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Abstract

Hadoop is the de-facto standard for building clusters for big data processing. Data is stored
in a myriad of formats, most not optimized for large-scale cfficient processing. With the
development of Parquet by Cloudera and Twitter the companics aim to introduce a new
gencral-purpose storage format to unify database-like data storage in Hadoop clusters with
a format designed with nested data structures and distributed parallel processing in mind.
Previous approaches for interconnecting the worlds of Hadoop clusters and classic relational
database systems (RDBMSs) focused on data cxchange using bulk-copying techniques. Re-
cent developments try to close the gap by deploying RDBMSs on Hadoop clusters (Actian
Vector-on-Hadoop) or providing the Hadoop ccosystem with RDBMS features (Cloudera
Impala). Our approach uses the reverse angle and extends RDBMSs to read and process
data from Parquet files in Hadoop clusters dircctly and integrating them completely into the
relational model. Furthermore we specifically deal with the nested data model of Parquet
files and use it to optimize query exccution. Our experiments show that for certain use cases
our implementation outperforms Parquet implementations of Hadoop systems like Impala
and Hive and can even be ncarly on par with relational databasc systems. Our approach
therefore provides an already efficiently usable first step in integrating the worlds of Hadoop
and RDBMSs.
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1 Introduction

1.1 Motivation

Clusters are one of the prominent and current trends in data processing, often used in
conjunction with the buzzword big data [1]. The dominant system for building clusters is
Apache Hadoop [2] and the software from its ccosystem like HDFS! and MapReduce [3).
One such part is Impala by Cloudera®. It is a distributed SQL query engine for Hadoop. Its
primary storage format is Parquet®, a column-oriented storage format for nested data. As
other big players in the Hadoop environment like Hive? also start to integrate Parquet as
a storage format it is becoming more and more the primary format for storage of complex
data in a distributed Hadoop environment.

More and more companics build clusters using the Hadoop ecosystem and its software
stack for analytical data processing (OLAP)® but concurrently also still use traditional
relational database systems (OLTP). But despite this both worlds remain mostly separated.
The only connection often being a regularly scheduled batch-loading-process for copying
data from the rclational database systems to the Hadoop cluster.

The primary authors of Parquet, Cloudera and Twitter, intended it to be a general-
purpose format for the entire Hadoop ccosystem®. That means with its growing adoption
there is a possibility to finally bridge the gap and allow traditional database systems access
to Hadoop cluster data on the query level without having to account for a myriad of data
formats.

On the side of relational database systems one of the trending topics of current database
rescarch is the concept of main-memory databases. One such research project is Hyper [4],
developed at the Database chair of the Technical University of Munich. Its features not
only include in-memory processing but also a data-centric approach using code gencration
for query execution [3].

Another trending topic, although already quite old, arc column-oricnted databases. The
pioncer in that arca was MonetDB [6], still developed at the Centrum Wiskunde & Infor-

Hadoop Distributed File System: http://wiki.apache.org/hadoop/HDFS

http://impala.io

http://parquet.io

http://hive.apache.org
http://www.itproportal.com/2014/02/03/big-data-trends-hadoop-is-the-clear-frontrunner-
for-enterprises/

® http://blog.cloudera.com/blog/2013/03/introducing-parquet-columnar-storage-for-apache-
hadoop/
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matica (CWI) in Amsterdam”. Also invented there was its successor called Vectorwise (7],
now developed by Actian under the name Actian Vector.

1.2 Contribution & Scope

As explained above Parquet is on its way to become the dominant data storage format for
Hadoop.

To integrate the worlds of relational databases and Hadoop Parquet we focus on the con-
copt of external tables already widely used to provide database users with a table like access
to structured files (CSV) residing outside of the database. Following the same concept we
intcgrate Parquet files by representing them as special tables that still behave like relational
tables so that users can use existing SQL query capabilitics to access these files.

One challenge lies in the fact that the data inside Parquet files has a nested structure
whereas relational tables are by design flat. So we have to map both concepts to cach
other. Also as of the time of this writing there is no publicly available open-source library
for accessing Parquet files usable from C++. Therefore during the course of this thesis we
develop a library designed to access Parquet files in an efficient way and provide its data in
a way suitable for processing by rclational database systems.

As mentioned in Section 1.1 Hyper and Vectorwise represent two different approaches to
developing modern relational database systems. As such we chose those two as candidates
for integrating Parquet query capability and to demonstrate the different approaches needed
for both systems to achiceve efficient query exccution.

As such the main challenge of this thesis is the integration of Parquet files into these
database systems so that querics can be handled in an cfficient way.

1.3 Related Work

In Section 1.1 we already mentioned the database systems Hyper and Vectorwise as the
targets for this thesis.

Hyper is a main-memory relational database system developed as a rescarch project at
the Database chair of the Technical University of Munich [4]. One of its main features
based on the main-memory approach is that it is suitable for OLAP and OLTP workloads.
It achicves that by using the process-fork mechanism of the underlying operating system
to separate both workloads. The main databasc process handles OLTP queries. Whenever
a OLAP query is sent to be executed (and therefore requires a consistent snapshot / state
of the database) a fork of the original process is created and the query is exceuted by the
forked process. As the memory of the processes is duplicated the memory of the forked
process remains in a consistent state cven when the main process is changing data. But
despite that the fork does not take up the double amount of memory as the underlying

7 Part of this thesis was written during an internship at CWI
p




opcrating system uses a copy-on-write approach to only duplicate those memory blocks
that arc being changed in one of the processes. For all other blocks only one instance exists
which is shared by all forks. This is done transparently to the processes by the operating
system and therefore requires no special implementation for the database.

Another more interesting feature of Hyper is the query exccution model. Traditionally
relational database systems use the iterator model [8]. In this model operators provide an
itcrator-like access to the tuple stream it produces using its inputs via a next-Mcthod. As
this model means a number of (possibly quite expensive due to virtual methods) function
calls per tuple. In licu of the fact that database systems get more and more dominated by
CPU consumption and less by 1/O this model is quite inefficient. Therefore Hyper uses a
new model [5] where the algebraic operator tree is used to generate code for query execution
that is data-centric so that values can be kept in CPU registers as long as possible. For this
the operator tree is split into pipclines with pipeline breakers being operators that have to
materialize tuples before they can continue processing (e.g. sort or aggregation operators,
but also joins for at least one input side). Then code is generated to push tuples through
the pipelines thercfore maximizing the time a tuple can stay in CPU registers. For code
generation the LLVM framework [9] is used to produce code in the LLVM intermediate
representation that is then optimized and compiled into native machine code.

The implementation for Hyper in this thesis is also partially based on "Instant loading
for main memory databases” [10] whose implementation was used as a template for our own
implementation.

Vectorwise is a database system originally developed as a new kernel for MonetDB under
the codename X100 [11] at the Centrum Wiskunde & Informatica (CWI) in Amsterdam.
MonectDB [6] is the pioncer for column-oricnted databasc systems which store values not
grouped by tuples/rows but grouped by column. Therefore queries that only use a (small)
subsct of columns can run faster as only these needed columns need be read whercas if
tuples are stored in row storage the entire tuple with all columns would always have to be
read. Vectorwise [7] adds on that and extends the query execution model (based on the
classic iterator-model) to not process single tuples but an entire vector of tuples at a time.
Due to the eolumn-oriented nature the tuples are provided with one vector per column.
Vectorwise was bought by the company Actian (which also bought the Ingres databasce
system and uses it as the fronted for Vectorwise) and is now developed and marketed as a
commercial product under the name Actian Vector.

The latest development cffort for Vectorwise is an integration into Hadoop. The project
is developed under the codename Vortex and promoted as Actian Vector-on-Hadoop [12].
Vortex extends Vectorwise to run as a distributed system (with parallel distributed query
processing) on the nodes of a Hadoop cluster and to use HDFES as storage backend for the
database (but it still uses its own storage format). The goal is that companies only need to
have one cluster that can run both Hadoop and a traditional relational database system.

An introduction to the Hadoop ccosystem and the systems relevant to this thesis can be
found in Section 2.1.




1.4 Outline of the Thesis

Chapter 1: Introduction The motivation behind integrating Parquet with relational
databascs and the contributions of this thesis are explained. Furthermore, this chapter
presents an overview of the thesis and of related work.

Chapter 2: Parquet Format This chapter contains a detailed explanation of the Parquet
format, its features and its usage in the Hadoop ccosystem. It also discusses the practica-
bility of specific features.

Chapter 3: Implementation Concepts This chapter focuses on the conceptual aspects
for implementing a Parquet library and the integration into the relational databasc systems
Hyper and Vectorwise,

Chapter 4: Implementation Details We take a closer look at some interesting aspects of
the implementation and focus on ways to optimize for query execution speed.

Chapter 5: Evaluation In this chapter we show the results of benchmarks that were
run during different stages of the development process and also present experiments that
highlight specific featurces of the implementation.

Chapter 6: Conclusion A summary of this thesis is presented and open features and
questions for future projects are listed.




2 Parquet Format

Parquet is a file format designed to store nested data based on a striet schema in a column-
oriented way. It is based on Google Dremel [13] and used as the main storage backend in
Impala. It also can be used as a storage backend for a number of other systems in the
Hadoop environment, including Apache Hive.

Scction 2.1 gives a quick overview of the Hadoop ccosystem in relation to Parquet. A
description of the strict schema for the format is given in Section 2.2. The format and
layout of the file itsclf is described in Section 2.3 followed by explanations of the important
features of the format in Scctions 2.4 and 2.5. This is complemented by a discussion of some
of the design choices of the format in Scction 2.6. Also in this chapter are a description
of the record reconstruction algorithm from the Dremel paper in Section 2.7, a look into
how Parquet is used in the Hadoop ccosystem in Section 2.8 and its usability for cluster
processing in Scction 2.9, and finally a short comparison of the storage formats of Parquet
and Vectorwise in Section 2.10.

2.1 Hadoop Ecosystem

Apache Hadoop Apache Hadoop! is the umbrella project and a framework for distributed
data processing. Its built on HDFS? (Hadoop Distributed File System) for storage and
MapReduce [3] for processing.

Apache Hive Apache Hive? is a data warchouse built on top of Apache Hadoop. It uses
HDF'S as storage backend and MapReduce as the tool for query processing. For managing
and querying datascets stored in HDFS Hive provides a query language called HiveQL which
is designed to be SQL-like in terms of syntax and features. Queries formulated in HiveQL
arc translated into MapReduce jobs which are then executed on the Hadoop cluster.

Impala Impala? (developed by Cloudera) is a sql query engine built on top of Apache
Hadoop. It utilizes the same infrastructure as a Hadoop cluster, specifically HDEFS and
HCatalog (sce below) for parallel processing of queries. It uses HDFS and file formats from
Hadoop as storage but unlike Hive it does not use MapReduce for query processing but

1
2
3
4

http://hadoop.apache.org
http://wiki.apache.org/hadoop/HDFS
http://hive.apache.org
http://impala.io



instcad uses its own cxecution engine processes running on the cluster nodes (and using
HDFS local access whenever possible). The main format for data storage used by Impala
is Parquct.

HCatalog

Apache HCatalog is a table and storage management layer for Hadoop that en-
ables users with different data processing tools — Apache Pig, Apache MapRe-
duce, and Apache Hive — to more easily rcad and write data on the grid. [14]

To achieve this goal HCatalog acts as an abstraction between different storage formats
stored in HDFS and processing tools. This abstraction is in the form of rclational tables
(with records and columns) which can be placed in databases. Each table can consist of
multiple partitions which can be created over onc or more keys (often done for a date
column). For cvery file from HDFS registered in HCatalog a location and metadata arc
storcd. This not only provides an abstraction on the storage formats used but also allows
decoupling of data and processing (for example MapReduce jobs) definitions. The idea
is that a processing tool (like Apache Hive) does not need to know the details for data
files stored in HDFS (like path or storage format) but instcad just queries the relational
abstraction provided by HCatalog. The translation between the abstraction and the real
storage format is done by format-specific drivers in HCatalog. There is also an extension
point which allows developers to add drivers for new storage formats. That way processing
scripts for Hive or Pig arc independent of the real location or format of data and therefore
do not need to be changed when the underlying storage format of the data is changed or if
the files arc just moved to another location. One more benefit is that with the necessary
information stored in HCatalog different processing tools can access cach others data. For
example a table created in Impala can be read by Hive without the need to define anything
as Impala stores the information about its tables in HCatalog.

Apache Drill Drill®, an Apache project currently in the Incubator, is another SQL query
engine for Hadoop. It is designed spccifically for nested data formats and can also read
schema-less formats like JSON. The architecture of Drill is based on massive parallel pro-
cessing with low-latency queries and is intended to be used with existing Hadoop clusters.
Just like Impala it does not rely on MapReduce for query exccution, but can nonctheless
still read data from Hive deployments. For testing and experimentation purposcs it provides
an embedded mode that can be run as a normal Java program without having to deploy it
on a Hadoop cluster. In this mode Drill can also read files from local filesystems.

ORC File ORC (short for Optimized Record Columnar) [15] is a file format designed for
and used by Apache Hive. An ORC file consists of stripes (also called rowgroups) and a
file footer for auxiliary information (mectadata). A stripe is comprised of a footer which

% http://incubator.apache.org/drill/




Map Shuffle Reduce

Figure 2.1: MapReduce

contains metadata, index data for all columns (min-max-values and row positions for cach
column) and the data itsclf organized by column. The data in the index allows for skipping
rows not relevant to a query. By default cach stripe has a size of 250MB and index data is
written for every 10,000 values (so 10,000 rows can be skipped). In its design the format of
ORC files is very similar to that of Parquet files and can be scen as sort of a predecessor.

MapReduce MapReduce (3] is the concept of splitting work into small parts so that it can
be done in parallel. The work is split into two phases (sce Figure 2.1): In the map-phase
all nodes in the cluster working on the job process distinct parts of the input (usually files
from HDFS) producing intermediate results (often in key-value form). Thesc intermediate
results are then shuffled and distributed between the nodes (all values with the same key
end up on the same node) using the network and used as input for the reduce-phase when
then produces the final result (normally written back to HDFS).

An often used example is the counting of words: Each node gets a part of the text and
cmits key-value pairs during the map-phase with the keys being the words and the valucs
being the count. Then the pairs are shuffled so that the intermediate results for the same
word from the different nodes are sent to one node. In the reduce-phase the nodes combine
these pairs so that for every word only one key cxists.

As mentioned above Hive does not have its own exccution engine for queries but instead
translates queries into a series of MapReduce jobs that produce the result of the query
[16]. Hive is not implemented on the relational model although it translates queries into
opcrator trees and then transforms them to be executed as MapReduce jobs. These jobs
have an administration overhcad and need additional time for distributing shuffle data over
the network and for writing intermediate results to be used in other jobs to HDFS.




2.2 Parquet Schema

The schema for Parquet is based on the schema for Google Dremel described in [13]. Records
consist of atomic and record types (called groups). Record types can recursively again
consist of atomic and record types. All types have a multiplicity attribute which can have
the values required, optional, repeated. The formal definition of the data model as given in
the Dremel paper is as follows:

7 =dom|{Ay : T[*|?],.... Ap : T[¥|?])

Based on that and the informal description on the Parquet homepage we developed a formal
grammar for the textual description of a Parquet schema in the Backus-Naur-Form:

<schema> = ’'message’ ’{’ <fields> '}’

<fields> t:= <field> | <field> <fields>

<field> ::= <repetition> <def>

<def> ::= <simple> | <group>

<simple> 11= <type> <name> ’;’

<group> ::= ’group’ <name> ’'{’ <fields> ’}’

<type> pi= ’int32’ | ’int64’ | ’int96’ | ’float’ |
’double’ | ’binary’ | ’string’ | ’boolean’

<repetition> ::= ’required’ | ’optional’ | ’repeated’

<name> 1:= [a-zA-Z_0-9]+

An example of a valid schema (comprising the region and nation part of TPC-H) is as
follows:

message region {

required int32 regionkey;

required binary name;

required binary comment;

repeated group nation {
required int32 nationkey;
required binary name;
required binary comment;

¥

The schema can be interpreted as a tree with groups/records as nodes and atomic fields as
leaves. Since Parquet stores data organized by column every atomic field in the schema is a
column in the file. In the graph sense every leave becomes a column. For that purpose the
schema is flattened and the name of the column is the full path from the tree to the leave
through the tree. So in the example above the following columns exist in the file:

e region.regionkey (type int32)




e rcgion.name (type string)
e region.comment (type string)
e region.nation.nationkey (type int32)
e rcgion.nation.name (type string)
e rcgion.nation.comment (type string)
In C++-like class definitions this could be defined as

class Region {
int regionkey;
string name;
string comment;
vector<Nation> nations;

class Nation {
int nationkey;
string name;
string comment;

}

Throughout this thesis record types will be called groups and atomic fields will be called
ficlds (or columns). An object is a concrete instance of a nested structure conforming to a
schema. For example a region object has regionkey, name and comment ficlds and an array
or group of nation sub-objects.

2.3 Parquet File Format

A textual description of the Parquet file format can be found on the github-project parquet-
format®. In the project there is also a picture depicting the file layout” (included as Figure
2.2).

For encoding metadata Parquet uses the compact binary protocol from Apache ThriftS.
The Thrift definition files for the different metadata objects can be found in the parquet-
format github project?.

A Parquet file begins and ends with the 4-byte magic number "PAR1”. The structure of
the file is optimized for bulk writing, the metadata is placed at the end of the file followed

® http://github.com/Parquet/parquet-format/

) http://raw.githubusercontent.com/Parquet/parquet-format/master/doc/images/FileLayout.gif
http://thrift.apache.org/

Y http://github.com/Parquet/parquet-format/blob/master/src/thrift /parquet.thrift

w
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Figure 2.2: Parquet File layout [17]
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by a 4-byte length field which specifies the length of the footer which is comprised of the
file metadata. This metadata contains a compact representation of the schema, so every
Parquet file is sclf-contained and can be read without the help of any external definitions.

The data storage of the file is organized into rowgroups which contain columns which
contain pages. This hierarchy is represented in the metadata. Also they are stored in
continuous memory. Interesting to know is that a Parquet file can stretch over several
physical files as every column in a rowgroup can be stored in another file (the metadata
for the column, called a ColumnChunk, has optional ficlds for file path and file offset).
Every column contains at last onc data page. A page contains a short header (also encoded
using the Thrift compact protocol) which specifies the page size and the number of values.
The value-part of cach page can be compressed. Currently the algorithms GZIP, LZO and
Snappy are specified.

2.4 Repetition and Definition Levels

Since the schema in Parquet is nested but the data is stored in a flat column-oriented way
certain information needs to be encoded with the values to allow for reassembly of records
(sce also Scction 2.7). This also comprises if a value is repeated or omitted (denoted by
optional in schema). To achieve this the so-called repetition and definition levels were
introduced into Parquet (also following the approach from the Dremel paper).

Every column has maximum repetition and definition levels (r- and d-levels for short)
which can be calculated using the schema and a simple algorithm which traverses through
the schema tree: Start at the root with both levels set to 0. Then go through the schema
hierarchy:

e For an optional group/ficld d-level is d-level of parent plus one

e For a repeated group/field r-level is r-level of parent plus one and d-level is d-level of
parcnt plus one

So in a flat schema (no nesting) with only required fields all r- and d-level values are always
Zero.

The complexity stems from the fact that values are stored in a flat manner column-wise
but must be viewed as nested records with hierarchical data.

When storing a value it is annotated with its corresponding r- and d-levels. They are
calculated as follows:

The process starts with the first object to be written at the top level and writes the fields
from the root group with r-level 0 and d-level 0 (if the ficld is required or optional and null)
or 1 (if the field is optional and not null). Then the first object of the next lower group
1s written, also with r-level 0 and corresponding d-levels. Then the first object of the next
lower level and so on till the first object of the lowest level has been written with r-level 0.
Then all other objects of the lowest level (belonging to the parent object) are written but
with the maximum r-level of the corresponding group. After this the process goes back up

11



the chain to the next higher level and repeats the process. This gocs on until all sub-objects
of the top level object have been written (like a depth-first tree traversal). Then the process
starts ancw with the next top level object and r-level 0.

In Pscudocode (python-like):

for obj in messages:
handleObj(obj, 0)

def handleObj(obj, r):
for field in fields(obj):
writeField(obj, field, r, d)
for group in groups(obj):
objs = list(obj, group)
handleObj(obj[0], r)
for o in obj[1:]:
handleObj(o, r_level(group))

The first obj of a group is always written with the r-level of the parent, all the following
are written with the defined maximum r-level of the group.

Because of the strict schema it is a necessity that cach object always contains the full
hicrarchy. That mcans if in an object a sub-object, which is in the schema defined as
optional or repeated, is not sct a dummy object with all ficlds sct to NULL must be placed
instead, and for every group of that dummy object the same rule applics. When writing
these objects to a Parquet file for all the NULL values the definition level of the (in the tree
hicrarchy) lowest parent group that is not NULL is uscd.

For example consider the following simplified schema:

message region {
required int32 regionkey;
repeated group nation {
required int32 nationkey;
repeated group customer {
required int32 custkey;

g

}

If a region object contains no nations then a dummy nation object (with a nationkey sct to
NULL) and a dummy customer object (with custkey set to NULL) must be placed. When
writing the valucs to a Parquet file a definition level of 0 will be used for the NULL values
because the lowest defined parent is the region which has a definition level of 0.
Interesting to notc is that cven though nationkey and custkey are defined as required
they arc regardless still implicitly optional because they are in a group that is repeated.
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2.5 Storage Layout

As mentioned a Parquet file is organized into rowgroups. Each rowgroup is independent from
other rowgroups in a way that only complete top-level objects can be stored in them. This
means that when a new rowgroup starts it starts with a new top-level object (r- and d-level
arc both 0) and can only end if all sub-objects of that object have been written. Following
the TPC-H example all nations of a region must be contained in one rowgroup. There arc
no cxact size requirements but sizes of 512MB or 1GB per rowgroup are recommended.
This value should be aligned with the chunk size of the HDFS configuration.

Each rowgroup consists of columns which consist of pages. The metadata for the row-
groups and columns arc stored in the global file metadata at the end of the file and contain
file offsets for the beginning of cach rowgroup/column. A column in a rowgroup is called a
column chunk.

Each column consists of pages wich arc written consccutively. Currently three types of
pages exist: DataPages, DictionaryPages and IndexPages (not yet defined). Pages should
be considered indivisible in terms of reading, for size about 8KB are recommended (to
correspond to memory pages provided by the operating system) but again there arc no
exact size requircments.

Pages

DataPages DataPages consist of a header (encoded using the Thrift compact protocol)
which defines primarily the size of the page, the encoding used for the page and the number
of values stored on the page. After the header follow the repetition and definition levels
encoded using RLE-Encoding (sce below). If cither of the levels are by definition always
0 (for example a required field of a top-level object) then these levels are omitted cntirely.
After that follow the values which are stored back-to-back cither plain or using an cncoding,
for example for integer values RLE-Encoding or for strings Dictionary-Encoding (also see
below).

If compression is used only the definition and repetition levels and the data part of the
page are compressed, the header is excluded as it is already stored in a compact manner.
To read a page, first the header has to be read to find out how large the page is. Then
using that size the rest of the page can be read and if necessary decompressed.

DictionaryPages DictionaryPages are used in conjunction with the Dictionary-Encoding
for DataPages. A DictionaryPage consists of values stored as plain encoding. In the Dat-
aPages encoded using DictionaryEncoding only the entry ids referencing the values in the
DictionaryPage arc stored (using RLE-Encoding). There can only be one DictionaryPage
per column chunk. Its position is referenced in the metadata for the chunk contained in the
file metadata.
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IndexPages As of time of this writing IndexPages are defined in the metadata but are
still an empty concept. There exists a proposal on how to implement them (in a branch
called "index” of the github-repository) which conceptually is like a B+-Tree: An IndexPage
consists of a list of min-Value- and page-offset-pairs. The pages pointed to by the offsets can
again be IndexPages (which would correspond to inner nodes in a B+-Tree) or DataPages
(which would correspond to leaves in a B+-Tree). This index can only be built on one
column and that has to be sorted. For all other columns the proposal recommends building
indexes to allow finding a page for a given row-number. IndexPages are stored together
with the DataPages and can be freely mixed (there is no given order). This allows writers
to fill IndexPages as they arc writing DataPages and write an IndexPage whenever it is full
without having to buffer it.

Encoding

For storing valucs spacc-cfficiently the Parquet format defines and describes several encoding
mechanisms. The most important oncs are Plain, Dictionary Encoding and Run Length
Encoding / Bit-Packing Hybrid (also called RLE-Encoding for short).

Plain

This is the simplest encoding and is defined for all types. It just stores valucs back-to-back.
Boolean One bit per value (bit-packed, least significant bit first)

Int32 Stored as 4 bytes little endian

Int64 Stored as 8 bytes little endian

Int96 Stores as 12 bytes little endian

Float Stored as 4 bytes IEEE little endian

Double Storcd as 8 bytes IEEE little endian

ByteArray First the length of the array as 4 bytes little endian followed by the bytes in the
array (so unlike with c-strings no termination character is used)

Fixed len byte array Just the bytes in the array (as the size is defined by the schema)

Dictionary Encoding

Sce also the description of DictionaryPages above. The values are stored back-to-back
(usually strings as byte-arrays) on the DictionaryPage. On the DataPages only the indices
to the dictionary arc stored (using Plain encoding).
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RLE Encoding

This is a combined hybrid of run-length-encoding and bit-packing. The grammar is defined
in the parquet-format github-project!?:

rle-bit-packed-hybrid: <length> <encoded-data>
length := length of the <encoded-data> in bytes \

stored as 4 bytes little endian
encoded-data := <run>*
run := <bit-packed-run> | <rle-run>
bit-packed-run := <bit-packed-header> <bit-packed-values>
bit-packed-header := varint-encode(<bit-pack-count> << 1 | 1)
// we always bit-pack a multiple of 8 values at a time,
//  so we only store the number of values / 8
bit-pack-count := (number of values in this run) / 8
bit-packed-values := *see 1 belowx
rle-run := <rle-header> <repeated-value>
rle-header := varint-encode( (number of times repeated) << 1)
repeated-value := value that is repeated, \

using a fixed-width of round-up-to-next-byte (bit-width)

2.6 Discussion of the Parquet Format

During implementation of our library for accessing Parquet files we found out a lot about
the uscfulness of the Parquet file format design which we will discuss in the following.

One thing that is quite clear when contemplating the high level file design is that it was
optimized for bulk writing in one go. The usage of rowgroups limits the number of values
for the columns that need to be kept in memory. Because the storage is column-oriented
first all values for one column need to be written before the values of the next column can
be“wmnnlwhmhnumnswhmlm@aﬂngPanumtﬁbsuﬁngaUﬂncdumn«ubnuﬁinputUmc
rows from a databasc or a CSV file) all the columns need to be buffered in memory. By
scparating the file into rowgroups only the values for one rowgroup nced to be buffered. A
way to avoid buffering values at all would be to write cach column to its own file which is
allowed by the format. But depending on the number of columns this could get confusing
and also hinder read performance as reading many small files is less efficient than reading
onc big continuous file.

ThmlmxmtothcahcadynmmtbncddemgudedmonofaHongzlPanumtﬁbtoconﬁstof
sceveral physical files. With all necessary information on how the files are connected stored
in the metadata of the main file such a group of files is sclf-contained. Splitting them in
such a way that every rowgroup is written to its own file allows for casy parallelization when
processing a Parquet file by reading cach rowgroup in parallel.

" http://github. com/Parquet/parquet-format/blob/master/Encodi ngs.md
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In contrast to this good high-level design, during implementation we found some aspects
of the Parquet format which we think are not optimal. The first aspect is the fact that
the size of a page is stored in the metadata of the page and the metadata is stored with
the page itself which means that reading a page consists of several steps: The beginning of
a page is known cither because it is the first page and its filc offsct is part of the column
metadata or because it follows directly after another page. The first part of the page is
the encoded metadata (cncoded using Thrift compact protocol) which is of unknown size.
So first a guess has to be made of how big the pagehcader containing the metadata is and
that much has to be read from the file. Then it has to be decoded using Thrift which can
fail if the gucss was too low which would load to another read (possibly in a loop) until the
header can be successfully decoded. Then using the information in the metadata the size
of the page is known and can be read. This means at least two rcad call arc made to read
a page which - depending on the operating system implementation of the file reading - will
most likely be more expensive (in terms of wait time) than just onc call for the entire spacc.

Currently the page metadata can optionally contain statistics which specify the minimum
and the maximum value stored in the page (sort of like a min-max-index). But since these
values are stored in the pageheader which (as explained above) is expensive to read, skipping
a page is not very cfficient as at least the pagehcader has to be read and decoded.

Another aspect is that there can only be one DictionaryPage per column / rowgroup.
And if the page is full then the system has to fall back to plain storage which means that
the needed space increases dramatically. Assumptions: Average length of word: [, average
repetition of word: =, size of page: p. For the length of the index number referencing the
entry on the DictionaryPage we assumc 2 bytes for simplicity. Then the increase in space
of falling back to plain storage instcad of adding a sccond DictionaryPage is defined by the
following function:

S(l,z) = (p/l+ 1) xlxx—p/l+1x2+x—2%p (Space nceded for storing one more value
than can fit on one page minus space needed for storing index references for those values
minus the space needed for two DictionaryPages)

Plotting this function shows that even when words arc only repeated on average 5 times
(x = 5) and have an average length of only 8 characters (I = 8) we alrcady need four pages
more for falling back to plain storage than we would neced for adding another dictionary
page.

Yet another aspect is the compression. The reason behind its use is the expectation that
the overhead of decompression is smaller then the slowdown of recading data over a network
conncetion. However our benchmark showed that when reading files from local disk the
added decompression slows down querics rather then speeding them up (sce Scction 5.7).
Thus assuming current fast nctworks approaching the bandwidth of local disks compression
could prove to be more of a hassle than a benefit.

The last aspect is the design of the RLE encoding. As will be shown in scction 4.7 this
can be done quite cfficiently for bitwidths that arc divisors of 8 using SSE instructions. But
for other bitwidths that span byte boundaries decoding them is rather slow. In our opinion
it would have been better - cspecially for storing the repetition and definition levels - to
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always use full bytes, our benchmark in section 5.6 shows that this gives a measurable speed
improvement.

2.7 Reconstructing Nested Records

Since we want to process Parquet files using relational databases this mecans we need to
be able to reassemble the records stored in the columns. For this the Dremel paper [13]
describes an approach using finite state machines (FSMs) which allow reconstructing the
records efficiently using only a subset of the columns (if not all columns arc needed). Each
field / column is represented by one state in the machine and corresponds to the reader for
that field. The transitions between the states arc labeled with the possible repetition levels
of the originating column / state.

The transition algorithm is described in pscudo-code in detail in the paper. It can be
described as follows for cach state ( = field): The so-called barrier level for two ficlds is
the repetition level of their lowest common ancestor. So for cach ficld that comes before
the current field and that has a larger repetition level then the current barrier level one
transition is added between the current field and that previous field, the transition is labeled
with the barrier level of those two ficlds.

Then for cach repetition level between the barrier level (not included) and the maximum
repetition level of the field the transition from the next lower level (level — 1) is copied.
Finally for all repetition levels between zero and the barrier level (inclusive) transitions to
the next field are added.

2.8 Parquet in Impala and Hive

Parquet can be used as a storage format in Impala!! and is recommended for large queries
or queries that only need a small subset of all tables. Impala can create Parquet files,
load data into them and query them. But it only supports flat files, mcaning complex or
nested data types are not supported. For compression Impala currently supports Snappy
and GZIP with a default for Snappy. When creating a Parquet file and loading data into it
Impala will create a new file for every rowgroup (taking advantage of the fact that Parquet
files can be split over several physical files) and aims for a filesize of 1 GB.

Hive also supports Parquet!'? for reading and writing and can also create Parquet files
with nested structures. Parquet files created by Hive can be read using Impala as both use
HCatalog to storc meta information about tables. But for Impala this only works if the
Parquet file is flat or else the file can not be accessed.

"' http://www.cloudera. com/contenr,/cloudera—content/cloudera-docs/CDHS/latest/Impala/
Installing-and-Using-Impala/ciiu_parquet.html
2 http://cwiki. apache.org/confluence/display/Hive/Parquet
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2.9 Parquet and Cluster Processing

As Parquet is primarily intended for usage in the Hadoop environment it was designed for
being used in clusters with parallel processing. In this section we want to highlight that.

The primary featurc for parallelism are the rowgroups. Each rowgroup is independent of
the others in terms that records never skip rowgroup boundaries.

Also cach rowgroup can be stored in a different file. This ties in with MapReduce oper-
ations. Each node running a reduce operation writes its data to its own file as a scparate
rowgroup. Then after the job is completed the supervisor node creates the main Parquet
file which just contains the file metadata with the pointers to the rowgroups in the different
files. And when reading Parquet files the same mode for distributing work can be used by
assigning cach worker node onc rowgroup to process.

This ability to split data across files also is beneficial to the often used batch mode
for loading data. Many companics usc Hadoop clusters as OLAP systems and traditional
relational database systems for OLTP. Data from the OLTP systems are then batch-loaded
into the Hadoop cluster on a regular basis (e.g. cvery night). When using Parquet files
every batch run just produces one or morce Parquet files with the new data that can then be
tied together with the old data just by changing the master file with the file metadata and
adding new rowgroups. If all the rowgroups itsclf arc kept in scparate files only the master
file (which should be small as it only contains metadata) nceds to be rewritten when new
data is loaded.

Another featurc intended for use in Hadoop clusters is the compression feature. Operating
in a clustered way often means that data needs to be transferred between nodes using the
network. In these use cases the slowdown from the additional CPU load for decompressing
the DataPages can be compensated by the smaller files that neced to be transferred over the
network (sce Section 5.7).

2.10 Comparison of Storage Formats

For storage of its data Vectorwisc uscs a column-oriented storage format based on PAX
([18), [7]). PAX stands for Partition Attributes Across and is different from traditional
slotted disk pages (called N-ary Storage Mode or short NSM [19]). In NSM the values
of a record arc stored together in a sequential manner so that every data page contains
a number of records. But this has the disadvantage that if only a subsct of the columns
arc sclected unnecessary data is rcad from disk into memory and possibly takes up cache
space (cspecially CPU caches). The opposite of this is the Decomposition Storage Model
(DSM, [20]) which stores values grouped by column and not by record therefore providing
sequential reads for accessing the values of one column. PAX aims to be a combination of
these two methods. It stores records on data pages like NSM but inside the pages stores
the values column-wise like in DSM. According to [18] PAX cxccutes TPC-H querics up to
40% faster and has far fewer cache-misses for main-memory workloads (up to 70%).
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Vectorwise models its storage format based on PAX ([7]). Relations are stored in one or
morc PAX partitions which cach contains a group of columns. The usage of the partitions
can be configured and is normally auto-tuned and allows for all usage scenarios between all
columns in onc PAX partition (like original PAX) and every column in its own partition
(like DSM) and everything between. Which one is used depends on the type and usage of
columns and is normally self-tuned by the database system.

In contrast to this the Parquet storage format is more or less based on DSM. Values arce
organized in data pages but cach page only contains values of one column. The concept
of rowgroups is remotely similar to the PAX and NSM concept of storing records in pages
(and not distributed over pages) but docs so on a quite larger scale with rowgroups being
in the scale of 512MB while data pages normally arc in the range of 10-60KB.
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3 Implementation Concepts

In this chapter we describe the design and its evolution behind our implementation efforts
to integrate Parquet files into the relational databasc systems Hyper and Vectorwise.

For integrating Parquet files into our relational database systems we decided on an ap-
proach similar to the feature of external tables. Parquet files are represented by special
tables which behave like normal relational tables and therefore can be accessed using nor-
mal sql queries. Since we wanted to do this integration for both Hyper and Vectorwise we
decided to establish a separate Parquet library that implements all the Parquet specifics
and provides abstracted interfaces for the databasc systems to use. Aside from that the
implementation in the database systems consisted of mainly two parts: Extending the in-
ternal data structurcs of the databasc systems with special Parquet tables and providing
implementations of scan operators for query exceution to use instead of the normal oper-
ators for reading tables. The scan implementations would then use the Parquet library to
read Parquet files.

Section 3.1 describes how we mapped Parquet schemas to relational schemas, and Section
3.2 how to construct tuples fitting that mapping. We describe the extensions for SQL syntax
we used in Hyper (Scction 3.3) and in Vectorwise (Section 3.4) for interacting with nested
Parquet files while Scction 3.5 gives an insight on how we implemented the scan operators.
This approach is improved on in Scction 3.6 by taking advantage of the nested structure
of Parquet files. The rest of the chapter focuses on special topics: How we support other
nested formats in Hyper (Scction 3.7), the different meanings NULL values can have in
the nested Parquet context (Scction 3.8) and finally we deseribe how we created our own
Parquet files (Section 3.9).

3.1 Mapping a Parquet Schema to a Relational Schema

Standard-compliant SQL syntax provides no concept of nested structures or datatypes.
Tables can only have columns with simple datatypes like integers or strings. So we had to
find a way to represent a Parquet file with its nested schema in relational table / column
terms. To that end we decided to logically split the Parquet schema into groups cach
represented by their own relational table. To keep the information on the hicrarchical
structure we included special columns to represent the relationships between the groups
as forcign key constraints with id and forcign key columns. These columns could then in
queries be used to join the tables together and reproduce the hicrarchy. These joins along
the hicrarchy could then in a later state be detected by the database system and merged
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with the different scans into just one combined operator to dircctly produce all the columns
from the different levels.

For that we devised a simple mapping algorithm to generate relational tables out of a
Parquet schema. The algorithm follows the tree structure of the schema. Every inner node
( = group) of the tree becomes a relational table (its name is the concatenated names of all
nodes from the root to this node). Every atomic field of that group becomes a column in the
table. A required ficld is defined as "not null”, an optional ficld as nullable. Additionally
cach table gets an artificial primary key column (which serves as a simple object counter)
and a foreign key column to the table of the parent group (unless the group is top-level).
Both columns will be filled using the repetition and definition levels. If an atomic ficld is
designated as repeated then this field becomes its own table with just the value column and
the artificial primary and forcign key columns. So conceptually a repeated atomic ficld is
treated as a repeated group with just one required field.

As an optimization groups that arc designated as required or optional can be merged into
its parent group as the relationship between parent and child would always be 1:1 or 1:0.

3.2 Constructing Tuples

To implement the scan operators we needed a way to read a column subset from the Parquet
file and reassemble those into tuples that can be processed by the database system. In
scetion 2.7 we described a way of reconstructing nested records using finite state machines
as it is used by Google. For the purposc of this thesis this algorithm could not be directly
used. To emit records suitable for processing in a relational database system the possibly
nested records need to be transformed into flat tuples. Conceptually for every nesting level
a foreign key join has to be done to create flat tuples. Thercfore we devised a simple
algorithm that - using a subsct of all columns in the Parquet file - emits flat tuples. The
only requirement is that all scleeted columns need to be on one path in the schema tree.
That means columns on the same nesting level (their groups have the same parent) need to
be all in the same group otherwise when producing tuples a cross-product of these columns
would have to be created. Conceptually this is like a 1:N Sorted-Merge-Join.
As an example consider the following schema:

message example {
repeated group g1 {
required int32 fieldl;
}
repeated group g2 {
required int32 field?2;
}
}

If both field 1 and ficld2 arc sclected then the result would need to encompass a cross-
product of all values of ficld1 with all values of ficld2 as these fields are in different groups
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on the same level.

The algorithm keeps track of a global repetition level which is initialized with 0. To
construct a new tuple the algorithm goes through all sclected columns and gets the current
repetition level for that column. If the repetition level is greater or cqual to the current
global level the next value for the column is retrieved and used for the tuple, otherwise
the old buffered value is reused. The new global repetition level is calculated by retrieving
the repetition level for the next value in every column and setting it to the maximum
encountered level. In pscudocode:

def next():
tmp_level = 0
for col in columns:
if col.r >= glob_level:
putValue(col)
advance(col)
tmp_level = max(tmp_level, col.next_r)
glob_level = tmp_level

The background is quite simple: As long as values in a column are repeated (which means
their repetition level is set to the maximum repetition level of the column) only advance
these columns, the others stay the same. Once the next value in that column belongs to
another object its repetition level is smaller than the maximum level and denotes on which
nesting level a new record is started (with 0 meaning a new top level record starts). So the
values of that nesting level and all that are (in the tree view) below or on that level need
to be advanced. And since the repetition level of the first value (in a repeated column) is
sct to the repetition level of the level on which a new record is started using the algorithm
described above all these columns will be advanced.

3.3 Extending SQL Syntax with Nested Tables

In the beginning of the chapter we talked about representing Parquet files as special tables
that still behave like normal relational tables. We also decided to represent cach group of
the Parquet schema as its own table. But at the same time we wanted to present the user
with a simple interface. As Hyper allows for casy extension of its syntax we decided to
introduce the concept of nested tables. For Vectorwise this approach was unfortunately not
possible (see Section 3.4).

We extended the internal data structures of Hyper with a new database schema element
called nested table and provided a new statement to create them:

create nested table <name> from parquetschema <filename> [with (<options>)]

This statement registers a new nested table in the database. The provided file can cither be
a text file containing a textual representation of a Parquet schema following the grammar
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defined in section 2.2 or a Parquet file, in that case the schema definition is extracted from
the file metadata. The Parquet schema is then attached to the nested table. Additionally
options can be provided to the statement that specify whether virtual columns for foreign
key relationships should be provided. Also optionally a Parquet file can be specified that
will be taken as standard input for querics. Otherwise a Parquet file can be specified with
cach query. This provides the flexibility of rcading different Parquet files with the same
schema without having to change the nested table.

The next extension point was to cnable the user to specify a Parquet file for each query.
We implemented two possible ways to do that. One is to specify the file directly as a table
reference in the query:

select * from (parquetfile <filename> with schema <nestedtable>)

Instead of just providing a table name in this casc the user provides a pair of a reference to
a nested table and a file name pointing to a Parquet file.
The other way was inspired by the with-clause:

with <name> as (parquetfile <filename> with schema <nestedtable>)
select * from <name>

This way specifying the file name and the query itself can be separated and the file can be
referenced several times without having to provide the full specification each time.

If a Parquet file was alrcady specified during the creation of the nested table then both
of these ways arc not necessary. The name of the nested table can Jjust be used as normal
table reference and the database will automatically usc the pre-provided file:

create nested table foo from parquetschema <schemafile>
with (parquetfile <parquetfile>);

select * from foo

All this syntax still does not address the problem of representing and using nested schemas
in queries. To solve this we also extended the SQL syntax with what we call nested table
names or references: Using the dot-syntax (as used in many object-oriented languages to
access potentially nested attributes) the user can specify a nested name as a table reference:

create nested table customer from parquetschema "tpch.schema"
with (parquetfile "tpch.parquet");

select c_name, o_orderkey, l_quantity
from customer, customer.orders, customer.orders.lineitem
where

The starting point of the nested name has to be a valid reference to a nested table. The
rest of the name is used as a path through the Parquet schema to define a group inside the
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schema, with cach dot denoting a new level in the hicrarchy of the schema. This way the
user can use the nested table like a normal table but using the nested name syntax still
reference the nested structure of Parquet.

This syntax cxtension of course also works with the above explained ways to specify a
Parquet file directly inside the query:

create nested table customer from parquetschema "tpch.schema";

select o_orderkey from
(parquetfile "tpch.parquet" with schema customer) .orders;

with customer as (parquetfile "tpch.parquet" with schema customer)
select o_orderkey from customer.orders;

Last but not least we also wanted to provide a way to copy the data from a Parquet file
into relational tables (like the copy into-statement in many database systems). But we still
wanted the user to have the benefits of using nested tables names. Therefore we provided
the create nested table-statement with an option to specify a storage mode. For this storage
mode the user can specify any of the storage modes implemented in Hyper for relational
tables (like column or row). When the statcment is cxecuted the databasc internally ereates
a st of relational tables that represent the nested schema of the provided Parquet schema.
Then when the user issues a query containing a nested table (possibly with a nested table
reference) the query will be rewritten to use the corresponding relational table instead.
That way a uscr can get the query speed of Hyper but still use it like a nested table.

To fill the created relational tables with data we implemented a copy-statement:

copy <name> from parquetfile <filename>
An example usage could be:

create nested table foo from parquetschema "tpch.schema"
with (storage "column");
copy foo from parquetfile "tpch.parquet";

select * from foo.orders;

3.4 Vectorwise and Nested Tables

Originally we wanted to implement the same syntax extensions and features for Vectorwise.
But this was not possible. First of all Vectorwise is a commercial product so introducing new
features requires more effort, planning and organisation than was possible during the course
of this thesis. Also a show-stopper was that Vectorwise itsclf is only a backend while the
frontend is provided by Ingres which is not developed by the Vectorwise team in Amsterdam
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but by the Ingres team in the USA. Introducing the propsed syntax changes would have
meant cxtending the frontend and the backend. The neceessary coordination would have
delayed the thesis so we decided to forego the syntax extensions and accompanying features
and provide just the necessary features using a workaround.

The workaround requires the user to manually create all the relational tables with their
columns. Then the user can usc a syscall to register these tables to the Vectorwise backend
as aliases for a Parquet file. A syscall in this context is a way for the user to send com-
mands using a special statement in the Ingres frontend directly to the Vectorwise backend
without the frontend having to be aware of the command. So we extended the internal data
structures of Vectorwise so that relational tables can be registered as aliases for a part of a
Parquet file schema. Then we implemented a syscall to give the user the ability to create
such an alias:

CALL VECTORWISE(PARQUET_REGISTER ’’’<name> <parquetfile> <schemaroot>’’’);

In the statement name must refer to an alrcady created relational table, schemaroot denotes
a path through the nested schema of the Parquet file mentioned by parquetfile (or nothing
if it references the top-level group of the schema). An example would be (assuming the
Parquet file has a schema of customer - orders - lincitem):

create table customer (...);
create table orders (...);
create table lineitem (...);

call vectorwise(parquet_register ’’’customer tpch.parquet’?’?);
call vectorwise(parquet_register ’’’lineitem tpch.parquet orders’’’);
call vectorwise(parquet_register ’’’lineitem tpch.parquet orders.lineitem’’’);

3.5 Building Scan Operators

With the introduction of nested tables and syntax extensions for them we provided the
administrative half of the Parquet integration. For the other half we had to implement scan
operators so that queries could be run on the Parquet files via the nested tables.

Hyper

Hyper query exccution is based on the produce-consume model [5] and utilizes code gen-
eration to compile queries into LLVM assembly code for efficient execution. The code
generation is data-centric (see Scction 1.3).

This means the scan operator needs to be implemented in such a way that it produces
one tuple at a time to be consumed by the overlying operators in the exccution tree. As
such we also implemented the Parquet library to provide a simple next-iterator interface to
retrieve tuples and wrote the scan operator to usc that interface.




Vectorwise

In contrast to Hyper Vectorwise docs not use code gencration but instcad utilizes vectors.
As such it does not operate on single tuples but on vectors of tuples. And as Vectorwise
is also column-oriented the operators need to produce a vector of valucs for every column.
So for Vectorwise we implemented the Parquet scan operator in such a way that it would
request tuples from the Parquet library in a loop to fill result vectors.

3.6 Combining Joins and Scans

With the approach above alone we would succeed in allowing queries to Parquet files from
relational databases. But as alrcady mentioned one of the interesting aspects of Parquet is
the nested structure of data. This can be used as an advantage when dealing with querics
which contain joins following the hicrarchy of the Parquet file.

Joining tables that represent the nested structure of a Parquet file along that hicrarchy
path mecans basically reassembling the nested objects (or at least parts of them). The
algorithm for constructing tuples deseribed in Scction 3.2 is already designed to deal with
fields from different groups of the hierarchy and assembles them in accordance to the nested
structure. Therefore on a conceptual level reading different groups of the hicrarchy using
several scan operators and joining them together is equivalent to reading all columns in one
single scan operator.

So the idea is to modify query exccution plans in a way that joins (following the hicr-
archical structure) with Parquct scans (bclonging to the same file) as inputs arc combined
into a single scan operator producing all requested columns and therefore avoiding (possibly
costly) join operations.

A simple example: The query

select sum(1l_quantity)

from customer, orders, lineitem

where c_custkey = o_custkey and o_orderkey = 1_orderkey
and c_custkey % 5 =0

would produce an exccution plan like in Figure 3.1. Assuming all three tables arc nested
tables from a Parquet file the optimizer could merge this plan into just onc scan with a
selection on top (sec Figure 3.2). Thereby climinating two HashJoins.

Parquet Natural is Relational Outer Join

Taking into account the nested structure and the explicit storing of null values for not-
existing subgroups in a Parquet file, a Parquet scan following the hierarchy structure is
conceptually a onc-sided outer join (c.g. on a join of customer and orders it would be a left
outer join). This means that the different join types (inner, outer, semi, anti) nced to be
handled specially:
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Left / Right outer join Assuming the outer side of the join is a parcnt of the other side in
the nested schema this is by default done by the Parquet scan operator. The reversed
roles (outer side is a child in the nested schema) could not be done but would make no
sense because considering the hicrarchical structure it would produce the same results
as an inner join. The same goes for a full outer join which would behave just like a
one-sided outer join.

Inner join The outer join can be made to behave like an inner join by adding a sclection
on top to filter out tuples will null values (meaning missing subgroups) on the child
side.

Semi join This is similar to the inner join but the other side is just ignored in the ongoing
processing. Spccial considerations need to be taken in the implementation so that at
least one column from the side that is ignored higher up is nonectheless still produced
by the scan to ensurc the join behaviour.

Anti join An anti join can not be done by the Parquet scan without additional implemen-
tation and thercfore this join should be handled by the existing implementation in
Hyper.

3.7 Excursion: Supporting Nested Formats other than Parquet

As a side-experiment we also wanted to provide Hyper with the capability to read other
nosted formats such as JSON. So we made the syntax extensions described above more
generic and gave the user the possibility to specify JSON files instcad of Parquet files in
the querics. The restriction was that the JSON file had to follow a strict schema and the
schema definition had to be provided using the Parquet schema definition grammar.

We also implemented classes to read JSON files using the same interface as for Parquet
files. That way we only had one implementation of the scan operator relying only on the
generic interface that would use one or the other implementation from the library depending
on the file type provided for the query.

create nested table foobar from parquetschema "somejson.schema";
select * from (jsonfile "data.json" with schema foobar);

with foo as (jsonfile "data.json" with schema foobar)
select * from foo.nested.name;

3.8 Different Meanings of NULL-Values

Ficlds in Parquet can be optional, if the value is not sct then a special NULL value is stored
(using the d-levels). The same applics if an optional group is not sct, then NULL values
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arc stored for each child ficld (and the sub-groups) to signal that the group is not there,
This creates a problem when converting data like TPC-H, which is not nested, into Parquet
format. Following the TPC-H example and a schema of region-nation-customer-orders it
can be that there are customers that have no orders. In relational databases this fact is not
explicitly stored but merely implicitly by the fact that the orders table has no rows with a
foreign key referencing that customer. In contrast to that in Parquet this fact is explicitly
stored by storing an order object with all ficlds set to NULL. When recading Parquet files
from a rclational databasc as in our implementation by treating each nesting level as its
own table this poses a problem because when reading for cxample only the orders all the
null objects denoting non-existing orders will be read as well. This can be dealt with by two
possible solutions: The first is to just accept that these rows of NULL-values exist and deal
with them on the level of queries. This also means declaring all column types for relational
tables representing Parquet files as nullable. The alternative is to filter out these valucs
during the scan. With our basic implementation this is quite casy as during reading of a
tuple all 1- and d-levels are read anyway so we just have to handle the special case that
the values for all columns read are NULL and in that case skip to the next row. In our
vectorized implementation this is no longer that casy as the columns are read independently
of cach other so a check for this special case would need to be done on a higher level and
after filling the vectors which would counteract the speedup provided by vectorized reading,.

3.9 Writing Parquet Files

During the writing of this thesis we needed a way to create Parquet files to use as test files
for our implementation and as input files for our benchmarks. As we wanted and neceded to
create Parquet files with nested schemas, using Impala was not possible. The other option
was to usc Hive. But after some tries we had to give up as Hive had problems in writing
data in complex nested structures with several levels. Hive provides two aggregate operator
functions called collect_list and collect_set! intended to create an array from input valucs,
which both were not able to handle complex structures. Also Hive used a higher abstraction
level which lacked the necessary flexibility to create specifically-constructed test files. So
we sct out to create our own tool to write Parquet files.

The tool was designed to take a Parquet schema definition and input data in a supported
format and gencrate a Parquet file from this. As input formats we support JSON, XML
and CSV files. Implementing support for JSON and XML was casy as both formats arc
alrcady nested. The tool requires the files to follow the Parquet schema definition in terms
of names, nesting and types (including required /optional /repeated definitions). Additional
fields/nodes/elements in the input files are possible and arc just ignored so it is possible to
only usc a subset of the input data.

On startup the tool creates page buffers and vectors for the repetition and definition
levels for every column in the schema. Then the input file is parsed using external libraries

! http://cwiki.apache. org/confluence/display/Hive/LanguageManual+UDF
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(rapidjson® and rapidxml?). Both arc small C++ header-only-libraries which claim to be
very fast. The interface for both libraries was quite casy to usc and for rapidjson also partly
mimicked the C4++ Standard library (STL) interfaces for vectors and maps in respect to
iterators. After parsing the input files the resulting nested structures arc stepped through
recursively following the structure of the Parquet schema definition. Encountered values are
written to the corresponding page buffers. Whenever a page reaches a defined maximum
size (we mostly used 8 KB as this is the page size suggested from the Parquet authors) it
is cached and new values are written to a new buffer. Whenever a new top level record is
written (for example in the TPC-H casc a new region) beforchand the current size of the
rowgroup (the accumulated size of all finished and current page buffers) is cvaluated. If it
roaches another defined maximum size (we used 512 MB) all page buffers are written to
disk as a rowgroup and the buffers arc empticd. This process can only happen when a new
top-level record starts because by definition rowgroups must be sclf-contained and thercfore
child records of a record can not be stored in different rowgroups.

As we wanted to create Parquet files using TPC-H schema and data we also added support
for CSV files. As these are inherently flat we needed to find a way to create nested data
from flat files (for example a structure of orders and lincitems from the csv files for both
tables). For our solution we designed a two-step process. In addition to the Parquet schema
definition our tool is provided with a mapping of CSV columns to Parquct schema fields and
also the columns containing primary and forcign keys arc marked (in the TPC-H example
o.orderkey as a primary key in the orders table and 1orderkey as the corresponding forcign
key in the lineitem table). Also the CSV input files nced to be sorted based on foreign key.
In the first step our tool reads all input files and gencrates a list of forcign keys and their
corresponding file offscts (the position in the file where the first record with this foreign
key starts). As the files arc sorted by forcign key all records with the same foreign key arc
stored continuously. These offscts are written to disk to allow reuse. In the sccond step the
tool iterates through all top-level records. For every record it finds the corresponding child
records using the offset table created in the first step. This process is recursively repeated
for every nesting level. So that a record and all its child records (following full recursion)
arc written before the next record is read.

Our tool also supports compressing pages using any of the defined compression algo-
rithms. Also to allow us to create Parquet files with different characteristics (pagesize
and compression algorithm) for our benchmarks and experiments these properties can be
changed using commandline arguments.

2 http://code.google.con/p/Tapidjson/
3 http://rapidxml.sourceforge.net/
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4 Implementation Details

In this chapter we concentrate on several detail aspects of the implementation and its pro-
cess. Section 4.1 deals with implementation of the Parquet library itself whercas in Section
4.2 we describe our first approach to implementing scan operators and its limitations. Then
in Sections 4.3 and 4.4 we focus on improving the implementation for Vectorwise and in
Sections 4.5 and 4.6 for Hyper. Finally Sections 4.7 and 4.8 deal with optimizing certain
aspects of the Parquet library.

4.1 Implementing a Parquet Library

At the beginning of the implementation phase for this thesis there did not exist any open-
source library! for accessing Parquet files in C++. Most of the code for Hadoop softwarc
concerning Parquet was written in Java which is no viable alternative considering Hyper
and Vectorwise are implemented in C(++) and one of the main aspects of this thesis is
speed. The only existing code in C++ was the Parquet implementation for Impala. But it
was not really usable as it was tightly integrated into Impala and also only supported flat
schemas. Therefore we decided to implement our own library in C++ which would then be
used by Hyper and Vectorwise.

The structure tries to follow basic object-oriented principles. The main class is Par-
quetFile which provides the interface for interacting with a Parquet file and takes care of
opening and reading the file on the memory level. Possibly reading the file from HDFS is
cncapsulated into the class so that other parts of the library do not neced to care about the
physical location of the file. ParquetFile represents a file as a simple memory region.

The rest of the class structure follows the structure of the Parquet file format. The
classes ParquetRowgroup, ParquetColumn and ParquetDataPage cach deal with a rowgroup,
a column in a rowgroup or a page in a column respectively. These classes mostly just hold
context and delegate any operations to the appropriate classes. The different encodings used
to storc data cach have their own implementation class which share a common interface
and arc used by the ParquetDataPage-objects to actually read values from the pages.

All these classes only provide access to valucs in columns. To provide an interface that
produces entire tuples we introduced the Parquet Tuple Reader-class. It cncapsulates all the
logic necessary to combine the different columns from the nested structure into flat tuples

' During the course of this thesis devlopment of a library was started by the Parquet project: http:
//github.com/Parquet/parquet-cpp
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that can be processed by database systems. In the first implementation this class only had
a simple interface modelled after next-iterators. Its intended usage was like this:

while (reader.mext()) {
for (col : columns) {
val = reader.getValue(col);
// read val
}
// process tuple
}

In addition to the columns from the Parquet file the ParquetTupleReader also provided
virtual columns, namely an id column and forcign key columns for every parent in the
schema hicrarchy. So for example in the nested schema of customer - orders - lineitem when
selecting columns from lineitem the ParquetTupleReader can provide an id for cach tuple
(like a row number) and foreign key columns referencing the ids of orders and customer.
This way it is possible to formulate joins between the hicrarchy levels in queries without
having to cxplicitly include any intermediate levels.

4.2 Implementing Scan Operators

Based on the Parquet library we implemented scan operators for Hyper and Vectorwisc.

Hyper The implementation for the scan operator itself is straightforward and based on
the implementation of the CSV scan opcrator from [10]: It uses the Parquet TupleReader
to retrieve one tuple and then calls a generated function that contains all the consumer
code. Therefore the runtime part of the operator code is very small as the logic for reading
Parquet files is encapsulated in the library.

Vectorwise The implementation for Vectorwise is similar but instecad of just producing
one tuple it calls the nest-Method repeatedly to fill the result vectors that arc provided by
the overlying operator.

For Vectorwise there was onc more workaround to implement. As explained in scection 3.4
the concept of nested tables could not be introduced duc to the fact that the frontend for
Vectorwise is provided by Ingres. As such queries on tables that have a Parquet alias defined
are still scen as normal relational tables by the Ingres frontend and also by the Vectorwise
backend. To change this we extended the query plan rewriter with a rule for these Parquet
tables. The rule matches every scan operator in the query execution tree (called MSecan),
checks if a Parquet alias is defined for the table and then replaces the MScan with our own
scan operator which we called PScan (for ParquctScan).
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4.3 Vectorized Approach for Vectorwise

The first implementation for Vectorwise was suboptimal as it broke the vectorized approach
that was responsible for its high spced. Thercfore we extended the implementation of
the library to directly produce vectors of values. This included the entire class hicrarchy,
especially the decoder classes and the ParquetDataPage which were extended to read an
arbitrary number of values and fill them into a provided vector (which ultimately would
come from the Vectorwise runtime).

One restriction applied: The requested columns had to form a flat subschema, meaning
that all columns had to be in the same group and not have the repctition type of RE-
PEATED. This was because with the vectorized approach it was not, convenicnt to apply
the logic required for columns from different groups as it would again break the vector
modcl. But we managed to work around that restriction by abandoning the idea of per-
forming joins inside the scan operator and instead use cxisting join operators:

Vectorwise has for forcign key joins a special opcerator called MergeJoinl which uses a
clustered index on the foreign key column (which must be sorted) to conceptually do a Sort-
Merge-Join with the sort phase done during data insertion. To do this cfficiently Vectorwise
creates a special join-index column for the table with the forcign key (for the join orders -
lineitem this would be the lincitem table) which just specifics the row number of the parent
record. As the table is sorted based on that key (as is the parent table) these row numbers
are also implicitly sorted. With this Vectorwise can implement a very efficient MergeJoin
by adding the row number column (called TID) and the join-index column to the selected
columns (they arc later in the query execution tree filtered out and are only used for the
join).

To achieve this we extended the vectorized approach to also provide the virtual id and
foreign key columns that the first implementation provided. Then we extended the scan
operator to recognise the special columns that would be requested by the Mergejoin operator
(row number and join-index column) from the scan operator and rewrite these to use the
provided virtual id and forcign key columns. As the id column is gencerated ancw for cvery
query and is relative to the tuples emitted in the current query it corresponds with the row
number of the cmitted tuples. The same is truc for the gencrated foreign key.

4.4 Quick Count for Vectorwise

During implementation of the scan operator for Vectorwise we had to handle one special
case. When a query contains a count aggregation for the entire table without any predicates
to limit the result sct (SELECT count(*) FROM table) a normal scan is issued for a special
virtual column. But in this case the overlying operators ignore the content of the resulting
vector and only use the returned number of values for further processing.

The first implementation of the Parquet scan changed the requested column set so that
instead of the virtual column (which obviously did not exist in the Parquet filc) one of the
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existing columns from the schema (from the group represented by the rclational table) with
the REQUIRED option would be selected. But this was rather inefficient as all the values
were read and produced into the vectors but never used by the overlying operators.

So we extended our Parquet TupleReader-class with a special count-Method. This method
uses the information available in the metadata of the Parquet file to quickly produce the
number of values for a column without reading or processing any actual data. For a column
that is a required element from the top-level group of the schema the number of values
can be taken from the number of records from the file metadata. For any other column
the rowgroup-column metadata needs to be read. It provides the number of values for a
column in the rowgroup. These numbers just need to be added up. Since the metadata for
the rowgroups is also stored in the global file metadata no actual data pages need to be
read to get this information which makes it very fast as the metadata is alrcady read at the
beginning when opening the file.

One drawback to this implementation is that for columns that have a repetition type of
OPTIONAL or REPEATED or arc inside a group with one of these types the number of
values provided also contains null values stemming from the nested structure which (for
example when comparing normal TPC-H with our nested TPC-H Parquet variant) can
produce deviating results.

4.5 Code Generation for Hyper

As previously mentioned one of the main aspects of Hyper is the fact that for every query
specific code is generated that produces the query result. For the first implementation of
the Parquet scan operator in Hyper this was not really used as the generated LLVM code
just called the ParquetTupleReader to produce the next tuple. The logic inside the class
had to be gencric to accommodate all possible combinations of requested columns.  Also
the logic only produced one tuple at a time and also only read one value from cach of the
data columns making it rather incfficient. For Vectorwise we made the decision to use the
alrcady uscd MergeJoin to provide officient joins between the Parquet tables (see Scction
4.3). That mecant that the logic for producing tuples was rather simple as with the joins
handled externally the selected schema was flat and therefore handling of the hierarchy was
not neceessary.

For Hyper we wanted a scan operator that had the ability to handle columns from different
groups of the schema. The requircments for the sccond implementation try were that the
logic-hecavy part should be done by generated LLVM code adapted to the current query.
Also values from the data pages should be read in groups (vectors).

Therefore we first extended the Parquet Tuple Reader-implementation with the ability to
read all the values and the repetition and definition levels from a column in a rowgroup
into a vector (readColumn). For that the alrcady implemented extension for Vectorwise to
produce vectors could be reused and simplificd so that it not only read a specific number
of values but all the values from all the pages in the column. The method returns three
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vectors, one with the actual values and the other two with the corresponding repetition and
definition levels.

The sccond part was to write code that would gencrate LLVM code that reimplemented
the tuple-gencrating logic tailored to the specific query. This is heavily influenced by and
based on [5].

Conceptually the code generated looks like this (as C++ pseudocode):

for (rg=0; rg < numRowgroups; rg++) {
// for every column
reader.readColumn(colindex, rg, values, rlevels, dlevels);
cur_r_level = 0;
new_r_level = Q;
while (at least one column has a value left) {
// one block for every column
if (*rlevels >= cur_r_level) {
if (xdlevels == maxDForColumn) {
// produce value
values++; // advance vector
} else {
// produce null value

}

rlevels++; dlevels++; // advance level-vectors
}
if (*rlevels > new_r_level) new_r_level = *rlevels;
// ... repeat for the other blocks

cur_r_level = new_r_level; // set for next iteration

// code for consumer operators

This design ensurcs that the C++-code is only called once per column/rowgroup (to
read the values from the column) and the logic to produce the tuples is encoded entirely in
LLVM. Also as much information as possible can be included as static information (using
constants) into the generated code instead of using method calls cach time (e.g. the number
of rowgroups or the maximum definition level for each column).

The code to produce a value is specific to the underlying datatype but in general for
every column that is to be produced a struct with the following ficlds is created and filled
for every value:

struct Slot {




uint8_t* buffer;
uint32_t length;
bool null;

4

For fixed-size datatypes (integers, floats) the length is omitted as it is constant. The
buffer-ficld is cither a pointer to the underlying value or for strings a pointer to a character
array.

Optimizations to the code can be done if a column is in the top-level group and is required.
Then there can be no null values therefore the checking of the definition level can be omitted
as can the null indicator field in the slot. If all columns arc in the same group (flat) and all
have a repetition type of REQUIRED or OPTIONAL then the entire logic of comparing
the repetition levels of the columns can be omitted, greatly simplifying the logic.

In addition to producing values from rcal columns we also wanted the operator to have
the ability to produce virtual id and forcign key columns. In the first implementation these
columns were intended to serve as join columns to usc for forcign key joins. Although these
were no longer necessary as the joins would be handled by the Parquet scan internally
(sce next subscction) we still included the functionality in the second implementation to
accommodate cases which the combined scan-join-operator could not handle. The functional
implementation is very casy. For the id column it is just a simple implementation of an
incrementing row counter. For the foreign key columns the implementation is also quite
casy, it is represented by the following C++-code:

if (fk_r_level >= cur_r_level) {
fkt+;
// produce fk value

The logic behind it is as follows: fk_r_level is a constant representing the maximum repe-
tition level of the parent, and cur_r_level indicates on which level new values are produced
(taken from the main implementation). So only for these levels of the hierarchy for which
new values arc produced can the foreign key be incremented.

An cxample: Assuming a nested schema of customer - orders - lincitem. Then the
respective maximum repetition levels are O for customer, 1 for orders and 2 for lincitem.
Now if the scan currently (from an abstract join perspective) loops through the orders of onc
customer, the current repetition level transitions between 1 (new order) and 2 (new lincitem
for an order). This means the forcign key for the customer stays the same (repetition level
0) and the forcign key for the order only increases when a new order is read (which means a
repetition level of 1) whereas when only a new lincitem is read the current repetition level
is at 2, so neither of the forcign keys arc incremented.
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4.6 Combining Joins and Scans in Hyper

As mentioned above with the second implementation we also wanted the ability to combine
joins between Parquet scans that follow the hicrarchical structure of the schema into one
unified Parquet scan. We explained the concept in general in Section 3.6. The consideration
being that in many cases for Joins Hyper would generate code to do a HashJoin which would
be rather slow. Instead a join along the schema hicrarchy could be done inside the operator
with just minimal overhead of some additional If-statements and repetition level tracking
(sce explanations above). With the implementation utilizing code gencration the operator
itself was alrcady prepared to handle Joins but the database system still nceded to be
told to combine joins and scans into one scan. This was implemented into the query tree
optimization phase.

Hyper has four different optimization phases which are run consecutively. These phases
arc named Unnesting, PredicatcPushdown, Reordering and ChoosePhysical. Unnesting
tries to get rid of (dependent) subquerics by merging it into its outer query or possibly
extracting it completely into some sort of view. PredicatePushdown tries to push down
selection predicates as far down as possible to reduce the number of tuples having to be
processed by operator higher up in the execution treo. Reordering means to reorder the
order of join so that simple (in the sense of number of tuples) joins arc done first to where
possible avoid joining big tables together. ChooscPhysical finally trics to sclect the best
join method (c.g. Hash- or IndexJoin).

For our purpose we extended the ChooscPhysical optimization pass for the Jjoin operator
as at this time cross products have been transformed into joins. One drawback however
is that at that point the join reordering could have destroyed joins following the Parquet
hicrarchy.

The implementation itself is as follows: All the Join operators arc walked through from
bottom to top and each operator is analysed. We iterate downwards both sides of the
operator. If both sides end with a ParquetScan and have only Selections in between then
the two scans and the join are combined into one ParquetScan. The operator tree is then
rearranged so that the sclections from both sides of the Join are put above the new combined
scan. This process is repeated for cvery join. Due to the bottom-to-top-approach the join
tree is recursively merged.

4.7 Efficient Bit Unpacking

For storing the repetition and definition levels Parquet uses the RLE-encoding which - as
explained earlier - is a hybrid of bit packing and run-length cncoding that can be combined
to achieve very space-efficient storage of vectors of small numbers. Using the tool callgrind
of the valgrind toolsuite? we found out that when using the rowgroup-vectorized approach
for Hyper between 80% and 90% of the time needed to read the values of a column in a

? http: //valgrind.org
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rowgroup and produce the vectors to be processed by the Hyper scan operator was spent
reading the repetition and definition levels which were stored using bit packing. So we used
this as an arca of possible optimization.

The code was alrcady written in such a way that cach possible bitwidth (for this imple-
mentation we only implemented bitwidths up to 8 as we only used RLE-Encoding for the
repetition and definition levels) had its own implementation instead of one generic imple-
mentation for all widths. This was coupled with the design decision to read and process all
values at once and provide an array of bytes (uint8-t) instcad of reading onc value at a time
on request. Together the implementation should in theory allow for efficient processing duc
to minimal branching (only one big while-loop, no ifs).

As an example the implementation for the two bit width was as follows (buffer is a pointer
to the raw bit packed data, valptr is a preallocated array to store the resulting byte values,
count contains the number of encoded values):

while (count > 0) {
uint8_t val = *buffer;
xvalptr = val & 0b00000011;
++valptr;
*xvalptr = (val >> 2) & 0b00000011;
++valptr;
*valptr = (val >> 4) & 0b00000011;
++valptr;
xvalptr = val >> 6;
++valptr;
count -= 4;
++buffer;

But as it turns out, although the code looked cfficient, gee (version 4.9) could not cxploit
pipclineing and parallel processing because of a data dependency on valptr. Rewriting the
code using index access for valptr gave a significant speedup (see Scction 5.5) as it removed
the data dependency and therefore allows modern CPUs to cxccute the statements using
cxccution pipelines in a semi-parallel mode:

while (count > 0) {
uint8_t val = *buffer;
valptr[0] = val & 0b00000011;

valptr[1] = (val >> 2) & 0b00000011;
valptr[2] = (val >> 4) & 0b00000011;
valptr[3] = val >> 6;

valptr += 4;

count -= 4&;

++buffer;
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Using instructions from the SSE cxtensions (SIMD, Single Instruction Multiple Data) of
modern x86-CPUs we were able to gain an additional speedup. We will illustrate it using
the implementations for the one and two bit widths. The SSE instructions were called using
intrinsics® provided by the compiler.

1 bit In this implementation we handle two bytes at a time (amounting to 16 valucs)
stored in an 128bit register. First these two bytes are shuffled so that the first byte is
duplicated and stored in the first 8 bytes of the register and the second byte in the other 8
bytes. Then the bitwise AND of the register and a special mask is computed. We call this
mask the exponential mask. In the first byte of the mask only the first bit is sct. In the
second byte only the second bit is set and so on. For the sccond 8 bytes it starts again with
the first bit. As a result in every byte of the result register only the bit we arc interested in
is (possibly) set. Then the empeq function is applied to the result register using the same
mask. As a result the bit we arc interested in is duplicated to cvery bit of its byte. As a last
step another bitwise AND is applied using a mask we call one mask because only the first
bit of every byte is sct. Thus using only 4 instructions (+ 2 instructions for loading/storing
the input and the result) we have extracted 16 values.
The resulting code looks like this:

__ml128i EXP_MASK = -mm_setr_epi8(0x1, 0x2, 0x4, 0x8,

0x10, 0x20, 0x40, 0x80, Ox1, 0x2, Ox4, 0x8, 0x10, 0x20, 0x40, 0x80);
__m128i SCATTER_MASK = -mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0O,

1, Al L doe 2y 5 44 193
--m128i ONE_MASK = _mm_set_epi8(1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1,4, 1, 1):

while (count >= 16) {
--m128i rega = _mm_insert_epil6(__m128i(), *buffer, 0);
--m128i res = _mm_shuffle_epi8(rega, SCATTER_MASK);
--m128i res2 = _mm_and_si128(res, EXP_MASK);
_-m128i res3 = _mm_cmpeq_epi8(res2, EXP_MASK);
--m128i res4 = _mm_and_si128(res3, ONE_MASK);
_mm“storeu_si128(reinterpretﬂcast<__m1281*>(valptr), resd);

count -= 16;
buffer+= 2;
valptr+= 16;

# for C and C+4+ by including the header x86intrin.h
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2 bit For the 2 bit implementation we read 4 bytes at a time which also produce 16 values.

These bytes are also shuffled so that the first byte is copied to the first 4 bytes of the 128bit

register, the second byte to the second 4 bytes and so on (we refer to the result register of

this operation as A). Then the following operations arc donc (EM refers to a mask similar
to the first exponential mask but this time with two bits set per byte):

RES = ((A V& (EM |

(A << 2)&&(EM << 2))|

(A << D&&(EM << 4))|

(A << 6)&&(EM << 6)

)
)
)
)
The result is then right-shifted by 6 and another bitwise AND is applied using a mask where
for every byte only the first two bits are set.

Other bit widths For a bitwidth of 4 the same algorithm as for 2 bits can be used. It
works on 8 bytes and needs fewer steps (EM is again similar to the other cxponential mask
except 4 bits are now set per byte, I5MASK is a mask with the 4 first bit sct of every byte):

(A&&LEM) (A << D&&(EM << 4))) >> )& 15M ASK

For a bitwidth of 8 no action nceds to be taken as the values already have the right
bitwidth (We assume that repetition and definition levels are small and therefore can be
stored in one byte).

The bitwidths that are more complicated are the others (3, 5, 6 and 7) because in these
casos result values are comprised of bits from different bytes which means rcassembly is
more difficult and can not be casily done using SIMD instructions.

Runtime estimations

In the following we want to estimate the possible speedup of using SSE instructions over
normal instructions for the one and two bit widths. We do this by estimating the number
of clock cycles needed per value. For simplicity we ignore overhead of control structures
(while-loops) and assume normal instructions (like load, store, shift, logical and/or) cach
take one cycle. For the SSE instructions we refer to the Intel Intrinsics Guide?.

1 bit Without SSE instructions unpacking of one bit values is implemented as follows:

while (count > 0) {
uint8_t val = *buffer;
for (uint i=0; i < 8; ++i) {
valptr[i] = (val & (1 << 1)) >> i;

4 http://software.intel.com/sit es/landingpage/IntrinsicsGuide/
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Figure 4.1: Unpacking 2-bit values

41



}

valptr += 8;
count -= 8;
buffer++;

}

We assume the inner loop is unrolled by the compiler and the left shift (1 << 1) is calculated
at compile time. Then for cach bit we have the following operations: load, and, right shift,
store which amounts to 4 cycles per value. For the SSE version we have one load and one
store (cach two cycles), two AND operations, one shuffie and one compare instruction which
cach cost one cycle. This sums up to 8 cycles per 16 values which means less than onc cycle
per value so in theory using SSE instructions should speed up operations by a factor of
about 8.

2 bit Without SSE instructions the implementation takes around 11 cycles for four values
with three ands, three shifts, one load and 4 stores. With SSE instructions we have around
17 cycles for 16 values. So in this case SSE instructions should speed up the process by a
factor of two to three.

4.8 Dealing with Different String Representations

In the Parquet format strings arc represented as a two-tuple of length and a byte array. If
the values are stored in plain encoding than the values are just stored back-to-back on a
DataPagc.

For Hyper this is convenient because on the level of LLVM assembly code for executing
a query strings arc represented as a char pointer and a length field. So neither the library
nor the scan operator need to do conversion but can just provide pointers into the memory
of the ParquetDataPage. This is of course under the assumption the the provided strings
are trcated as read-only.

Vectorwise on the other hand uses normal C-style character arrays with a zero-termination
character. So some sort of conversion needs to take place when providing string valucs from
a Parquet filc to Vectorwise operators. The naive approach would be to allocate a new
character array for every string that has a length of onc greater than the string length, copy
the data to the new memory and put a termination character at the end. But this would be
very incfficient as it means many small memory allocation and copy opcrations. Therefore
we decided on a morc cfficient approach that takes the storage structure of the strings into
consideration. As the values are stored back-to-back it means that after the byte array for
one string follows the length field for the next string. This means that after reading the
length field of the following string we can just replace the leftmost byte of the ficld with the
termination character of the first string (sce Figure 4.2). This way no memory allocation
and copying is nccessary, all the work is done in-place. But it has onc caveat: After the page
has first been read it can not be read again in subsequent querics / scans without rercading
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length,  data length data length
data  \0 ~ data 0

String 1 String 2

Figure 4.2: In-place string conversion

the memory of the page from disk because the internal structure is damaged. This can be
circumvented if the page keeps an intermediate structure that Jjust stores pointers to all the
strings. With this subscquent reads would be cven faster as all the work of conversion is
already donc. And if the pointers are stored in the same way that they have to be written
to the result vectors than a subsequent read can just copy the pointers as a block in one
opcration.
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5 Evaluation

Using our implementation for reading Parquet files we did a scries of benchmarks using both
Vectorwise and HyPer. As the basis for our benchmarks we used the TPC-H benchmark.
As data basis we used the region, nation, customcr, orders and lincitem tables from a
scale-factor 1 version (also referred to as 1 G version beause of the filesize). In most
of the benchmarks we compared query runtime between Native (using normal rclational
tables) and Parquet (using Parquet files). For this we crcated a Parquet file using our
tool csv2parquet with a nested schema of region-nation-customer-orders-lineitem and for
the native version we loaded the esv files of the tables into the databasc using normal copy
into-statements.

If not noted otherwise runs were done on machines of the Scilens cluster! with a Intel
Xeon E5-2650 v2 CPU? and 256 GB of RAM (DDR3-1866). Every query was executed 10
times in a row and the minimum of the runtimes was used as result (best out of 10).

This chapter is divided as follows: Section 5.1 shows the speedup of compiler optimiza-
tions, Scctions 5.2 and 5.3 show the evolution in terms of runtime speed during the different
stages of the implementation. In Section 5.4 we look closer at the distribution of runtime
inside the query exccution for Hyper. The following Scetions 5.6 to 5.7 focus on some spe-
cial optimization aspects of the Parquet format and library. To finish off Scction 5.8 shows
how both Vectorwise and Hyper deal with bigger datascts and Scction 5.9 does runtime
comparisons with other systems from the Hadoop ccosystem.

5.1 The Power of Compilers

Early on in the development and integration for Vectorwise and Hyper we did a trial run
using variants of the TPC-H queries 1 and 6 with an unfinished version of the Parquct
library to get a fecling for behaviour and runtime. For that first run we had compiled the
library with gce (Version 4.8) and no compiler optimizations enabled (-00). For Vectorwise
the runtimes were about 19.5 and 10.5 scconds, for Hyper they were about 13 scconds for
both queries (sce Figure 5.1).

Then we did another try but this time the library was compiled with all compiler opti-
mizations cnabled (-03). This decrcased runtime significantly: For Veetorwise the runtime
went down to about 8 and 4 seconds, for Hyper down to about 3.5 scconds.

I A cluster for scientific computing run by the CWT in Amsterdam: http://www.scilens.org
4 http://a_rk.intel‘com/products/75269/
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Figure 5.1: Impact of compiler optimizations on query runtime

This meant a decrease in runtime between 59% (Vectorwise query 1) and 75% (Hyper
query 6) with no code changes, only by cnabling compiler optimizations. This shows how
effective modern compilers can be when optimizing code.

5.2 Vectorwise and Parquet

As of writing of this thesis Vectorwise still holds the performance record for TPC-H for 100
GB and 300 GB non-clustered database sizes3. In our benchmarks we deliberately disabled
some of the performance features of Vectorwise when running against native relational tables
as the Parquet version did not have those features and we wanted to do a fair comparison.
The most important features we disabled were range queries and parallel processing: When
run on default settings Vectorwise will try to split the query exceution plan into parts
that can be run in parallel. Specifically it will split the tables to be scanned into ranges
and give cach range its own scan operator to be run in parallel. Disabling this featurc
increased the query runtimes for native queries considerably. For example for query 1 with
cnabled parallelism runtime for the 1 G version was around 0.75 scconds, with this feature
disabled it went up to to around 3.16 scconds. Therefore Vectorwise will scem slower in
these experiments than it could be due to the disabled performance features.

During implementation of the Parquet library and its integration into Vectorwise and
the subscquent optimizations we ran several benchmarks to measure speedup. Basis was a
scale-factor 1 TPC-H Parquet datafile with a nested structure of region-nation-customer-

* http://www.tpc.org/tpch/results/tpch_perf_results. asp?resulttype=noncluster
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Figurc 5.2: Runtime comparison Parquet TPC-H on Vectorwise

orders-lincitem using queries 1, 4, 6, 10, 12, 13, 18 and 22. Basis for the comparison was
a run with the same querics against the same data loaded into relational tables (Native).
The results can be scen in Figure 5.2.

The different implementation / optimization stages:

Stage 1 Basis was the first implementation (onc tuple at a time filled into vectors).
Stage 2 Implementation from Section 4.3, all values arc read in a vectorized fashion.

Stage 3 In addition to stage 2 conversion of string values (see Scction 4.8) is donc in-place,
so values arc no longer copicd

Stage 4 MergeJoin support cnabled for inner joins

As can be scen the runtime for queries with stage 1 implementation is - depending on
the query - several times the runtime of the same query on native tables. This is mainly
due to the fact that at this stage reading tuples was not yet optimized for vectors. So the
result vectors were filled by getting one tuple from the Parquet library and doing it in a
loop until the vector was full.

Stage 2 implementations greatly improves on this. At this stage all values are read from
the file using the vectorized approach where the Parquet library uses vectors internally for
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reading from the DataPages. This improves runtime for all queries quite dramatically, for
example for query 6 the runtime drops to about onc third whereas query 1 only sees a drop
of about 40%. This can be explained with the fact that although both only do a scan on
the lincitem-table query 6 only has one sum-aggregation whereas query 1 has several sum-
and avg-aggregations and a count-operation. Stage 3 enhances that by handling the string
conversion (sce Section 4.8) in-place. This avoids allocating memory and copying the data
for cach value. The speedup of this optimization depends on the usage of string columns
in the query. Quite the improvement can be scen in query 12 with the runtime dropping
about 50% from 4.1 seconds to 2.1 seconds. Queries 1 and 4 also show some improvement,
whercas for the other queries the impact is negligible as hardly any string handling is donc
in them. Finally stage 4 adds MergeJoin-support (sce Section 4.3). This has no impact for
querics without joins that can be handled by a MergeJoin, such as querys 6, 12, 13 and 22.
The best improvement can be seen for query 18 as it consists only of inner and semi joins
which can be handled cfficiently by a MergeJoin.

When comparing the runtime with stage 4 optimizations to native tables we can see that
the performance is almost as good. Query 10 is even a little faster then with native tables.
Other queries are nearly identical in runtime, like queries 4 and 18. The other queries are
slower by about 10% to 30%.

This slowdown is caused by a combination of factors: The first is that for cvery page
rcad from the Parquet file the page header has to be decoded using Thrift which takes time.
Profiling showed that about a third of the time needed to produce a vector of values from
a page is spent in parsing the page header.

Another factor is that in addition to reading the actual values the repetition and definition
levels have to be read and acted upon. There are cases where this can be omitted (all ficlds
are required and are at the top level) but generally (especially if the virtual id or forcign key
columns are requested) the repetition- and definition-levels have to be read and processed
which takes additional time.

5.3 Hyper and Parquet

For Hyper we used the same queries from TPC-H with the same Parquet datafile as for
Vectorwise. We compared the runtime of the queries running against native relational
main-memory-tables to nested Parquet tables using the different implementations outlined
in Scction 4.2, 4.5 and 4.6. As with Vectorwise we disabled parallelization features in Hyper
to allow for a fair comparison. These features normally try to execute the different operator
pipelines from a query in parallel using a scheduler to keep dependencies intact.

With the first implementation which called the Parquet library for every tuple (sce Scction
4.2) runtimes were higher by a factor of between 8 (query 13) and 55 (query 22) than that of
native relational tables (see Table 5.1). For this comparison the Parquet file was preloaded
into memory before running the queries to avoid disk access.

This bad runtime behaviour of the first implementation was to be expected as it involved
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Query | Native Parquct
Q1 0.142 3.427
Q4 0.273 4.261
Q6 0.060 3.235
Q10 0.111 4.064
Q12 | 0164  4.236
Q13 | 0.102  0.781
Q18 0.236 7.812
Q22 0.013 0.719

Table 5.1: Comparison TPC-H Hyper Native vs Parquet First implementation (runtime in

seconds)
1.0 T T T T T T T
B Native
08k B Vectorized Approach n
: [0 Combined Join-Scans

Minimal Query Runtime in Seconds

Q1 18 Q22

TPC-H Query

Figure 5.3: Runtime comparison Parquet TPC-H on Hyper
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Query | Vectorized  Omitted r/d-levels | Speedup
Q1 0.502 0.449 11%
Q4 0.462 0.421 9%
Q6 0.272 0.229 16%
Q10 0.345 0.287 17%
Q12 0.712 0.669 7%
Q13 0.163 0.150 8%
Q18 0.592 0.548 7%
Q22 0.024 0.021 12%

Table 5.2: Runtime comparison TPC-H Hyper Veetorized approach without and with omit-
ting handling of repetition or definition levels (runtime in seconds)

a series of method calls from LLVM assembly into C++-code for every tuple. Also all of
the logic for handling tuple reconstruction was still a generic implementation.

The runtime could be reduced by about a order of magnitude (see Figure 5.3) using the
second implementation. As outlined in Section 4.5 it involved generating LLVM assembly
code specific for the query and reading values from the Parquet file in a vectorized manner.
Optimizations to this approach include that reading and handling of the repetition levels
can be omitted as long as all columns to be sclected are from the same group and all
have a repetition type of OPTIONAL or REQUIRED (flat subschema). And reading and
handling of the definition levels can be omitted for a column if the field for the column is
in the top-level group. This optimization alone gained a significant speed improvement for
some queries (see Table 5.2).

With the introduction of the merging of joins and scans into a single scan (Scction 4.6)
some queries showed additional improvement. Best it can be observed for query 4 which
sces a reduction in runtime of about 35%. This is because Hyper rewrites the query (which
originally has an erists-clausc with a related subquery) so that it can be handled by a
normal inner join which is then for the Parquet version combined into one big scan. Other
querics like 1 and 6 show no improvement at all as the query plans do not contain any joins.

5.4 Profiling a Query for Hyper

Before we started implementing the optimized version of our Parquet library for Hyper we
wanted to get a feel for how the generated code of a query would look like and how the the
interface for the Parquet library should be designed in respect to that. To do that we took
one simple query containing a join and wrote the code to run that query by hand.

The query was

select sum(l_quantity)
from customer, orders, lineitem
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where c_custkey = o_custkey and o_orderkey = 1_orderkey
and c_custkey % 5 = 0

The code consists of one outer loop that goes through the available rowgroups. For cach
rowgroup the necessary columns are read using the Parquet library. Then the inner loop
is started which loops until the values from all columns are used up. Inside the inner loop
is the logic that determines which vectors to advance using the repetition and definition
levels and then provides these values to the code that filters out null values (inner join),
checks the condition (e_custkey % 5 = 0) and docs the aggregation (sum of Lquantity).
Conceptually this is all one operator pipeline.

Running this query against native relational tables the scan operator would read the
following columns: c_custkey, o_orderkey, Lorderkey and Il_quantity. When running this
query against a Parquet file with the scans and the joins combined into one Parquet scan
the o_orderkey and lorderkey columns can be omitted as they arc no longer needed for the
join.

In the fully optimized version running the query took 31ms. Running the same query in
Hyper using native relational tables took 26ms with parallelism cnabled and about 94ms
single-threaded.

We took a profile of the exccution of that query with our manual implementation using
callgrind. This gave us some interesting insights:

e More than 80% (in some querics up to 90%) of the runtime is spent in the pipeline
code itsclf, only about 10% to 15% are spent in the method calls to the Parquet
library.

e About one third of the time spent to read and process a DataPage is spent decoding the
Thrift encoded page header. This means only two thirds are actually spent processing
data from the page.

e Dccoding the bit-packed repetition and definition levels takes up to 80% of the time
spent to process the data from a page.

We were also able to confirm these results using the fully implemented version running
in Hyper.

We also ran two different versions of the code: One simulates sclection pushdown by
checking the condition as soon a new value for that column is read, the other reads the
values from all columns thereby producing the entire tuple and then checks the condition.
Conceptually sclection pushdown checks the predicates inside the scan operator thereby
avoiding unnccessary read operations by skipping values that would be filtered out anyway.
This pushdown is implemented as an optimization for the normal table scan operator in
Hyper. So we tested both implementations to sce if implementing it would gain a significant
advantage. The version with sclection pushdown implemented took about 5% to 10% less
time than the version without it. In the end we decided against implementing sclection
pushdown in our Parquet scan opcrator as in our opinion the improvement in runtime did
not warrant the additional implementation cost.
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Bitwidth | Unoptimized Without data dependencics  With SSE instructions
1 bit 18312ms/GB 4784ms/GB 1600ms/GB
2 bit 9168ms/GB 3036ms/GB 888ms/GB
3 bit 5480ms/GB 2018ms/GB
4 bit 4614ms/GB 2292ms/GB
5 bit 3397ms/GB 1558ms/GB
6 bit 2819ms/GB 1359ms/GB
7 bit 2980ms/GB 1279ms/GB
8 bit 169ms/GB 169ms/GB

Table 5.3: Runtime comparison for unpacking bit-packed values

5.5 Optimizing Bit Unpacking

In scction 4.7 we described how we optimized the unpacking of bit-packed values with a focus
on the bitwidths 1 and 2. To measure performance we fed the algorithm an input vector with
a size of 1 GB and stopped the time it took to decode the values using different bitwidths.
We compared the unoptimized version, the version with reduced data dependency and the
version using SSE instructions (only for bitwidths 1 and 2). The results can be found in
Table 5.3.

Rewriting the code just to reduce data dependency without changing the exccuted state-
ments reduces runtime to between one half (4 bit) and onc quarter (1 bit) of the unoptimized
versions. Using SSE instructions again reduces runtime to about one third.

5.6 Parquet Format: Space vs Speed

As mentioned in Section 4.7 unpacking bit-packed values with bitwidths that do not align
with byte boundarics is hard to optimize as bits of the values are distributed between bytes
meaning additional bit shifting is necessary for decoding. So we wanted to sce if using a
fixed bitwidth of 8 bit would translate to a significant speedup in querics. To that end we
modified our Parquet library to always usc a fixed bitwidth of 8 bit for all bit-packed values,
created a new Parquet file with that property and ran our query suite with it. The results
(sce Table 5.4) show a reduction in runtime of on average 10%. The Parquet file itself grew
bigger by about 12% from using more space for the repetition and definition levels. In our
opinion the achieved speedup is significant enough to warrant wasting space for the bigger
file.

In light of that experiment we recommend the following changes to the storing of bit-
packed values in Parquet files: The format should be extended (by adding a new field to
the file metadata) to allow the creator of the file to set a fixed bitwidth of 8 bit for the
bit-packing of all repetition and definition levels. This option could be sct by the users
of the database system (just like they can choose if they want to cnable compression for




Query | Variable Fixed | Speedup
Q1 0.502  0.444 12%
Q4 0.284  0.260 9%
Q6 0.269  0.224 17%

Q10 0.310  0.268 14%
Q12 0.695 0.652 6%
Q13 0.127  0.117 8%
Q18 0.585  0.550 6%
Q22 0.024  0.022 8%
Avg 10% |

Table 5.4: Runtime comparison TPC-H Hyper Variable bitwidths vs Fixed bitwidth 8 bit
(runtime in scconds)

the file and if they do which algorithm to use) so they can do the trade-off between space
and speed. Furthermore we think the bit-packing algorithm should be modified to only use
bitwidths that align with byte boundaries (1, 2, 4 and 8 bits). So for example if 3 bits
would be needed then the algorithm would choose a width of 4 bits or if 5 bits would be
needed a width of 8 bits would be chosen. That way for small values space is not wasted
while they still can be unpacked cfficiently.

5.7 Parquet Format: Using Compression

As explained in Section 2.3 Parquet files support several different compression algorithms
(currently GZIP, LZO and Snappy). To test the impact of these we crcated version of
the already used Parquet file with a 1GB version of TPC-H for cach of the compression
algorithms. Then we ran our set of querics against the file using Vectorwise. For one run
we had Veetorwise read the files from local disk, for the other we placed the files on a 3-
node Hadoop HDFS cluster and had Vectorwise read them remotely (the machines were all
connected in a locally switched network using Gigabit Ethernet cards). Table 5.5 shows the
reduction in filesize gained by the different compression algorithms. Because of the many
string columns and number columns with only small numbers (which in Parquet still need
to be stored using at least 4 bytes) the filesize can be reduced significantly with all three
algorithms. As expected GZIP produces the smallest file but takes significantly lower to
compress and decompress.

Reading the compressed file from local disk shows (scc Figure 5.4) that despite the smaller
filesize the smaller cost of reading the file from disk is outweighed by the increased cost for
decompression. The file compressed with GZIP shows the clearest increasc in query runtime
due to the fact that - compared to the other algorithms - filesize and compression time are
not directly proportional. Reading the same files remotely from HDFS shows a reduction
in query runtime for the compressed file variants of between 3% (query 18) and 12% (query
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: g Percentage of Compression cost | Decompression cost
Algorithm Filesize ;
uncompressed filesize | (eycles/value) (cycles/value)
Uncompressed | 1230MB 100%
Gzip 280MB 24% 397 55
LZO 441MB 39% 42 13
Snappy 434MB 38% 56 15

Table 5.5: Parquet Filesize for different compression algorithms
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Figure 5.4: Runtime comparison TPC-H queries using Vectorwise with different compres-
sion algorithms for a Parquct file read from local disk

12). In most cases the file compressed using Snappy has the lowest runtime, meaning that
Snappy scems to provide the best trade off between filesize and decompression cost.
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Figure 5.5: Runtime comparison TPC-H queries using Vectorwisc with different compres-
sion algorithms for a Parquet file read from HDFS

5.8 Using Bigger Datasets

Most of our benchmarks werc run using a scale-factor 1 TPC-H database. To test the
performance for larger datascts we created a scale-factor 10 Parquet version. To keep
rowgroup size within the desired bounds we split the data into two sets/files. One being
customer-orders-lincitem and the other being region-nation. Would we have packed the
entire structure into onc file the rowgroup size would have been about 2 GB per rowgroup
(5 regions, about 10 GB of data in total). Using these files we ran the usual query suite on
Hyper (scc Figure 5.6) and Vectorwise (sce Figure 5.7).

The results show that our implementation not only works for small datasets but can
also keep up with increasing workloads while still maintaining its query cxecution speed in
relation to native relational queries.
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5.9 Comparing with other Parquet Implementations

In the previous scctions we only compared our Parquet implementation with native re-
lational tables of the database systems. But more interesting is to compare it with other
Parquet implementations. Therefore we ran some tests using Impala, Hive and Drill. We ran
these benchmarks in the quickstart virtual machine provided by Cloudera for its Hadoop
distribution?. The VM is based on CentOS 6.2 and CDH 5.1 with Hadoop installed in
pscudo-distributed mode with all services running on onc node. We used the same scale-
factor 1 TPC-H datasct as we used for the other benchmarks and ran the same query sct.
Queries 4, 18 and 22 had to be rewritten because neither system docs support subqueries
inside EXISTS- and IN-clauses. The rewrite consisted of extracting these subqueries into
separate queries (using temporary views) and joining them to the main query. For query 22
additionally the anti-join had to be implemented using an outer join and a check-for-null-
predicate.
The results of the query suite can be seen in Table 5.6.

Impala Impala has its own Parquet implementation in C++, but at the moment only
supports Parquet files with flat structures. Thercfore we created scparate Impala tables
stored as Parquet for every TPC-H table (region, nation, customer, orders, lineitem). Im-
pala reads all data from HDFS but has optimized behaviour for reading data locally when
the exceution node runs on the same machine as the data storage node®. In comparison
to our Parquet implementation running on Hyper Impala is between 1.5 times (query 12)
and 6 times (query 13) slower. Part of this can be attributed to the fact that Impala is
designed for parallel processing and was run with only one node. Slowdown from reading
from HDFS should be negligible as all data was read locally.

4 CDH: http://www.cloudera.com/content/cloudera/en/products-and-services/cdh.html
5 Cloudera recommends to install Impala nodes on all nodes of the HDFS cluster

Query | Hyper Native Hyper Parquet Impala Drill
Q1 0.191 0.622 1.510 20.022
Q4 0.342 0.381 1.120 13.072
Q6 0.069 0.343 1.070  5.990
Q10 0.153 0.413 1.430 15.381
Q12 0.193 0.897 1.330 15.013
Q13 0.256 0.294 1.870 10.748
Q18 0.518 0.738 4.370  23.696
Q22 0.014 0.027 1.150

Table 5.6: Comparison of different Parquet implementations (runtimes in seconds)




Drill  Apache Drill is also implemented in Java but unlike Impala and Hive can also read
data files from the local filesystem. It can be deployed in embedded mode without any
external server and as a distributed system of nodes on a cluster. For our test we chose the
embedded mode as it is similar to the mode of operation for Hyper. It can be seen that Drill
is far slower than our Parquet implementation and also Impala. In comparison to Impala
Drill is between 5.5 times (queries 6, 13 and 18) and 13 times (query 1) slower. Query 22
could not be run with Drill because some subquery functionality was not implemented.

Hive Hive uses the Java reference implementation for Parquet provided by the Parquet
project. As explained in scction 2.1 it converts cach query into a scries of MapReduce jobs
that producc the results. These jobs also read data only from HDFS. Due to this approach
queries with a small dataset (as is our benchmark) will have - in relative terms - a higher
overhead for creating and managing the jobs than queries with large datasets (in the TB
range) running on large clusters in parallel where this overhead can be more or less neglected
in comparison to the job runtime. We did not include the Hive runtime results in the graph
(Figure 5.6) because the numbers were - in comparison to the other systems - way higher.
For example for query 1 Hive reports a query runtime of about 114 scconds. Interestingly
enough the cumulative CPU time reported by the MapReduce jobs was about 29 seconds
(which in orders of magnitude is still about the same as Drill with 20 scconds)

In conclusion we showed that our implementation using Hyper beats Impala, Drill and
Hive in the single-node configuration. As we expected Impala is by far the fastest of the
three systems due to its implementation in C++ whercas Hive is the slowest duc to the
overhead of the MapReduce jobs (sce Section 2.1).
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6 Conclusion

We designed and developed extensions for the relational database systems Hyper and Vec-
torwise to cfficiently query Parquet files. For this we bridged the worlds of flat relational
tables and nested data Parquet files, providing users with the illusion of dealing with nor-
mal tables with full SQL query capabilities while still providing cfficient and fast query
processing.

We started off with one generic implementation for both database systems employing the
iterator-model. Based on the experiences gained with that first try we developed specialized
implementations for both database systems that are closely adapted to the respective query
exceution models while both have in common that they read and process values in vectorized
form. For Hyper we read the needed columns from an entire rowgroup into vectors and then
produce tuples for the operator pipeline using specifically on a per query basis generated
and optimized LLVM assembly integrated into the Hyper code generation model. We also
take advantage of the flexibility of that approach and the natural nested structure of the
Parquet files and optimize joins by handling them inside our specialized scan operator code.
For Vectorwise we produce vectors of values that can directly be processed by the other
operators. The handling of joins we leave to the MergeJoin operator by providing specific
join columns derived cfficiently from the nested structures of the Parquet files.

We finished off development with a series of experiments proving that for Vectorwise in a
restricted sct of conditions our implementation can achieve largely the same query runtimes
as native operators. For Hyper we showed that although our Parquet implementation could
not match native query runtimes, it still had impressive execution speed.

Along the way we also provided a comprchensive description of the Parquet format and
also analysed strengths and weaknesscs of the format from an implementation perspective
focusing on speed.

With Hadoop and cluster processing assembling under the buzzwords big data and NoSQL
the end of the relational model and relational databases is regularly proclaimed. But our
cvaluation paints the current state of databasc evolution with different colors. Even with
Parquet, a storage format cxplicitly designed for efficient query exccution, Hadoop-based
databasc systems arc no match for an optimized modern rclational database like Hyper
system in terms of query exccution speed. That is true for Hive running on the MapReduce-
model and also for Impala which has sort of a relational model and was developed for cfficient
and fast query execution but still fails to beat a real relational database system. It has to
be granted that Impala shows way better exccution runtimes than Hive. But Impala is
still way slower than the main-memory approach of Hyper. Based on our cvaluation we
can conclude that this is mostly not the fault of the Parquet format, but more so the fault
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of the chosen design and execution model. Because our implementation which integrated
Parquet into relational databases (and was developed in only a few months by one person
and still has some room for additional optimizations) is also faster than Parquet on Impala,
a system using Parquet as its primary format which is under public development by Twitter
and Cloudera since March 2013.

6.1 Scale-Out

It might be argued that the above claim is not fair as rclational database systems are
primarily designed as single-instance systems whereas Impala and Hive only show their
advantages when run in big cluster environments with large datasets. But both relational
contenders in this thesis have current efforts of extending the systems with massive parallel
processing capabilities. For Vectorwise this is done under the alrcady mentioned Vortex
project which not only runs Vectorwise on Hadoop but also gives it the ability to run
querics in a distributed and parallel fashion [12]. For Hyper [21] shows that queries can be
cfficiently run in a distributed fashion on parallel main-memory databasc clusters.

Using these developments it should be casy to take our approach of integrating Parquet
with relational databases and the relational model and employ it in a distributed and parallel
cluster-context while still retaining our margin in terms of query performance.

6.2 Future Work

Although our implementation provides a usable and already quite efficient way for reading
and querying Parquct files for both Hyper and Vectorwise, still a number of open features
and questions remain.

An interesting feature for both database systems would be the capability to not only read
Parquet files but also write them. This offers some challenges as Parquet files are designed
to be written in one go whereas classic table row insertion is done row by row. In this
context it would also be interesting to extend the Parquet format with a way to update
existing data. A possible angle could be using some sort of differential structures that are
stored alongside the data files. Also the implementation of the Parquet library still misses
some features such as processing Parquet files distributed across scveral physical files or
some possible encodings for DataPages that are specified in the format.

As shown query exccution speed for Hyper can be improved by implementing selection
pushdown. But even more can be gained by utilizing the alrcady available techniques for
parallel query exccution in Hyper for the Parquet implementation. And in the long term
supporting massive parallel processing across nodes in a cluster (as is currently researched
and developed for Hyper) will be necessary to compete with other Parquet implementations
on a practical level.

The current approach for Vectorwise still lacks proper integration and some features to
allow for a user experience needed for a commercially sold product. One point missing is the




extension of the SQL syntax that allows Parquet files to be treated as normal external tables
without the workarounds currently in place. Also in that regard the capability to read and
process the HCatalog from a Hadoop cluster and directly integrate Parquet files / tables
stored there (created by Impala or Hive systems) would allow a flowing interconnection
between both worlds from a user experience point of view. From a backend perspective
the Parquet scan operator should be extended with a parallel processing mode to fit with
the distributed exccution model of Vectorwise. The extension should be done in a way
that takes into account the existing alignment of the Parquet format for cluster processing
instead of simply forcing the cxisting model of range queries. In the wake of that special
considerations should be taken in the context of Vortex for reading Parquet files directly
from HDI'S. For an cfficient way of reading Parquet files processing should be done locally
- wherever possible - on the node storing the corresponding data, just like it is already
implemented for normal backend storage in Vortex.

60



Bibliography

[1]

2]

(3]

[5]

(6]

(8]
[9]

(10]

[11]

Wei-Hsiu Weng and Wei-Tai Weng. Forecast of development trends in big data industry.
In Proceedings of the Institute of Industrial Engineers Asian Conference 2013, pages
1487-1494. Springer, 2013.

Ashish Nadkarni and Laura DuBois. Trends in enterprise hadoop deployments. Tech-
nical report, 10 2013.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107-113, 2008.

Alfons Kemper and Thomas Neumann. Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots. In Data Engineering (ICDE),
2011 IEEE 27th International Conference on, pages 195-206. IEEE, 2011.

Thomas Neumann. Efficiently compiling efficient query plans for modern hardware.
Proceedings of the VLDB Endowment, 4(9):539-550, 2011.

Stratos Idrcos, Fabian Groffen, Nicls Nes, Stefan Mancgold, Sjocrd Mullender, and
Martin Kersten. Monetdb: Two decades of rescarch in column-oriented database ar-
chitectures. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, 35(1):40-45, 2012.

Marcin Zukowski and Peter A Boncz. Vectorwise: Beyond column stores. IEEE Data
Eng. Bull., 35(1):21-27, 2012.

Raymond A Loric. XRM: An extended (N-ary) relational memory. IBM, 1974.

Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Code Generation and Optimization, 2004. CGO 2004.
International Symposium on, pages 75-86. IEEE, 2004,

Tobias Miihlbauer, Wolf Rédiger, Robert Scilbeck, Angelika Reiser, Alfons Kemper,
and Thomas Neumann. Instant loading for main memory databases. Proceedings of
the VLDB Endowment, 6(14):1702-1713, 2013.

Peter A Boncez, Marcin Zukowski, and Niels Nes. Monctdb/x100: Hyper-pipelining
query execution. In CIDR, volume 5, pages 225-237, 2005,

61



[12]

[13]

[14]
[15]

[16]

[17]

(18]

(20]

[21]

Peter A Bonez. Announcing vortex - actian vector-on-hadoop. Hadoop Summit - San
Jose, June 3 2014.

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar,
Matt Tolton, and Theo Vassilakis. Dremel: interactive analysis of web-scale datascts.
Proceedings of the VLDB Endowment, 3(1-2):330-339, 2010.

HCatalog. http://hortonworks.com/hadoop/hcatalog/, accessed on 2014-09-18.

Yin Huai, Ashutosh Chauhan, Alan Gates, Gunther Hagleitner, Eric N Hanson, Owen
O’Malley, Jitendra Pandcy, Yuan Yuan, Rubac Lee, and Xiaodong Zhang. Major
technical advancements in apache hive. 2014.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Surcsh
Anthony, Hao Liu, Pcete Wyckoff, and Raghotham Murthy. Hive: a warchousing solu-
tion over a map-reduce framework. Proceedings of the VLDB Endowment, 2(2):1626-
1629, 2009.

Parquet Github project. http://github.com/Parquet/parquet-format/, accessed
on 2014-09-18.

Anastassia Ailamaki, David J DeWitt, Mark D Hill, and Marios Skounakis. Weaving
rclations for cache performance. In VLDB, volume 1, pages 169-180, 2001.

Jignesh M Patel and David J DeWitt. Partition based spatial-merge join. In ACM
SIGMOD Record, volume 25, pages 259-270. ACM, 1996.

George P Copeland and Setrag N Khoshafian. A dccomposition storage model. In
ACM SIGMOD Record, volume 14, pages 268-279. ACM, 1985.

Wolf Rodiger, Tobias Muhlbaucr, Philipp Unterbrunner, Angelika Reiser, Alfons Kem-
per, and Thomas Neumann. Locality-sensitive operators for parallel main-memory
database clusters. In Data Engineering (ICDE), 2014 IEEE 30th International Con-
ference on, pages 592-603. IEEL, 2014.

62



