require
synchronization. Contrary, tl − tf is spent in synchronized execution. For synchronized execution
there are two extremes for the response time. Let us assume that the Xchange operator’s subtree is
split into L streams. The lowest response time happens if a query gets parallelized and its response
time is close to tl − tf . The worst scenario is when subtrees assumed to execute in parallel are in
fact executed sequentially. Then the response time is closer to (tl − tf ) ∗ L extreme. The response
time is a parameterized linear interpolation of the response time t′, where t′ ∈ [(tl− tf ), (tl− tf )∗L];

Resource usage model. The usage of a specific resource is modeled by two parameters - its
availability and the current demand for it. Ideally, when calculating the demand we also take time
intervals into account. This would enable us to model hot spots as well as more accurately predict
interference of other queries. However, for simplicity, we assume that resources occupied by other
queries are kept occupied throughout the execution time of the query currently optimized.
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Now for each i and resource ri we calculate the load average by max(1, demand(ri)
availability(ri)

), by which
we will penalize the response time. For example, suppose that 2 other queries occupy three out of
4 cores. If the currently optimized plan requires 3 cores then the load average of CPU is 5

4 .

Penalty Given the above we define penalty γ(k) as parameterized approximation:

γ(k) = 1 + k ∗ t′ − (tl − tf )

(tl − tf ) ∗ L− (tl − tf )
∗maxi(1,

demand(ri)

availability(ri)
)

The parameter k in this formula has to be adjusted after performing benchmarks tests. Also a more
accurate, non linear approximation of the response time may be used.

6.4. Search strategy

For the known set of transformations a given non-parallel query execution tree can be rewritten into
a very large set of equivalent parallel trees. The search-space of all those trees grows exponentially
with the number of operators. This is because for each operator and the set of parameters for P rule
usually at least two transformations are valid.

An outline of a transformation based search algorithm of the optimal query execution plan is
presented in [GCD+91]. In our case, the algorithm searches for the optimal parallel plan starting
from its optimal non-parallel counterpart.

6.4.1. Algorithm description

Branch-And-Prune approach Algorithm 5 describes a branch-and-prune approach for lim-
iting the state-space of all possible trees. The initial cost limit is set to the estimated cost of
a non-parallel QET. Later on, only those transformations that decrease the upper cost limit are
considered.

It is therefore important to find the best plan as early as possible and let the algorithm prune all
trees that are estimated to be not optimal.

In order to achieve that Algorithm 5 first tries more promising moves.

Pursuing only a selected few from the set of all possible moves is another heuristic that requires
sorting the possible transformations by its promise. This has to be done beforehand by the pro-
grammer.

Dynamic programming Answers for previously computed states are stored and not recom-
puted.

6.5. Cost Function

For each operator we implemented a simple cost model, which estimates the number of CPU cycles
required to process the whole input. We considered the following dimensions:

(i) the size of input data,

(ii) the size of output data,

(iii) the size of memory accessed,
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Algorithm 5 RuleP(Op, T, L, K, S, C, Limit)
Find the best possible query execution plan
1: if tuple < Op, T, L,K, S > is in the look-up table then
2: (plan, cost) = lookup(Op, T, L,K, S,C)
3: if cost < Limit then
4: return (plan, cost)
5: else
6: return failure
7:

8: // Current state has to be computed
9: T = Transformations(Op, T, L,K, S,C)
10: Ts = SortByPromise(Op, T )
11: best cost = Inf
12: for t in Ts do
13: extra cost = ExtraCost(t)
14: if extra cost < Limit then
15: (plan, cost) = RuleP(Op, T, L,K, S,C)
16: if cost < best cost then
17: best cost = cost
18: best plan = plan
19: if best cost == Inf then
20: return failure
21: else
22: set < Op, T, L,K, S,C > to (best plan, best cost) in the look-up table
23: return (best plan, best cost)

(iv) the type of data.

The size of the input or the output data cannot be predicted with 100% accuracy as not all the
information can be obtained from histograms. For example we do not know how many tuples with a
string attribute match an arbitrary regular expression (given in the LIKE clause). This is one of the
arguments for creating query execution plan dynamically i.e. to determine the shape of the query
execution tree while actually executing the query [GW89].

For the HashJoin and Aggregation operators, the size of the hash table affects the performance
in a non-linear, CPU-dependent manner. Figure 6.5.1 presents the time required to iterate through
an array of values. A stride is the difference in bytes between two consecutive memory accesses. The
iteration walks “backward” through the memory so the processors prefetching (which is designed
for “forward-oriented” memory access patterns) does not affect the experiment.

Results

Computed costs were sometimes very different (with errors up to a few hundred times) to the
actual costs. The variance was especially high for hashing operators (Aggregation and HashJoin),
as their operational model is especially complicated. However, in general, the implemented model
was sufficient as for the purposes of this master thesis.

46



1

10

100

1000

4k 16k 64k 256k 1M 4M 16M

(3)

(22)

(68)

0.45

4.5

45

450
[16k] [512k]

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

array size [bytes]

(6.7)  

(49)  

(151)  

stride:
64

{32}

16
8
4

 

(a) Intel PC (Katmai 450)

1

10

100

1000

4k 16k 64k 256k 1M 4M 16M

(3)

(22)

0.6

6

60

600
[64k] [512k]

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

array size [bytes]

(5)  

(37)  

(217)    (130)

stride:
128
{64}

32
16
8

4

(b) AMD (Athlon 600)

Figure 6.5.1: The impact of the processor caching. If the accessed array does not fit
into faster cache the performance deteriorates in a non-linear, processor-specific manner.
Courtesy of Stefan Manegold [Man02].

6.6. Parallelization using cluster trees.

This structure enables us to produce uniquely clustered, sorted streams. As a result, we are given
a very fast way to resolve many transformation requirements enforced by the OrderedAggregation
and the MergeJoin operators.

If the MergeJoin operator requires its children to produce multiple clustered and uniquely par-
titioned streams, then, finally, the request is passed on to Scan operators.

Let as assume that these Scan operators work on tables A and B, and that table A is large
(i.e. it references B). Now if there exists a join-range index between A and B we issue the following
algorithm:

(i) divide table A into L equal ranges RA (L is the parameter of P operator)

(ii) for each range rA ∈ RA map this range using the join-range index onto the corresponding
range in table B obtaining rB

(iii) remap range rB back to table A obtaining r′A

(iv) update all other ranges in RA so that r′A do not intersect with other ranges.

As not every range of the size of one L-th of the smaller table corresponds to one L-th of the larger
table, in the mentioned algorithm we start with the larger table in order to reduce computation skew
between different threads. This approach relies on a fact that we should only try to reduce relative
differences between ranges in the larger table as those constitute the majority of the computation.

In the second step a range of one L-th of the larger table is mapped into the smaller table. The
rB range has already the property of being clustered and uniquely partitioned as it is obtained from
a join-range index chunk (collateral 2.2.3). The corresponding range r′A is obtained by mapping rB
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Figure 6.6.1: Obtaining uniquely clustered streams.

back to table A. Table r′A is also clustered and uniquely partitioned with values matching those from
range rB .

The mapping process is an in-memory binary search performed on the join-range index. The
whole mapping process is performed in time complexity of O(L ∗ log(c)) where c is the number of
chunks in the join-range index.

Figure 6.6.1 presents the application of the algorithm for one of the ranges in a situation where the
L parameter is three.

This algorithm may result in data skew as computed ranges may differ in size.
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Chapter 7

Results
7.1. TPC-H benchmark analysis
Our solution has been tested and optimized for the TPC-H benchmark, which is widely used in
the database community as a yardstick to assess the performance of database management systems
against large scale decision support applications. The benchmark is designed and maintained by
the Transaction Processing Performance Council. This benchmark defines a data warehouse with
customers placing orders consisting of multiple line items. Each line item consists of a number of
parts; and parts are supplied by multiple suppliers. The benchmark comes with a data generator
and set a of 22 reporting queries. The size of the database can be scaled using a scaling factor (SF).
The default SF is 1, which represents 1 GB of data.

Speedup tests were performed on scale factor 100 (about 180GB of data). A Linux server
machine, having two chip multiprocessors∗, each having four physical cores and the support for
Symmetric Multi-Threading.

Figure 7.1.1 presents obtained results. For each query we chose the best of four runs in order
to minimize the noise. All the queries from the benchmark were parallelized and run faster than in
their sequential version.

General results are satisfactory. In the next sections, we present a brief description of each query
with a parallel QET used to calculate the answer†. QET also include the percentage of the time
spent in a given subtree, and the number of tuples processed passed between given operators. Values
were gathered from parallel plans with the maximum parallelization level of two ‡).

The results presented, were gathered at some point of the development process. An interesting
fact is that if the benchmarks had been performed one month before, the presented results would
be significantly worse. Optimizations (new rewriting rules, reducing the synchronization overhead
etc.) allowed as to decrease the overall time to run all 22 TPC-H queries with 4 threads from 115.5
seconds to 89.5 seconds (an improvement of 22.5%). More improvements may result in even better
outcome.

Query 1

This query obtained the best speedups (it runs 17.71 sec with one thread and 2.67 sec on 8 threads).
It consists of a simple scan-select-aggregation path, processes a large amount of data (over 600
million tuples) and the output of the aggregation operator is very small (4 tuples). Those facts

∗Intel(R) Xeon(R) X5560 2.80GHz
†For the SQL statements please refer to [TPC].
‡The maximum parallelization level is the initial value of T parameter passed to P rule. We may also say

that query uses T threads.
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Figure 7.1.1: Speedups obtained on Linux sever machine (8 physical cores) on SF 100.
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make the parallelization very easy to detect and assure small additional overhead. Figure 7.1.2a
presents this query after parallelization. An additional Aggregation operator was used. More than
99.9 % of computation time is spent in the subtree below the XchgUnion operator. As a result,
nearly all of the computation is performed in parallel.

Query 2

Query 2 is a multi-join query that reuses common subexpressions (the Reuse operator). When
the maximum parallelization level was set to 4, we ran a different plan (operators in bold were
replaced by XchgUnion in italics). The reason for doing so, was a higher total cost required to
create multiple hash tables and the cost of building the XchgBroadcast operator with more buffers.
This was a reasonable decision as the operator build phase is relatively costly for this fast query. For
two threads the building phase took about 10% of the whole query. By changing the plan, starting
with 4 threads, this cost was reduced to about 6%.

Query 3

In the third query, we are able to put the XchgUnion operator near the root of the QET. As a result,
99% minus 22% (as we use XchgBroadcast) of the tree gets parallelized. Because of the relatively
low total cost of this query (sequential plan finishes in about 1 second) the optimizer decides to limit
the parallelization level to two. The query uses a join-range index to split the ranges in MergeJoin’s
left side input, and HashJoin’s left side input. This is possible since HashJoin does not change the
ordering of tuples from its outer input.

Query 4

Query four achieves decent speedups. Once again we exploit a join-range index, which enables us to
split ranges in a content-aware manner producing clustered and uniquely partitioned ranges. The
Xchg operator is put above OrderedAggregation, which also requires clustered output. This was
only possible because the join keys of MergeJoin are compatible with the groupby list of attributes.

Query 5

In this query, the XchgUnion operator was also put relatively high in the QET. As a result, about
99 % (subtrees below XchgBroadcast operator) of the execution cost was parallelized. This query
would benefit much more if we were able to reduce the total computation cost, mainly by reusing
once calculated hash tables (calculations performed by HashJoin operators sum up to about 90% of
the query execution time).

Query 6

The sixth query has a QET very similar to query one. The way of making this tree parallel is the
same (using XchgUnion with an additional Aggregation operator). However, the speedups are not
as impressive, since the processing time is much lower (17.7 seconds vs. 0.83 second). For the higher
number of threads, the fixed cost of creating threads and buffers becomes significant.
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Figure 7.1.5: Parallel QET used in TPC-H benchmark.

Query 7

In the seventh query we are able to use join-range index to partition the data for about 97.5 (100 -
2.5) % of the computation.

Just like in the previous scenarios, we can limit the total processing cost by sharing the hash tables
between operators.

Query 8

In query eight we obtain a decent speedup after using 2 new threads. Because of the building and
synchronization costs the optimizer decides not to use more threads, whereas using four threads is
the optimal decision.

Query 9

About 93 % of the computation cost gets parallelized. Join-range index used to divide ranges for
MergeJoin. When 8 cores are used, the processing cost of the the subtree having XchgBroadcast
operator as a root node increases to more than 20 %. This is also one of the most expensive queries.
We decreased the processing time from about 48 to 9 seconds.

Query 10

Query ten is the first in which we use the XchgHashSplit operators. In this QET optimizer focuses
on the most expensive operator - HashJoin with a large inner input. This operator consumes in the
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Figure 7.1.6: Parallel QET used in TPC-H benchmark.

sequential plan more than 82 % of the computation time. The XchgHashSplit operator decreases
the hash table size (hence the building and also the probing phase). After parallelization with two
threads, this operator used almost half (12 ∗ 109 vs. 21.8 ∗ 109) of the initial number of CPU cycles.

For this QET it seems reasonable to move the XchgUnion operator above its current parent
(HashJoin). However, as it was already mentioned in section 6.5, it is now always easy to accurately
predict the number of input and output tuples for every operator. In this case, we wrongly predict
the number of output tuples from the top-most HashJoin operator, making an error of over 10
millions tuples.

Query 11

In Query 11, because of the existence of Reuse operator, we are able to parallelize only about 58 %
of the total cost.

Query 12

Query 12 obtains good results. In the parallel QET we first exclusively parallelize the Aggregation
operator (with the XchgHashSplit operators). Second, the input for the MergeJoin operator is split
using a join-range index.

Query 13

Query 13 is, beside Query 9, one of the most expensive queries. Its sequential version takes about 37
seconds to compute. In the sequential plan, the lowest HashJoin operator takes 46 % of the whole
query. The Aggregation operator above takes 31 %, whereas the Select operator performs expensive
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LIKE comparison on strings. The whole subtree takes about 93% of the whole computation time.

Since the groupby list of attributes is also the list of join keys for the HashJoin operator, by using the
XchgHashSplit on those keys we are able to partition the data for both these expensive operators.
Hence, we reduce the number of CPU cycles from 31.8 to 17.6 billions for the Aggregation and from
47.6 to 25 billions for the HashJoin operator.

Reducing the data size each of those memory intensive operators processes increases the cache
utilization and reduces TLB misses. As a result, we are able to obtain super-linear speedup for two
cores.

The parallelization level ceases to increase at the level of 5.

Query 14

For this query the parallelization level ceases to increase at the level of 2. The results for 2, 4, 6 and
8 cores should be the same.

Query 14 has the same parallelization model as in the previous case. Reducing the data size also
results in super-linear speedup.

Query 15

In this query, optimizer uses always the maximum parallelization level allowed. However, the we
do not observe any speedups for more than 2 queries. This is caused by small computation time of
this query (0.4 sec after parallelization), which makes the fixed costs a significant part in the whole
computation (for 8 threads the building time takes about 17 % of the total execution time).

Query 16

For Query 16, speedups deteriorated significantly when using more threads. The optimizer decided
to change the parallel QET in order to decrease fixed building costs (XchgUnion and XchgHashSplit
operators in italics). Ceasing to increase the parallelization level with more than 4 threads would
be a better decision. Further improvements for cost estimates is an important area for future work.

Query 17

In spite of parallelizing a small number of operators (about one fourth), we managed to partition
the data for more than 90 (96.60 - 6.25) % of the computation. In the parallel plan, we divide outer
input for HashJoin operator, which initially consisted of 600 million tuples.

Query 18

In Query 18 we are faced with a complicated multi-join execution tree. The optimizer did not
parallelize the Aggregation-Select-OrderedAggregation-Scan branch as well as scanning of 15 millions
of data. Those two subtrees sum up to about 36% of the whole computation. Also, processing of
300 millions rows (600 millions in parallel) by the XchgHashSplit operator introduces a significant
additional cost of 11 ∗ 109 CPU cycles or 22% of the whole computation time.
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Figure 7.1.7: Parallel QET used in TPC-H benchmark.
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Figure 7.1.8: Parallel QET used in TPC-H benchmark.

Query 19

Query 19 obtains decent speedups, which deteriorate with more threads used. This is mainly because
very high operator building costs, which for the parallelization level of eight takes 23% of the whole
query.

Query 20

In this query XchgUnion operator cannot be placed above the top-most HashJoin operator, with
splitting the outer input and broadcasting the inner input, as for this specific join operator, which
returns all the tuples from the right for which there is a matching key on the left, such a transfor-
mation is invalid. On the contrary, applying hash split for both inner and outer input (delegating
partitioning to children of the next HashJoin operator is in this case invalid as there is no functional
dependency between keys used in both join operators) involves the same overhead as in the previous
query (processing 600 millions rows in parallel by XchgHashSplit operator). As a result, paralleliza-
tion was performed very low in the QET so we were able to parallelize no more than 34% of the
whole computation time.

Query 21

The subtree rooted in MergeJoin operator required more that 45% of processing time to finish.
It was executed sequentially, as it required an (currently not supported) transformation with the
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OrderedAggregation below the MergeJoin operator.

Query 22

In this query, the top-most HashJoin operator does not allow to broadcast its inner input (similarly
to query 20). We delegate parallelization to a subtree which is not computationally expensive (its
processing time is 25 % (16 %) of the query execution time for the sequential (resp. parallel) plan).
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Chapter 8

Optimizations

8.1. Thread affinity
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Figure 8.1.1: Q01 with and without hard CPU affinity.

Processes that do not migrate between CPUs frequently, are known to incur less overhead. This
is mainly because, parts of the cache data may still not be invalidated, and can be reused after a
process regains the CPU. CPU affinity is the tendency of a process or a thread to run on a given
CPU as long as possible without being moved to some other processor. The majority of modern
operating systems provide algorithms to reduce the frequency of such migration. This is commonly
referred to as soft CPU affinity.

Both Linux and Windows contain a mechanism that allows developers to enforce hard CPU
affinity. This means that an application can explicitly specify which processor (or set of processors)
a given process may run on.

Hard CPU affinity is especially important when used with SMT. Figure 8.1.1 presents a com-
parison of the TPC-H Query 1 run with and without (hard) thread affinity. This test was performed
on a Linux server machine. We can easily notice that the process scheduler had significant problems
with appropriate CPU allocation. This resulted in imperfect speedups, mainly between three to

59



m
em

ory 1

m
em

ory 2

CPU2

CPU4CPU3

CPU1 CPU6

CPU8CPU7

CPU5

Figure 8.2.1: The NUMA system used in tests.

eight threads working in parallel. Hard thread affinity allocates CPUs more wisely, as we know
the relation between logical and physical cores, and the cache usage of a particular query. In this
benchmark, We can also notice that once we create nine or more threads, the performance drops
and slowly recovers with new threads added. The speedup gains its peak for sixteen threads (with
the speedup of 8.05, comparing to 6.7 achieved for 8 threads), proving that SMT is generally worth
being used. What is more, if nine or more threads are under operation there is no difference between
hard and soft thread affinity. Hard and soft approaches lead to the same workload skew. This is
because the work was divided statically between all the threads. Threads sharing the same CPU
operate slower than threads having exclusive access to a CPU.

8.2. NUMA architecture

One of the reasons for imperfect speedups, especially for the TPC-H Query 1, is the memory char-
acteristic of the architecture used for tests, which is a Non-Uniform Memory Access (NUMA) ar-
chitecture. The two physical chips (each having four CPUs) have their own memory control units
(fig. 8.2.1) If a thread running on chip A accesses memory that is controlled by chip B it accesses a
non-local memory.

On NUMA systems, better performance is obtained by executing processes as close to the mem-
ory they access as possible. Each access a process makes to remote memory reduces the performance
of that process. Accessing remote memory may also reduce the performance of other tasks, by caus-
ing contention for remote memory connections.

NUMA awareness within the scheduler is necessary in order to support the principle of the locality
of memory access.

The scheduler of the Linux kernel supports NUMA-aware process allocation. First, once a
process is running on a given processor. Linux prefers to keep it on the same node. This rule is
combined with the policy of allocating memory from the local node, this helps keep the ratio of local
memory accesses high.

In the implemented version of parallelism the majority of memory is allocated in a building phase,
which finishes before Xchange operators create their threads. As a result, if a new thread runs on
different may chip it accesses non-local memory which penalizes the performance. Conclusions from
this observation are discussed in chapter 9.

8.3. HashJoin and XchgBroadcast

Transformations using the HashJoin and the XchgBroadcast operators construct the same hash table
for each of the join operators. This suboptimality increases the total execution cost and affects the
response time (because of the resource contention).
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We can deal with this problem in several different ways, which vary in the effectiveness and in
the simplicity of the implementation. Below we present three different solutions.

8.3.1. Read-only hash table

In the simplest solution we create the hash table only once and redistribute it (before the probe phase
starts) among all HashJoin operators. The below transformation is a replacement for HashJoin +
XchgBroadcast transformations. It requires modifications of both operators.

XU

HashJoin|L

A XBC|L

B

T tuples

T tuples/stream

→

XU

HashJoin′|L

A XCHG′|L

B

T tuples

T tuples in one stream

if L = 2
−−−−−→

XU

HashJoin′1

A1 XCHG′

B

T tuples

T tuples
HashJoin′2

A2 XCHG′

0 tuples

The HashJoin operators form a group of operators which share the state. The first of the
operators computes the hash table, whereas the rest of the operators waits on a monitor variable.
After the hash table is done all the other operators from the group are awoken and proceed directly
to the probe phase.

The XchgBroadcast operator is replaced by the Xchg operator, because only to the first consumer
processes the data (the XchgBroadcast operator requires all consumers to process the data, otherwise
buffers get clogged).

There are two major drawbacks of this solution. First, it involves changes in the HashJoin
operator (this does not conform to the principles of the Volcano parallelization model). Second, in
spite of the fact that the total execution cost is decreased, the hash table is still build sequentially
by one thread only and the other threads are blocked.

8.3.2. Using the Xchg operator

The second solution aims at parallel hash table build phase. It requires more changes in the imple-
mentation of the HashJoin operator than the previous solution.

In the VectorWise DBMS the build phase uses a simple bucket-chained hash table (fig. 8.3.1a).
The next array represents the linked list of all tuples that hash into a given bucket. The zero value
represents the end of the list.

In the figure 8.3.1a two HashJoin operators created two separate hash tables. The inner input
was distributed by the Xchg operator. After the build phases of the HashJoin operators (each
HashJoin operator builds its hash table in parallel) finish we execute additional computation which
joins separate hash tables into one hash table. This is done in the linear cost and is performed by
algorithm 6.

The resulting hash table is a table of a lower quality, as the average size of a chain is longer by a
factor of the number of initial hash tables. This creates an additional overhead in the probe phase.

We can avoid this problem by creating larger hash tables in the parallel build phase. As a
result, the build phase is slower (as we access larger memory), but we obtain possibly better result-
ing hash table.
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Figure 8.3.1: A simple bucket-chained hash tables. Using modulo 5 as a hash function.

Algorithm 6 Joining the chains of N separate bucket-chained hash tables.
First, we amend the offsets so the old, local, values are true in the larger hash table. Second,
if we encounter a zero value (an indicator of an end of the chain) we try to join the current
chain with the corresponding chains.
1: offset← 0
2: for i← 2 TO N do
3: next size← sizeof(nexti)
4: for j ← 1 TO next size do
5: // h is where the previous list starts (if it starts)
6: h← hash(input[ j ])
7: // if j is the end of some list, try to link it to the previous list
8: if nexti[ j ] == 0 AND nexti−1[ h ] 6= 0 then
9: nexti[ j ] ← nexti−1[ h ] + offset
10: offset← offset+ next size

8.3.3. Using the XchgHashSplit operator

Different HashJoin operators can also produce disjoint hash tables, for which we do not have to
correct the hash table’s chains, as in the previous solution. This can be done using the XchgHashSplit
operator in the place of the XchgBroadcast operator. The XchgHashSplit operator computes the
same hash function as calculated in the HashJoin operator and distributes the tuples depending on
the (i) lower or the (ii) higher bits of the tuple’s hash value.

Let’s assume that the number of streams L is the power of two i.e. L = 2j . The HashJoin
operators create hash tables of a size of 2i (the i value is chosen in such a way that the hash table is
twice of the size of the estimated input∗). If the XchgHashSplit operator divides the input depending
on the higher bits then the addressee of a tuple is calculated from the i, . . . , i+j−1 bits (numbering
starts from zero). For example, in figure 8.3.2a the decision about the addressee is defined by the
second (red in figure 8.3.2a) bit from the tuple’s hash value. If the decision is made from the lower

∗This provides a good trade-off between memory-consumption and the probability of conflict [CLRS01].
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Figure 8.3.2: Using the XchgHashSplit instead of the XchgBroadcast operator.

bits, the addressee is obtained from 0, . . . , i− 1 bits.

In this solution we highly rely on the estimated cardinality of the inner input size. This is because
the sizes of the partial tables (those that will be concatenated later on) have to be equal. If the
partial hash tables were of different sizes, the table concatenation becomes a complicated process,
as the hash value calculated for the partial table is unrelated to the hash in the resulting hash table.
This means that if any of the HashJoin operators has to rebuild its hash table all hash tables have to
be recreated from a scratch and using all the values. The requirement about maintaining the same
size of the hash tables becomes a problem in scenarios with bad cardinality estimates or a significant
data skew.

8.4. TPC-H optimizations - summary

In this section we summarize the possible improvements for the TPC-H queries. The main areas
of improvements are: (i) cost estimates (of operators building phase, processing cost and resource
contention), (ii) implementing parallel build phase, (iii) improving the HJ-XBC transformation
inefficiency, (iv) implementing new transformation rules for improving parallel QET. For each query
we identify the most important optimizations.

Query 1 Because the SMT was actually able to achieve better speedups (16 logical cores obtained
the speedup of 8.05, when compared to the speedup of 6.7 for 8 physical cores), which is shown in
figure 8.1.1, we deduct that this query suffered from stalled processors (due to a cache miss, branch
misprediction, or data dependency). Thanks to the SMT another scheduled thread was able to use
processor’s idle resources. NUMA-aware memory allocation may partially address those problems.

Query 2 Parallel building phase may significantly reduce the query cost. The building phase
currently requires up to 30% (for 6 threads) of the query processing time to finish.
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Query 3 Optimizing the HJ-XBC transformation may reduce the total execution cost for this
query. The parallel plan suffers from recreating the hash table of more than 3 million rows. The
maximum parallelization level of 2 is too low. The level of 4 decreases the execution time to 0.47 of
a second. With more threads, there is no improvement noticeable.

Query 4 A new transformation rule, that considers functional dependencies between two lists of
aggregates may help to make the top-most Aggregation operator parallel (the cost of this operator
is about one third of the query execution time for higher level of parallelism).

Query 5 The building phase for the parallelism level of 8 is relatively costly and takes about 15%
of the query execution time. What is more, we duplicate hash tables of more than 3.5 million tuples
as a result of the HJ-XBC transformation.

Query 6 The building phase for the parallelism level of 8 is takes about 10%, where more than
90% is spent in building of the XchgUnion operator.

Query 7 The HashJoin operators duplicate the work of creating hash tables of more than 1.2
million tuples as a result of using the XchgBroadcast operator. Faster building phase may help to
prevent the rewriter from moving the parallelization down in the parallel QET (which results in a
less optimal plan, but with a smaller fixed cost). The level of parallelism for this query should cease
at 4 (it stops at 5), as the performance deteriorates slightly for the higher number of threads.

Query 8 The maximum parallelism level for this query (as decided by the rewriter) is 2. Operator
and resource contention cost estimates should support the decision of using 4 more threads. The
parallelism level of 6 yields the performance of 1.2s (about 2 times better than with 2 threads). The
performance deteriorates slightly for 8 threads (1.5 seconds). This query recreates hash tables for
about 4 million tuples.

Query 9 The parallel implementation of the HJ-XBC transformation will reduce the cost of
recreating hash tables of 4.5 million tuples.

Query 10 This query used the parallelism level of 3 at most, which was a good decision. Incor-
rectly estimated cardinality of the output of the top-most HashJoin operator results in the decision
of not making this operator parallel.

Query 11 The Aggregation operator on the path between the CartProd (Cartesian Product)
operator and the Reuse operator takes about 20% of the query execution time. A new transformation
rule for parallelizing the CartProd operator and proceeding back to the sequential execution before
the Reuse operator may help to speedup this query.

Query 12 The building phase becomes about 19% of the execution time for the parallelism level
of 8.

Query 13 The maximum level of parallelism for this query was 5, which was a good decision as
using 6 threads does not decrease the execution time and using 7 threads makes the query 2 seconds
slower (using 8 threads increases the execution time by 7 seconds). The reason for the deterioration
is the increased total execution cost which results in resource contention.
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Query 14 The maximum level of parallelism for this query was 2, whereas the optimum is 4 (1.2
seconds vs. 1.7 sec). For the parallelism level of 5 the execution time increases to 1.5 seconds.

Query 15 The building phase for the parallelism level of 8 takes about 20% of the query execution
time. The rewriter should use the parallelism level of 2 (as it provides the same speedup as 8).

Query 16 The rewriter should use the parallelism level of 4 not 8. Increasing the parallelism
level results in performance deterioration. We need better cost modeling for this purpose.

Query 17 Parallel hash table build in the HJ-XBC transformation can slightly improve the
performance (the hash table in the HashJoin operator consists of about 20,000 tuples).

Query 18 The parallel QET duplicates hash tables having more than 15 million tuples (the HJ-
XBC transformation). New transformation rule that identifies functional dependencies between two
Aggregation operators may help to parallelize costly (about 27% of the execution time) XBC-Aggr-
Select-OrderedAggr-Scan subtree (see figure 7.1.7c). Also for the given parallel QET the maximum
level of parallelism should not be higher than 4.

Query 19 The building phase becomes 27% of the query execution time for the parallelism level
of 8.

Query 20 Because of the problems described in section 7.1 it is not trivial to find optimal
parallel QET. The top-most HashJoin operator, called HashRevSemiJoin, returns all the tuples
from the right for which there is a matching key on the left. Because of that the standard HJ-XBC
transformation does not apply here (two tuples having the same values on the key columns may be
placed in two different streams, which results in two tuples being matched instead of one). On the
other hand, the solution with the XchgHashSplit operator suffices, but is costly (a lot of tuples have
to be copied and split across the HashJoin operators).

A new transformation with additional Aggregation operator for duplicate elimination is a solution
to consider.

Query 21 A new transformation analyzing functional dependencies between the MergeJoin oper-
ator and the OrderedAggregation operators might make the subtree below the XchgHashSplit(1:N)
operator parallel. This subtree executes in 45% of the total query execution time.

For the current plan the parallelism level should cease to increase with more than 4 threads. The
rewriter needs better cost estimates and resource contention estimates for that purpose.

Query 22 A new transformation (as described for Query 20) may result in parallelizing larger
subtree (more than 99% versus 16% which is already made parallel).
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Chapter 9

Conclusions and future work

In this master thesis we presented the implementation of multi-core parallelization of the vectorized
execution model. We created a framework for parallelization, which implemented a set of Xchange
operators, a set of transformations for query execution trees and a strategy for traversing the state
space of parallel query execution trees under a simple cost model. The framework was based on the
Volcano model.

We also measured the performance of the implemented solution using the TPC-H benchmark.
Tests run on the 180GB of data. Table 9.1 presents the summary of the obtained results.

1 thread 2 threads 4 threads 6 threads 8 threads
total time 215.7 118.9 87.36 81.19 80.1
speedup 1.81 2.47 2.66 2.69
efficiency 91% 62% 44% 34%

Table 9.1: The summary of the obtained results in the TPC-H benchmark.

The framework proved to be sufficient for providing automatic intra-operator parallelization,
although we encountered performance inefficiencies for a bigger number of threads allowed.

Some of the problems can be addressed in the future. The main optimization issues are:

(i) sharing hash table by the HashJoin operators,

(ii) fast implementation of the XchgDynamicSplit and XchgDynamicHashSplit operators,

(iii) extending the set of available transformations,

(iv) decrease the Xchange operators building time,

(v) make the building phase NUMA-aware,

(vi) make the building phase parallel,

(vii) make the number of buffers and their size dynamic,

(viii) improve operator cost estimates,

(ix) improve resource contention modeling,

(x) identify performance bottlenecks and suboptimal implementation.
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Some features, like implementing the parallel build phase, the NUMA-aware memory allocation
or parallel hash table build are tasks with a well defined goal. Contrary, improving the cost estimates,
contention modeling or implementing new transformations cannot be simply accomplished, as we
can constantly try to make our models better.
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