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Chapter 1

Introduction

1.1 Motivation

Most organizations nowadays demand from their online analytical processing (OLAP) capable
DBMS a short response time to queries on volumes of data that increase at a fast pace. In
order to comply with these requirements, many commercial database vendors have developed
massively parallel processing (MPP) solutions. The Vectorwise DBMS is based on a vectorized
query execution engine that takes advantage of the capacities of modern CPUs [Zuk09]. In this
thesis, we explore the development challenges encountered in the initial steps towards an MPP
solution for the Vectorwise DBMS. Our work will focus on the two most critical layers: query
optimization and query execution.

Note: For clari�cation purposes, henceforth we will refer to the new solution as distributed,
while the original, multi-core version of Vectorwise will be referred to as non-distributed.

Research Questions

• Is there a non-intrusive, yet scalable way to implement an MPP solution for the Vectorwise
engine based on the current multi-core parallelism model?

• Do the characteristics of modern hardware make a shared-disk DBMS architecture scal-
able, hence an attractive alternative to shared-nothing solutions?

• What are the challenges of job scheduling and query optimization in a distributed DBMS?

1.2 Goals

Throughout the planning and development stages of our work, we have been aiming to create
a prototype that:

1. maintains the high performance exhibited by the Vectorwise DBMS engine in OLAP
queries

2. requires easy and non-intrusive modi�cations to the current implementation

3. requires no additional e�ort in order to con�gure/use it

4. maintains the cost of hardware to performance ratio

1
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1.3 Non-goals

We acknowledge the importance (or even indispensability) of the following features in any
production-ready DBMS. That is why it is one of our commitments to make sure none of our
fundamental design decisions will compromise the possibility for these topics to be addressed
in future work.

• updates, DDL operations, transaction management are out of scope; we only focus on
read-only access

• no explicit data partitioning

• we do not address reliability and high-availability concerns

1.4 Basic Ideas

The outline below is meant to give the reader a �avor of the directions according to which the
research was carried in this project.

• implement the Xchg operator of the Volcano model for a distributed setting

• use a cluster of commodity Linux nodes connected by In�niband network fabric

• use a distributed �le-system and follow a "virtual shared disk" approach

• use MPI for inter-node communication

1.5 Vectorwise

Vectorwise1 is a state-of-the-art relational database management system that is primarily de-
signed for online analytical processing, business intelligence, data mining and decision support
systems. The typical workload of these applications consists of many complex (computationally
intensive) queries against large volumes of data that need to be answered in a timely fashion.
What makes the Vectorwise DBMS unique and successful is its vectorized, in-cache execution
model that exploits the potential of modern hardware (e.g. CPU cache, multi-core parallelism,
SIMD instructions, out-of-order execution) in conjunction with with a scan-optimized I/O bu�er
manager, fast transactional updates and a compressed NSM/DSM storage model [Zuk09].

The Volcano Model The query execution engine of Vectorwise is designed according to
the widely-used Volcano iterator model [Gra94]. Query execution plans are represented as
trees of "operators", hence often referred to as a query execution trees (QET). An operator
is an implementation construct responsible for performing a speci�c step of the overall query
processing required.

All operators implement a common interface, providing three methods: open(), next() and close().
Upon being called on some operator, these methods recursively call their corresponding methods
on the children operators in the QET. open() and close() are one-o�, complementary methods that
perform initialization work and resource freeing, respectively. Each next() call produces a new
tuple (or a block of tuples, see Vectorized Query Execution below). Due to the recursive nature
of the next() call, query execution follows a "pull" model in which tuples traverse the operator
tree from the leaf operators upwards, with the root operator returning the �nal results.

1Vectorwise website: www.actian.com/products/vectorwise

www.actian.com/products/vectorwise
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Multi-core Parallelism Vectorwise is currently capable of multi-core parallelism in two
forms: inter-query parallelism and intra-query parallelism. The latter is achieved thanks to
a special operator of the Volcano model, called the Xchange operator [Gra90], which will be
described in more detail in later sections.

Vectorized Query Execution It has been observed that the traditional tuple-at-a-time
model leads to low instruction and data cache hit rates, wasted opportunities for compiler opti-
mizations, considerable overall interpretation overhead and, consequently, poor CPU utilization.
The column-at-a-time model, as implemented in MonetDB [BK99] successfully eliminates in-
terpretation overhead, but at the expense of increased complexity and limited scalability, due
to its full-column materialization policy.

The execution model of Vectorwise combines the best of these two worlds by having the QET
operators process and return not one, but a �xed number of tuples (100 - 10000) whenever their
next() method is called. This batch of tuples is referred to as a vector and the number of tuples
is chosen such that the vector can �t in the L1-cache memory of the processor. The processing
of vectors is done in specialized functions called primitives.

This reduces the interpretation overhead of the Volcano model, because the interpretation
instructions are amortized across multiple tuples and the actual computations are performed
in tight loops, thus bene�ting from performance improving features of modern CPUs (e.g.
superscalar CPU architecture, instruction pipelining, SIMD instructions) [Zuk09], as well as
compiler optimizations (e.g. loop unrolling).

1.5.1 Ingres/Vectorwise Architecture

Vectorwise is integrated within the Ingres1 open-source DBMS. A high-level diagram of the
whole system's architecture, depicting the main components involved, is given in Figure 1.1.

Ingres is responsible for the top layers of the database management system stack. The Ingres
server interacts with users running the Ingres client application and parses the SQL queries they
issue. Also, Ingres keeps track of all database schemas, metadata and statistics (e.g. cardinality,
distribution) and uses this information for computing and providing Vectorwise with an optimal
query execution plan.

Vectorwise can be viewed as the "database engine", taking care of query execution, bu�er
management and storage. Its main components are described below.

Rewriter The optimized query execution plans that Ingres passes to Vectorwise are expressed
as logical operator trees in a simple algebraic language, referred to as the Vectorwise Algebra,
which will be presented in Section 3.2.

The Vectorwise Rewriter performs speci�c semantic analysis on the received query plan, an-
notating it with data types and other helpful metadata. It also performs certain optimization
steps that were not done by Ingres, such as introducing parallelism, rewriting conditions to use
lazy evaluation and early elimination of unused columns. More information on the Rewriter
module can be found in Section 3.3.2

Builder The annotated query plan is then passed to the Builder, which is responsible for
interpreting it and producing a tree of "physical" operators that implement the iterator func-
tionality de�ned by the Volcano model.

1Ingres website: www.actian.com/products/ingres

www.actian.com/products/ingres
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Figure 1.1: Architecture of the Ingres/Vectorwise System

This so-called builder phase corresponds to calling the open() method on all operators in a
depth-�rst, post-order traversal of the query execution tree. This is when most of the memory
allocation and initialization work takes place.

Query Execution Engine Once the builder phase is done and the physical operator tree
is constructed, executing the query then simply translates to repeatedly calling next() on the
root operator of the tree until no more tuples are returned. The paragraphs on the Volcano
Model and Vectorized Query Execution should have given a good description of the way the
Vectorwise query execution engine works.

Bu�er Manager and Storage The Bu�er Manager and Storage layer is primarily responsi-
ble for storing data on persistent media, accessing it and bu�ering it in memory. Additionally, it
also takes care of handling updates, managing transactions, performing crash recovery, logging,
locking and more. However, none of these issues are the focus of this thesis, so we will not
elaborate on them.

1.6 Related Work

In this section we present a brief overview of the academic work on parallel and distributed
database systems, after which we review some of the most successful commercial parallel / MPP
solutions in the �eld of analytical processing that are currently available.



CHAPTER 1. INTRODUCTION 5

1.6.1 Academic Research

Extensive work on parallel and distributed database systems was done in the early 1990s. The
series of surveys [OV91, Val93, OV96] presents the state-of-the-art of the �eld at that time,
clari�es the related terminology, classi�es database architectures and discusses open problems
and trends.

Regarding terminology, a parallel database system is considered one that takes advantage of a
parallel computer, or multiprocessor, that is itself a (tightly coupled) distributed system made
of a number of nodes (processors and memories) connected by a fast network within a cabi-
net. On the other hand, a distributed database is a collection of multiple, logically interrelated
databases distributed over a computer network, while a distributed database management sys-
tem (distributed DBMS) is de�ned as a software system that permits the management of the
distributed database and makes the distribution transparent to its users.

With respect to parallel database architectures, the consensus is that there are three basic
approaches:

• Shared-Memory (or Shared-Everything): Any processor has access to any memory module
or disk unit through a fast interconnect. The main advantages of this approach are
simplicity and natural load balancing, but they come at the price of high cost, limited
scalability, and low availability. Examples of shared-memory database systems include:
XPRS [SKPO88], DBS3 [BCL93] and Volcano [Gra90] (notable for its elegant formalism).

• Shared-Disk : Any processor has access to the entire data (residing on persistent storage),
but makes exclusive use of its main memory. This approach improves on cost, scalability
and availability, while still naturally lending itself to load balancing. However, commu-
nication overhead among nodes and concurrent access to the shared disk are potential
bottlenecks. Considerable less parallel database prototypes can be found in the literature
that follow this approach.

• Shared-Nothing : Each processor has exclusive access to its main memory and disk unit(s).
The di�erence between shared-nothing parallel databases and distributed databases is to
some extent blurry, being mostly a matter of the degree of decoupling between nodes.
Such systems rank highest in terms of performance, scalability and availability, but
also complexity. Load balancing is potentially compromised. Pioneering shared-nothing
prototypes include: Bubba [BAC+90], Gamma (which demonstrated good scalability)
[DGS+90], EDS [WT91], or Prisma (main-memory system featuring the symmetric HashJoin
operator [WA91]) [ABF+92], all of which exploited both inter- and intra-query paral-
lelism. Moreover, most of the commercial solutions presented in the following section
have a shared-nothing architecture.

1.6.2 Commercial Solutions

Teradata

Teradata1 is regarded as the market leader in data warehousing and enterprise analytics for the
past two years. It relies on an MPP solution developed over a period of more than 25 years
that is based on a shared-nothing architecture taking advantage of a row storage scheme (one
of the few row-based RDBMS capable of processing petabytes of data).

Internally, Teradata [BDW04] consists of a parsing engine (PE) and multiple access module
processors (AMPs) connected by a communication channel, namely BYNET. PE is responsible
for receiving and parsing queries, data localization, query optimization and resource allocation,

1http://www.teradata.com/

http://www.teradata.com/
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while AMPs are logical units that correspond to the nodes in a distributed DBMS, with exclusive
memories, disks and processing units.

IBM DB2

DB21 relies on a shared-nothing architecture composed of several database partitions or nodes.
These partitions operate on their own data, indexes, con�guration �les and transaction logs
[DB210]. Moreover, each of these partitions can act as gateways for user interactions. Depend-
ing on the available hardware, the DB2 can achieve both inter-node and intra-node parallelism
for a given query.

DB2 is a row-store DBMS in which the administrator can choose between range-partitioning,
hash-partitioning or even multidimensional clustering.

Exasol

Similar to DB2, Exasol2 consists of multiple "peer" nodes with identical software and no shared
hardware. As its main focus is data warehousing, it uses a column storage scheme in which
tuples are partitioned according to a hash key. Furthermore, to accelerate response times, it
is optimized for in-memory processing and is aware of the clustered environment in the query
optimizer module.

Vertica

Vertica3 is a built from scratch analytic database specialized for OLAP queries and data-
warehousing [Ver10]. Like, DB2 and Exasol, it relies on a shared-nothing architecture where
every node can receive queries expressed in SQL. Moreover, as most DBMSs specialized on
analytical processing, it uses a column storage scheme where aggressive compression of data
reduces the amount of storage space by up to 90%. This permits Vertica to employ a strategy
for providing fault-tolerance and availability that consists of a mix of data replication and
partitioning (called projections). Projections store every column attribute at multiple sites and,
consequently, improves query performance in most cases (e.g. when the data to be processed
is local).

Oracle's Real Application Cluster (RAC)

What distinguishes Oracle's RAC4 from the rest of the commercial DBMS presented in this
section is its shared-disk approach [LM10]. Although it requires a high-speed dedicated inter-
connect between the server instances and the shared storage, this approach eliminates any need
for a partitioning scheme. This, in turn, erases any additional administration costs that would
come with the shared-nothing approach.

Moreover, RAC relies on a cluster �le-system to facilitate its deployment, to assure high-
availability and fault tolerance, and to provide an easy mechanism for load balancing when
nodes are addded/removed from the system.

1http://www-01.ibm.com/software/data/db2/
2http://www.exasol.com/en
3http://www.vertica.com/
4http://www.oracle.com/technetwork/products/clustering/overview/index.html

http://www-01.ibm.com/software/data/db2/
http://www.exasol.com/en
http://www.vertica.com/
http://www.oracle.com/technetwork/products/clustering/overview/index.html
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Other MPP solutions

Of course, there are several other vendors that propose MPP solutions for business analytics
and data warehousing. Of these, we would like to mention Greenplum1 and Paracell2.

Greenplum has a more scalable architecture than the rest of the systems discussed in this section
as it tries to parallelize all the phases of query processing, even the query optimization phase
[Gre10].

Finally, Paraccel tries to take advantage of modern CPU technology by compiling queries and
reusing compiled segments [Par10].

1http://www.greenplum.com/
2http://www.paraccel.com/

http://www.greenplum.com/
http://www.paraccel.com/


Chapter 2

Approach

This chapter presents the high-level architecture of the proposed distributed version of Vector-
wise, explaining how the various architectural choices were made in accordance with the primary
goals of this project. Ideally, the rationale behind the "Basic Ideas" presented in Section 1.4
should become apparent by the end of this chapter.

To begin with, for a cost-e�ective, scalable, yet e�cient solution, we focused our attention
towards a Linux computer cluster, interconnected by a low-latency, high bandwidth network
fabric. Section 2.1 elaborates on the choice for the interconnect family, as well as the commu-
nication model. In Section 2.2 we argue that a Shared Disk approach is preferable for ensuring
non-intrusiveness, ease of use and maintainability. We present several alternatives for provid-
ing the cluster nodes with a globally accessible disk volume and identify distributed parallel �le
systems as a promising solution for this. In Section 2.3 we describe the hardware and software
con�guration of the small, in-house cluster we used for developing and testing our prototype
and, �nally, in Section 2.4 we present a high-level overview of the major components of the
distributed version of Vectorwise that we propose.

2.1 Network Communication

From the hardware point of view, the current most dominant interconnect families used in
the high-performance computing (HPC) world are Ethernet and In�niband, each being used
in ca. 200 of the "Top 500 Supercomputers" listed by [Top]. While both technologies provide
bandwidths of above 100 Gb/s, we decided on the former for practical considerations such as
being better established in the market.

Network communication is what ties together the separate database server instances on the
di�erent cluster nodes1 into a single "distributed system"; it is their only means of coordination
(e.g. Master-Worker interactions) and cooperation (i.e. distributed query execution). As such,
choosing an appropriate network communication paradigm is of great importance to our project.

The most distinctive models for communication that we considered for implementing our par-
allel DBMS engine are listed below, according to the level of abstraction they provide to the
programmer (from highest to lowest):

1. distributed shared memory (DSM)

2. remote procedure calls (RPC)

1On a given node it usually makes sense to run a single database server instance, so throughout the text we
use these two terms interchangeably.

8
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3. message passing interface (MPI)

4. raw socket programming

Distributed shared memory (DSM) is memory which, although distributed over a network of au-
tonomous computers, gives the appearance of being centralized [SG95]. Specialized middleware
or libraries allow both local and remote memory to be accessed through virtual addresses and
thus processes become able to communicate by reading and modifying data which is directly
addressable. Allowing programmers to use the concept of shared memory, DSM makes program-
ming parallel/distributed applications considerably easier. However, this comes at the expense
of performance and scalability limitations and, since for our project the importance of high
performance clearly outweighs the bene�ts of distribution transparency for the programmer,
DSM was easily ruled out.

At the other extreme, programming against the raw socket API could potentially give the best
results in terms of performance, but only if considerable development e�ort is invested. This
was not an option for our project, given the strict time constraints we had. Moreover, such
an approach would not have been portable, since the implementation would be network fabric
speci�c (e.g. socket API vs In�niband Verbs).

While RPC would be feasible performance-wise, its synchronous and centralized (i.e. client-
server) nature makes it incompatible with our our communication pattern, in which any node
(be it Master or Worker) needs to be able to initiate communication with any other node during
the distributed query execution stage and this communication must be asynchronous in order
to overlap.

Therefore, we decided to rely on MPI (Message Passing Interface), which is considered to be
the "de facto" standard for communication among processes that model a parallel program
running on a distributed memory system. MPI is extensively used in the high performance
computing community and o�ers users a rich and well de�ned API for collective and point-to-
point communication.

2.2 "Virtual" Shared Disk

Shared Disk versus Shared Nothing

As explained before, our goals include creating a pararallel database that is easy to use and
maintain, without making radical changes to the existing Vectorwise architecture. We argue
that these goals are not incompatible with the primary requirement of obtaining improved
OLAP query processing performance and we aim to explain below how using a "Virtual Shared
Disk" approach can provide the solution to all this.

[Hog09] presents a concise and rather informal, but extremely insightful comparison of the
Shared Disk (SD) and Shared Nothing (SN) architectures, elaborating on the advantages and
disadvantages of each with respect to several functional and non-functional requirements.

The crucial di�erence between the two approaches is whether or not explicit data partitioning
is required. SD does not require it, as every node of the cluster has full access to read and
write against the entirety of the data. On the other hand, the latter statement does not hold
in the case of a SN architecture and additional e�ort is required for designing a partitioning
scheme that minimizes inter-node messaging, for splitting data among the cluster nodes and
for implementing a mechanism to route requests to the appropriate database servers.

Moreover, the additional e�ort involved with data partitioning is not only required once, during
the initial set-up of the system, but rather periodically, as a part of a maintenance routine. This
is because as data gets added or removed from the database, the initial partitioning scheme can



CHAPTER 2. APPROACH 10

become sub-optimal. This is especially the case if the query pattern changes over time. Also,
a SD database system is naturally suited for dynamic load-balancing, while a SN system can
only allow limited load balancing, based upon the chosen partitioning scheme.

However, in terms of performance, the scalability of a shared-disk approach is limited by the
inter-node messaging required for cooperative query execution and general coordination (e.g.
resource management, locking, heart-beat, etc.). Shared-nothing systems typically require less
or no such coordination overhead. However, their performance is highly impacted by the ne-
cessity of function- and data-shipping in cases when (e.g. Join) requests span multiple nodes.

The general idea is that, with good partitioning schemes, function- and data-shipping can be
avoided for most query patterns, leading to optimal results in terms of performance. The big
challenge is, however, devising such a good partitioning scheme and to maintaining automati-
cally, without user intervention, by regularly re-partitioning and re-balancing data across the
cluster nodes. While this is indeed one of the major goals in the quest towards an MPP version
of Vectorwise, we deemed it too complex a task to tackle in our pioneering project.

Cluster File System

Considering all the above arguments, we decided to follow the Shared Disk approach. There are
several choices available for o�ering nodes of a cluster access to the same (shared) �le system
(sometimes referred to as a "cluster �le system"). [Heg06] elaborates on the overlapping and
often confusing terminology surrounding this subject, giving real-world examples to illustrate
the various concepts. In short, from a hardware point of view, three major approaches for
building a cluster �le system can be distinguished:

• network-attached storage (NAS)

• storage area networks (SAN)

• direct-attached storage (DAS) + distributed parallel �le systems (DPFS)

While NAS devices are generally considered to be easy to use and maintain, they either do not
scale (e.g. NFS servers), or require costly, specialized hardware (e.g. dedicated NAS appliances).
In any case, their performance is inherently limited by the use of �le-level protocols. While the
second alternative, namely SAN, can provide high performance in terms of I/O throughput (due
to block-level protocols) and does scale well, it also requires specialized hardware (e.g. Fiber
Channel adapters and fabrics) that is costly and di�cult to set-up and maintain. Therefore,
we considered NAS and SAN to be incompatible with our stated direction towards a simple,
cost-e�ective, yet e�cient solution and focused our attention on distributed parallel �le systems.

The advantage of DPFS is that they provide easily extensible, scalable and relatively e�cient
cluster �le system solutions using commodity hardware, eliminating the need for additional
infrastructure. Moreover, high availability comes at a cheap price. The "distributed" term in
DPFS refers to the property that clients have knowledge about and directly communicate with
multiple �le servers, while the "parallel" term indicates that a single �le, or even a single I/O
request, can be striped across multiple servers for improved performance. In a simple DPFS
con�guration, cluster nodes typically act as both data clients and servers, contributing with
their local disk drives to a globally accessible logical volume.

Several DPFS solutions are available free of charge, under GPL license: Lustre [Sch03], PVFS
[CLRT00], Gfarm [THS10], Ceph [WBM+06], or GlusterFS [Glu]. Of all these, Lustre strikes
as the most mature, e�cient and scalable solution, being often used as a performance yardstick
of its �eld and powering many of the top supercomputers listed by [Top]. Unfortunately, it
remains notoriously di�cult to deploy and maintain, the main reasons for this being that it runs
completely in kernel space (requiring a patched Linux kernel) and has a complex architecture,
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involving separate management, meta-data and storage servers. The authors of [MKAB04]
report investing several days' e�ort into getting Lustre installed.

Of the remaining DPFS solutions identi�ed above, we focused on GlusterFS, wich has a good
reputation in terms of manageability, scalability, as well as performance. It has often been used
in production systems, or as the foundation for various pieces of academic research.

GlusterFS is a highly adaptable, feature rich, POSIX-compliant DPFS that runs completely in
user-space and can work with either Ethernet or In�niband fabrics. It provides data striping,
replication and self-healing capabilities. Moreover, we found it to be particularly easy to set-up
and manage. As such, we proceeded with relying on GlusterFS to ful�ll the "Shared-Disk"
assumption.

2.3 Experimentation platform

Following the envisioned "approach" and direction, our small Linux cluster is set up in accor-
dance with all the above-mentioned considerations and it has served as an experimentation and
test platform throughout the development of our prototype. A brief description of its relevant
hardware and software components is given below.

Hardware

Nodes: 2 × 2 hot-pluggable systems (nodes) in a 2U form-factor (4 nodes in total).

CPUs: 2 Intel Xeon E5645 processors (6 cores, 2.40 GHz, 12 MB cache) per node; Hyper-
Threading disabled

Memory : 48 GB DDR3 per node

Storage: 4 solid-state drives (128 GB) per node

Network : 40 Gbit/s In�niBand Interconnection

• 4X quad data rate (QDR) Host Channel Adapters (HCAs)

• 8-port Mellanox In�niscale-IV switch

Software and Middleware

The four cluster nodes run a minimal installation of the CentOS (release 6.2, kernel version
2.6.32-220) Linux distribution, which was chosen based on it being widely popular1 and available
free of charge.

Of the available MPI implementations we narrowed our choice down to MVAPICH22 and Intel
MPI3, which both rank high when evaluated according to the following criteria (listed in the
order of importance for our project):

1. full multi-threading support (MPI_THREAD_MULTIPLE )

2. compliance with the MPI-2 standard

3. achieving good performance on In�niband fabrics

1In July 2010 CentOS was the most popular Linux distribution on web servers, according to http://w3techs.
com/blog/entry/highlights_of_web_technology_surveys_july_2010

2MVAPICH2: http://mvapich.cse.ohio-state.edu/overview/mvapich2/
3Intel MPI: http://software.intel.com/en-us/articles/intel-mpi-library/

http://w3techs.com/blog/entry/highlights_of_web_technology_surveys_july_2010
http://w3techs.com/blog/entry/highlights_of_web_technology_surveys_july_2010
http://mvapich.cse.ohio-state.edu/overview/mvapich2/
http://software.intel.com/en-us/articles/intel-mpi-library/
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4. extensive user base and successful use in industry applications

We eventually decided on the MPI implementation provided by Intel (Intel MPI Library 4.0
Update 3 ), for the fact that we found it to be easier to use and con�gure, especially in com-
bination with advanced debugging and pro�ling tools such as the ones provided by the Intel
Cluster Studio suite1.

A software RAID array of level 0 (i.e. block-level striping without parity or mirroring) was
assembled out of the four solid state drives (SSDs) on each node, in order to achieve maximum
I/O throughput. The resulting arrays were then used as building components of the distributed
�le system. More precisely, using GlusterFS (ver. 3.2.6) we assembled a "striped volume" (with
no replication), for the same reason of maximizing I/O throughput. Unfortunately, however,
the benchmarks in the next section show that the results obtained with this con�guration under
typical Vectorwise workloads are signi�cantly worse than expected.

2.3.1 Micro-benchmarks

Network Performance

To measure the performance of the available network fabric we used the In�niBand Diagnostic
Tools package (IBD) delivered as part of the Mellanox OFED software stack (the In�niband
�rmware). In addition, we used the Intel MPI Benchmark Suite (IMB) to asses the performance
of the chosen MPI implementation. IMB o�ers a concise set of elementary MPI benchmarks
designed for di�erent communication patterns. For a detailed description, the reader is referred
to [IMB].

In short, PingPong is the classical pattern used for measuring the throughput of (uni-directional)
communication between two processes. PingPing measures asynchronous, uni-directional com-
munication throughput in the case when outgoing messages are obstructed by incoming ones.
SendRecv measures the bi-directional throughput that can be obtained with the MPI_SendRecv
primitive, while Exchange is an asynchronous, bi-directional communication pattern that closely
resembles the one required by the Distributed Xchg Hash/Range Split operators which will be
described in the following chapters.

Figure 2.1 presents the uni- and bi-directional network throughput values reported by the
IMB and IBD tools as functions of the message size. The results show that, for su�ciently
large messages (1MB or above), Intel MPI reaches close to 100% bandwidth utilization.

Another network performance metric that is relevant in our case is message latency. From
this point of view, In�niband is known to be among the most e�cient network fabrics available.
On our hardware, both IBD and IMB tools report end-to-end message latencies of ca. 1.4
microseconds.

Disk and GlusterFS I/O Throughput

To test the performance of the "virtual" shared disk, we used the traditional "dd test" (using
the dd2 Linux command line utility), as well as an in-house tool (called xib) for measuring I/O
read throughput by writing and reading a large �le with a typical Vectorwise access pattern.

With the dd tool we measured the single-threaded sequential read access speed, by executing
the following command with values for block_size ranging from 64KB to 16MB:

dd if=dd_�le.dat of=/dev/null i�ag=direct bs=<block_size> count=<1GB/block_size>

1Intel Cluster Studio XE: http://software.intel.com/en-us/articles/intel-cluster-studio-xe/
2dd: http://pubs.opengroup.org/onlinepubs/9699919799/utilities/dd.html

http://software.intel.com/en-us/articles/intel-cluster-studio-xe/
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/dd.html


CHAPTER 2. APPROACH 13

Figure 2.1: Achievable Network Throughput Reported by IMB

By contrast, with xib we performed a more advanced test, measuring multi-threaded, random
read access speed for the same block size values. We compared the throughput reported by the
two tools on one node's RAID 0 array with those obtained on the GlusterFS volume.

The results shown in Figure 2.2 indicate that the throughput of the GlusterFS volume does not
exceed 110 MB/s, regardless of the block size used, even though its individual building blocks
(i.e. RAID 0 arrays) are capable of delivering up to ca. 730 MB/s read throughput (as reported
by the xib tool) and the volume is striped, hence supposed to perform even faster than that. We
did not manage to overcome this performance limitation, despite all our e�orts to troubleshoot
the GlusterFS installation and tune its parameters.

Due to the limited time we had at our disposal, we eventually decided to continue with using
GlusterFS for providing the shared-disk illusion, but prevented it from having any impact on
the performance benchmarks we will present throughout this thesis. As explained in Chapter
6, we ensured this by always measuring "hot runs" only, that are non-initial runs of a query
for which all the required data is available in the memory-resident I/O cache, such that the
underlying �le system does not need to be involved at all.

Moreover, to simulate the e�ects of a good partitioning scheme, all the tests were run against
data stored by clustered databases, which in Vectorwise terminology translates into partitioning
of tuples within �les according to one or more attributes. This way, we bene�ted from all the
e�ects data locality would have on our generated parallel/distributed plans.

In hindsight, more time should have been invested into a more careful analysis of the various
DPFS o�erings before going forward with a particular one. In fact, all choices made in the
second part of Section 2.2 should be revisited. For example, if no suitable parallel �le-system can
deliver the performance sought, explicit partitioning can be employed in Vectorwise together
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Figure 2.2: I/O Read Throughput

with an abstraction layer in the Bu�er Manager, that is responsible for granting (possibly
remote) data requests. In any case, however, all the work presented henceforth is completely
independent on the way the "Shared-Disk" assumption is ful�lled and therefore remains valid.

2.4 Distributed Vectorwise Architecture

Figure 2.3 presents the high-level architecture of our proposed version of distributed Vectorwise.
For simplicity, we followed the Master-Worker pattern, with the Master node being the single
access point for client applications. The main advantage of this approach is that it hides from
clients the fact that the DBMS they connect to actually runs on a computer cluster.

It is hence inevitable that the Master node must become involved in all queries issued to the
system, in order to gather results and return them to clients, at a minimum. However, as can
be seen in the architecture diagram, we assigned it more work than this, making it the only
node responsible for:

• parsing SQL queries and optimizing query plans

• keeping track of the system's resource utilization, as it has knowledge of all queries that
are issued to the system

• taking care of scheduling / dispatching queries, based on the above information

• producing the �nal, annotated, parallel and possibly distributed query plans



CHAPTER 2. APPROACH 15

Client Application

SQL Parser

Optimizer

Rewriter

Builder

Query Execution Engine

Buffer Manager

In
gr

es
Ve

ct
or

w
is

e

data request

physical operator tree

annotated plan (VW alg.)

query plan (VW alg.)

parsed tree

client query (SQL)

re
su

lts

data

Builder

Query Execution Engine

Buffer Manager
data request

physical operator tree

data

annotated

plan (VW alg.)

Storage ("Virtual" Shared Disk)

Vectorwise

I/O request dataI/O request data

Worker Node

data
exchange

M
as

te
r N

od
e

Figure 2.3: Architecture of the Ingres/Vectorwise System

• broadcasting them to all worker nodes that are involved

Moreover, depending on the system load and scheduling policy, the Master may also get involved
in query execution to a larger extent than simply gathering results.

The rationale behind this decision is twofold. First, as previously explained, our system is
intended for highly complex queries across large volumes of data. In this situation, the vast
majority of the total query processing time is spent in the query execution stage. Parallelizing
the latter is enough for achieving good speedups and performing the above processing steps
sequentially is acceptable.

Second, this allows for a non-intrusive implementation, with only the following modules of the
single-node version of Vectorwise needing to be modi�ed:

• Rewriter : A new logical operator (called Distributed Exchange) is introduced in query
plans, that completely encapsulates parallelism and distribution. Also, transformations
of the parallelism rule and operator costs are adapted. (See Chapter 3)

• Builder : Every node is able to build its corresponding parts of a query execution tree and
physically instantiate the new operator. (See Chapter 4)

• Execution Engine: The new operator is implemented in such a way to allow the Master
and various Worker nodes to e�ciently cooperate (e.g. exchange data, synchronize) when
executing a given query. No other changes were required at this layer. (See Chapter 4)



Chapter 3

Introducing Parallelism into Query

Plans

3.1 Preliminaries

In every relational DBMS, the query optimizer module is responsible for generating an e�cient
execution plan for a given query [Cha98]. The execution plan is usually a tree of operators that
are de�ned on the physical level, e.g. they de�ne if a Join is done by hashing or merging or if the
Scan is indexed or not. Given that the number of equivalent execution plans is usually quite
large (this number is in�uenced by the number of di�erent implementations, the join order,
etc.), the query optimization problem becomes a search problem where:

• the search space consists of all the functionally equivalent execution plans

• the cost model assigns an estimate cost to a plan

• the search strategy is the enumeration algorithm which explores the search space and
chooses the execution plan with the best cost

The process of query optimization in the Vectorwise/Ingres DBMS is run in two distinct phases
[Ani10]:

1. query optimization on the Ingres side: this is the standard relational optimization part
where, for example, the order of the Joins is established or where the SQL operators are
mapped to a physical implementation

2. local optimization in the Vectorwise Rewriter module

This chapter will focus only on the parallelism rule of the Vectorwise Rewriter and the modi�-
cations it requires to produce distributed query execution plans.

3.2 Vectorwise Algebra

The Vectorwise engine accepts queries expressed in the Vectorwise algebra. After parsing and
optimizing a SQL query, Ingres creates a query plan composed of algebraic operators de�ned at
the physical level. Figures 3.1 and 3.2 illustrate how Query 14 of the TPC-H set is translated
from SQL into the relational Vectorwise algebra.

16
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Figure 3.1 TPC-H query 14 expressed in SQL
select 100.00 * sum(case when p_type like 'PROMO%'

then l_extendedprice * (1 - l_discount)
else 0
end) / sum(l_extendedprice * (1 - l_discount)) as promo_revenue

from lineitem, part
where l_partkey = p_partkey and l_shipdate >= date '1995-09-01'

and l_shipdate < date '1995-09-01' + interval '1' month;

In Figure 3.2, tuples are �rst scanned from the part table by the MScan operator. Then, they
are joined with tuples scanned from the lineitem table with l_shipdate in September, 1995.
Note that all arithmetic operations in the Vectorwise Algebra are expressed using the pre�x
notation. Finally, two Project and an Aggr operator calculate the revenue generated by the
promotional items sold and rename its percentage of the total revenue into promo_revenue.

The HashJoin01 andMScan are two examples of operators de�ned in the Vectorwise algebra
whose name carries information about their implementation. This section will focus more on
the syntax of the Xchg operators, as they are responsible for introducing parallelism in the
Vectorwise engine. Nevertheless, an overview of the syntax of most of the Vectorwise algebraic
operators is given in Table 3.1.

Figure 3.2 TPC-H query 14 expressed in Vectorwise algebra

Project(
Aggr(
Project(
HashJoin01(
Select(
Select(
MScan(

lineitem,['l_partkey','l_shipdate','l_discount','l_extendedprice']
), >=(l_shipdate, date('1995-09-01'))

), <(l_shipdate, date('1995-10-01'))
), [l_partkey],

MScan(
part, ['p_partkey','p_type']
), [p_partkey]

), [a=ifthenelse(like(p_type, str('PROMO%')),
*(-(decimal('1'),l_discount),l_extendedprice),
decimal('0.0000')),
b=*(-(decimal('1'),l_discount),l_extendedprice)]

), [] , [c = sum(b), d = sum(a)]
), [promo_revenue = /(*(d, decimal('100.00')),c]

)

3.2.1 Xchg Operators

The key to parallelism in relational DBMSs is to partition data into streams that can be pro-
cessed concurrently and independently. In the Volcano model, exchange operators (abbreviated
Xchg) control the �ow and number of streams in parallel query execution trees [Gra90]. They
do not modify data, but are merely responsible for redistributing it. The syntax of the Xchg
operators in the Vectorwise algebra is presented in Table 3.2, while a detailed description of
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Name Attributes

MScan table columns
Array dimensions
Select relation condition
Project relation columns
NullOp relation
As relation name
Aggr relation grpby list aggr list
OrdAggr relation grpby list aggr list
Sort relation columns
TopN relation columns N
CartProd relation1 relation2
MergeJoin relation1 keys1 relation2 keys2
HashJoin relation1 keys1 relation2 keys2 condition

where:
relation the data-�ow
table the table to scan
columns the columns to scan/project/sort after
dimensions boundaries in every direction when generating tuples

e.g. an Array with dimensions (5, 4) only generates
integer tuples (a, b) with 0 ≤ a < 5 and 0 ≤ b < 4

condition the condition used in the Select/Join
name the alias name
keys the columns that participate in the Join
grpby list the columns to group by
aggr list the list of columns used in the aggregation

Table 3.1: Some of the operators de�ned in the Vectorwise algebra

their implementation will be given in Section 4.1. We will proceed with an informal description
of each:

• Xchg(N:M) this operator consumes tuples from N Producer streams and outputs them
to M Consumer streams. It is mainly used for load balancing.

• XchgUnion(N:1) is an Xchg operator with a single consumer (M=1). It is the top-most
Xchg operator introduced in every parallel plan.

• XchgDynamicSplit(1:M) is an Xchg operator with M consumer threads and a single pro-
ducer (N=1). The tuples produced by this operator are distributed to consumers in the
order of their requests (thus, in a dynamic fashion) and one tuple is consumed by exactly
one consumer (thus, the tuples are split among the consumers).

• XchgHashSplit(N:M) is an Xchg operator that redistributes the data according to a hash
function that is applied to one or more tuple attributes. This operator is often used to feed
operators that have certain partitioning requirements, like HashJoins or Aggregations.
More on this subject in Section 3.3.1.

• XchgDynamicHashSplit(1:M) it is a HashSplit with exactly one producer (N=1). Al-
though the name of the operator might suggest a dynamic distribution, all tuples are
assigned to a speci�c consumer and therefore they are deterministically split.

• XchgBroadcast(N:M) inputs tuples from N producer streams and outputs them to every
of its M consumer streams.
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• XchgRangeSplit(N:M) consumes tuples from N producer streams and splits them to M
consumer streams, according to the range the value of the key attribute belongs to. The
ranges are de�ned by the ranges parameter.

Name Attributes

Xchg relation num_prod
XchgUnion relation num_prod
XchgDynamicSplit relation
XchgHashSplit relation keys num_prod
XchgDynamicHashSplit relation keys
XchgBroadcast relation num_prod
XchgRangeSplit relation key ranges num_prod

where:

num_prod number of producer streams
keys the partitioning columns used by the HashSplit operator
key the attribute used in the RangeSplit operator
ranges a list of ranges that cover the domain of the key attribute

Table 3.2: The Xchg operators de�ned in the Vectorwise algebra

The reader might have noticed that in the de�nition of the Xchg operators in the Vectorwise
algebra (Table 3.2) the number of consumer streams is omitted. The reason behind this is that
this information can be obtained from one of its ancestors (i.e. the number of producer streams
of the closest Xchg ancestor or 1 if there is no such ancestor). Figure 3.3 illustrates a parallel
query plan for query 14 that incorporates the Xchg operators. With the exception of the family
of Xchg operators, all operators in the Vectorwise algebra are oblivious to parallelism, i.e. they
process tuples in the same way they would in a sequential plan.

3.2.2 Extending the Vectorwise Algebra

The family of Xchg operators of the Vectorwise algebra permits the construction of parallel
execution trees that run locally, on a single machine. In order to create distributed plans, the
algebra needs to be augmented with distributed Xchg operators (from now on referred to as
DXchg) that specify on which machines and on how many streams the data is to be processed.

The main design choice that arises when adding this new operator is whether it will be a com-
plement to the existing Xchg operator or it will replace it and provide (distributed) parallelism
by itself. Figure 3.4 illustrates the two approaches to introducing a DXchg operator into query
execution trees.

The �rst approach consists of two layers of distribution: a �rst one done across nodes, and a
second one done locally using the old Xchg operator. The second approach is based on pairwise
connections between every stream on every machine. Considering implementation details too,
we will proceed with a comparison of the bene�ts and drawbacks of each approach.

Two-layer approach - Advantage The resources needed to implement this approach are
considerably fewer. This is because there are two synchronization phases: one in the Xchg
operator and the other in the DXchg operator. Thus, the memory complexity becomes O(n+ t)
1, where n is the number of nodes and t is the maximum number of threads running on one
machine. This permits this approach to scale signi�cantly more than its alternative in terms of
memory usage.

1The synchronization between n producer streams and p consumers streams has a memory complexity in the
class of O(np) assuming private bu�ers
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Figure 3.3 Multi-core parallel query plan produced by the Rewriter for TPC-H query 14
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), [], [c = sum(c_p), d = sum(d_p)]
), [promo_revenue = /(*(d, decimal('100.00')),c]
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Figure 3.4: Two approaches to distributed Xchg operators
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Two-layer approach - Disadvantages

• a new rule needs to be implemented to introduce the new DXchg operator into query plans.
Since all transformations(Section 3.3.2) that are used to introduce the Xchg operator can
be used to introduce the Dxchg operator too, more than 5000 lines of possibly duplicated
code would be needed in this implementation1.

• query plans written in the Vectorwise algebra assume that all operators are identical, re-
gardless of the stream of data they process. What this means is that two Xchg operators
that belong to the second layer of distribution will always have the same number of pro-
ducers (or consumers, depending whether the Xchg operator is used for merging streams
into the Dxchg or splitting the stream that �ows out of the Dxchg). While this is not
an issue when a query is run in solitary on a homogeneous cluster, when multiple queries
are running concurrently and the nodes are unbalanced in terms of load, producing such
plans would only degrade the performance.

Single-layer approach - Advantages

• it preserves the simplicity and consistency of the current model, i.e. a single operator is
responsible for introducing parallelism

• the modi�cations made to the Rewriter are straight-forward as the only di�erence between
the DXchg and the Xchg is that they di�er in signature, i.e. the producer attribute of the
DXchg is a list of integers that speci�es the number of producer streams on each machine

Single-layer approach - Disadvantage The most important drawback of this approach is
that, when implemented, it has a memory complexity of O(nt2) (more details in Section 4.3.4).

A possible additional disadvantage of the single-layer approach would be that creating and
managing such a high number of connections would add considerable overhead to the imple-
mentation. However, our choice of communication library, namely MPI, would e�ectively handle
this problem.

Some improvements could be made to both approaches:

• the Vectorwise algebra can be extended to allow query plans with Xchg operators that
have di�erent numbers of producers on di�erent machines, in order to alleviate the second
disadvantage of the two-layer approach.

• the memory complexity of the second approach can be reduced to as low as O(nt) at the
expense of some synchronization overhead. Suppose, for example, that k < t bu�ers are
allocated for a particular consumer. When p > k producers on one machine need to write
data destined for the same consumer, p − k producers will have to wait at least once to
get a free bu�er.

Given the short amount of time allocated to the project, these improvements do not make the
scope of this thesis. Nevertheless, they were considered when a decision was made and are
brie�y presented in Section 6.4.

Overall, considering that the intrusiveness of the �rst approach would violate one of the goals
and that it would also restrict the search space, we have decided to take the second approach.
Implementing the second optimization to reduce the memory complexity is on our future work
agenda.

1The current rule that introduces parallelism in the Vectorwise Rewriter is implemented in ≈ 5000 lines of
Tom code (http://tom.loria.fr)

http://tom.loria.fr
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3.2.3 DXchg Operators

The novel DXchg operators have the same syntax as the original Xchg operators, with the
exception that instead of a single integer, the producers are expressed as a list of pairs (ni, pi)
denoting that the DXchg operator has pi producers on node ni. Table 3.3 contains a summary
of the syntax of all DXchg operators implemented in the system.

Name Attributes

DXchg relation num_prod id_prod tds_prod
DXchgUnion relation num_prod id_prod tds_prod
DXchgDynamicSplit relation prod
DXchgHashSplit relation keys num_prod id_prod tds_prod
DXchgDynamicHashSplit relation keys prod
DXchgBroadcast relation num_prod id_prod tds_prod
DXchgRangeSplit relation key ranges num_prod id_prod tds_prod

where:
num_prod number of producer nodes
id_prod the identi�ers of the producer nodes, e.g. MPI ranks
tds_prod the number of threads (streams) running on the producer nodes
prod a single identi�er for the producer of the Dynamic operator

Table 3.3: The DXchg operators de�ned in the Vectorwise algebra

We give an generic representation that will be used in the following chapters, that also contains
the number of consumers for clari�cation purposes:

< DXchg_op > [(n1, p1), (n2, p2), ..., (nP , pP ) : (m1, c1), (m2, c2), ..., (mC , cC)],

where a pair (ni, pi) means that pi streams produce data on node ni and a pair (mi, ci) means
that ci streams consume data on node mi.

3.3 Distributed Rewriter

The Vectorwise Rewriter is responsible for annotating the query plan with data types or infor-
mation that will be used in the Builder, for eliminating dead code or for optimizing the query
plan by introducing parallelism. All these actions are done by using a set of rules that modify
the query tree. This section will focus on the rule that introduces parallelism.

The existing parallelism rule in the Vectorwise Rewriter consists of three phases:

1. determining the cost for the sequential plan and getting the maximum level of parallelism
mpl 1

2. determining the best plan using at most mpl cores

3. updating the system state

Section 3.2 showed how a DXchg operator can partition data such that it is suited for distributed
processing. Incorporating these operators into sequential query plans is done in the Vectorwise
Rewriter using transformations. They provide equivalent alternatives to existing query plans
(both sequential and parallel) by introducing DXchg operators at di�erent levels of the query

1It is roughly the number of cores available. A more detailed description of how the maximum level of
parallelism is calculated will follow in Chapter 5
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trees. Section 3.3.1 will focus on how the "equivalence" is preserved, while section 3.3.2 will
discuss in detail some examples of transformations.

3.3.1 Structural Properties

In order to parallelize operators like Aggregation or Join, some structural properties have to
hold when partitioning the data. For example, a Join that operates on partitioned relations
will produce the correct result only if both of its children are partitioned on the key columns.
Following the work in [ZaLC10], a two-layer classi�cation of such structural properties will be
made:

1. Partitioning applies to the whole relation and is therefore a global property. Formally,
a relation is partitioned on the set of columns P if:

(∀i, j)ΠP (ai) = ΠP (aj)⇒ Part(ai) = Part(aj)

where ΠP (a) is the projection of row a on columns P and Part(a) denotes the partition
to which row a has been assigned. The attributes in P are called the partition keys. In
the Vectorwise Rewriter, each partition is associated to a parallel stream. Consequently,
the order of tuples within a partition is preserved, but two tuples belonging to di�erent
streams can be processed in any order.

2. Grouping (or Clustering) is a local property as it de�nes how data is arranged within
a partition. More speci�cally, a relation is grouped on columns C if:

(∀i ≤ j ≤ k)ΠC(ai) = ΠC(ak)⇒ ΠC(ai) = ΠC(aj) = ΠC(ak).

The columns in C are called the grouping keys. In [Ani10], this property is presented as
global when P = ∅ and the streams in which it holds are called clustered streams. However,
when P 6= ∅ grouping becomes a property of tuples within that partition. Therefore, it
makes sense to consider grouping as characteristic of the layout of a partition (even when
there is a single partition).

3. Sorting is another local property that characterizes the order of rows within a partition.
Formally, a relation is sorted on columns S if:

(∀ai, aj)i ≤ j ⇒ ΠS(ai) ≤ ΠS(aj) or

(∀ai, aj)i ≤ j ⇒ ΠS(ai) ≥ ΠS(aj)

where a ≤ b states that a is lexicographically smaller or equal than b. The columns in S
are called the sorting keys. Note that the order of columns in S matters in this case.

3.3.2 Vectorwise Rewriter

This section will get the reader acquainted with the elements of query optimization implemented
in the parallelism rule.

A search state is a tuple (X, Str, Res, P, C, S). Table 3.4 provides a detailed description of
the tuple values.

Transformations are used in the parallelism rule to enumerate equivalent plans of a given
query. To guarantee that a tested plan produces correct results, a transformation is applied to
a subtree of a query plan only if:

• the output of the transformed plan has the same structural properties as the original plan
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Attribute Description

X subtree of the query plan
Str how many streams the subtree has to produce per machine
Res resources (e.g. cores) still available per machine
P a set of keys after which the output streams have to be partitioned.

∅ denotes non-partitioned streams.
C a set of columns after which the output partitions have to be grouped.

∅ denotes non-clustered streams.
S a list of columns after which the output partitions have to be sorted.

Am empty list denotes non-sorted streams.

Table 3.4: A search state (X, Str, Res, P, C, S) in the Vectorwise Rewriter

• the input requirements of the root operator of the subtree can be enforced on its children
output streams

Table 3.5 contains the transformations implemented in the Vectorwise Rewriter. The rest
of this section will provide only some insight into the most interesting transformations. A
comprehensive description of them is given in [Ani10].

There are two additionalMScan transformations that handle the cases in which output streams
have to be clustered. These transformations do not modify the query plan, but only annotate
the MScan node with some information about the ranges to scan in the clustered database
and therefore were not included in Table 3.5.

Consider the 18th transformation. This subtree has to produce Str > 1 streams and the
transformation modi�es the plan by introducing a DXchgBroadcast on the right side of the
Hashjoin. When executing this plan, there will be a HashJoin that operates on each stream
and will join a di�erent part of the r1 relation with the whole r2 relation. In the HashJoin
operator, the right relation (or inner relation) is only used to build the hash table. Therefore,
the structural properties of the relation produced by the HashJoin operator are not in�uenced
by r2, so we can relax them.

Let us take another example, the 12th transformation. In the transformed plan, the aggregation
is forced to produce multiple streams at �rst, then an DXchgUnion "gathers" all the results
and, �nally, these results are aggregated once more in order to ensure correctness. Depending
on the type of aggregation performed, the parameters of the second Aggr operator can be set,
e.g. a count aggregation would impose that the second Aggr sums the partial results.

Search space As the Rewriter only has to introduce DXchg operators into already optimized
plans, there is little concern about the explosion of the search space. This is because:

• transformations are only applied to subtrees with strict structural requirements for their
output relation

• there is a one-to-one mapping between a transformation and the enforced child require-
ments

• dynamic programming is used: only the generated query sub-plans with an optimal cost
are stored, everything else is pruned [Ani10]
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No. Output requirements Transformed plan Child requirements

1 P = ∅, C = ∅ Project(T(r)) none
2 P 6= ∅, C = ∅, S = ∅ DXHS(Project(T(r))) P = ∅
3 P,C Project(T(r)) P ′, C ′ 1

4 none Select(T(r)) none
5 P 6= ∅, S = ∅ DXHS(Select(T(r))) P = ∅
6 Str = 1 2 , S = ∅ DXU(Select(r))) Str > 1
7 none TopN(T(r)) none
8 Str = 1 TopN(DXU(T(r))) Str > 1
9 Str = 1, S ⊆ sortlist Sort(T(r)) S = ∅
10 P 6= ∅, C 6= ∅, S ⊆ sortlist Sort(T(r)) P = C = ∅, S = ∅
11 Str = 1 Aggr(T(r)) none
12 Str = 1, S = ∅ Aggr(DXU (Aggr(T(r)))) Str > 1
13 Str = 1, S = ∅ DXU(Aggr(T(r))) P = grpby, Str > 1
14 Str > 1, P = grpby Aggr(T(r)) none
15 P 6= ∅ DXHS(Aggr(T(r))) P = grpby
16 Str = 1, P, S HashJoin(T(r1), T(r2)) Pr2 = Sr2 = ∅
17 Str = 1, S = ∅ DXU(HashJoin(T(r1), T(r2))) Str > 1
18 Str > 1 HashJoin(T(r1), DXBC(T(r2))) Pr2 = Cr2 = Sr2 = ∅
19 Str > 1, P = ∅ HashJoin(T(r1), T(r2)) Pr1 = K1, Pr2 = K2

20 Str > 1, P 6= ∅, C = ∅ DXHS(T(HashJoin(r1, r2))) P = ∅
21 Str = 1 MergeJoin(T(r1), T(r2)) Sr1 = K1, Sr2 = K2

22 Str = 1, S = ∅ DXU(MergeJoin(T(r1), T(r2))) Str > 1
23 Str > 1, P = ∅, C = ∅ MergeJoin(T(r1), T(r2)) Pi = Ci = Si = Ki, i=1,2
24 Str > 1, (P,C ⊆ K1 ∨ P,C ⊆ K2) MergeJoin(T(r1), T(r2)) Pi = Ci = Si = Ki, i=1,2
25 Str > 1, P 6= ∅, C = ∅ DXHS(T(MergeJoin(r1, r2))) P = ∅
26 Str = 1 ∨ (Str > 1, P = ∅, C = ∅) MScan not applicable
27 P 6= ∅, C = ∅ DXHS(MScan) not applicable
28 Str = 1, P = ∅ CartProd(T(r1),T(r2)) none
29 Str > 1, P 6= ∅, C = ∅ DXDHS(CartProd(T(r1),T(r2))) P = ∅, Str1 = Str2 = 1
30 Str > 1, P = ∅, C = ∅ CartProd(T(r1),DXBC(T(r2))) none
31 Str = 1 OrdAggr(T(r)) C = grpby
32 Str = 1, S = ∅ DXU(OrdAggr(T(r))) P = C = S = grbpy
33 Str > 1, P = ∅ OrdAggr(T(r)) P = C = S = grpby

where:

r is the child relation of the root operator
T(r) is an equivalent plan of r
Ki are the keys used in the Join
grpby is the set of group-by columns of the aggregation operator
sortlist is the list of columns by which the sorting is done
DXHS abbreviation for DXchgHashSplit
DXU abbreviation for DXchgUnion
DXDHS abbreviation for DXchgDynamicHashSplit
DXBC abbreviation for DXchgBroadcast

If an attribute of the search state is not speci�ed in the output requirements, then that trans-
formation applies to that search state regardless of the value of the attribute. The child re-
quirements only contain those attributes that di�er from the output requirements.

Table 3.5: The transformations implemented in the Vectorwise Rewriter

1P ′ and C′ are the columns from the child relation that are used in the projection list, see [Ani10]
2Although Str is a list of integers, we use this notation to express that the operator has to produce only 1

stream on a particular machine
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Cost model With the exception of the family of DXchg operators, all of the operators de�ned
in the Vectorwise Algebra are oblivious of distribution. Therefore, the cost formulas for these
operators remain unchanged in a distributed setting and the reader is referred to [Ani10] for
a more detailed description of them. This section will present the cost formulas of the novel
DXchg operators by making use of knowledge of the implementation details that are discussed
in the following chapters.

In the Vectorwise DBMS, the cost of an operator is calculated as the sum of:

• the build cost, which is an estimate of the time it takes to allocate the resources needed
by all the instances of the operator. This allocation is done in the Builder module (see
Section 4.2).

• the execution cost, which is an estimate of the maximum total time spent in the next()
method over all the instances of the operator

In the case of a DXchg operator, the amount of memory needed depends on the size of the
bu�ers, the number of nodes and the number of receiver threads on each node. Moreover, the
build phase on two di�erent machines is done in parallel in the distributed Vectorwise DBMS
(see Section 4.4). Therefore the build cost was calculated according to the formula:

BuildCostDXchg = k ∗max(tsj |∀j) ∗ sum(tri|∀i) ∗ buffer_size + c,

where tsj represents the number of sender threads on node j, tri represents the number of
receiver threads on node i and k and c are experimentally determined parameters. Note that
the overall time of building the DXchg instances on all nodes is dominated by the time the node
responsible for building the most instances of the DXchg operator requires (i.e. max(tsj |∀tsj)
from the formula).

Since the DXchg operator performs all the operations that an ordinary Xchg operator does (see
Section 4.3.2), the execution cost for a DXchg operator should include the cost of a classical
Xchg operator and the cost of communication. However, in our implementation we make
use of the non-blocking communication primitives provided by MPI and therefore we overlap
the communication and computation to a large extent. Therefore the formula for the DXchg
execution cost should include the network transfer time only as a lower bound:

ExecutionCostDXchg =

{
spread_cost + copy_cost, if data

bandwidth < Tchild

data
bandwidth − Tchild, otherwise

where spread_cost is the cost of computing each tuple's destination, copy_cost is the cost
of copying the tuples into the bu�ers, data is the amount of data transferred by the DXchg
operator and Tchild is the total estimated execution time of the pipeline segment in the sub-tree
rooted at the child of the DXchg operator (e.g. excluding the build-phase of HashJoins or the
time spent below materializing operators). Note that the spread_cost and copy_cost form the
cost of an ordinary Xchg operator.

Example: Query 14 In the beginning of this chapter, a representation in the Vectorwise
algebra of a sequential query plan that executes query 14 of the TPC-H query set was given.
Figure 3.5 illustrates a distributed query plan for it, produced by Rewriter.

There are four nodes in the cluster, each having 12 cores. The Rewriter has decided that the
plan with the optimal cost, given the state of the system, uses 18 cores on machines n0 and n1.
To introduce the DXchg operators, the Rewriter has applied:

1. the 19th transformation. It requires both of its children to produce partitioned streams.
Data scanned from the part table is partitioned using a DXchgHashSplit operator on
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Figure 3.5 Distributed query plan produced by the Rewriter for TPC-H query 14

Project(
Aggr(
DXchgUnion(
Aggr(
Project(
HashJoin01(
DXchgHashSplit(
Select(
Select(
MScan(

lineitem,['l_partkey','l_shipdate','l_discount','l_extendedprice']
), >=(l_shipdate, date('1995-09-01'))

), <(l_shipdate, date('1995-10-01'))
), [l_partkey], 2, ['n0', 'n1'], [12, 6]

), [l_partkey],
DXchgHashSplit(
MScan(

part, ['p_partkey','p_type']
), [p_partkey], 2, ['n0', 'n1'], [12, 6]

) , [p_partkey]
), [a=ifthenelse(like(p_type, str('PROMO%')),

*(-(decimal('1'),l_discount),l_extendedprice),
decimal('0.0000')),
b=*(-(decimal('1'),l_discount),l_extendedprice)]

), [] , [c_p = sum(b), d_p = sum(a)]
), 2, ['n0', 'n1'], [12, 6]

), [], [c = sum(c_p), d = sum(d_p)]
), [promo_revenue = /(*(d, decimal('100.00')),c]
)

the p_partkey attribute, while data scanned and selected from the lineitem table is
partitioned using another DXchgHashSplit on the l_partkey attribute.

2. The 12th transformation is then applied to merge the 18 streams

After a distributed query plan has been produced by the Rewriter, it is then forwarded to the
Builder module where physical instances of operators are built (forming a physical query tree)
and, �nally, these instances are started during the execution phase. An example of physical
query tree for the plan depicted in Figure 3.5 can be found in chapter 6 (Figure 6.9b).



Chapter 4

Operator Implementation

4.1 Xchg Operators

The various �avours of the exchange operator (discussed in Section 3.2.3) are implemented in a
uniform manner, following the producer-consumer pattern. The three logical entities (producers,
consumers and bu�ers) are mirrored by physical (implementation) constructs and the unit of
work is a vector of data. Depending on the operator type, there are one or more producers and
one or more consumers, all sharing a common "state" structure which hosts the bu�er pool.

Each producer is started in a new thread and since the only way to introduce parallelism within
a query execution tree (QET) is by adding Xchg operators, it follows that each consumer also
operates in a separate thread, as it is either part of the initial stream, or it is the (indirect)
child of a producer of a di�erent Xchg operator above. Therefore, the Xchg operator can be
viewed as a synchronization point between multiple threads.

Figure 4.1: Xchg(2:3) Operator Implementation

Figure 4.1 above gives a concise, but accurate illustration of the internal structure of an Xchg

28
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operator. What follows is a brief description of the depicted components. For a more thor-
ough explanation of the implementation details, including pseudo-code fragments and micro-
benchmarks, the interested reader is referred to [Ani10].

Bu�ers The bu�er pool allows a certain degree of decoupling between producers and con-
sumers, thus enabling them to work in parallel. Bu�ers are a temporary storage space for data
coming from multiple vectors and, since they preserve the same layout, they can basically be
viewed as larger sized vectors.

More precisely, suppose that the tuples �owing through an Xchg operator consist of the following
attributes (this example will be used on several occasions throughout this chapter):

[ ID (decimal), Name (string), Birth Date (date), Income (integer) ]

Assume that on a 64bit architecture the widths of the internal data types are: 8 bytes for
decimals, string pointers and dates and 4 bytes for integers. As shown in Figure 4.2 below,
there would be one separate memory area per expression. For variable length data types such
as strings, apart from the associated pointer column, a so-called "virtual heap" (or VHeap)
structure is used to store the actual values, which consists of multiple variable-size memory
areas that are dynamically allocated whenever additional space is required.

Name (strings)Birth 
Date

Name 
(pointers) IncomeID

VHeap

Legend:

Fixed-size, pre-allocated memory area

Dynamically allocated memory area

Data of fixed-width types

Data of variable-width types

Unused memory

Figure 4.2: Xchg Bu�er Layout

During the execution of a query, there are four di�erent states bu�ers cycle through:

• EMPTY : The bu�er does not hold any data and it is not being held by any producer or
consumer. Initially, all bu�ers are in this state.

• PRODUCED : The bu�er is exclusively held by a producer, which is copying data from
its child operator into the bu�er, as long as there is enough free space.

• FULL: The bu�er was �lled and released by a producer (when it could not �t an additional
vector of data), but no consumer has claimed it yet.

• CONSUMED : The bu�er is being held by one or more consumers, which are passing data
from it to their parents.

Since the bu�er pool is shared, any bu�er state change needs to happen as an atomic operation,
hence locking is required. To reduce lock contention, it is best to combine multiple bu�er
acquisitions and releases whenever possible.

The size and number of bu�ers have an important impact on the actual degree of decoupling
between producers and consumers. The more slack allowed, the more threads can be active
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at the same time and do work in parallel. This way, processing speed variations are better
balanced (resulting in less skew), but, on the other hand, memory consumption increases, as
more data needs to be materialized. Finding a good trade-o� is an interesting optimization
problem that is tackled in [Ani10]. As the author explains, the number of bu�ers should
typically be proportional to the number of producers times the number of consumers and bu�er
size must also increase with the number of threads used.

Producers The basic task of a producer is to deliver data from its child operator to the
appropriate consumer(s). Which of the consumers is appropriate for a given tuple depends on
the exchange operator type and directly relates to the number of bu�ers that a producer must
acquire. For partitioning operators (e.g. XchgHashSplit, XchgRangeSplit), a producer needs
to hold as many bu�ers as there are consumers (because any tuple may reach any consumer).
In this case, when released, bu�ers are tagged with their addressee's identi�er. For the other
exchange operator types, producers need only one bu�er, with no explicit destination - it can
be picked up by any consumer(s).

Producers drive the data �ow in their corresponding stream by performing a loop comprising
the following steps:

1. Call next() on their child operator.

2. If 0 tuples are returned, then break.

3. Compute the destination of every tuple in the returned vector. This either involves a
range or hash computation, or is a no-op.

4. Release any bu�ers in which destined data would not �t (marking them as FULL and
notifying consumers); acquire EMPTY ones instead. The latter operation is possibly
blocking, as empty bu�ers might not be readily available.

5. Copy tuples into their appropriate bu�ers, that are now known to have enough free space.

Consumers The main steps of the consumer's next() routine are:

1. If there are still tuples left in the currently held bu�er, return the �rstmax(tuples_left, vectorsize)
of them (as a vector) to the parent operator.

2. Otherwise, mark the current bu�er as EMPTY and release it, notifying the producers.

3. Search for a new bu�er marked FULL to acquire.

4. If no such bu�er is found and there are no working producers left, then return 0 tuples.

5. If no such bu�er is found, but there are still some producers active, then wait for a
noti�cation from them and then go to step 2.

6. Now that a new bu�er was found, mark it as CONSUMED and go to step 1.

When their next() method is called, consumers need to deliver data to their parent operators.
For this, they must either be holding a non-empty bu�er (in state CONSUMED), or else
release the one they hold (if any) and acquire a new one (steps 3-5). Again and similarly to
the producers' case, acquiring a bu�er is a possibly blocking operation (step 5). Once this
is accomplished, the actual data delivery does not involve memory copying but only passing
pointers - an O(1) operation (step 1).

Regardless of the Xchg operator type, consumers never hold more than one bu�er. However,
their access to it is not always exclusive. In the case of XchgBroadcast all the consumers need to
read the same data. Allowing this to be done concurrently introduces the following modi�cations
to the bu�er acquisition and release subroutines in step 2: Not only FULL bu�ers may be
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acquired, but also those marked as CONSUMED The latter type of bu�ers takes precedence
over the former, in order to release resources as soon as possible. The �rst consumer to acquire
a FULL bu�er changes its state to CONSUMED. Also, only the last consumer to �nish reading
the data from a bu�er may mark it as EMPTY and release it, notifying the producers.

4.2 Building a Parallel Query Plan

As mentioned in Chapter 3, the purpose of the Rewriter module in the non-distributed Vector-
wise context is to produce as output an e�cient parallel plan for a given query. This logical
query plan representation, consisting of Vectorwise algebra operators, then needs to be trans-
lated into a physical query execution tree, composed of object instantiations of the operators
involved. As such, the parts of the query tree that need to be executed in parallel by multiple
threads need to be instantiated multiple times.

Figure 4.3: Di�erent query plan representations. Courtesy of Kamil Anikiej.

Figure 4.3 shows the two di�erent graphic representations for an example parallel query plan
that are given in [Ani10]. In fact, the condensed form (a) depicts the logical, Vectorwise algebra
plan, while the second representation (b) corresponds to the physical query execution tree. The
Builder is responsible for interpreting the former and producing the latter. Building an Xchg
operator basically means allocating and initializing the constructs depicted in Figure 4.1.

4.3 DXchg Operators

As described in the previous chapter, the DXchg operators are designed to achieve the same
goal of splitting a data stream into multiple ones, but they must also allow these streams to
be located on di�erent machines. We will �rst present a generic implementation that always
assumes the latter situation and in which, as a consequence, data exchange between producers
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and consumers is always done over the network. Section 4.3.5 below will present solutions for
avoiding this whenever possible.
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Figure 4.4: DXchg [ (n1, 1), (n2, 1) : (n3, 1), (n4, 2) ] Operator Implementation

To preserve the design of the Xchg operator and simplify the implementation, we chose to allow
direct communication between any pair of producers and consumers (see Figure 4.4). Note
that for being able to call MPI primitives from di�erent threads concurrently, one needs to
speci�cally ask for such support from the MPI library1. This decision was the determining
factor in choosing which MPI implementation to use, as not all of them support this feature
and, of those which do, some have been shown to exhibit performance degradation for higher
levels of threading support.

For reasons of clarity, throughout the rest of this section we will refer to the producers and
consumers of DXchg operators as senders and receivers, respectively. Despite the fact that, from
a lower level implementation point of view, both senders and receivers are somewhat similar to
regular (e.g. Select) operator instances, they cannot be regarded as separate operators of the
Vectorwise algebra as they are dependent on each other and meaningless by themselves in a
query execution plan.

4.3.1 Bu�ers

Since producers and consumers are assumed to be located on di�erent machines, there is no
such thing as shared memory that could allow them to share the same bu�er pool. Instead,
each of them needs to manage their own set of local bu�ers for sending or receiving data.

1by initializing its execution environment with the specialized function MPI_Init_thread() and the MPI_-
THREAD_MULTIPLE parameter



CHAPTER 4. OPERATOR IMPLEMENTATION 33

Sending Bu�ers over the Network

Conceptually, bu�ers are the granularity at which data exchange is done. However, as imple-
mented in Vectorwise, the layout of the Xchg bu�ers (Figure 4.2) does not allow them to be sent
in one go, because data is not stored in a single contiguous memory area. Therefore, separate
messages would be required to send each of the bu�er's expressions and VHeap vectors.

To e�ciently utilize the available network bandwidth, the bu�er's expressions' size would then
need to be about 128KB each at least, according to the results of the network benchmarks in
Section 2.3.1.

Returning to the example given in Section 4.1, the total width of such a tuple (excluding
the Name string itself) would be 8 + 8 + 8 + 4 = 24(bytes). Vectorwise has a con�guration
parameter for specifying the maximum Xchg bu�er size (not including the VHeap) which is
set by default to 512KB as this is the experimentally determined optimal value for the TPC-H
query set1. It follows from this that the contiguous memory area for expression 4 (Income)

would be
4
28
× 512KB ≈ 73KB, which is less than the 128KB target we earlier set. Such a

scenario is not uncommon, especially in the case of OLAP queries over tables that tend to be
�at (storing tens of attributes).

One could address this problem by simply increasing the bu�er size, but high memory con-
sumption is a recurrent problem of our approach, as will be seen throughout the rest of the
text. Also, larger bu�ers would impact the bene�ts of the pipelined execution model [BZN05].

Another important aspect is that having to send multiple messages for the same piece of work
further increases the complexity of the already intricate message tagging scheme (see Section
4.5) required in such a highly-concurrent environment.

For these two reasons, we decided it is desirable to send bu�ers in a single message and thus
match the conceptual granularity of data exchange.

Serializing Bu�ers

A simple, but ine�ective, way of serializing a bu�er would be to simply "glue" all the mem-
ory areas for expressions and the VHeap vectors together once the bu�er is �lled. However,
this naive approach involves expensive memory copying that turns out to be unnecessary. In
fact, this explicit serialization step can be avoided altogether by directly writing data into a
contiguous memory zone as it gets produced, with the only observation that in order to mini-
mize de-serialization overhead while preserving the vectorized processing capability, interleaving
expression data from di�erent vectors needs to be avoided.

More speci�cally, what the above observation states is that it is not acceptable to simply write
data from vectors in the order they are produced (· is the concatenation symbol):

[data_from_vector1 · data_from_vector2 · ... · data_from_vectorn]

This is because one useful side-e�ect of the Xchg operator would thus be lost, that is producing
"full vectors" (i.e. those in which vectorsize tuples are used). Imagine vectorsize = 1024 and
a DXchgHashSplit with 20 destinations (receivers) in total. On average, data_from_vectori

would consist of 1024/20 = 52 tuples and this would then be the size of the vectors returned
by receivers to their parent operators. As explained in [Zuk09], small vectors cause the bene�ts
of vectorized execution to fade away and, therefore, negatively impact performance. The same
argument holds for the case of a DXchgUnion above a Select operator with a small (e.g. 5%)
selectivity rate.

1obtained on a similar architecture as the one described in Section 2.3
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A solution that works well in the absence of variable length data (such as strings) is to logically
partition the memory area into zones of sizes proportional to the (known) expression widths and
use some pointer arithmetic to maintain per-expression cursors for writing. However, extending
this solution to also cope with strings becomes problematic.

One possibility is to send a subsequent message of variable size, with the associated disadvan-
tages mentioned above, plus the overhead of frequent dynamic memory allocations (Figure 4.5
(a)). Alternatively, one could extensively over-allocate bu�ers such that there is always room
for all strings to be serialized after the �xed-size expression data (Figure 4.5 (b)). This latter
approach is not always feasible and requires a known bound on the strings' length, but, given
the conclusion of the previous sub-section, we initially decided to choose it over the former.

(a)

(b)

Name 
(strings)

Birth 
Date

Name 
(pointers) IncomeID

Legend:

Fixed-size, pre-allocated buffer

Dynamically allocated buffer of variable size

Data of fixed-width types

Data of variable-width types

Unused memory

"expression zone"

Figure 4.5: Bu�er serialization approaches: (a) two messages; (b) over-allocation

A third and preferable solution is given in the Optimizations section below (Figure 4.7).

4.3.2 Senders

Senders serve the same purpose as the Xchg producers and so the two are similar to a large
extent. Most importantly, they are both drivers of the data �ow in their own streams and route
tuples to their appropriate destinations. They achieve this by operating in a loop, performing
the same basic steps (Algorithm 4.1):

1. Call next() on child operator (line 12).

2. If 0 tuples are returned, send all non-empty bu�ers, broadcast termination messages to
inform all receivers that this sender is done and will not send any further messages, then
exit (lines 43-56).

3. Compute each tuple's destination (receiver) (line 16).

4. Release any full bu�ers and acquire empty ones instead.

5. Copy data into the appropriate bu�ers, which are now known to have enough empty space
(lines 39-40).

The �rst two steps of the loop are trivial. For step 3, the only thing to be noted is that, when
computing tuples' destinations, the total number of receiver threads (across all receiving nodes)
needs to be taken into account (i.e. dxchg_op.num_receivers). The outcome of this step is
a set of selection vectors that can be used to determine which receiver a certain tuple will go
to. More precisely, receiver i will get the following tuples from the data vector returned by the
child operator:
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Algorithm 4.1 Sender Routine
Require: dxchg_op, num_send_buf > 0, child
1:

2: if dxchg_op.type = DXchgBroadcast then
3: num_buckets← 1; num_handles← dxchg_op.num_receivers
4: else
5: num_buckets← dxchg_op.num_receivers; num_handles← 1
6: end if
7: for i← 1 to num_buckets do
8: active_buffer[i]← 1
9: reset_bu�er(buffer[i][1])
10: end for
11: loop
12: n, data← child.next()
13: if n = 0 then
14: break loop
15: end if
16: vector_count[], selection_vector[][]← compute_tuples_dest(n, data, num_buckets)
17: for i← 1 to num_buckets do
18: j ← active_buffer[i]
19: if buffer[i][j].num_tuples + vector_count[i] > BUFFER_CAPACITY then
20: // release (send) current bu�er
21: for k ← 1 to num_handles do
22: if dxchg_op.type = DXchgBroadcast then
23: destination← dxchg_op.receiver[k]
24: else
25: destination← dxchg_op.receiver[i]
26: end if
27: buffer[i][j].send_handle[k]← start_sending(buffer[i][j], destination)
28: end for
29: j ← ((j + 1) mod num_send_buf) + 1 // acquire next bu�er (round robin)
30: active_buffer[i]← j
31: for k ← 1 to num_handles do
32: wait_for_transmission(buffer[i][j].send_handle[k])
33: end for
34: reset_bu�er(buffer[i][j])
35: end if
36: end for
37: for i← 1 to num_buckets do
38: j ← active_buffer[i]
39: copy_data_into_bu�er(buffer[i][j], selection_vector[i], vector_count[i], child)
40: buffer[i][j].num_tuples← buffer[i][j].num_tuples + vector_count[i]
41: end for
42: end loop
43: for i← 1 to num_buckets do
44: j ← active_buffer[i]
45: for k ← 1 to num_handles do
46: if dxchg_op.type = DXchgBroadcast then
47: destination← dxchg_op.receiver[k]
48: else
49: destination← dxchg_op.receiver[i]
50: end if
51: if buffer[i][j].num_tuples > 0 then
52: buffer[i][j].send_handle[k]← start_sending(buffer[i][j], destination)
53: end if
54: send_termination_msg(destination)
55: end for
56: end for
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{selection_vector[i][0], selection_vector[i][1], ... , selection_vector[i][vector_count[i]− 1]}

In step 4 of the loop, by full bu�ers we mean those in which the �xed-width data of the selected
tuples from the current vector does not �t entirely. Releasing bu�ers translates to sending them
over the network. This message announces the receiver that there are more tuples available.
The opposite noti�cation is implicit, in the sense that if the receiver is too busy with processing,
it will not be ready to receive additional messages and so any sends for this destination would
remain blocked. This way, a simple blocking call to MPI_Send() is enough to replace the whole
explicit synchronization mechanism implemented in the Xchg operators.

Non-Blocking Communication To allow network tra�c associated with bu�ers being sent
to overlap with the execution of the operators below the sender in its corresponding stream
(thread), and thus reduce the time spent waiting for messages to be delivered, non-blocking
MPI primitives can be used. Releasing a bu�er thus becomes instantaneous1 and waiting for
its delivery to complete is moved to the bu�er acquisition phase.

A possible approach to implement this is to establish in the initialization phase a �xed number
of bu�ers per destination and associate with each of them one (or more, as explained below)
MPI request handle(s). Step 4 above becomes:

4' For each destination, if the active bu�er is full, call MPI_Isend() on it (line 27), set as
active the next bu�er for the current destination (in a round-robin fashion) (lines 29-30)
and call MPI_Wait() (line 32).

Number of Bu�ers Let the senders' number of bu�ers per destination be a con�guration
parameter num_send_buf > 1. Figure 4.6 (a) below depicts the collection of a sender's bu�ers
in the general case. DXchgBroadcast is again the exception, as it is desirable that the senders
not write the same data multiple times, into di�erent bu�ers. Consequently, a single logical
destination is used, but all the num_send_buf bu�ers will have one request handle for each
physical destination2 (see Figure 4.6 (b)).
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Figure 4.6: Senders' Bu�ers for (a) DXchgHashSplit and (b) DXchgBroadcast operators

1assuming MPI can bu�er messages (i.e. non-synchronous mode)
2The MPI-2 standard does not require implementations to o�er support for non-blocking collective operations

such as MPI_Ibcast(), so we implemented this as multiple point-to-point communications instead.
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Writing data into bu�ers Finally, writing data into bu�ers is done in accordance to the
chosen approach for serializing bu�ers that was described in the previous section. Despite the
fact that the new bu�er layout is signi�cantly di�erent from that of the Xchg bu�ers, not many
changes are required for the last step of the loop. More precisely, for �xed-width data types,
the same data copying (or condensing) primitive can be used, with slightly adjusted parameters
(see line 3 of Algorithm 4.2). However, variable-length data needs to be copied outside this
primitive into the designated bu�er zone. While doing so, o�sets are stored instead of the
pointer column in Figure 4.2 (lines 10-11). They will allow the receiver to recreate the latter
e�ciently, as will be explained below.

Algorithm 4.2 copy_data_into_bu�er(buf , sel_vec[], vec_cnt, child)
Require: buf : bu�er with enough empty space to store vec_cnt tuples; num_expr: number

of expressions
Ensure: tuples speci�ed by sel_vec[] are copied from child into buf
1: for i← 1 to num_expr do
2: if buf.expr[i].type is of �xed width then
3: condense_prim(child.expr[i], buf.expr_zone_ptr[i], sel_vec[i], vec_cnt)
4: buf.expr_zone_ptr[i]← buf.expr_zone_ptr[i] + vec_cnt ∗ child.expr[i].width
5: else
6: for j ← 1 to vec_cnt do
7: src_ptr ← child.expr[i].ptr + sel_vec[j]∗ width_of(pointer)
8: len← get_len(src_ptr, child.expr[i].type)
9: copy len bytes from src_ptr to buf.vldata_zone_ptr
10: offset← buf.vldata_zone_ptr − buf.vldata_zone_start
11: write at buf.expr_zone_ptr[i] value offset
12: buf.vldata_zone_ptr ← buf.vldata_zone_ptr + len
13: buf.expr_zone_ptr[i]← buf.expr_zone_ptr[i]+ width_of(offset)
14: end for
15: end if
16: end for

Algorithm 4.3 reset_bu�er(buffer)
Require: buffer: a bu�er whose data can safely be overwritten; num_expr the number of

expressions
Ensure: buffer.num_tuples will be reset to 0 and expression cursors will point to the begin-

ning of the (pre-computed) expression zones
1: for i← 1 to num_expr do
2: buffer.expr_zone_ptr[i]← buffer.expr_zone_start[i]
3: end for
4: buffer.vldata_zone_ptr ← buffer.vldata_zone_start
5: buffer.num_tuples← 0

4.3.3 Receivers

Receivers are homologous to Xchg-consumers, having the role of delivering data from senders
to the operators above them whenever their next() method is called. However, unlike Xchg
consumers, they need to manage their own bu�er space for storing incoming messages.

The main steps of a receiver's next() routine (Algorithm 4.4) are:

1. If there are still bu�ered tuples not yet consumed, return the �rstmax(tuples_left, vectorsize)
of them (as a vector) to the parent operator (lines 22-25).
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2. Otherwise, if there are no active senders left, return 0 tuples (lines 7-8).

3. Wait for a message from any sender.

4. If a termination message is received, then mark its sender as inactive and go to step 2
(lines 13-14).

5. Deserialize the received message and go to step 1 (lines 16-18).

Algorithm 4.4 Receiver - DXchg operator's next() routine
Require: buffer[], active_buffer, rec_handles_list
Ensure: Returns a vector of tuples to caller (or 0 if no data left).
1:

2: buf ← buffer[active_buffer]
3: if buf.read_tuples = buf.num_tuples then
4: loop
5: rec_handle← start_receiving(buf , ANY_SOURCE)
6: rec_handles_list.add(rec_handle)
7: if detect_termination() then
8: return 0 tuples
9: end if
10: active_buffer, rec_handle← wait_for_any_transmission(rec_handles_list)
11: rec_handles_list.remove(rec_handle)
12: buf ← buffer[active_buffer]
13: if termination_msg_received(buf) then
14: mark_sender_�nished(rec_handle.source)
15: else
16: deserialize(buf)
17: buf.read_tuples← 0
18: break loop
19: end if
20: end loop
21: end if
22: returned_tuples← min (V ECTOR_SIZE, buf.num_tuples− buf.read_tuples)
23: set_pointers_for_returned_data(buf , returned_tuples)
24: buf.read_tuples← buf.read_tuples + returned_tuples
25: return returned_tuples

Non-blocking Communication Like in the sender case, the use of non-blocking MPI com-
munication primitives (e.g. MPI_Irecv()) in conjunction with multiple bu�ers allows network
tra�c to take place in the background, while the thread may continue with executing the up-
stream operators on the available tuples. The following changes are required: Suppose a receiver
has num_rec_buf > 1 bu�ers (con�guration parameter). Initially, one bu�er is chosen to be
active and the above-mentioned MPI primitive is called on each of the other ones. Step 3 above
is replaced with:

3' Mark the active bu�er as inactive and call MPI_IRecv() on it (lines 5-6). The new active
bu�er becomes the one returned by a blocking call to MPI_WaitAny() (lines 10-12).

Note that using the latter MPI primitive (which is somewhat similar to the select() system call
in Unix) could have also been used for senders, but without any advantage over the round-
robin approach, since the message have the same source and destination thread and so the MPI
library guarantees to deliver them in FIFO order. For receivers, however, this is not the case, as



CHAPTER 4. OPERATOR IMPLEMENTATION 39

when two subsequent non-blocking receives are matched by two messages coming from di�erent
threads or processes, then the second one might in fact be the �rst to complete1.

This approach minimizes the time wasted on waiting for messages to be delivered. If, however,
considerable time is still spent in this blocking primitive, then this is a strong signal that
either the sender threads are not able to match the receiver's processing speed, or that network
bandwidth is the bottleneck.

Deserialization What the deserialization subroutine in step 5 (line 16) involves is setting
reading cursors to the beginning of expression zones (which can easily be done in O(num_expr)
time, using the message preamble information) and obtaining pointer columns for each variable-
width data type of the records. Having received per-value o�sets from the sender, expensive
scanning through the entire heap data, looking for separation symbols, is not required. Instead,
the receiver can simply perform O(num_var_len_expr × num_tuples) pointer arithmetic
operations, which can be done e�ciently using an existing constant-addition primitive (where
num_var_len_expr is the number of variable-length data type expressions).

4.3.4 Memory Consumption

The major problem limiting the scalability of the chosen design is the high memory consumption
caused by the large number of bu�ers required for a thread-to-thread communication pattern.

More precisely, for the generic representation of the distributed exchange operator:

< DXchg_op > [(n1, p1), (n2, p2), ..., (nP , pP ) : (m1, c1), (m2, c2), ..., (mC , cC)],

the total number of bu�ers required by it on a given node x can be expressed with the following
formula:

total_num_buf(n) = (p× num_send_buf ×
∑C

k=1 ck) + (c× num_rec_buf),

where

p =

{
pk, if ∃k ∈ {1..P} s.t. x = nk

0, otherwise

and

c =

{
ck, if ∃k ∈ {1..C} s.t. x = mk

0, otherwise

Simplifying the above formula, we get that the number of bu�ers required is O(num_nodes×
num_cores2) (assuming a homogeneous cluster). This means the memory requirement of a
DXchg operator increases linearly with the number of nodes, but quadratically with the number
of CPU cores per node. The latter correlation is inherited from the regular Xchg operator, which
also su�ers from this issue.

Table 4.1 shows the estimated memory consumption (in MB) of a DXchgHashSplit opera-
tor from all nodes to all nodes in a cluster, for buffer_size = 512KB, num_send_buf =
num_rec_buv = 2, and �xed-width data types only.

On a positive note, memory consumption for the other distributed exchange operators is ac-
tually much lower, as they may either have a single receiver thread on a single machine (e.g.
DXchgUnion), a single sender thread (e.g. DXchgDynamic[Hash]Split, Table 4.2) or a single
logical destination (bucket) (e.g. DXchgBroadcast). In these cases, the required space only
increases linearly with the number of cores.

1according to http://www.mpi-forum.org/docs/mpi22-report/node54.htm

http://www.mpi-forum.org/docs/mpi22-report/node54.htm
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PPPPPPPPcores
nodes

2 4 8 12 16 24 32

2 10.24 18.43 34.82 51.20 67.58 100.35 133.12
4 36.86 69.63 135.17 200.70 266.24 397.31 528.38
8 139.26 270.34 532.48 794.62 1,056.77 1,581.06 2,105.34
12 307.20 602.11 1,191.94 1,781.76 2,371.58 3,551.23 4,730.88
16 540.67 1,064.96 2,113.54 3,162.11 4,210.69 6,307.84 8,404.99

Table 4.1: Estimated memory consumption (in MB) of a DXchgHashSplit operator on one node

PPPPPPPPcores
nodes

2 4 8 12 16 24 32

2 6.14 10.24 18.43 26.62 34.82 51.20 67.58
4 12.29 20.48 36.86 53.25 69.63 102.40 135.17
8 24.58 40.96 73.73 106.50 139.26 204.80 270.34
12 36.86 61.44 110.59 159.74 208.90 307.20 405.50
16 49.15 81.92 147.46 212.99 278.53 409.60 540.67

Table 4.2: Estimated memory consumption (in MB) of a DXchgDynamic[Hash]Split operator
on one node

Even though feasible for a limited number of nodes, it is clear that the current solution is not
scalable. However, in Section 6.4 we present a possible way to reduce the memory consumption
of the DXchgHashSplit operator to O(num_nodes × num_cores), meaning similar values to
those shown in Table 4.2.

4.3.5 Optimizations

We present below certain optimizations that we successfully implemented into our prototype.
However, this is only a small subset of all the potential opportunities for improvement that we
identi�ed. The rest are brie�y described in Section 6.4 on Future Improvements, along with a
�rst analysis of the expected bene�ts of these proposed optimizations.

Use (non-distributed) Xchg operators whenever possible

As explained in Section 3.2, we embraced a uniform approach in which we completely eliminated
Xchg symbols from the Vectorwise Algebra by always replacing them with DXchg operators,
even when all the producer and consumer threads reside on the same node.

In cases like these, however, we can completely eliminate network tra�c by simply replacing
the DXchg operators' implementation with that of the corresponding (regular) Xchg operators.
This way we can leverage the existing code that is known to perform well. The only downside
is that this comes at the expense of increasing the parameter space for the application, since
the optimal number and size of the DXchg bu�ers may di�er from those of the regular Xchg
bu�ers.

Only send pointers locally

When the above optimization is not applicable because the set of threads is distributed across
two or more machines, we can still reduce network tra�c and the burden on the MPI library
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by only communicating pointers between those producers and consumers that do reside on the
same node.

This approach, however, reintroduces the need for explicit synchronization mechanisms (locking,
waiting and notifying) when acquiring and releasing bu�ers. The reason for this is that while for
bu�ers destined to remote nodes the completion of the call toMPI_Wait() means that the bu�er
was successfully sent and can be safely overwritten, this does not hold for those bu�ers sent
locally, since the latter event only implies that the pointer was successfully delivered, but says
nothing about whether or not the consumer �nished reading data from the bu�er. Therefore,
before proceeding to writing new data into it, the producer must wait for a noti�cation from
the consumer, which the latter must post when releasing the bu�er.

PAX bu�er layout and MPI Persistent Communication

Considering the observations made in Section 4.3.4, any means of limiting memory consumption
rank high on the priority list of optimizations.

In Section 4.3.1 we raised the problem of �nding an e�cient way to serialize bu�ers for commu-
nication over the network when variable length data types are involved. The only solution given
that would not involve more than one message per bu�er was to pessimistically allocate enough
memory to �t all the strings in a worst-case scenario. While this approach has the advantage of
maximizing network bandwidth e�ciency (since the exact number of useful bytes can thus be
sent), it signi�cantly aggravates the above-mentioned problem of high memory consumption.

Fortunately, using a similar layout to what is known in the relational database storage literature
as the Partition Attributes Across (PAX) model [ADH02], it becomes possible to directly store
both �xed and variable-length data types into a single, �xed size, contiguous memory area, in a
both time- and space-e�cient manner. In this case, the memory consumption estimates shown
in Table 4.1 hold true for variable-length data types as well.

Name 
(strings)Birth DateName (pointers) IncomeID

(iii)

Legend:

Fixed-size, pre-allocated buffer

Data of fixed-width types

Data of variable-width types

Unused memory

(ii)

(i)

(i) Underestimating strings' length

(ii) Overestimating strings' length

(iii) Accurately estimating strings' length

Figure 4.7: PAX Bu�er Layout

One downside of this approach that is inherent in the PAX layout is that network bandwidth
utilization is negatively impacted. This is because fractions of the bu�er at the end of its
expression zones may often go unutilized, but will nevertheless be sent over the network. How-
ever, this percent of "trash" information may be reduced by obtaining good estimates on the
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strings' length, such that they can be treated as normal (�xed-width) data types and dividing
the bu�er accordingly. Moreover, this partitioning need not be �xed, but may be dynamically
adjusted throughout query execution by maintaining a running average of strings' size and
communicating expression o�sets to receivers as a message preamble. Figure 4.7 illustrates how
the expression zones can be adjusted to minimize the percent of wasted bu�er space.

Finally, having �xed size bu�ers was the only missing ingredient required for taking advantage
of the MPI performance-enhancing feature that is "Persistent Communication"1. The use of
persistent requests and the associated MPI primitives reduces communication overhead associ-
ated with redundant message setup in programs which repeatedly call the same point-to-point
message passing routines with the same arguments. This scenario description maps perfectly
to our situation, as Send operators have distinct bu�ers for every di�erent destination, be it a
speci�c Receive thread (i.e. for DXchgHashSplit, DXchgRangeSplit), or a generic tag on which
multiple Receivers listen (i.e. for DXchgUnion, DXchgBroadcast).

Depending on the bu�er size, database size and query pattern, the number of similar messages
(same source, destination, tag, bu�er and size) may amount up to tens of thousands, so elimi-
nating message setup overhead may seem like a promising improvement. However, in practice,
this optimization only renders a 5-15% improvement for messages that are shorter than 8KB
2. This means only local communication would bene�t from having persistent requests, when
only pointers to bu�ers are exchanged.

4.3.6 Microbenchmarks

To validate our implementation of the DXchg operators, we have conducted three experi-
ments on the available cluster nodes described in Section 2.3. In all cases num_send_buf
and num_recv_buf were both set to 2 (experimentally detected as optimum). Finally, the
execution times shown or involved were computed as the average of three successive runs.

Experiment 1

The �rst set of experiments is meant to show what percentage of the network throughput
reported by the Intel MPI Benchmark (IMB) is achieved with our implementation. For this,
we used a custom query with the following plan:

Test Query 1: Array → DXchgUnion→ NullOp

The Array and NullOp operators are implemented for debugging purposes only. Array is used
to generate synthetic tuples at a fast rate instead of reading them from a table. Its parameters
determine the number and width of the tuples returned. We chose them such that 1.2 billion
tuples of size 24 bytes (three 8-byte decimal attributes) are produced on one node and sent
over the network to a di�erent node by the DXchgUnion operator. NullOp simply discards any
tuples received and is meant to add as little computational overhead as possible such that the
execution time of this query is completely network-bound.

Figure 4.8 shows the results obtained for di�erent numbers of sender threads and increasing
bu�er sizes. The throughput values are computed by dividing the (average) execution time of
Test Query 1 by the total number of bytes processed (which is 24B × 1.2 · 109 = 28.8GB) and
their accuracy was validated by real-time observations performed with the collectl3 In�niband
tra�c monitoring tool.

1http://www.mpi-forum.org/docs/mpi-11-html/node51.html
2https://computing.llnl.gov/tutorials/mpi_performance/#Persistent
3http://collectl.sourceforge.net/

http://www.mpi-forum.org/docs/mpi-11-html/node51.html
https://computing.llnl.gov/tutorials/mpi_performance/#Persistent
http://collectl.sourceforge.net/
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The conclusion is that for su�ciently large bu�ers (of at least 512KB), the end-to-end useful
data throughput achieved is ca. 83% of that reported by the Intel MPI benchmark. This is
a satisfactory result, considering the fact that the actual number of bytes being transferred is
slightly larger (due to message preamble information and unused bu�er space) and that the
benchmark uses the MPI_THREAD_SINGLE environment, as opposed to MPI_THREAD_-
MULTIPLE, with its associated overhead for ensuring primitive thread-safeness.

Interestingly, it also follows from this experiment that the non-distributed system's default
bu�er size for the Xchg operators (i.e. 512KB) also works best from the network communication
point of view.

Figure 4.8: End-to-End Network Throughput

Experiment 2

The second set of experiments aims to test the single-node parallelization capability of the
DXchg set of operators, by comparison with the regular Xchg ones. The fact that on a single
node, the former can simply be replaced with the latter (see Section 4.3.5) does not render this
experiment useless, because it gives a strong indication of how much additional overhead we
introduce for the cases when multiple nodes are involved. Along the way, we also assess the
usefulness of other above-mentioned optimizations, except for the PAX bu�er layout, which is
built-in and thus always enabled.

For these experiments we created another debugging-purpose operator, namely SlowOp, which
simply slows down the data �ow of its stream by adding a con�gurable delay in its next()
call1. This is useful for creating arti�cial queries that are perfectly parallelizable (close to
100% e�ciency) by reducing the data rate of producer streams to values that are lower than

1The delay is obtained by a call to the usleep() function and the SlowOp parameter is interpreted as the
number of microseconds to sleep.
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the maximum achieved network throughput (see the �rst experiment). Using SlowOp1, we
constructed the following two queries:

Test Query 2: Array → SlowOp→ DXchgUnion→ NullOp

Test Query 3: Array → SlowOp→ DXchgHashSplit→ NullOp→ DXchgUnion

Test Query 2 is a modi�ed, single-node version of Test Query 1, with slower producer streams.
Test Query 3 features the DXchgHashSplit operator. A DXchgUnion is still required to cre-
ate multiple receiver streams for DXchgHashSplit, but the NullOp in between ensures that
DXchgUnion does not in�uence the overall time (since it does not process any data).

Figure 4.9: Test Query 2 Execution Time

Figure 4.10: Test Query 3 Execution Time

The results shown in Figure 4.9 and Figure 4.10 are consistent and their main message is that
our implementation of the DXchg operator closely matches that of the regular Xchg operator in

1parameter value: 100
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terms of e�ciency. As expected, the latter is always faster, but only by 4% at most (compared to
our "pointers & persistent communication" version). The optimization of only sending pointers
to local bu�ers yields a 4 - 11% improvement1. Finally, the use of MPI persistent requests
hardly makes any di�erence (at most 1% improvement).

Experiment 3

We used Test Query 3 again for the last experiment to present the e�ciency of the DXchgHash-
Split operator as a function of the combined throughput of the producer streams on a given
node (henceforth referred to as X ). The di�erent values of X were obtained by varying the
amount of delay introduced by the SlowOp operator on each stream. This experiment is meant
to help the reader understand when to expect the DXchgHashSplit operator to achieve good
speedup and when not to.

Figure 4.11: Experiment 3: DXchgHashSplit performance vs. the rate at which tuples are
produced

The fact that the speedup on 2 nodes (the blue line in Figure 4.11) is still close to perfect even
for X values much higher than the maximum achievable network throughput found in our �rst
experiment (i.e. ca. 2.4 GB/s) may seem confusing. The explanation is that, in fact, only half
of the data is actually sent over the network, while the other half is sent locally, as pointers,
thus having a much smaller impact on network utilization. What this means is that the network
throughput of the DXchgHashSplit operator on a given node (call it Y ) can be estimated with
the following formula:

Y = X · num_nodes− 1
num_nodes

In our case, for Y = 2.4 GB/s we get that the X values on 2, 3 and 4 nodes for which the
network limitation should be hit are 4.8, 3.6 and 3.2 GB/s respectively. It now becomes clear

1We observed that on network-bound queries the bene�t of the "pointers" optimization is even more signi�-
cant.
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why the speedup on 2 nodes does not drop in our graph. On 4 nodes, however, we observe that
the network becomes the bottleneck sooner (around 2.5 GB/s) than the predicted X value of
3.2 GB/s. This is no surprise when considering the three observations below.

First, the above formula for Y ignores the impact of the local exchange of messages carrying
pointers to bu�ers on the network throughput achievable by the DXchg operator and therefore
only gives an under-approximation of the latter. Second, we also completely ignored the inbound
network tra�c (which is theoretically equal to the outbound one) because the network devices
are capable of bidirectional communication, but the results in Section 2.3.1 show that bi-
directional throughput is not exactly twice as high as the uni-directional one. Finally, we
assumed no data skew and a uniform hash function, such that data gets evenly distributed
among the receiver nodes. However, we observed that this does not happen in practice, even
though the Array operator generates sequential, hence uniform data.

4.4 Building a Distributed Query Plan

In the distributed context, the Rewriter on the Master node produces as output a possibly
distributed query plan, depending on the chosen policy and the load of the system. Once such
a plan is found, any nodes involved in the execution of the query need to build their relevant
part(s) of the QET. For this, they need to be informed about the new query's arrival and they
must at least receive the part of the query plan that was assigned to them.

Since the query plans produced by the Rewriter are of a relatively small size (few kilobytes),
there is no need to burden the Master node with breaking the plan into multiple parts and
sending them to the corresponding worker nodes one by one. Instead, the entire plan can
simply be broadcast to all the nodes involved and they can then independently identify the
parts of it they need to build. This information can be derived from the parameters of the
DXchg operators encountered while traversing the tree, according to the recursive algorithm
4.5 that is brie�y explained below. Consequently, the builder phase is done in a distributed
fashion.

In lines 1-7 of the algorithm, the number of threads for the subtrees below the current operator
is computed. Unless the latter is a DXchg operator, the number of threads remains unchanged.
Otherwise, it either becomes 0 (if the node is not involved in this DXchg operator), or the spec-
i�ed number of producer threads on this node. The Builder function is then called recursively
on the children of the current operator (if any), with the number of threads found above (lines
11-13). When encountering a DXchg symbol for which the optimization described in Section
4.3.5 is applicable, the corresponding Xchg operator is built instead (lines 16-18). Otherwise,
the corresponding senders and/or receivers are instantiated (lines 20-25).

The Master node takes part in the execution of all the queries that arrive to the system.
This is inevitable, as it must at least gather the results and deliver them to the upper layers
(Ingres). Since it must always build the operators of the top-most stream, it will call the
Build_Operator_Tree procedure setting alg_op to the root operator symbol of the query plan
and num_threads to 1. Any other participating nodes will use the same value for alg_op, but
will set num_threads to 0 initially.

Figure 4.12 gives an example of a distributed query plan and the corresponding output of the
builder on all the participating nodes.

Starting the sender threads

To start the execution of the query, the next() method of the root operator on the master node
is called. According to the Volcano model, the root operator will call the next() method on
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Algorithm 4.5 Build_Operator_Tree(alg_op, num_threads, node_id)
Require: alg_op: the Vectorwise Algebra operator that is the root of the tree to be built;

num_threads: the number of threads the tree is to be built for; node_id: the rank of the
process (node) executing this function.

Ensure: The part(s) of the QET that are to be executed by node node_id.
1: if alg_op.type ≈ DXchg∗ then
2: if node_id is among the producers of alg_op then
3: num_threads_child← number of producer threads on node_id for alg_op
4: else
5: num_threads_child← 0
6: end if
7: else
8: num_threads_child← num_threads
9: end if
10:

11: for all child ∈ alg_op.children do
12: Build_Operator_Tree(child, num_threads_child, node_id)
13: end for
14:

15: if alg_op.type ≈ DXchg∗ then
16: if node_id is the only producer and the only consumer node for alg_op then
17: xchg_op← corresponding Xchg operator for alg_op
18: instantiate_operator(xchg_op)
19: else
20: for i← 1 to num_threads do
21: instantiate_receiver(alg_op)
22: end for
23: for i← 1 to num_threads_child do
24: instantiate_sender(alg_op)
25: end for
26: end if
27: else
28: for i← 1 to num_threads do
29: instantiate_operator(alg_op)
30: end for
31: end if

its children and so forth. When the next() method of a Receiver is called for the �rst time, it
starts a new thread for each local Sender that belongs to the same logical DXchg operator (if
any). The threads thus spawned will run the Sender routine outlined in Algorithm 4.1.

All "orphan" Senders (i.e. those Senders of a DXchg operator on a given node, for which there
are no Receivers on the same node) will have their threads started at once, just before the
execution phase begins.

4.5 Message Addressing Scheme

While it is easy to understand that the dashed/dotted arrows in Figure 3.4 (b), Figure 4.4 and
Figure 4.12 denote logical point-to-point connections between the corresponding senders and
receivers, we still owe to the reader a better explanation for how these connections can actually
be implemented with the chosen network communication library.
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Figure 4.12: Building distributed query plans.

The above concept of a connection does not have a direct mapping in MPI terminology. Instead,
a combination of the following message labeling information can be used to compose a logical
address: (destination_node, message_tag, MPI_communicator). The problem then translates
to assigning receivers globally unique logical addresses that are known to the relevant senders.

Any given node might be running multiple concurrent queries and, for each, it might be involved
in multiple DXchg operators with one or more receiver threads. A globally unique address for
a receiver needs to encode all this information. Since on each node, the Builder has knowledge
of the entire query plan, it is capable of computing these addresses and passing them to senders
and receivers while instantiating them, provided that it is given a unique query identi�er.

Our solution is to have the Master node compute a serial number for each query - call it
query_id - and attach it to the query plan before broadcasting it to all nodes involved. On
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each machine, the Builder can assign every DXchg operator within that query a unique id -
call it dxchg_id. Then, when sending a bu�er to a destination node n, message_tag can be
computed as a function (e.g. concatenation) of both query_id and dxchg_id, as well as the
receiver thread number on node n, assuming that the ranges of these parameters are known.
The problem with this approach is that MPI message tags are de�ned as 4-byte positive integer
values and care must be taken to ensure over�ows do not cause messages to reach the wrong
destinations.

A more elegant, scalable and less error-prone solution is to create separate MPI communicators
for each query and then, within a query, separate communicators for each distributed exchange
operator. This way, the message tag would only be used to distinguish between the di�erent
receivers on a destination node. We leave this as a possibility for future work.



Chapter 5

Query Scheduling

Load balancing in multiprogrammed parallel processing systems has been extensively studied
in the literature [Sev94, PS95]. Depending on the characteristics of the system (on-line vs. o�-
line, closed vs. open, etc.) and the nature of the jobs/tasks (preemptive vs. non-preemptive,
service times with a known vs. unknown distribution, prioritized vs equal jobs, etc.), several
static and dynamic scheduling algorithms have been proposed [Sev94].

In parallel databases systems, however, the consensus is that dynamic load balancing is manda-
tory for e�ective resource utilization [Rah95, MRS02]. Various algorithms have been proposed
for these systems depending on the di�erent levels of parallelism: inter-transaction, inter-query,
inter-operator and intra-operator parallelism [Rah93]. This chapter will discuss the intra-
operator load balancing techniques currently implemented in the non-distributed Vectorwise
DBMS, as well as two novel scheduling policies for the distributed version of Vectorwise.

5.1 Metrics

The objectives of a job scheduling policy in a parallel database system can be divided in two
categories [FR98]:

• maximize the throughput (expressed as the number of queries per time unit) and/or the
resource utilization

• minimize the response time (i.e. the time elapsed between the moment a client issues a
query and the moment he receives the results) and/or the makespan (the total execution
time of running a predetermined set of queries)

5.2 Elements of job scheduling in the Vectorwise DBMS

The unit of work (job) in the Vectorwise DBMS is a query. Queries processed by the execution
engine are independent, their service time distribution is unknown and di�erences in workloads
are signi�cant (e.g. queries 06 and 13 of the TPC-H query set have execution times that di�er
by a factor of 100). Moreover, queries have di�erent degrees of resource utilization and of
parallelism at di�erent levels of the query plan.

Given the above-mentioned characteristics of the jobs in the Vectorwise DBMS (an open on-
line system), equipartition has been chosen as the scheduling strategy. Equipartition divides
the resources equally between concurrent queries and has been proven to be e�cient for a large

50
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class of workloads and service time distributions [PS95]. Moreover, equipartition relies also on
the operating system to schedule queries when the number of threads is larger than the number
of processors and therefore it better utilizes the system's resources when queries exhibit varying
levels of parallelism during their execution.

Nevertheless, the reader should keep in mind that resource management is an open research
subject and all the solutions implemented for the scope of this project are limited, but, at the
same time, su�cient for our purposes.

5.2.1 Job scheduling in the non-distributed DBMS

When a query is received in the non-distributed version of the Vectorwise DBMS, an equal share
of resources is allocated in the beginning to it. This amount is called the maximum parallelism
level (mpl) and it is calculated as the maximum number of cores available (possibly multiplied
by an over-allocation factor) divided by the number of queries running in the system:

mpl =

{
nC, if nQ = 0
nC∗OAF

nQ , otherwise

where nC is the number of cores available, nQ is the number of queries already running in the
system and OAF is the over allocation factor and it is by default set to 1.25. Notice that mpl
is equal to nC when a single user is in the system, therefore making full use of the system's
resources.

Then, when transformations are applied, the mpl is used as an upper bound to the number of
parallel streams in generated query plans. Finally, once the plan with the best cost is chosen,
the state of the system is updated.

Information about the number of queries running in the system and the number of cores used
by each query is stored in this state. Note that this information is a mere approximation of the
CPU utilization. This is because, depending on the stage of execution and/or the number and
size of the Xchg bu�ers, a query can use less cores than the number speci�ed, but it can also
use more cores for short periods of time.

5.2.2 No-distribution policy

The no-distribution policy tries to keep the network tra�c at a minimum and, at the same
time, process linearly more queries than the non-distributed DBMS. It does so by processing
each query on a single node and then communicating the results through the master node, to
the client.

The idea behind the no-distribution policy is to choose a single least loaded node in the cluster,
calculate the mpl relative to the node, apply the transformations to generate a parallel query
plan that runs entirely on that machine and, �nally, add a DXchg(1:1) operator on top of it, if
necessary. This operator sends the results to the master node so that they can be communicated
to the client. Algorithm 5.1 contains a pseudo-code of the policy.

The challenging part of this algorithm is how to determine the "least loaded" node. In order to
determine the load of a particular node, a state of the system has to be maintained, just like in
the non-distributed version of the Vectorwise DBMS. As all of the queries are executed through
the master node, it makes sense to keep this information there. To determine on which node
to run a received query, the master node assigns a load factor to every node in the cluster:
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Algorithm 5.1 no-distribution(query, state)
Require: query: a sequential query plan; state: the current state of the system;
Ensure: An equivalent parallel plan
1: ll_node← get_least_loaded(state)
2: mpl← get_mpl(ll_node, state)
3: resources← array(0)
4: resources[ll_node]← mpl
5: add_state_load(state, resources)
6: par_plan← generate_best_plan(query, resources)
7: actual_used← get_resources(par_plan)
8: if actual_used < resources then
9: remove_state_load(state, resources− actual_used)
10: end if
11: if ll_node 6= master_node then
12: par_plan = DXchange(par_plan, 1, [ll_node], [1])
13: end if
14: return par_plan

Li = wt ∗ Ti + wq ∗Qi,

where:

• Ti is the thread load on node i. It is de�ned as the estimated total number of threads
running on i divided by the number of available cores on i.

• Qi is the query load on node i and it is de�ned as the number of running queries on i
divided by the total number of running queries in the system. This value and the thread
load are the only available information about the state of the system. Since the thread
load is only an approximation of the current utilization of a particular node, the query
load becomes a complement of it and acts as a tiebreaker in some cases (e.g., when the
thread load is equal, the node with less queries running is chosen).

• wt and wq are associated weights, with wt + wq = 1.

As the state of the system in�uences where a query will be executed, it is crucial that this
information is up-to-date. For example, if concurrent requests arrive at step 1, while the current
query is optimized in step 6, they will be assigned the same node. Therefore, in Algorithm 5.1,
step 5 performs an eager update of the system state (adding mpl threads to the chosen node
immediately) to solve this problem. Then, to keep the state accurate, after an optimized plan
has been computed that does not use all the resources assigned to the request, step 9 performs
a second update. Finally, to ensure consistency of reading and writing to the state, locking
mechanisms are needed when executing steps 1,2,5 and 9 of Algorithm 5.1.

Experiments using di�erent weights To determine the optimal values for the wt and wq

parameters, three tests were run on 2 and 4 nodes, for 11 wt
1 values:

Test 1. This test evaluates the weights by running the same amount of streams on 2 and 4 nodes.
16 TPC-H streams 2 were run both on 2 and 4 nodes.

Test 2. This test evaluates the weights by running linearly more streams: 10 streams on 2 nodes
and 20 streams on 4 nodes.

1The weight associated to the query load can be determined from the formula wq = 1− wt
2These streams are permutations of the TPC-H query set. More on this subject in chapter 6
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(a) 2 nodes (b) 4 nodes

Figure 5.1: Cumulative overhead percentages

Test 3. The number of streams in this test increases linearly too, but the number of nodes does
not divide the number of streams, i.e. 5 and 10 streams on 2 and 4 nodes, respectively.

For all the combinations (test, wt value), the average time of 7 successive runs was taken (let us
denote this with Ai(wt) where i is the number of the test). Then, to each wt value we associated
an overhead percentage (Oi(wt)), calculated as:

Oi(wt) = Ai(wt)−min(Ai(w)|∀w)
min(Ai(w)|∀w) , where w is one of the 11 tested values

The overhead percentages for all three tests are illustrated in �gure 5.1.

We deliberately omitted the execution times and speedups of this policy as they will be the
subject of Section 6.5. We notice that both on 2 and 4 nodes, wt values close to 1 exhibit the
highest overhead percentage. When these values are used, unbalanced scenarios can occur. For
example, suppose we have 10 streams and the state of a system with 2 nodes is (9 queries,
10 threads) on node 1 and (1 query, 10 threads) on node 2. There is clearly more resource
contention on node 1 and if the query on node 2 �nishes, there would be a short period of time
when none of the CPUs on node 2 would be utilized. The no-distribution policy con�gured
with larger wt values tends to create more such scenarios.

On the other extreme, a wt value of 0 assigns an equal share of queries to the master node
which also has to execute, for every query, the Rewrite stage and communicate with the client.
On 2 nodes this overhead is visible as more queries are assigned to the master (and therefore
more queries are slowed down).

Finally, wt values ranging from 0.2 to 0.5 have overhead percentages that di�er by at most 5%
(i.e. about 1.7% per test). As these are throughput tests and the decisions made are based on
the system state that changes frequently, such small di�erences can only suggest that any value
chosen in this range will exhibit a close to optimal performance.

Overall, from the values presented in �gure 5.1, 0.3 seems a good choice for wt (and consequently
0.7 for wq). Section 6.5 contains the throughput results of the no-distribution policy con�gured
with these weight values.

We acknowledge that a more accurate estimation of the utilization of a particular node (e.g.
by employing a state update protocol at run-time) would improve the performance of the No-
distribution policy as the "least loaded" node would be more accurately identi�ed. This would
also apply for the Distribution policy described in the following section and we consider it a
subject for future research.
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5.2.3 Distribution Policy

This policy aims to produce distributed query plans that give a good throughput performance
in a multi-user setting. It is an extension of the policy used in the non-distributed DBMS
and it was inspired by our approach: a single DXchg operator that works at the granularity
of threads. This policy uni�es the resources available on the cluster and shares them equally
between concurrent queries.

Algorithm 5.2 contains the pseudo-code of this policy.

Algorithm 5.2 distribution(query, state)
Require: query: a sequential query plan; state: the current state of the system;
Ensure: An equivalent parallel plan
1: mpl← get_global_mpl(state)
2: resources← array(0)
3: marked← array(FALSE)
4: hostnode← NULL
5: while mpl > 0 do
6: ll_node← get_least_loaded(state, marked)
7: resources[ll_node]←MIN(cores[ll_node], mpl)
8: marked[ll_node]← TRUE
9: mpl← mpl − resources[ll_node]
10: if hostnode = NULL ∨ ll_node = master_node then
11: hostnode← ll_node
12: end if
13: end while
14: add_state_load(state, resources)
15: par_plan← generate_best_plan(query, resources)
16: actual_used← get_resources(par_plan)
17: if actual_used < resources then
18: remove_state_load(state, resources− actual_used)
19: if actual_used[master_node] = 0 then
20: hostnode← node|(∀other_node)actual_used[node] ≥ actual_used[other_node]
21: end if
22: end if
23: if hostnode 6= master_node then
24: par_plan← DXchange(par_plan, 1, [host_node], [1])
25: end if
26: return par_plan

First, the mpl is calculated in step 1 using the formula:

mpl =

{
SC∗OAF

TQ , if TQ > 0
SC, otherwise

where SC is the sum of the number of cores on each node, OAF is the over-allocation factor
and is typically set to 1.25 and TQ is the total number of queries already running in the system.

Then, in steps 5-13 the smallest set of least loaded nodes that can provide this parallelism level
is calculated. For every node in this set, the query is allocated all the cores on that node, with
possibly one exception (when the remaining parallelism level required is in fact smaller than the
number of cores on that node). Step 11 determines the node on which the actual computation
will be started.
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Similar to the no-distribution policy, step 14 performs an eager update, while step 15 generates
the optimal distributed query plan given the mpl. Steps 17-22 of the algorithm update the
state information and the host node if necessary.

Finally, Steps 23-26 add an DXchg(1:1) on top of the query tree, if necessary, to communicate
the results to the master node.

The throughput performance of this policy can be found in Section 6.5.



Chapter 6

Results

6.1 Experimental Setup

All the experiments we present in this section were carried out on the available cluster of
computers that was described in Section 2.3. Table 6.1 shows the exact values we used for the
relevant con�guration parameters of the distributed Vectorwise engine.

Con�g. Parameter Description Value
vector_size Processing unit size: the (maximum) number of

tuples returned by an operator's next() method.
1024

num_cores Number of available cores. 10
bu�erpool_size The amount of memory the I/O bu�ers can use

to cache data from disk.
40GB

num_recv_buf Number of bu�ers a DXchg Receiver uses to store
incoming messages.

2

num_send_buf Number of bu�ers per destination used by a DX-
chg Sender.

2

max_xchg_buf_size The maximum size of the Xchg bu�ers, also used
as the �xed size of DXchg bu�ers (MPI messages).

256KB

thread_weight The weight of the thread load (wt, see Section
5.2.2)

0.3

enable_pro�ling Flag specifying whether detailed per-query pro�l-
ing information should be collected.

TRUE

Table 6.1: Parameter Values

We speci�ed the number of cores to be used to 10 (of 12 available), to account for the various
background threads running in the system at all times and thus reduce the e�ects of thread
context switching on overall performance. Moreover, we also accounted for the fact that the
MPI implementation for In�niBand uses polling (implemented with busy waiting) to guarantee
low-latency for incoming messages.

All tests were performed on so-called "hot" I/O bu�ers, meaning that MScan operators always
read data from memory and there was no disk access whatsoever. This is because the impact of
reading data from disk is so big in our case (see Section 2.3.1), that measuring database perfor-
mance out of cache would essentially translate to measuring the performance of the underlying
distributed �le-system provided by GlusterFS, as the time spent waiting on disk access would
take up the vast majority of the overall query processing time. As such, before running any

56
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tests, we performed prior "cold" runs to ensure all the required data would then be available
in the I/O bu�ers. For this, we allowed the latter to store up to 40GB of data.

One of the limitations of the query plans presented in the next sections is the absence of the
Reuse operator. The Reuse operator materializes the results of a query sub-tree such that they
can be reused in a di�erent part of the query plan, without executing the same sub-tree twice.
Although it should not in�uence the speed-up results discussed henceforth, we acknowledge the
importance of this optimization and it is included in our future work agenda.

Moreover, in all the experiments in this section, only queries expressed in the Vectorwise algebra
were used and, therefore, only the Vectorwise engine was tested. Nevertheless, since our solution
does not modify the way Ingres interacts with Vectorwise, there should be no issues with their
integration.

6.2 The TPC-H Benchmark

For assessing the performance of our solution, we used the same benchmark according to which
the non-distributed, commercial version of Vectorwise is usually evaluated internally, namely
the TPC-H benchmark [TH], which simulates a real-world workload for large scale decision-
support applications that is designed to have broad industry-wide relevance. This benchmark
is designed and maintained by the Transaction Processing Performance Council and comes
with a data generator and a suite of business oriented ad-hoc queries and concurrent data
modi�cations.

The size of the data warehouse to be generated can be controlled by a parameter called Scale
Factor (SF). For our tests we used SF 100 and SF 500, which produce approx. 60GB and
440GB of data respectively. We disabled the concurrent data modi�cations, as they are not yet
supported in our system, but executed all the 22 read-only SQL queries provided (for which
the reader is referred to the TPC-H website).

The TPC-H benchmark consists of two di�erent tests for measuring the performance of a system
for which we will present separate results below:

• The Power Test measures the query execution power of the system when connected with
a single user. Queries are run in a sequential manner and their total elapsed time is
measured.

• The Throughput Test measures the ability of the system to process the most queries in
the least amount of time in a multi-user environment. Each simulated user runs its own
version of the TPC-H Power Test simultaneously.

Disclaimer: all the TPC-H results presented in this section are for pure educational purposes
and no o�cial statements can be made about the performance of our solution based on these.

6.3 Power Test Results

The query times shown were computed as the average of 3 "hot" runs, preceded by a cold run
meant to ensure all required data is loaded into I/O bu�ers and hence available from memory.

Table 6.2 presents the numerical query processing times (in seconds) that we obtained for the
22 TPC-H queries on SF 100 and SF 500 databases, along with the corresponding per-query
speedups, which are then graphically depicted in Figure 6.1.

Figure 6.2 shows the percentage of time query execution accounts for of the total query time,
where the latter is measured as the di�erence between the time the last result was returned to
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SF 100 SF 500
Query 1 node 2 nodes 3 nodes 4 nodes 1 node 2 nodes 3 nodes 4 nodes

1 2.57s 1.3s 0.9s 0.69s 9.19s 4.64s 3.07s 2.3s
speedup (1.98) (2.86) (3.72) (1.98) (2.99) (4.00)
2 0.47s 0.33s 0.33s 0.35s 1.82s 1.33s 0.92s 0.84s

(1.42) (1.42) (1.34) (1.37) (1.98) (2.17)
3 0.27s 0.28s 0.25s 0.25s 1.04s 1.00s 1.07s 0.93s

(0.96) (1.08) (1.08) (1.04) (0.97) (1.12)
4 0.19s 0.14s 0.1s 0.12s 0.46s 0.25s 0.26s 0.18s

(1.36) (1.90) (1.58) (1.84) (1.77) (2.56)
5 0.67s 0.51s 0.42s 1.51s 3.29s 2.11s 2.00s 1.51s

(1.31) (1.60) (1.60) (1.56) (1.65) (2.18)
6 0.16s 0.14s 0.11s 0.09s 0.48s 0.33s 0.21s 0.21s

(1.14) (1.45) (1.78) (1.45) (2.29) (2.29)
7 0.91s 0.64s 0.58s 0.55s 3.18s 2.22s 1.81s 1.55s

(1.42) (1.57) (1.65) (1.43) (1.76) (2.05)
8 1.02s 0.61s 0.64s 0.59s 3.52s 2.43s 2.17s 1.78s

(1.67) (1.59) (1.73) (1.45) (1.62) (1.98)
9 5.6s 3.3s 3.03s 2.59s 25.39s 15.39s 11.48s 8.99s

(1.70) (1.85) (2.16) (1.65) (2.21) (2.82)
10 1.91s 3.31s 3.24s 3.24s 8.62 13.53s 13.09s 12.42s

(0.58) (0.59) (0.59) (0.64) (0.66) (0.69)
11 0.33s 0.24s 0.27s 0.31s 1.88s 0.99s 0.71s 0.6s

(1.38) (1.22) (1.06) (1.90) (2.65) (3.13)
12 0.64s 0.38s 0.29s 0.24s 2.01s 1.06s 0.78s 0.6s

(1.68) (2.21) (3.13) (1.90) (2.58) (3.35)
13 11.46s 7.57s 5.89s 4.97s 43.67s 27.58s 22.54s 19.24s

(1.51) (1.95) (2.31) (1.58) (1.94) (2.27)
14 0.69s 0.52s 0.43s 0.45s 2.94s 1.76s 1.36s 1.18s

(1.33) (1.60) (1.53) (1.67) (2.16) (2.49)
15 0.81s 0.61s 0.62s 0.59s 2.68s 1.47s 1.15s 1.01s

(1.33) (1.31) (1.37) (1.82) (2.33) (2.65)
16 1.39s 0.91s 0.77s 0.72s 6.38s 3.64s 2.61s 2.04s

(1.53) (1.81) (1.93) (1.75) (2.44) (3.13)
17 1.35s 0.86s 0.6s 0.57s 6.01s 3.14s 2.15s 1.78s

(1.57) (2.25) (2.37) (1.91) (2.80) (3.38)
18 2.67s 1.94s 1.6s 1.64s 10.7s 8.17s 7.3s 6.68s

(1.38) (1.67) (1.63) (1.31) (1.47) (1.60)
19 2.23s 1s 0.74s 0.67s 7.63s 3.27s 2.38s 1.73s

(2.23) (3.01) (3.33) (2.33) (3.21) (4.41)
20 1.12s 0.69s 0.68s 0.77s 3.55 2.1s 1.59s 1.49s

(1.62) (1.65) (1.45) (1.96) (2.23) (2.38)
21 4.26 2.7s 2.12s 5.99s 14.85s 8.55s 6.67s 5.99s

(1.58) (2.01) (2.11) (1.74) (2.23) (2.48)
22 1.3s 0.79s 0.58s 0.54s 5.24 3.18s 2.27s 1.8s

(1.65) (2.24) (2.41) (1.70) (2.39) (3.01)

Total 42.02s 28.77s 24.19s 22.38s 164.71s 108.14s 87.59s 74.85s
Average Speedup (1.47) (1.77) (1.88) (1.62) (2.10) (2.55)

Table 6.2: Power test on scale factors 100 and 500 using 10 cores per machine
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(a) SF 100

(b) SF 500

Figure 6.1: Power test results: per-query speedup

Figure 6.2: The percentage of the total query run time spent in the execution phase
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the client and the time the database engine received the query. As expected, this percentage is
higher for the bigger scale factor, because more data is processed, while the overhead related
to the query interpretation, rewriter and pro�ling phases remains roughly the same. Since
only the Builder and query execution phases are actually distributed, this �gure becomes the
explanation why we consistently obtained better speed-ups on the larger scale factor (1.62, 2.10
and 2.55 vs. 1.47, 1.62 and 2.55 respectively) and suggests that they will keep improving as the
number of records in the database increases (according to Amdahl's famous law). Therefore,
all the Power Test related discussions will be made based on the SF 500 results.

6.3.1 Per-Query Discussion

This subsection is dedicated to a more detailed per-query analysis of the SF 500, 4 -node
results that aims to identify the reasons why some queries obtained good, or even close to
linear speedup, while others did not bene�t from distributed execution.

For each of the 22 TPC-H queries, Figures 6.3-6.14 present the associated operator trees, en-
riched with pro�ling information. The di�erent degrees of coloring are meant to highlight the
particularly time-consuming operators and re�ect the percentage of the total execution time
that was spent inside the operator's next() method. The numbers after the '@' symbol are
operator labels, those inside operator boxes show the cumulative processing time (expressed in
CPU cycles) of the corresponding sub-tree, while those on the edges refer to the total number
of tuples returned by one operator to the other. Finally, for each query, the time spent in each
of the various processing stages is shown alongside the operator tree.

The reader should keep in mind that, for simplicity, the graphs only depict one producer stream
for every DXchg operator, while the remaining ones are combined in a blue box. Therefore,
the numbers on the graph correspond to the operator instances belonging to the stream that
is shown. Moreover, these graphs only present the perspective of the Master node. This is
why, apart from the one explicit producer stream and those combined in the blue box, a given
DXchg Receiver may also receive data from similar producer streams on other nodes, but of
which there is no trace in these graphs. To exemplify this, consider the DXchgUnion receiver in
Q01 (Figure 6.3a), which returns 66 tuples even though it only receives 20 tuples from its local
senders. The di�erence of 46 tuples are received from senders on remote nodes. In the future,
pro�ling information from all nodes can be uni�ed in order to produce complete graphs. The
same observation applies to logging information.

Query 1 [4.00 speedup on 4 nodes] Query 1 exhibits a linear speedup. Threads commu-
nicate their partial Aggregation results only at the end of their computation and there are only
66 partial results in total transferred over the network. Therefore, more than 98% of the com-
putation is done independently and concurrently in the sub-trees rooted below the DXchgUnion
operator.

Query 2 [2.17] The query plans generated by the distributed and non-distributed versions
of Vectorwise di�er slightly for this query. The sub-tree rooted at the Select@27 operator is
the same in both plans and it is almost linearly parallelized. The only fractions of this sub-tree
that cannot be parallelized are the build phase of the HashJoin01@12 1 and HashJoin01@19
operators as these phases are executed sequentially. This is because the 18th transformation was
applied in both cases and, in the current version of the Vectorwise DBMS, HashJoin operators
on di�erent threads share a hash table constructed on a single thread. Although this fragment

1The HashJoin01 operator joins tuples from the outer relation that have 0 or 1 matching keys in the inner
relation. When there is exactly 1 matching key, the operator is called HashJoin1 and in any other case it is
named HashJoinN.
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MScan(lineitem)@1
1.05G (20.97%)

Select@2
1.18G (23.47%)

 53,687,071

Project@3
2.44G (48.38%)

 53,687,071

Aggr@4
4.83G (95.65%)

 53,687,071

DXU(s)@5
4.83G (95.66%)

 2

DXU(r)@51
5.04G (99.92%)

 2

9 more (of 10)
4.79G .. 4.96G

 18
(9 children)

Aggr@52
5.04G (99.95%)

 66

Project@54
5.05G (99.99%)

 4

Sort@55
5.05G (100.00%)

 4

total time: 
5.05G cycles

  

total memory: 
28.9MB

STAGE:parse
1.03M (0.02%)

STAGE:rewrite
13.88M (0.26%)

STAGE:broadcast
4.83M (0.09%)

STAGE:build
27.55M (0.52%)

STAGE:execute
5.05G (98.14%)

STAGE:profile
33.11M (0.63%)

STAGE:free
15.21M (0.29%)

(a) Q01

MScan(supplier)@7
10.94M (0.71%)

DXBC(s)@8
32.4M (2.11%)

 500,194

MScan(nation)@13
58.23K (0.00%)

MScan(region)@14
30.04K (0.00%)

Select@15
37.3K (0.00%)

 1

MergeJoin@16
108.46K (0.01%)

 5  1

DXBC(s)@17
2.51M (0.16%)

 5

MScan(partsupp)@1
281.21M (18.29%)

MScan(partsupp)@2
354.37M (23.04%)

MScan(part)@3
39.27M (2.55%)

Select@4
47.46M (3.09%)

 2,621,440

Select@5
58.4M (3.80%)

 52,054

MergeJoin@6
464.56M (30.21%)

 10,484,736 10,370

DXBC(r)@11
11.71M (0.76%)

 500,194

1 more (of 2)
30.97M .. 30.97M

 500,195
(1 children)

HashJoin01@12
550.21M (35.78%)

 41,480  1,000,389

DXBC(r)@18
3.4M (0.22%)

 5

HashJoin01@19
554.51M (36.06%)

 8,317  5

OrderedAggr@20
555.19M (36.10%)

 8,317

MScan(part)@22
54.66M (3.55%)

Select@23
60.59M (3.94%)

 2,621,440

Select@24
69M (4.49%)

 52,054

MergeJoin@25
628.52M (40.87%)

 6,141  10,370

MergeJoin@26
947.44M (61.61%)

 10,484,736  6,141

Select@27
947.59M (61.62%)

 24,564

DXU(s)@28
960.76M (62.47%)

 6,142

DXU(r)@200
858.45M (55.82%)

 6,142

9 more (of 10)
950.23M .. 960.2M

 53,019
(9 children)

MScan(supplier)@201
52.98M (3.45%)

HashJoin01@202
1.48G (98.97%)

 236,270  1,000,389

MScan(nation)@203
767.12K (0.05%)

MScan(region)@204
20.6K (0.00%)

Select@205
443.82K (0.03%)

 1

MergeJoin@206
2.14M (0.14%)

 5  1

HashJoin01@207
1.49G (99.69%)

 236,268  5

Project@208
1.49G (99.70%)

 236,268

TopN@209
1.5G (100.00%)

 236,268

total time: 
1.5G cycles

  

total memory: 
339.54MB

STAGE:parse
1.41M (0.07%)

STAGE:rewrite
164.04M (8.54%)

STAGE:broadcast
8.45M (0.44%)

STAGE:build
122.4M (6.37%)

STAGE:execute
1.5G (80.11%)

STAGE:profile
71.89M (3.74%)

STAGE:free
10.36M (0.54%)

(b) Q02

Figure 6.3: Pro�le graph for TPC-H queries 1 and 2

does not amount to a signi�cant percentage of the total execution time in this plan, this issue
reoccurs in more than 5 TPC-H queries and, therefore, parallelizing the construction of the
HashJoin's hash table (PHT, see Section 6.4) when the 18th rule is applied will signi�cantly
improve the average speedup.

On the other hand, 40% of the total execution time of Query 2 is spent in the HashJoin01@202
operator, which is executed on a single thread. This comes in contrast with the query plan gener-
ated by the non-distributed Rewriter which moves the DXchgUnion above the HashJoin01@202
and adds an DXchgBroadcast (applying the 18th transformation) above Mscan(supplier)@201.
In both cases, 85% or more of the execution time of the HashJoin01@202 is spent in the build
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phase and therefore, a parallel build phase would also speed-up this part of the tree.

Query 3 [1.12] 68% of the execution time of Query 3 is spent in the HashJoin01@36 operator,
and of this fragment 60% is spent in the build phase. PHT is needed here to reduce the execution
time.

Moreover, tuples scanned and selected from the customer table are then broadcast over the net-
work. We encounter here the �rst case where the network becomes a bottleneck. This happens
because the network bandwidth is lower than the speed at which the tuples are generated by the
Select operator. In general, in the case of perfect overlap of computation with communication,
the lower bound for the active time (the time elapsed between the moments it produces its �rst
and last tuples) of a Receive operator is:

act_time(R) ≥ min(cum_time(S), data_transferred
network_bandwidth )

where S is any Sender operator corresponding to the same logical DXchg operator. Let us
apply the formula to verify that indeed Query 3 is network bound. The DXBC(r)@35 operator
receives ≈ 15 million tuples that have 2 attributes, a 4-byte integer and string consisting of
10 characters on average. Considering that we have to send o�sets for every string, we have a
total tuple width of 22 bytes. Therefore data_transferred ≈ 314.71MB and with a bandwidth
of 2.4GB/s (see Figure 4.8), the lower bound for the active time of the DXBC(r)@35 operator
is around 314.71 million cycles. Considering that in Figure 6.4a, only the cumulative time is
depicted and this time is only a part of the active time, we can conclude that the right child of
the HashJoin01@36 operator is network bound. In the following discussions we will omit these
calculations for the sake of brevity.

To reduce the network tra�c in this case, we can eliminate the string attribute as it is only
used to �lter tuples scanned from the customer table. The DCE optimization (see Section 6.4)
will alleviate some of the network issues.

Query 4 [2.56] This is one of the fastest of the TPC-H set: it is processed in less than half a
second on a single node. Because of this, measuring the performance and speedup of this query
is particularly sensitive to noise.

On 4 nodes, the execution stage only amounts to 80% of the total query run time, with most
of the remaining time being spent on the Master node. However, the major problem limiting
speed-up in this case is data skew: while the depicted instance of the MergeJoin operator
outputs 267 thousand tuples, other instances of it produce up to 1.3 million tuples. As such,
times in the Aggr operator below DXchgUnion also vary signi�cantly.

Query 5 [2.18] The problem of the HJ-DXchgBroadcast transformation is exhibited here
again: 54% of the total execution time is spent in the HashJoin01@35 operator, with half of
this time being spent in its (sequential) build phase. This is another query that would bene�t
from the PHT optimization.

Also, there is a small data-skew in the outer relation of the above-mentioned HashJoin operator
(in the probe phase, instances of the same logical operator process either 1.5 or 2 million tuples).

Query 6 [2.29] As Q04, this query takes very little time on a single node (under 0.5s), with
only 75% of its total processing time being spent in the execution phase. Moreover, there is also
considerable data skew, as the Project@7 operator processes 58 thousand tuples in some cases,
while in others up to 750 thousand. For these two reasons, despite having a very similar plan
to Query 1 (with no Join operators and only a few tuples exchanged), the speedup obtained on
this query is not as good as that of the �rst one.
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MScan(customer)@5
24.28M (1.23%)

Select@6
53.68M (2.71%)

 1,875,000

DXBC(s)@7
619.5M (31.27%)

 375,639

MScan(lineitem)@1
159.86M (8.07%)

Select@2
173.11M (8.74%)

 4,195,300
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22.28M (1.13%)

Select@4
25.86M (1.31%)
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DXBC(r)@35
310.43M (15.67%)
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9 more (of 10)
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HashJoin01@36
1.64G (84.96%)
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DXU(s)@40
1.82G (94.37%)

 12,022
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(9 children)

Project@133
1.86G (96.46%)
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TopN@134
1.93G (100.00%)
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total time: 
1.93G cycles

  

total memory: 
385.99MB

STAGE:parse
1016.99K (0.05%)

STAGE:rewrite
40.79M (1.91%)

STAGE:broadcast
6.34M (0.30%)

STAGE:build
38.68M (1.81%)

STAGE:execute
1.93G (92.69%)

STAGE:profile
41.52M (1.94%)

STAGE:free
25.61M (1.20%)

(a) Q03

MScan(lineitem)@1
66.65M (19.66%)

Select@2
73.81M (21.77%)

 2,098,123

MScan(orders)@3
7.94M (2.34%)

Select@4
9.16M (2.70%)

 524,288

Select@5
10.51M (3.10%)

 524,288

MergeJoin@6
109.25M (32.23%)

 1,326,867  105,778

Project@7
109.3M (32.24%)

 267,436

OrderedAggr@8
113.22M (33.40%)

 267,436

Aggr@9
118.92M (35.08%)

 97,027

DXU(s)@10
275.96M (81.41%)

 5

DXU(r)@101
337.9M (99.68%)

 5

9 more (of 10)
259.66M .. 325.25M

 45
(9 children)

Aggr@102
338.95M (99.99%)

 200

Project@104
338.96M (99.99%)

 5

Sort@105
338.98M (100.00%)

 5

total time: 
338.98M cycles

  

total memory: 
29.74MB

STAGE:parse
664.15K (0.15%)

STAGE:rewrite
24.98M (5.92%)

STAGE:broadcast
3.57M (0.85%)

STAGE:build
15.77M (3.74%)

STAGE:execute
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STAGE:profile
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STAGE:free
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(b) Q04

Figure 6.4: Pro�le graph for TPC-H queries 3 and 4
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MScan(supplier)@2
27.62M (0.87%)

MScan(nation)@3
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Figure 6.5: Pro�le graph for TPC-H queries 5 and 6

Query 7 [2.05] 55% of the execution time is spent in the subtree rooted at HashJoin01@11.
This operator is another example of computation done in the build phase that cannot be
parallelized. Also, the right side of the HashJoin is network bound.

Query 8 [1.98] The 18th transformation was applied 3 times in this query, rendering 1.2
billion cycles (30%) of sequential computation. PHT or applying a di�erent transformation for
the HashJoins might help in this case, e.g. transformation 19.

Query 9 [2.82] Query 9 spends 16% of its total execution time in building hash tables for
the HashJoin01@77 and HashJoin01@11. PHT would make this query scale linearly.
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Figure 6.6: Pro�le graph for TPC-H queries 07 and 08

Query 10 [0.69] Query 10 is the only query of the 22 that exhibits a speedup of below 1 on
4 nodes. The reason behind this is that tuples scanned from customer table contain attributes
that are relevant only when presenting the results to the client. The non-distributed version
uses the persistence optimization (see Section 6.4) to e�ciently handle the string values read.
In the distributed version, however, 15 million tuples are being transferred over the network,
along with their various string attributes, even though, in the end, only 20 of them are returned
to the client, while the others are simply discarded. LP (see Section 6.4) would drastically
reduce the execution time of this query in both the distributed and non-distributed versions of
the DBMS.
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Figure 6.7: Pro�le graph for TPC-H queries 09 and 10

Query 11 [3.13] Half of the computation in Query 11 is done in the Select@137 operator, on
a single thread. The Rewriter in this query might not have chosen the best plan. A better plan
would be to apply the 6th transformation on the Select operator (introducing an DXchgUnion
above it) and the 30th transformation to the CartProd operator below.

Query 12 [3.35] The only reason this query does not exhibit a perfect speedup is that data
skew a�ects the load balance. For example the MergeJoin@8 depicted in Figure 6.8b processes
0 tuples on its left side, while other instances of the same logical MergeJoin operator process
around 430,000 tuples.
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Figure 6.8: Pro�le graph for TPC-H queries 11 and 12

Query 13 [2.27] Query 13 �lters some orders (e.g. in the Select@2 or Select@104 operators)
by their o_comment attribute, which is not used again throughout the query. As the strings
stored in o_comment have on average 50 characters, over 14.3GB of data is redundantly sent
over the network. The original Vectorwise alleviates this problem by taking advantage of string
persistence. However, DCE is the only optimization that would solve this problem in the
distributed version.

On the other hand, the transmission of the tuples scanned from the customer table is bounded
by the network bandwidth (e.g. from the DXHS(s)@135 to the DXHS(r)@154 operators).
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Query 14 [2.49] The right and left DXchgHashSplit operators under the Hashjoin@63 are
network bound. To reduce the network tra�c on the left side we can attach bloom �lters to the
DXHS(s)@4 operator (see Section 6.4). Unfortunately, the right DXchgHashSplit will still be
network bound. A possible improvement would be to change the plan by �ipping the relations
of the HashJoin (the outer relation is smaller than the inner relation). However, making such
a decision in the Rewriter is di�cult as it would have to be robust and accurate in all other
cases (even when the cardinality estimates are not precise).
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(b) Q14

Figure 6.9: Pro�le graph for TPC-H queries 13 and 14

Query 15 [2.65] In Query 15 we discovered an implementation �aw. At �rst sight, the
DXHS(r)@134 seems network bound. However, since the sub-tree rooted at the DXHS(r)@52
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DXBC(r)@190
1.91G (97.86%)

 1

HashJoin01@191
1.94G (98.99%)
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 1
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 1
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7.59M (0.33%)

STAGE:build
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STAGE:execute
1.96G (86.65%)
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(a) Q15

MScan(supplier)@7
12.59M (0.29%)

Select@8
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 125,000

DXBC(s)@9
68.74M (1.56%)
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MScan(partsupp)@1
279.99M (6.37%)

MScan(part)@2
57.89M (1.32%)
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118.71M (2.70%)

 2,621,440
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128.72M (2.93%)

 419,322
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MergeJoin@6
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DXBC(r)@37
71.11M (1.62%)
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9 more (of 10)
50.07M .. 66.94M

 551
(9 children)

HashAntiJoin@38
877.23M (19.96%)
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Project@39
879.4M (20.01%)

 1,556,794

DXHS(s)@40
3.26G (76.17%)
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9 more (of 10)
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Aggr@132
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3.93G (91.74%)
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DXU(s)@134
4.25G (99.25%)
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 27,840

9 more (of 10)
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(9 children)

Aggr@172
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Project@174
4.26G (99.39%)

 27,840

Sort@175
4.29G (100.00%)
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total time: 
4.29G cycles

  

total memory: 
1.42GB

STAGE:parse
975.82K (0.02%)

STAGE:rewrite
48.04M (1.03%)

STAGE:broadcast
6.06M (0.13%)

STAGE:build
91.57M (1.96%)

STAGE:execute
4.36G (95.64%)

STAGE:profile
48.68M (1.04%)

STAGE:free
6.41M (0.14%)

(b) Q16

Figure 6.10: Pro�le graph for TPC-H queries 15 and 16
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MScan(lineitem)@2
182.1M (8.51%)
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1.76G (84.45%)
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DXHS(r)@52
1.32G (63.27%)

 2,201,885

9 more (of 10)
1.76G .. 1.8G

 28,419,369
(9 children)

Aggr@53
1.75G (84.12%)

 2,034,372

DXU(s)@54
1.9G (90.91%)

 125,330

MScan(lineitem)@82
119.03M (5.56%)

Select@83
135.61M (6.34%)

 4,771,020

Select@84
142.12M (6.64%)

 2,201,885

Project@85
176.34M (8.24%)

 2,201,885

DXHS(s)@86
1.16G (55.66%)

 2,201,885

DXHS(r)@132
828.36M (38.70%)

 2,201,885

9 more (of 10)
1.15G .. 1.17G

 28,419,369
(9 children)

Aggr@133
1.16G (55.55%)

 2,034,372

Aggr@135
1.16G (55.59%)

 125,330

DXU(s)@136
1.17G (56.04%)

 1

MScan(supplier)@1
10.62M (0.50%)

DXBC(r)@182
1.87G (89.85%)

HashJoin01@183
1.91G (91.83%)

 125,000  1

DXU(s)@184
1.91G (91.84%)

 0

Remote Receive(s)

 125,330

9 more (of 10)
1.89G .. 1.9G

 1,124,965
(9 children)

Remote Receive(s)

 1

9 more (of 10)
1.15G .. 1.16G

 9
(9 children)

Remote Receive(s)

 0

9 more (of 10)
1.9G .. 1.91G

 0
(9 children)

total time: 
2.09G cycles

  

total memory: 
654.86MB

STAGE:parse
0 (0.00%)

STAGE:rewrite
0 (0.00%)

STAGE:broadcast
1.4M (0.06%)

STAGE:build
134.91M (6.02%)

STAGE:execute
2.09G (95.58%)

STAGE:profile
67M (2.99%)

STAGE:free
30.17M (1.35%)

Figure 6.11: Pro�le graph for TPC-H Query 15 (worker node)

operator is identical to the one rooted at DXHS(r)@134 and has a lower execution time, and
the amount of data transferred is ≈ 160MB, this hypothesis no longer holds. Therefore, to fully
understand what happens in Query 15, we have to take a look at the operator trees/forests
that are executed on other machines (i.e. other than the master node). Figure 6.11 illustrates
the forest of operators that are executed on a worker node.

In Section 4.4, we mentioned that the next() method of orphan Sender operators is called
immediately, at the start of the execution phase. While this is not an issue in most cases, when
there is a materializing operator just beneath the Sender operator (e.g. Aggr@135 or Aggr@53
in Figure 6.11) the whole sub-tree is executed before producing any result. Consequently on a
worker node during Query 15, there are 20 threads active for ≈ 1.17 G cycles (27.27% of the
execution phase). These threads share all the processing resources and the network bandwidth.

To solve this issue, the process of starting the Sender threads should either be coordinated by
the master (e.g. by broadcasting a message to start a particular set of sender operators) or
it should be the same on all nodes. The latter solution is based on a simulation of the tuple
�ow on remote nodes, e.g. the family of operators that process tuples from the right side of
the CartProd@187 (Figure 6.10a) should be executed completely before any of the operators
on the left side are started, even on worker nodes (e.g. in Figure 6.11, DXU(s)@54 should be
started only after DXU(s)@136 �nishes).

Query 16 [3.13] The sub-tree below Aggr@132 produces tuples at a higher rate than the
network can sustain. Enriching the parallelism rule with a transformation similar to the 12th
transformation considering this situation (2 aggregations in a row), would eliminate this bottle-
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 99,598

HashJoinN@139
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Project@190
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 1

total time: 
3.52G cycles

  

total memory: 
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STAGE:parse
979.85K (0.02%)

STAGE:rewrite
296.83M (7.26%)

STAGE:broadcast
7.38M (0.18%)

STAGE:build
81.92M (2.00%)

STAGE:execute
3.52G (88.38%)

STAGE:profile
60.42M (1.48%)

STAGE:free
25.22M (0.62%)

(a) Q17

MScan(customer)@9
35.74M (0.24%)

DXBC(s)@10
7.29G (49.48%)
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MScan(lineitem)@1
978.04M (6.48%)

MScan(lineitem)@2
1.31G (8.89%)

OrderedAggr@3
2.37G (16.13%)

 54,538,026

Select@5
2.43G (16.50%)

 13,631,488

MergeJoin@6
3.41G (23.13%)

 54,392,832  571

MScan(orders)@7
201.81M (1.34%)

MergeJoin@8
3.61G (24.51%)

 3,997  13,595,648

DXBC(r)@29
1.04G (7.08%)

 1,875,000

9 more (of 10)
7.28G .. 7.29G

 16,875,000
(9 children)

HashJoin01@30
14.11G (95.70%)

 3,997  75,000,000

OrderedAggr@31
14.11G (95.70%)

 3,997

DXU(s)@32
14.11G (95.71%)

 571

DXU(r)@141
14.73G (99.96%)

 571

9 more (of 10)
13.95G .. 14.14G

 5,234
(9 children)

Project@143
14.73G (99.96%)

 22,796

TopN@144
14.74G (100.00%)

 22,796

total time: 
14.74G cycles

  

total memory: 
4.01GB

STAGE:parse
990.02K (0.01%)

STAGE:rewrite
35.08M (0.23%)

STAGE:broadcast
5.45M (0.04%)

STAGE:build
61.74M (0.40%)

STAGE:execute
14.74G (98.79%)

STAGE:profile
37.19M (0.24%)

STAGE:free
41.83M (0.27%)

(b) Q18

Figure 6.12: Pro�le graph for TPC-H queries 17 and 18

neck (by eliminating the partitioning requirement for the children of the Aggr@132 operator).
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Another slow-down factor is that 10% of this query is run on a single thread (Sort@175,
Project@174 and Aggr@172).

Query 17 [3.38] The execution phase is almost linearly parallelized in Query 17. The over-
head comes from the time spent in the Rewriter and Builder.

Query 18 [1.60] In Query 18, the HashJoin@30 operator is required to produce clustered
streams (enforced by the OrdAggr operator). Therefore, the only HashJoin transformation
that can preserve the clustering property when multiple partitioned streams are requested is
the 18th. Consequently, this leads to 65% of the computation being done in the build phase of
the HashJoin operator. PHT would make this query scale perfectly on 4 nodes.

Query 19 [4.41] In the distributed Rewriter, the costs of the HashJoin operators were ad-
justed to better re�ect their execution times. The non-distributed Rewriter applied the 19th
transformation to the HashJoin operator, led by the cost model (i.e. the estimate of the build
phase of the HashJoin was much higher), and therefore produced a sub-optimal query plan.

Query 20 [2.38] Only 75% of the total running time is spent in the execution phase in Query
20. Adding up to the slow-down are the 4 HashJoin operators that are all building their hash
tables on a single thread.

Query 21 [2.48] The processing speed on the left side of the HashRevAntiJoin 1 is bound
by the network bandwidth. Moreover, the tuples from its outer relation contain two attributes
that are only used in the Select@3 operator, namely the l_shipdate and l_commitdate. Both
DCE and BF can be employed in this case to reduce the network tra�c.

Query 22 [3.01] Query 22 has a better speed-up than Query 21, but it is also slowed-down by
the network when scanning and partitioning tuples from the orders table. The BF optimization
would remove this bottleneck.

1Details about this operator and the Bloom �lter optimization can be found in Section 6.4
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 1
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Project@164
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total time: 
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STAGE:rewrite
68.65M (1.73%)

STAGE:broadcast
7.92M (0.20%)

STAGE:build
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(a) Q19
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 5,625

DXHS(r)@123
1.02G (44.42%)
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 2,154

9 more (of 10)
2.12G .. 2.21G
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Project@212
2.2G (95.72%)
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Project@214
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total time: 
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total memory: 
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(b) Q20

Figure 6.13: Pro�le graph for TPC-H queries 19 and 20
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(a) Q21
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 1

CartProd@78
969.95M (26.52%)

 1,875,000  1

Select@79
1.86G (52.27%)

 1,875,000

Select@80
1.86G (52.27%)

 0

DXHS(s)@81
1.9G (53.45%)

 0

DXHS(r)@21
731.88M (20.01%)

 13,421,772

9 more (of 10)
1.54G .. 1.54G

 120,795,955
(9 children)

DXHS(r)@136
1.9G (53.38%)

 0

9 more (of 10)
1.87G .. 1.9G

 0
(9 children)

HashRevAntiJoin@137
3.5G (98.06%)

 13,429,179  238,474

Aggr@138
3.51G (98.52%)

 79,403

DXU(s)@139
3.53G (99.01%)

 7

DXU(r)@185
3.55G (99.60%)

 7

9 more (of 10)
3.5G .. 3.53G

 63
(9 children)

Aggr@186
3.57G (100.00%)

 280

Project@188
3.57G (100.00%)

 7

Sort@189
3.57G (100.00%)

 7

total time: 
3.57G cycles

  

total memory: 
940.91MB

STAGE:parse
1.04M (0.03%)

STAGE:rewrite
27.62M (0.67%)

STAGE:broadcast
8.62M (0.21%)

STAGE:build
376.45M (9.12%)

STAGE:execute
3.57G (88.62%)

STAGE:profile
47.31M (1.15%)

STAGE:free
6.48M (0.16%)

(b) Q22

Figure 6.14: Pro�le graph for TPC-H queries 21 and 22
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6.4 Future Improvements

In this section we discussed methods that can alleviate/eliminate the scalability issues identi�ed
above. Not surprisingly, most of these focus on reducing the amount of inter-node tra�c.

Bloom Filters in DXchgHashSplit (BF)

We have seen that the HashJoin operators that process partitioned data from both of their
children are usually bandwidth bound. This is because they join very large relations and these
relations are usually partitioned and transmitted over the network using a DXchgHashSplit
operator.

On the other hand, most of the decision support queries contain joins that are very selective
(because these are foreign key joins into a right sub-plan that contains selections). At the
time the probe phase is started, the set of all possible key values of the inner relation can be
determined. This optimization tries to discard as many tuples as possible from the left (outer)
relation before they are sent to the HashJoin operator responsible for processing their partition.

A bloom �lter is a space-e�cient data structure that tests whether a element is part of a set
and may produce false positives, but never false negatives [Blo70]. It consists of an array of m
bits that are initially set to 0 and k hash functions. To add an element to the set:

1. the k hash functions are used to map the element to k positions in the array

2. the bits at the marked positions are set to 1

To test if an element is in the set:

1. k positions are obtained by applying the same k hash functions to the element

2. if any of the bits at the marked positions is 0 then the element is de�nitely not in the set;
otherwise the algorithm (possibly wrongly) concludes that the element is in the set

Bloom �lters are constructed by each instance of the HashJoin operator during their build
phase. Then all processing threads can exchange them such that, before the beginning of the
probe phase, each left Sender operator has a �lter corresponding to each Receive operator
belonging to the same logical DXchgHashSplit operator.

These �lters can then be used to discard the tuples of the outer relation that do not have
matching tuples in the inner relation. For example, when a tuple is processed by a Sender
operator, �rst a hash value is calculated to determine its possible destination, then a test
is made using the associated Bloom �lter (i.e., the Bloom �lter received from the HashJoin
operator that is the father of the Receive operator responsible to process the current tuple) and
�nally the tuple is either discarded or sent over the network. Both when building the bloom
�lters and when testing, the hash functions are applied on the join keys.

Consider TPC-H Query 21 (see Figure 6.14a). The fourth transformation was applied to pro-
duce a HashRevAntiJoin 1 operator that processes data partitioned by DXchgHashSplit opera-
tors. Let us examine how the BF optimization would improve the execution time of the subtree
rooted at this operator:

• the cardinalities of the inner and outer relation are approximately 26, 220, 000 and 713, 275, 692,
respectively

• the selectivity of the join is approximately 0.32%

• the width of a tuple from the outer relation is 24 bytes

1A HashRevAntiJoin operator returns all the tuples from the right relation that do not have matching keys
in the left relation
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• the left (logical) DXchgHashSplit operator transfers ≈ 15.94GB of data

• for a false positive probability of p = 5% and n = 655, 500, the number of elements
introduced in the Bloom �lter, the optimal values 1 for m and k are 4, 084, 071 and 5,
respectively. Therefore, N = 40 (the number of parallel streams) bloom �lters of ≈ 4MB
would be communicated in the exchange phase

• ≈ 2, 396, 606 tuples from the outer relation would pass the bloom �lter test, and therefore
only 55MB of data would be communicated over the network

Since Vectorwise already has implementations of bloom �lters, this optimization can be em-
ployed with little e�ort and the e�ects it can have on network tra�c are in some cases signi�cant,
e.g. a reduction by a factor of more than 200 for the above-mentioned DXchgHashSplit of Query
21.

Shared Bu�ers (SB)

The memory complexity of the number of bu�ers in the current implementation of the DXchg
operators becomes an issue in large cluster systems. In order to reduce it, a set of bu�er pools
destined for every consumer can be used instead (similar to the current implementation of the
original Xchg operators). This bu�er pool would be shared by all producers on a particular
node and the number of bu�ers it contains could be tuned such that:

1. it limits the memory usage (e.g. the maximum amount of memory a DXchg operator can
be allocated)

2. it does not introduce substantial synchronization overhead (i.e. the time producers have
to wait before acquiring a bu�er of the pool)

Compressed Execution (CE)

Vectorwise already employs di�erent data compression schemes, but only in the data storage
layer. However, at execution time, whenever the Scan operators ask for vectors of tuples, the
bu�er manager retrieves and then decompresses the required data before returning it. Therefore,
all the data that is being manipulated throughout query execution is uncompressed (i.e. no
compressed execution).

The opportunities for employing compressed execution as a performance optimization in (the
non-distributed version of) Vectorwise were already explored in [Lus11]. With non-intrusiveness
being an important consideration (just as in our case), the authors identi�ed Run-Length En-
coding (RLE) and On-the-Fly Dictionaries to be both e�cient and easy to integrate solutions
for reducing memory consumption, while improving overall query execution time.

Reducing the amount of data being exchanged over the network would alleviate one of the
major scalability issues of our approach, that is the network bandwidth limitation. Therefore,
we expect that our project would especially bene�t from the results of the work in [Lus11].

Persistent Strings (PS)

String persistence is an optimization of the single-node version of Vectorwise by which an
operator that materializes data2 marks the variable-legth data type expressions as persistent,
meaning that the values are guaranteed to exist throughout the lifetime of the operator. This

1The formulas after which these values were calculated can be found in [Blo70]
2A materializing operator is one that maintains (some attributes of the) input data in memory throughout

its entire lifetime: Sort, Aggregation, HashJoin
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way, other materializing operators upstream can avoid making additional copies of the variable-
length data and only use pointers instead.

Consider a query plan in which there is a DXchg above a HashJoin operator and imagine
that for every tuple in the build relation (the one used for constructing the hash table) there
are n > 1 matching tuples in the probe relation. If one attribute of the build relation is a
string (variable-length data type), then the matched strings will be sent over the network n
times. If the persistent strings were sent at once to the remote node after the build phase, but
before probe, then only pointers (or o�sets) would need to be transmitted n times. However,
for Join operations with low matching rate, this approach would be detrimental, unless more
sophisticated schemes are used, such that only those strings that are actually used (i.e. for
which there are some matching tuples) are communicated. For example, per-destination bit-
masks can be maintained to record which string values had already been sent. This way, a
string value would only be sent upon the �rst record match, while for any subsequent matches
only communicating its identi�er would su�ce.

Late Projection (LP)

In highly selective queries most tuples fail to contribute to the result, because of being dropped
by Select, TopN, and/or Join operators. Late Projection is a general optimization technique by
which retrieving non-key attribute data from the storage layer is postponed until it is certain
(or highly probable) that the corresponding tuples will actually be part of the result. In the
context of vectorized processing, this technique would reduce the time spent not only in Scan,
but also in Xchg operators, since producers would need to perform less data copying. The
bene�ts are especially notable when variable-length data types are involved.

In our distributed case, this optimization would also reduce network tra�c by not transmitting
certain attributes until they are actually needed. Let us take for example the worst-performing
query of the TPC-H set, that is Q10. Here, tuples that are scanned from the customer table
have 4 string attributes that are only used when communicating the results to the client:
c_name, c_phone, c_address, c_comment. Moreover, these tuples are joined with the nation
table and an additional string attribute is added, namely n_name. Table 6.3 1 shows the ratio
stringsize
tuplesize of tuples that are transmitted over the network in TPC-H Query 10, together with
the actual amount of data sent. The conclusion is that, in this case, Late Projection would
reduce network communication by ≈ 85%.

Operator Ratio Data Transferred

DXUnion 116 : 140(82.85%) 2.05GB
DXHashSplit(below Aggr) 108 : 120(90.00%) 4.58GB
DXHashSplit(right side of HashJoin) 108 : 124(87.09%) 8.66GB
DXHashSplit (left side of HashJoin) 0 : 9(0.00%) 361.36MB
DXBroadCast 8 : 16(50%) 400B

Table 6.3: String/tuple ratio in the DXchange operators of TPC-H Query 10

We managed to simulate the e�ects of Late Projection on Query 10 by manually eliminating
the above-mentioned attributes from the MScan's parameters and joining the partial results at
the top of the query plan with the customer and nation table in order to produce the complete
results. The speed-up improvement is signi�cant (Figure 6.15).

Although the new plan has reduced the network tra�c, the speed-up deteriorates with the

1The values determined in this table are only approximations because they were computed using string
averages
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SF 500
Query 1 node 2 nodes 3 nodes 4 nodes

10 3.46s 1.73s 1.43s 1.37s
speedup (2.00) (2.42) (2.53)

(a) (b)

Figure 6.15: The e�ects of LP on Query 10 (SF 500, 10 cores/machine)

increasing number of threads as both sides of the HashJoin01@93 operator (Figure 6.7b) are
still network bound.

Parallel Building of Shared Hash Tables (PHT)

When the 18th transformation is applied to a HashJoin, every instance of that operator needs
to have access to a hash table containing all the tuples from the inner relation, at the beginning
of the probe phase. Since it does not make sense to build several copies of the same hash table,
in the non-distributed DBMS a master instance is elected before the build phase starts, then
the master builds on a single thread the whole hash table and �nally pointers/references to
the hash tables are sent to the other HashJoin instances.

We have seen that in many queries, building the hash table on a single thread becomes an
issue in the distributed version of the Vectorwise DBMS. Therefore, this build phase needs
to be parallelized. One easy implementation for this optimization would be to have every
instance of the HashJoin operator (belonging to a given node) build separate hash tables in
parallel containing a part of the inner relation and then merge them. If necessary, additional
improvements can be made to this implementation to reduce the memory complexity (e.g. have
several instances work on the same hash table).

Dead Code Elimination (DCE)

We have seen in Section 6.3 that in some queries there are attributes that are only used to
�lter a relation. These attributes become "dead" for the rest of the query and should be
eliminated. In the Vectorwise Rewriter, the dead code elimination rule discards these columns
only in materializing operators. In distributed settings, this becomes a bottleneck as large
amounts of unnecessary data are sent over the network. Therefore, the DCE rule should consider
introducing Project operators as low as possible into query plans to eliminate the dead columns.

To simulate the e�ects that DCE has on the TPC-H queries, queries 3, 13 and 21 were modi�ed
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(a) Q3 (b) Q13 (c) Q21

Figure 6.16: The e�ects of DCE on queries 3, 13 and 21 (SF 500, 10 cores/machine)

SF 500
Query 1 node 2 nodes 3 nodes 4 nodes

3 1.05s 0.89s 0.85s 0.79s
speedup (1.18) (1.24) (1.33)
13 38.37s 20s 13.48s 11.05s

(1.92) (2.85) (3.47)
21 14.41s 7.97s 5.98s 5.19s

(1.81) (2.41) (2.78)

Table 6.4: The e�ects of DCE on queries 3, 13 and 21 (SF 500, 10 cores/machine)

by manually introducing a Project operator immediately above the selection to eliminate the
"dead" columns. These e�ects are illustrated in Figure 6.16 and Table 6.4.

The execution times for Query 3 have improved with the DCE optimization, but, as expected,
most of the time is still spent in the build phase of the HashJoin01@36 operator (Figure 6.4a).

In Query 13, there are still three DXchgHashSplit operators that are placed on top of Aggr
operators that slow down the tuple �ow. This happens because Aggr is an operator that
materializes all of its data before producing a tuple and therefore it is very hard for the network
bandwidth to match the speed of this "burst" of tuples. One way to mask this problem would
be to overlap the communication with the computation performed in the part of the query plan
that consumes these tuples. However, since in most cases this is not possible, the only way to
avoid this issue is to change the query plan.

Finally, in Query 21, although we removed 2 4-byte integer attributes from the left relation of
the HashRevAntiJoin operator (Figure 6.14a), the number of the tuples (≈ 180 million) and
the size of the remaining attributes (16 byte wide) are still large enough not to completely
eliminate the network bottleneck in this query.

Explicit Data Partitioning (EDP)

Vectorwise relies only on the HashSplit operators to partition data, if necessary. This becomes
an issue when large relations are processed as it assumes an "all-to-all" redistribution of data
that is bound by the network bandwidth.

To eliminate this redistribution of data, a partitioning scheme is needed. However, a change
in the architectural choice would have to be made to make use of it (currently, we rely on the
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distributed �le-system to transparently manage data storage). Nevertheless, we will analyze
the expected e�ects of such a partitioning scheme on the TPC-H query set, namely the Bitwise
Dimensional co-Clustering (BDC).

BDC modi�es the arrangement of tuples within tables such that the partitioning and clustering
requirements are satis�ed even at the Scan level [BBS12]. BDC orders tuples by their attribute
values on several dimensions to speedup foreign key joins and push-down range-selections (i.e.
they are performed in the Scan operator). Consequently, this multidimensional storage scheme
eliminates, in most cases, the need for additional re-partitioning inside query plans and therefore
eliminates HashSplit operators, altogether.

Per-Query Optimization E�ectiveness Matrix

Table 6.4 illustrates in a concise manner the estimated e�ectiveness of the identi�ed optimiza-
tions on the TCP-H query set.

BF SB CE PS LP PHT DCE EDP speedup
1 ++
2 ++ -
3 + ++ + - -
4 +-
5 + ++ -
6 -
7 + + + -
8 + + - -
9 + ++ +-
10 ++ ++ ++ ++ ++ - -
11 +
12 +
13 ++ ++ ++ ++ -
14 + ++ + ++ -
15 + + + + +-
16 + ++ + +
17 +
18 ++ + ++ - -
19 ++
20 + + ++ ++ -
21 ++ ++ ++ + ++ -
22 ++ + ++ +

where:
+ improves parallelization
++ essential for a good speedup

and the original speedups (Table 6.2) are classi�ed as:
- - speedup value < 2
- speedup ∈ [2, 2.5)
+- speedup ∈ [2.5, 3)
+ speedup ∈ [3, 3.5)
++ speedup ≥ 3.5

Table 6.5: Per-Query Optimization E�ectiveness Matrix
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(a) SF 500

Figure 6.17: Power test results on modi�ed TPC-H query set: per-query speedup

6.4.1 Power Test Results on the Modi�ed TPC-H query set

In the previous section, some of query plans of the TPC-H queries were manually modi�ed in
order to simulate the e�ects of Late Projection and Dead Code Elimination (two identi�ed opti-
mizations out of eight). In comparison, the overall average speedups on SF-500 are: 1.71(1.62),
2.25(2.10) and 2.71(2.55) on 2, 3 and 4 nodes, respectively.

Figure 6.17 presents the per-query speedups on this modi�ed query set.

6.5 Throughput Test Results

Another important aspect of a distributed database system is its scalability with respect to the
number of concurrent client connections it supports. Ideally, by doubling the number of nodes,
the system should be able to service double the amount of concurrent clients within the same
time frame, assuming that client workloads are similar.

To test this, we compared the overall time it takes to run 5 concurrent streams (simulating 5
concurrent clients) on 1 node, 10 streams on 2 nodes, 15 streams on 3 nodes and, �nally, 20
streams on 4 nodes, using the No-Distribution Policy described in Section 5.2.2. In each of
these streams, all the 22 queries are ran sequentially, but in a di�erent order (as de�ned by the
TPC-H benchmark). The overall times shown are computed as the absolute di�erence between
the time clients start issuing queries and the time the system �nishes processing the last of
their queries.

Given that, as explained, it is only relevant for us to perform tests on "hot" I/O bu�ers and
that, unlike in the power test, it was no longer possible to interleave "cold" runs, we could not
run the throughput test on the SF500 database due to memory limitations.

The results shown in Table 6.6 for the SF100 database are promising: only 5% overhead is
introduced and, apparently, this is independent of the number of nodes. It is arguable that this
remark cannot hold true when much larger numbers of machines are involved, since, with our
approach, the Master node is involved in all queries issued to the system for scheduling purposes,
optimizing plans and passing results back to the Ingres front-end. However, the TPC-H queries
generally limit the number of returned results (Q16 and Q20 are the only exceptions), so network
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bandwidth is unlikely to become a bottleneck. Moreover, the time the Master takes to schedule
a query and build the corresponding DXchgUnion operator is negligible, while the percentage
of time spent in the rewriter phase decreases as the the database grows in size. Repeating this
test on a larger cluster would be the best way to validate/invalidate these speculations, but,
to conclude, we conjecture that, from the perspective of query throughput performance, our
solution obtains close-to-ideal speedup.

1 node, 5 streams 2 nodes, 10 streams 3 nodes, 15 streams 4 nodes, 20 streams
176.78 sec 184.46 sec 183.22 sec 185.93 sec

Table 6.6: Throughput Results, No-Distribution Policy

The caveat of the above experiment using the No-Distribution policy is that despite the overall
throughput performance of the system is shown to scale well with the number of cluster nodes,
the performance perceived by an individual user for a given query will never be better than
that obtained on the single-node version of the DB engine, because, as its name suggests, the
chosen policy completely eliminates distributed query execution (i.e. intra-query parallelism at
the level of cluster nodes).

The Distribution Policy is meant to address the issue raised above by �nding a compromise
between achieving good overall query throughput performance and leveraging the bene�ts of
distributed query execution. The following experiment, whose result are presented in Figure
6.18b, aims to reveal the extent to which the Distribution policy attains its goal by presenting
the overall speedup achieved on increasing numbers of parallel query streams. We simulated
a multi-user environment with two, three and four nodes on SF100, varying the number of
streams from 1 to 8.

An apparent anomaly happens when the system is tested by executing 7 streams of queries.
The reason behind the super-linear speedup becomes, however, clear if we take a closer look at
the actual utilization of the single-node system and of the cluster:

• 1 node: after the few �rst queries, every plan produced by the Rewriter is granted 1 core
(see Section 5.2.1, with an OAF of 1.25). Consequently, most of the time 1, 7 threads are
running on 10 cores.

• 2 nodes: 3-thread query plans are produced (see Section 5.2.3), 21 threads on 20 cores.

• 3 nodes: 5-thread query plans, 35 threads on 30 cores.

• 4 nodes: 7-thread query plans, 49 threads on 40 cores.

Furthermore, the alert reader may notice that the total times (and, therefore, speedups) ob-
tained with a single query stream are slightly worse than those presented in Table 6.2 for SF100,
even though there should have been no di�erence between these two sets of results. The expla-
nation comes from the fact that "total time" was used with slightly di�erent meanings: for the
Power Test, it is the sum of the 22 individual query processing times, whereas for the Through-
put Tests total time refers to the duration between the time when streams start issuing queries
and the time the last query is processed. In the case of a single stream, the latter measure
includes the former, but also accounts for inter-query processing overhead that amounts to ca.
3 seconds, regardless of the number of nodes.

Nevertheless, it can be seen that, as the number of streams increases, the speedups improve,
getting closer and closer to those obtained with the No-Distribution policy. Lacking a more
precise metric to evaluate it, we consider the Distribution policy to achieve positive results,
successfully meeting its goals.

1Remember, the level of parallelism may change during the execution of a query
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Number of SF 100
Streams 1 node 2 nodes 3 nodes 4 nodes

1 45.01s 31.72s 27.12s 25.34s
speedup (1.42) (1.66) (1.78)
2 83.83s 51.84s 41.76s 36.17s

(1.62) (2.01) (2.32)
3 107.94s 66.57s 55.08s 46.97s

(1.62) (1.96) (2.30)
4 140.76s 83.34s 62.85s 57.76s

(1.69) (2.24) (2.44)
5 179.27s 103.20s 72.01s 59.94s

(1.74) (2.49) (2.99)
6 200.68s 115.51s 84.03s 67.16s

(1.74) (2.39) (2.99)
7 309.72s 133.13s 96.72s 73.79s

(2.33) (3.20) (4.20)
8 323.34s 147.89s 109.50s 86.68s

(2.19) (2.95) (3.73)

(a) Total Execution Times

(b) Speedup Graph

Figure 6.18: Throughput Test Results, Distribution Policy



Chapter 7

Conclusion

7.1 Contributions

In this Master's thesis we undertook the challenge of laying the groundwork towards an MPP
solution for the Vectorwise database engine. The milestones we aimed to reach were deciding on
the high-level system architecture and creating a prototype that demonstrates improved query
execution times, as well as the ability to process larger volumes of data and serve more clients
in parallel.

With a cluster of four commodity nodes interconnected by low-latency, high throughput fabric,
we obtained an average query processing speed-up of 2.55 on the SF500 TPC-H benchmark.
Moreover, our solution was shown to scale linearly in terms of the number of concurrent users.

Coming back to our initial research questions, we argue that with an easy and non-intrusive
implementation it is possible to obtain a reasonably scalable distributed version of Vector-
wise. Moreover, with a shared-disk approach, good job scheduling policies and close-to-optimal
parallel/distributed plans can be devised with little e�ort.

However, the most severe factor limiting the scalability of our solution is network bandwidth.
Although we identi�ed a series of optimizations that would alleviate this problem, it would
inevitably reoccur when increasing the number of nodes and/or the volume of data. As such,
we believe that explicit data partitioning is essential for a truly scalable MPP solution, despite
the fact that it would require substantial additional development e�ort and compromise the
non-intrusiveness and usability characteristics of our prototype.

7.2 Future Work

Apart from the performance-enhancing opportunities we identi�ed and described in Section
6.4, one would also need to address the challenge of providing the following functionality and
features in the context of a distributed DBMS.

Support for DDL, DML, distributed transactions

In this project we only focused on one of the many classes of queries that need to be supported by
a full-blown DBMS, namely read-only queries (i.e. the SELECT command). Future work would
also need to address the remaining operations of the Data Manipulation Language (DML) (i.e.
INSERT / UPDATE / DELETE ), as well as those of the Data De�nition Language (DDL):

84
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CREATE / ALTER / DROP. Additionally, support for transactions is crucial for a DBMS that
aims to service many users concurrently, while ensuring the integrity of the data it stores.

Having already chosen a centralized solution (with a process acting as "Master") simpli�es the
implementation of the DDL operations, especially if the "shared-disk" approach is preserved.
For example, the DDL command could be broadcast and executed by all the server instances
on their in-memory data structures, with only the Master node acting on the data on disk.

Vectorwise uses the concept of "Positional Delta Trees" (PDTs) [HNZB08] to speed up up-
dates on the underlying read-optimized column store. PDTs are hierarchical data structures
that manage data modi�cations resulting from non-SELECT DML operations (or, simply, "up-
dates") in such a way that they can be e�ciently merged on-the-�y with table-resident data in
order to provide readers with the most up-to-date information.

Without going into much detail, there are three levels of PDTs:

• trans-PDT : very small (L1 cache sized) PDT that only stores di�erential updates cor-
responding to a single transaction. Upon COMMIT, the Write-Ahead Logger (WAL)
saves the trans-PDT to persistent storage (for crash-recovery purposes) and propagates
its contents to the write-PDT.

• write-PDT : L2 cache sized PDT that is replicated for achieving snapshot isolation. As
write-PDTs grow, their contents are propagated to the read-PDT.

• read-PDT : in-memory PDT (several hundred MB) that is shared by all queries in the
system. A periodic checkpointing routine replaces old tables with new ones that include
the di�erential updates stored in the read-PDT, such that the latter can be freed.

A simple solution for extending this mechanism to work in the distributed version of Vectorwise
is to have the Master be the only process to execute update queries and run the WAL and
checkpointing routines. Along with the distributed plans for SELECT queries, it can serialize
and attach the corresponding trans-PDT, in order to inform the worker nodes about the latest
transaction-speci�c di�erential updates. Also, upon COMMIT, after logging the trans-PDT
to persistent storage, the Master should make all workers load the committed updates into
memory just as they would reconstruct their PDTs after a crash. Finally, upon each Checkpoint
operation, the worker nodes need to be informed that they need to switch to the newly-created
tables and drop their read-PDTs.

We are aware that the above approach would incur non-negligible synchronization overhead,
but devising more advanced solutions (e.g. distributing the execution of update queries) can
be an interesting research task.

Availability, Reliability and Maintainability

Yet some other important characteristics of any production-ready DBMS - and especially for
a distributed one - that were not addressed in this thesis are availability, reliability and main-
tainability.

Simply put, availability is the proportion of time a system is in a functioning condition, while
reliability expresses the ability of a system or component to perform its required functions under
stated conditions for a speci�ed period of time [oEE90]. For ensuring high levels of reliability
and availability, a system needs to be able to remain operational in the presence of failures and
it must not require extended periods of planned downtime.

In a distributed environment, the occurrence of failures increases with the number of components
(machines) involved. Despite being highly e�cient and extensively used for HPC applications,
the available MPI implementations have the disadvantage that they do not provide any user-
transparent mechanism for handling the failure of a process. The message passing standard only
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de�nes two behaviors for these situations: either the communication primitives must attempt
to1 return an error code whenever a failed process is involved (either as the destination process,
or as part of a collective operation), or - the default behavior - all such errors are treated as fatal
and the application is terminated. Some implementations, however, go beyond implementing
the standard and aim to provide process-level fault tolerance at the MPI API level (see FT-MPI
[FD00]), but they mostly remain at the level of research projects. Therefore, in general, the
responsibility of ensuring fault tolerance lies entirely on the implementer of MPI applications.
Traditional approaches are described in [GL02], with the most notable one being the well-known
"checkpointing" technique.

Maintainability refers to "the ease with which a software system or component can be modi�ed
to correct faults, improve performance, or other attributes, or adapt to a changed environment"
[oEE90]. The ability to add or remove server instances on the �y would not only improve the
maintainability of the Vectorwise distributed DB engine, but also its availability, by minimizing
the need for planned downtime. This does not comply with the static model of MPI-1, in
which the number of tasks is �xed at application launch time, but, fortunately, the "dynamic
process management" feature of MPI-2 allows an MPI process to spawn new processes and it
could be used, for example, to adjust the number of cluster nodes running Vectorwise server
instances depending on user load, the necessity for maintenance work, or other criteria. More
information on the topic of dynamic process management support o�ered by MPI-2 compliant
implementations can be found in [GKP09], along with a set of micro-benchmarks for evaluating
their performance.

1Whether or not this attempt is successful is implementation-dependent.
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