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Abstract

As social networks become ever more important, companies and other organizations are
more and more interested in how people are talking about them on these networks. The
Dutch company OBI4wan delivers a complete solution for social media monitoring, webcare
and social analytics. This solution provides answers regarding for example who is talking
about a company or organization, and with what sentiment. Some of the questions that
OBI4wan wants to answer require another way of storing the social data set, because the
normal ”relational” way of storing does not suffice. This report compares the column store
MonetDB to the graph database Titan, and tries to find an answer to the question: is a
distributed solution (Titan) better than a centralized solution (MonetDB) when it comes
to answering graph queries on a social network. The LDBC data set and its benchmark
are used to answer this question. Because the benchmarks have shown that both MonetDB
and Titan have their respective problems, another centralized database solution (Virtuoso)
has been added to the comparison. For now, Virtuoso seems to be the best choice (out of
the three systems) for loading the LDBC data set into a database and executing the LDBC
benchmarks on this database.
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1 Introduction

The amount of data that is published every day on social media platforms like Twitter and
Facebook is becoming larger and larger. People publish updates about their daily lives, companies
express themselves to anyone who is interested, and sports clubs keep their supporters up to date
with posts about new signings, team training sessions and live match reports. This big pile of data
could prove to be useful for companies and organizations, but without any form of organization,
it is hard to obtain useful information from this gigantic stream of data. This introduces the need
for a system that can perform this ”data-to-information” transformation. The Dutch company
OBI4wan [3] delivers a complete solution in this area, providing tools to monitor, analyze and
report on this incoming stream of data, for a big part data originating from Twitter. Tracking
social updates about a particular topic (by filtering out posts that contain specific terms) can
give insights in how people talk about that topic online. Gaining these insights is useful for
companies, giving them the opportunity to see post volumes and -sentiment about their brand
and - if needed - start conversations with people who have complaints or comments that need
response.

All this data (or in this case: all these tweets) must be stored somewhere, so that it is
accessible to use later on. Often a relational database is used, storing tweets row by row. Another
solution - which is used by OBI4wan - is to store the tweets in an index like ElasticSearch [4]. In
order to store a tweet in an indexing backend, the tweets is first split into single terms. These
terms are then stored in key-value pairs, where the key is the term and the value points to
the complete tweet object (or tweet objects) in which this term is used. This allows for fast
keyword search: enter a single search query term and the indexing backend will return those
tweets in which that term was used. While this type of queries - retrieving information based on
a single search query - is useful in many cases, it does not cover all data querying possibilities.
For example, it is a lot harder to execute queries that retrieve multiple pieces of information,
combining them into one single result. Given the tweet data retrieved by OBI4wan, one might
for instance want to find all users who have mentioned a single (or multiple) topic(s), are not
further than three steps away from some (or multiple) person(s), and have created their account
after a certain date (or in a certain period between a start- and end date). Before a query like
this returns a single result, separate queries must first be created, executed and their results
must be combined. A more optimal solution for this type of queries would be to use a backend
system that is capable of executing such a query in one go, traversing over all matching tweets in
one single query. As section 2.4 of this paper will show, a graph database backend is a suitable
solution for this querying challenge. The question that arises then, however, is which graph
database to choose?

The main quest for this paper is to compare database backends that can store tweets in a
graph format, and see which one performs the best. Globally there exist two possible database
solutions: one using a single-server architecture with a lot of disk storage and memory, and the
other using a distributed architecture, spreading the graph data over multiple machines in a
cluster that could be expanded at any time. Two database backends that we focus on in this
report are MonetDB (single-server) [10] and Titan (distributed) [2].

The rest of this paper is structured as follows. Section 2 describes the twitter data set re-
trieved by OBI4wan, how it is stored using ElasticSearch as an indexing backend, and how novel
query types require to store the twitter data set in a graph format for a more logical structure
and (potentially) better performance. Section 3 contains related work about the topics discussed
in this research, including graph networks, graph databases (including Titan), graph program-
ming, graph query languages (including Gremlin, the graph query language used by Titan), other
database systems which are not necessarily developed for storing graph networks (including Mon-
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etDB) and graph benchmarks that can analyze how well a database backend performs on graph
data. Then, sections 4 and 5 give a detailed overview of Titan and MonetDB, respectively. Both
sections describe the architecture of these databases, show how data is stored, what kind of query
capabilities exist and how to access the databases remotely (which is of importance for executing
graph benchmarks). Section 6 talks about the generation of test data and how to transform this
data into a format that is accepted by the databases under test. Section 7.6 details the data for-
mat that is used by OBI4wan to store all tweets, and als how this data set must be transformed in
order to load it into the databases. Furthermore, this section describes the retrieval of data that
was originally missing from the OBI4wan data set, namely information about the friends and
followers of the users in the original data set. The original data and the freshly obtained friends-
and followers data is then analyzed using a community detection algorithm called SCD. Section
8 shows the setup and execution of the database benchmarks, for which the LDBC benchmark
has been used. The LDBC benchmark consists of a collection of benchmark queries, for which a
database-specific implementation has been written. This implementation is also detailed in this
section. After describing the setup, this section shows how the benchmark has been executed,
analyses the obtained results and ultimately shows which database performs the best, given the
benchmark results of various test data sizes. The benchmarks can be executed on any cluster
that provides the right hardware for the databases under test. For this research, we have the
possibility to use the SciLens cluster of the Dutch Centre for Mathematics and Computer Sci-
ence (Centrum Wiskunde en Informatica, CWI). Finally, section 9 discusses and concludes this
research’s findings.

1.1 Research questions

The following research questions have been answered in this section and/or will be answered in
this report.

• Architecture: what is the best platform to work on, both for storing the data and ex-
ecuting the benchmarks using Titan and MonetDB? What are the differences between
platforms? Advantages? Disadvantages?

– Because the supervisor of this research works with the CWI, and the CWI provides
the right hardware for executing benchmarks on Titan and MonetDB, we have chosen
this hardware and omitted the investigation of other platform possibilities.

• Business questions: which business questions are interesting to answer for OBI4wan?

• Main research question: is a decentralized solution in combination with a dedicated
graph database (Titan), graph query language (Gremlin) and text search (ElasticSearch)
preferable over a centralized solution (column store MonetDB) in the specific use case of
the OBI4wan data set?

7



2 OBI4wan: Webcare & Social Media Monitoring

The Dutch company OBI4wan offers a tool for online- and offline media monitoring, webcare,
data analysis, social analytics and content publishing. The tool gives a complete overview of the
millions of messages that are posted on social media and other online- and offline source every
day. One the one hand users of OBI4wan can use the webcare module to respond on any of these
messages from one single overview, and on the other hand users can create reports and analyze
this data. Finally, users can create and plan original content from the publishing module [3].

All messages shown in the tool are retrieved and stored by OBI4wan since 2009. For this
research, OBI4wan’s Twitter data set is used. The structure of this data is detailed in section 2.1,
while section 2.2 shows how ElasticSearch is used as an indexing backend to store the Twitter
data. As discussed in the introduction of this paper, OBI4wan could benefit from storing their
data in graph format, to enable new query functionality. This vision is described in section 2.4.
The comparison between centralized- versus decentralized databases is described in section 2.5.

2.1 OBI4wan Twitter data set

The Twitter data set of OBI4wan consists of a collection of tweets, which were posted between
2009 and now. The majority of this tweets data set is obtained by using the Twitter Streaming
API, which provides access to the stream of tweets that are continuously posted onto Twitter.
Tweets are retrieved from this stream by filtering on a collection of (primarily Dutch) keywords,
and then stored by OBI4wan. A small subset of this whole collection (ten days from November
2014) provides some exemplary statistics on the Twitter data set. In the given period, a total of
15.339.524 tweets have been sent by 3.433.224 users, boiling down to approximately 1.5 million
tweets per day and 0.45 tweets per user per day. Out of the total number of tweets, 8.389.832
were regular status updates (55% of total and +/- 830K per day), 2.174.581 were replies to other
tweets (14% of total and +/- 210K per day) and 4.587.215 were retweets of other tweets (30%
of total, +/- 450K per day). The remaining 13.841 tweets in the data set were not classified
into any of the aforementioned categories. Figure 1 shows a schema of the Twitter data set as it
is stored by OBI4wan, containing the participating objects and their properties, along with the
relationships between these objects.

Other interesting statistics can be retrieved about hashtags (#subject) and mentions (@user-
name), which have been extracted from the tweets. There are 526.603 unique hashtags, where
each individual hashtag is used on average 15.0 times. Each tweet contains an average of 0.52
hashtags and an average of 0.76 mentions (both real, original mentions and mentions in retweets).
The data set also allows to calculate statistics about the inter-connectivity between users. Com-
paring the total number of mentioned users (grouped by unique users) to the total number of
mentions shows that users who are mentioned at least once, are being mentioned an average 6.8
times during the ten day time frame. Furthermore, users mention other users in their tweets an
average 3.4 times during the same time frame.

An important statistic is the arrival rate of new tweets. Because the OBI4wan solution
provides real-time access to up-to-date data, it is important to be able to cope with incoming
data continuously. As mentioned before, the discussed data set contains about 1.5 million tweets
per day (1.533.952,4 exactly), which means 63.914,68 tweets per hour, 1.065,24 tweets per minute
and 17.75 tweets coming in per second. Ideally, these tweets must be processed immediately or
at least as quickly as possible, to minimize the amount of buffering of incoming tweets.
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Figure 1: Schema of the OBI4wan data set of Twitter messages.

2.1.1 Friends and Followers

All unique Twitter users have been retrieved from the ten day subset (from November 2014) of
the complete OBI4wan data set. These users have been ranked based on their activity on Twitter
(measured in the number of posts per user during this ten day period), and the one million most
active users have been taken out as another subset. For these users, their friends and followers
(maximum of 5000 for both, corresponding to the maximum set returned by a single Twitter API
call) have been retrieved over a period of a couple of months using the Twitter API, meaning
that it is likely that the content of these two sets has changed at the time of reading this. An
analysis of the users and their friends and followers has resulted in some statistics about the
twitter graph network of OBI4wan, as shown in Figure 2. Before looking at these figures, a
definition of the exact analysis has to be given. In words, the following statistics are calculated:

• The set of unique followers that have been seen in the data set up until a certain point.
For example, after iterating over one user (say, user A), A’s followers have been retrieved
and are all unique. When iterating over the next user (say, user B), B could have some
followers which were already found through user A. These followers are not stored in the
unique followers set.

• The set of unique friends that have been seen up until a certain point. Here, the same
reasoning applies as for the set described in the previous point, but now for friends.

• The set of followers that have already been seen as a user up until a certain point. When
iterating over the set of users, the set of users seen keeps growing. Some of these users
might also exist in the set of unique followers; this set keeps track of those users.

• The set of friends that have already been seen as a user up until a certain point. Here, the
same reasoning applies as for the set described in the previous point, but now for friends.

Based on the definitions of these sets, the following logic applies. Set U is the set of unique
users obtained from the OBI4wan data set. u ∈ U is a single user in U . Then:
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• TW = {(u, txt)| tweets from the OBI4wan data set}.

• OBI = {u|∃(u, txt) ∈ TW}

• OTOPx = {u||TW | ≥ CNTx}

In words: TW is a single tweet from the OBI4wan data set, consisting of the user u who
created the tweet, and txt containing the tweet’s content. OBI is the (unique) set of users from
the OBI4wan data set, where for each user in this set there exists at least one tweet in the
OBI4wan data set. OTOPx is the set of most active users from the unique OBI set, defined by
all users who have tweeted more than some threshold CNTx. The value of this threshold is set
so that OTOPx contains one million users. Then:

• u.Fo is the set of users following u.

• u.Fr is the set of users who are u’s friends (e.g. the users u follows).

Furthermore, FOx and FRx are the sets of unique followers and unique friends, respectively,
from the OBI4wan user subset OTOPx. Formally:

• FOx = {u.Fo|u ∈ OTOPx}

• Frx = {u.Fr|u ∈ OTOPx}

Over time, the set of followers and the set of friends of a user may change, because the user
could unfollow other users (causing a change in the friends set of this user) or the user could
be unfollowed by other users (causing a change in the follower set of this user). Also, users
may remove their accounts and disappear from the TWitter network, of new users may create
an account and appear in the Twitter network. In other words, FOx and FRx are not static
sets, but change of time. For each user, we can keep track of these changes, by introducing a
start- and end-timestamp for each follower and friend of this user. The start-timestamp denotes
the moment in time when the friend/follow relation has been established; the end-timestamp
denotes the moment in time when this relation has been removed. The end-timestamp has no
value when the relation is still active. We can now formalize both FOx and Frx. The formal
reasoning is equal for both sets, so the definition below only shows it for FOx.

FOx = {(u, F )|w, u ∈ OBI ∧ F = {w, [r0, ...rn]} ∧ ri = (Ts, Te)}

In words: (u, F ) is a pair of a user u with its set F in the OBI user set. F is defined as a pair
of a user w (where w 6= u) and an array of timestamp pairs ([r0, ..., rn]), where each pair ri is the
timestamp pair (Ts, Te), denoting the start- and end time of a relationship between user u and w
(either u following w or the other way around). Using these timestamp sets for each relation, we
create an approximation of the real Twitter follower- and friend graphs. It enables us to execute
queries that take into account the state of the friend- and follower graphs at various moments
in time. An example of such a query is to look for those users who were followed by some other
user(s) before they posted a certain tweet (or a set of tweets), and check if this follows-relation
is still active some time after the posting of this tweet (or set of tweets). This can tell something
about the (negative) impact of the posted tweet(s), measured by number of followers lost.

Figure 2a runs over the users in OTOPx, and maintains a list of how many of the visited
users are also in the (unique) followers- and friends sets. Figure 2b shows the same information,
but in percentages of followers and friends out of the users in OTOPx instead of raw numbers.
These graphs show that when more users from OTOPx have been visited, also more followers
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(a) Followers and friends seen out of total users, in numbers

(b) Followers and friends seen out of total users, in percentage

(c) Followers and friends seen out of total followers and friends

Figure 2: Twitter statistics
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and friends are visited. These graphs only iterate over the first 400.000 users in OTOPx instead
of the total 1 million, so we could assume that when we visit all 1 million users, the number of
followers and friends seen out of the total number of users will be close to 100%.

Figure 2c shows the percentage of followers and friends that have been visited out of the total
number of users (OTOPX), compared to all unique followers and friends as retrieved from the
Twitter API. The graph shows that at 400.000 users, 25% of the total set of Twitter followers
has been visited, and 45% of the total set of Twitter friends has been visited. These numbers tell
something about the completeness of the OBI4wan data set in comparison to the Twitter data
set: the OBI4wan data set contains 25% of the complete set of Twitter followers and 45% of the
complete set of Twitter friends, given the first 400.000 users in OTOPx. So, the OBI4wan data
set for the follower- and friend graphs is not the complete data set. This information has to be
taken into account as a side note for further analysis on the OBI4wan data set.

2.2 ElasticSearch architecture

To store all the incoming Twitter data, OBI4wan makes use of an ElasticSearch indexing backend
[4]. ElasticSearch is an open-source search engine that has been built as an extension to the full
search-engine library Apache Lucene [7]. ElasticSearch provides a simple API to perform searches
on indexed data, and also allows for the distribution of this data across multiple nodes. Figure 3
shows a schematic of an ElasticSearch cluster, containing three nodes and three shards per node.
A shard is a part of the index that holds a fragment of the indexed data (one index points to one
or more shards). The figure shows that this example cluster contains a total of three primary
shards (P0...P2), which together hold all the indexed data for an application. The remaining
shards (R0...R2, two of each) are replicas of the primary shards, serving as fallback in case one
of the nodes holding an active, primary shard dies. One of the nodes acts as the master node,
handling all cluster-related operations such as adding a new node, removing a node, creating a
new index, etc. A cluster can be expanded (scaled out horizontally) with more nodes and shards
if an increase in data volume necessitates this.

Figure 3: An ElasticSearch cluster with three nodes and three shards per node.

The current OBI4wan data set is stored using the just mentioned ElasticSearch indices,
distributed over multiple nodes. The complete data set is partitioned into multiple indices, each
one containing data from a time period of ten days. To have an easy reference to all data that
has been collected during one month, aliases are created that point to three indices. For example,
the alias nov2015 points to the three ten-day time frames from November 2014. Figure 4 shows
what an ElasticSearch cluster at OBI4wan looks like. The layout is essentially the same as in
Figure 3. The shards P0...P2 are the primary shards representing three ten-day time frames,
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pointed to by a month-alias.

Figure 4: An ElasticSearch cluster as it is used by OBI4wan.

The data of a tweet inside a shard is stored in JSON-format. An example of a tweet in this
format is shown below. Most of the properties should speak for themselves. The loc is the
location from where this tweet was posted, the inreplytoid contains the tweet ID to which this
tweet is a reply or a retweet, or −1 if this tweet is an original tweet, and posttype contains the
type of this tweet (either status, reply or retweet).

{"id":"535648671644536832", "user":"kimber33", "title":"",

"content":["@ter808 so I’m catching up on \#TheVoice \& someones singing I wanna

dance w somebody, to get saved by America... Clearly my vote goes to her"],

"published":"2014-11-21T04:19:29.000Z", ..., "language":"EN", ..., "friends":295,

"followers":45, "loc":"Rhode Island", "source":"Twitter for iPhone", ...,

"hashtags":["thevoice"], "mentions":["ter808"], "inreplytoid":"-1", ...,

"posttype": "STATUS", "url":"http://twitter.com/kimber33/status/535648671644536832/"}

On top of the ElasticSearch cluster, OBI4wan has built a layer that acts as the entry point for
all data that enters the system from social platforms. This stream of data has to be distributed
over the cluster, preferably in such a way that related data is stored on the same node. This
is an advantage when queries are executed on the data: if a query only has to retrieve data
from one single node, the need to communicate with other nodes (introducing communication
overhead) disappears. However, finding subsets of related data that can be stored on the same
node is hard, because of the many relationships that exist between social data. For example,
creating subsets of data based on timeframes (all data posted between two moments in time) is
not always the most optimal choice, because one published message could be a reply to another
message that was posted in a different timeframe and therefore belongs to a different subset (and
is placed on a different node). Another possibility is to create subsets based on clusters in a
social network, consisting of people (and their published messages) who often interact with each
other. The downside of this type of subset creation is that such clusters can differ in size, and
there might still be interactions between people from different clusters, inevitably resulting in
network communication and the subsequent communication overhead.

Summarizing, partitioning social data is not easy and the best way to create partitions heavily
depends on the structure and type of the data set. Finding the optimal way to create partitions
of social network data could be the subject of a separate research project.
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2.3 Novel questions for OBI4wan’s data set

In addition to the analyses that OBI4wan already does on its data set, there are a lot more
possible questions that could be asked to this data set. A few examples of such questions are
shown in the list below.

• Find all Twitter users who are talking about OBI4wan (using ”OBI4wan” as a keyword
in one of their tweets) and are no more than two follows-relation steps away from the of-
ficial OBI4wan Twitter account. This provides insights in which users are talking about
OBI4wan, and whether or not they are already connector to the OBI4wan Twitter ac-
count. All users who are one follows-relation away from the OBI4wan Twitter account are
already connected directly, all users who are two follows-relation steps away are connected
to OBI4wan via someone else.

• Find all Twitter users who are currently following the OBI4wan Twitter account, and
recently (within a given period) mentioned the OBI4wan Twitter account (using the @
sign) in one of their tweets/replies, excluding retweets of one of OBI4wan’s tweets. This
provides insights in which users are talking about OBI4wan, proactively mentioning the
OBI4wan Twitter account.

• Find all Twitter users who were following the OBI4wan Twitter account before a cer-
tain tweet X on datetime Y (created by the OBI4wan Twitter account), but do not follow
OBI4wan anymore in a given period that lies beyond the datetime of the tweet. This pro-
vides insights in how good the tweets posted by the OBI4wan Twitter account are. If
OBI4wan has posted a tweet after which many users are unfollowing the OBI4wan Twitter
account, then this sort of tweets is apparently not beneficial in promoting the OBI4wan
brand.

• Find all original (hash)tags ([hash]tags that have not been used before a specific datetime)
that Twitter users following the OBI4wan Twitter account have attached to tweets in a
given period, and give a list of the n most occurring (hash)tags as a result. Tweets that
contain tags which have not been used before, are tweets which talk about something new,
for example a new development in social networks. This provides insights for OBI4wan
about new developments in its branch.

• Find the top n (hash)tags that were used in combination with the keyword ”OBI4wan” in
a tweet that was posted by Twitter users following the OBI4wan Twitter account. This
provides insights in the topics that users who follow the OBI4wan Twitter account (e.g.
the users that are interested in OBI4wan) talk about.

• Find how many of the tweets posted in a given period by Twitter users following OBI4wan
that are replies on tweets that were created by the OBI4wan Twitter account are posi-
tive/neutral/negative. This provides insights in how people are talking about OBI4wan,
especially with what kind of sentiment.

2.4 In need of graph query functionality

With ElasticSearch, it is possible to execute search queries on structured document collections
like the one from OBI4wan that has been described in section 2.1. An example query that could
be executed using ElasticSearch is the following (not specifically taking into account an OBI4wan
use case):
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GET /my_index/my_type/_search

{

"query": {

"match": {

"content": "Coca Cola"

}

}

}

This full-text search query retrieves all documents that contain the term ”Coca Cola” in their
content field. Internally, the retrieved documents are ranked based on the frequency of the term
inside the content field, taking into account the average number of occurrences in the content
field over all documents in the document set. Furthermore, content sections with relatively few
words containing the query term are ranked higher, because a larger portion of the section is
represented by the term, indicating the term could be important in the scope of that document
[6].

The same kind of syntax can be used to retrieve documents containing certain terms in other
field types, for example all documents that are published by a specific author, or all documents
that were published during a given time frame. In addition to that - in the use case of OBI4wan -
all of these queries need to be executed and return a result in (near) real-time, thereby minimizing
the waiting time for the customers executing the queries.

The full-text search capabilities of ElasticSearch are useful when trying to retrieve documents
containing certain terms in field types, but queries that require to retrieve multiple pieces of
information, which are afterwards combined to produce a final result, are much harder to execute
using ElasticSearch. For example, consider the following query:

Return all users from Twitter that mention ”Coca Cola” in one of their tweets (posted in a
specific time frame) and are no more than three relational steps away from the official Coca

Cola Twitter account.

This query requires to retrieve multiple pieces of information, namely (1) all users that have
mentioned Coca Cola on Twitter (in the specific time frame), and (2) all users who are no more
than three relational steps away from the official Coca Cola Twitter account. This type of query
cannot be executed with ElasticSearch directly, but only by going over multiple steps:

1. Retrieve all users that have mentioned Coca Cola in one of their tweets. This query can be
executed using the text-search capabilities of ElasticSearch, searching for the term ”coca
cola” in the content field of a tweet. Save this collection of users in a variable, say W .

2. Retrieve the users that are related to the Coca Cola account (on Twitter defined by a
’follows’ relationship). Save this set of users in another variable, say X.

3. Retrieve all users that are related to one of the users in X and are not already in X; call
this new set of users Y . These are the users who are two relational steps away from the
official Coca Cola Twitter account. Note that this query has to be executed for every user
in X.

4. Execute the previous query once more, to retrieve all users who are three relational steps
away from the official Coca Cola Twitter account. Call this resulting set of users Z. Again
note that this query has to be executed for every user in Y .
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5. Finally, take the intersection of W and Z, returning all users who have mentioned ”coca
cola” and are three relational steps away from the official Coca Cola Twitter account.

In ElasticSearch, retrieving the set of all users that follow a specific user (for example everyone
who follows the official Coca Cola Twitter account) could look like this:

"query" : {

"filtered" : {

"filter" : {

"terms" : {

"user" : {

"index" : "users",

"type" : "user",

"name" : "cocacola",

"path" : "followers"

},

"_cache_key" : "user_cocacola_friends"

}

}

}

}

The above query is optimized by caching the results (the follower set of the official Coca Cola
Twitter account) using a unique cache key (user cocacola friends). This prevents retrieving the
set of followers of the same account multiple times, resulting in more efficient behavior. The
same type of query has to be executed for every user of which the set of followers has to be
retrieved based on the set of steps defined earlier. For example, when retrieving the followers set
for the official OBI4wan Twitter account, the name field becomes OBI4wan and the cache key
changes into something like user obi4wan friends.

The problem of retrieving the final user set based on the ”Coca Cola”-query is the high number
of queries that have to be executed. This number is so high because the queries that retrieve
relationships have to be executed for every user in the intermediate user sets. Furthermore, these
intermediate user sets are always send back to the client, who in turn sends user names from these
intermediate sets back to the server for subsequent look-ups of this user’s followers. In other
words, all coordination of the necessary steps to retrieve the final user set (saving intermediate
results, sending back new users for which follower sets must be retrieved, taking the intersection
of user sets, ensuring no duplicates exist, etc.) has to be performed on the client-side. The
combination of all these factors results in a relatively complex system and slow response time
before a final result is returned.

To overcome this problem, the data set of OBI4wan has to be stored in another, more
matching format, that allows to execute queries like the one above more efficiently. In recent
years, a new class of database systems have emerged that allow to store data in this format and
execute queries on this data: graph databases. A graph (data store) consists of a collection of
heterogeneous objects with properties (for example tweets and people), connected to each other
by a certain relationship (for example favorite, reply, retweet or follow). Examples of graph data
stores that have been in development over the past few years are Neo4j [16], Sparksee (DEX)
[18] and Titan [2].

Figure 5 shows an example of a Twitter data set in graph format. The real data in the
OBI4wan data set looks similar to this example. The graph contains three object types, namely
users (accounts on Twitter, represented by the green circles), tweets (blue circles) and hashtags
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(used in tweets, yellow circles). Users can follow each other and post tweets, and tweets can
contain mentions of users. Tweets can be retweets (reposts) of other tweets, or replies on on
other tweets.

Figure 5: An example data set of Twitter in a graph.

From the database systems that have been mentioned earlier, Titan [2] is the one that can
store data in a graph format, execute queries on it and provides the possibility to store data
on multiple nodes in a distributed cluster. Titan is a cluster-based graph database (allowing
to distribute data over multiple nodes), has an accompanying graph query language (Gremlin
[12], from the TinkerPop stack [11]) and provides support for geo-, numeric range-, and full-text
search via an ElasticSearch plugin. The integration of ElasticSearch is an advantage of Titan
in the use case of OBI4wan, because the current solution of OBI4wan is built on and uses the
full-text search queries of ElasticSearch. However, there is also a possible downside to Titan,
that has its roots in the ongoing debate about shared memory versus shared nothing systems
and the resultant way in which multiple processes (nodes) in the same system communicate with
each other.

Shared memory versus shared nothing In shared memory systems, nodes can communi-
cate and share data with each other using a shared memory space that is accessible by all nodes
in the system. In a shared nothing system, this central memory space is absent, forcing nodes to
communicate and share data with each other by exchanging messages. This form of communica-
tion can become a problem when a query needs to fetch data from multiple nodes, forcing these
nodes to communicate and share data between each other over the network. This is especially
true for social graph databases like Twitter, because it is hard to partition a social graph database
in such a way that the communication and sharing of data between nodes is kept to a minimum.
Social data can be related in many different ways, and there is no one-size-fits-all solution to
generate efficient partitions to minimize network traffic (also see section 2.2). Furthermore, the
amount of data that can be transferred between nodes in one single network message depends
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on the bandwidth of a system. A large bandwidth means that network messages can contain
a relatively large amount of data, resulting in less frequently occurring network requests. The
opposite is true when the bandwidth is small, requiring the system to execute relatively many
network requests. In the worst case, the response time of the system depends on the speed and
capacity of the network, leading to unwanted overhead in the form of latency.

This latency can really become a problem in a situation where the system does not utilize
its full potential, resulting in idle time and latency playing the biggest part in the total response
time of a system. A completely centralized (non-graph) database obviously does not have these
latency problems, but in return lacks the advantages of the scalability of a distributed system.

2.5 Centralized versus decentralized

In this research, the main question to answer is whether a decentralized solution in combination
with a dedicated graph database (Titan), graph query language (Gremlin) and text-search capa-
bilities (ElasticSearch) is preferable over a centralized solution (column store MonetDB) in the
specific use case of the OBI4wan data set. The LDBC benchmark (see sections 3.4.1 and 8) )
will be used in order to test the performance-, scalability- and update1 level of both solutions.
An important question for both solutions is if they are ’future-proof’: with an ever increasing
amount of data, will the proposed solutions still scale while keeping the required level of per-
formance? In the specific situation of a commercial company like OBI4wan, also the costs and
benefits ratio is an important factor, aiming at a situation where as many queries per dollar can
be executed while maintaining a respectable response time that satisfies customers.

2.6 Research questions

The following research questions have been answered in this section and/or will be answered in
this report.

• Architecture: given the data set of OBI4wan, a graph database solution (and its query
language), what is the best option: ’shared memory’ or ’shared nothing. When choosing
a ’shared nothing’ (communication-driven) solution, what is the optimal size of a network
message? How many data can one message receive given the network bandwidth? How
long can you postpone sending network messages without breaking the system?

1Databases need to cope with continuous streams of data, which need to be pushed into the database as an
update regularly.
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3 Related work

This section contains an overview of related work in the areas of graph networks, graph databases,
graph query languages and other related database systems.

3.1 Graph networks

A graph (network) G is a collection of vertices V and edges E, together in the pair of sets
G = (V,E) [80]. Vertices from V - say v1 and v2 - can be connected to each other through an edge
e (with some label l), showing there exists a relationship between these vertices: e(l) = (v1, v2).
Relationships can also be directed, transforming an edge into what is called an arc from one vertex
to another (with some label l): a(l) = (v1, v2). Because arcs are directed, they always start in
one vertex, and end in another (or the same, resulting in a loop). The two pairs a1 = (v1, v2)
and a2 = (v2, v1) are two different pairs, because of the directed nature of arcs.

Graphs can be of multiple types [49], for example simple graphs (only simple vertices and
edges), hypergraphs (vertices can be grouped, and edges can be relationships between these
groups), nested graphs (vertices can contain graphs themselves) and property (attributed) graphs
(vertices are objects with attributes - a social graph is an example of this graph type).

3.2 Graph databases

Graph networks can be stored in a graph database, where data structures of (real-world) objects
are modeled as a graph. Each of the graph types mentioned in section 3.1 can be used in a variety
of database types, for example web-oriented databases, document-oriented databases and triple
stores, all potentially combined with in-memory graph tools for fast query execution [49]. The
following subsections provide an overview of a couple of graph databases that are currently used
in practice: Titan, Neo4J, Sparksee, FlockDB and RDF databases.

3.2.1 Titan

Titan is a cluster-based graph database that is designed for storing and querying graphs with
hundreds of billions of vertices and edges [2]. The main focus of Titan is compact graph serial-
ization, graph data modeling and the efficient execution of small, concurrent graph queries (with
native support for graph query language Gremlin). Aurelius [8], a team of software engineers
and scientists in the area of graph theory and the creators of Titan, published two white papers
advocating the scalibility, usage cost and speed of Titan. The first article (Titan Provides Real-
Time Big Graph Data [74]) details a benchmark consisting of users concurrently using a Titan
graph database hosted by 40 Amazon EC2 m1.small instances [9]. The results of the bench-
mark show that letting 50.000-100.000 users continuously and concurrently interact with a Titan
graph database while maintaining reasonable response times (using an Amazon cluster) costs
almost 100.000 dollars per year. The second article (Educating the Planet with Pearson [75])
details a graph database consisting of 6.24 billion vertices (being universities, students, teachers,
courses, etc.) and 121 billion edges. The research shows reasonable performance with a load of
228 million transactions in 6.25 hours (10.267 transactions per second and a maximum load of
887 million transactions per day, given that the workload of the transactions is relatively high).
Queries with normal workload would then result in a maximum of around 1 billion transactions
per day, according to the article.
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3.2.2 Neo4j

Besides Titan and Gremlin, there are a lot of other graph database solutions out on the (open
source) market. One of the most popular solutions among them is Neo4j, claiming to be ”the
world’s leading graph database” [16]. It uses Cypher [19] as its graph query language (see section
3.3.2). Neo4j claims to be built to perform at scale, supporting graph networks of tens of billions
of vertices and edges, combined with hundreds of thousands of ACID2 transactions per second
[17]. However, research has pointed out that Neo4j is relatively powerful compared to other
graph database solutions when it comes to read-only operations on the data set, but performs
relatively poor when executing edge- and property-intensive write operations on the data set [50]
[51]. Another benchmark [52] shows that Neo4j indeed scales when the graph size increases, but
mainly for relatively small graphs of less than 32.000 nodes. As shown in the introduction, ten
days of Twitter data already contain more than 15 million tweets, which would clearly be to
much for a scalable, distributed Neo4j graph database. The same test shows that Titan is better
able to scale with such large graphs and keeps linearly scalable when the graph size increases.

Besides the aforementioned scalability problem, Neo4j has a couple of other (possible) short-
comings which withhold from using this solution in this specific research.

1. Neo4j has a relatively large memory footprint.

2. Query execution in Cypher is relatively slow. Cypher is designed to be a human-readable
and understandable language, optimized for reading and not for writing [22]. In other
words, the main focus in the development of Cypher has been to create a readable language,
leaving a less important role for fast query execution. Benchmark results have indeed shown
that Cypher is slower than Titan’s query language Gremlin [51] in several situations (such
as recommendation engines and friend-of-a-friend queries).

3. Cypher has no built-in query optimization. While it is possible to try and optimize queries
yourself (for example by letting queries return only that part of the graph that is needed
in further computations), Cypher does not offer built-in query optimization techniques.

However, future work could include Neo4j in benchmarks and test if that solution is indeed
not scalable enough to work with large social data sets.

3.2.3 Sparksee

Sparksee (formerly known as DEX) is a graph database management system that is ”tightly
integrated with the application at code level” [79]. The model used by Sparksee is based on
a labeled attributed multigraph, where all vertices and edges can have one or more attributes
(attributed), edges have labels (labeled) and can be bidirectional (multigraph).

An example visual representation of a Sparksee graph can be found in Figure 6. This graph
shows that Sparksee allows various vertex- and edge types in one single graph, in this case
actors/directors (represented by the star-icons) and movies (clipboard icons) as vertex types,
and ’cast’ (green lines) and ’directs’ (red lines) as edge types. All vertices have name attributes
representing the actor/director- and movie names, and the edges of type ’cast’ have an attribute
containing the name of the character played by an actor in a movie.

Sparksee uses its API to execute queries on a graph. An example (Java) program with queries
is shown below [79].

2ACID stands for four rules that databases should be able to satisfy: being Atomic (transactions should be
executed completely, or not at all), Consistent (each transactions - failed or succeeded - should lead to a consistent
state of the database), Isolated (transactions are independent from each other, and are executed in an isolated
environment) and Durable (completed transactions cannot be undone).
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[1] Objects directedByWoody = g.neighbors(pWoody,directsType,

EdgesDirection.Outgoing);

[2] Objects castDirectedByWoody = g.neighbors(directedByWoody,castType,

EdgesDirection.Any);

[3] Objects directedBySofia = g.neighbors(pSofia, directsType,

EdgesDirection.Outgoing);

[4] Objects castDirectedBySofia = g.neighbors(directedBySofia,castType,

EdgesDirection.Any);

[5] Objects castFromBoth = Objects.combineIntersection(castDirectedByWoody,

castDirectedBySofia);

These lines of code result in the following behavior:

1. The method neighbours() retrieves all vertices that are connected to pWoody via an outgo-
ing edge of type directsType. In this line of code, g is the variable that points to the whole
graph, pWoody points to the vertex with the name-attribute Woody Allen and directsType
points to the edge type DIRECTS. The resulting set of vertices contains movies which
are directed by Woody Allen, and this set is stored in the variable directedByWoody.

2. Starting from all vertices in the set directedByWoody, find all vertices that are connected
to the vertices in this set by any edge of type castType. The resulting set of vertices
contains actors that have played a role in a movie that was directed by Woody Allen, and
this set is stored in the variable castDirectedByWoody.

3. Same as line 1; directedBySofia contains all movies which are directed by Sofia Coppola.

4. Same as line 2: castDirectedBySofia contains all actors which have played in a movie
that was directed by Sofia Coppola.

5. The final step is to take the intersection of castDirectedByWoody and castDirectedBySofia,
giving all actors who have played a role in a movie directed by Woody Allen and played a
role in a movie directed by Sofia Coppola.

The result of this graph traversal is the actress Scarlet Johansson.
Sparksee also provides an implementation for Blueprints, allowing developers to use a Spark-

see graph in combination with the tools from the Blueprints framework like the graph query
language Gremlin.

3.2.4 FlockDB

FlockDB is ”a distributed graph database for storing adjacency lists” [20]. It is used by Twitter
to store a variety of social graph types, for example graphs that store follow-relationships between
users. Relationships (edges) between two nodes A and B are always stored in two directions:
from A to B and vice versa. For example, ’follows’-relationship is stored as (1) A follows B
and (2) B is followed by A. This allows for queries in both directions (both queries asking who
follows A and who is A following are possible).

Consider the simple graph as shown in Figure 7. The following three lines of code show some
of the capabilities of the query language provided by FlockDB [21].
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Figure 6: An example of a Sparksee graph.

[1] flock.select(1, :follows, nil).intersect(nil, :follows, 1).to_a

[2] flock.select(1, :follows, nil).union(nil, :follows, 1).to_a

[3] flock.select(nil, :follows, 1).difference(1, :follows, nil).to_a

These lines of code result in the following behavior:

1. The first select() function returns the set of all users that user 1 follows. The intersect()
function is then executed for all users in this set, and returns all users that follow user 1
and are followed by user 1.

2. The difference between this line and the previous is that the intersect() function is replaced
by the union() function, meaning that this query returns all users who either follow user
1, or are followed by user 1 (removing any duplicates).

3. The first select() function returns the set of all users that follow user 1. The difference()
function is then executed for all users in this set, and returns those users that are in the
first set, but not in the set of users that user 1 follows. In other words, the resulting set
contains users that follow user 1, but are not followed back by user 1.

Figure 7: An example graph showing follow-relationships between Twitter users.
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3.2.5 RDF

RDF (Resource Description Framework) is a labeled graph data format that is used to represent
all kinds of information on the web [23]. Data in RDF is stored in triples, containing two entities
(subject and object) and a relationship (predicate) between those entities (compared to vertices
and edges in graph databases). An example of a triple in RDF (stored in XML-format) is shown
below.

<rdf:RDF

<rdf:Description rdf:about="http://www.example.com/rdf">

<si:title>Example.com</si:title>

<si:author>John Watts</si:author>

</rdf:Description>

</rdf:RDF>

This XML document actually stores two triples, with the same subject but with different
predicates and objects. The text rdf : about = ”http : //www.example.com/rdf” shows the
subject of both triples. The two tags < si : title > and < si : author > show the two predicates
title and author, respectively. Finally, the objects are shown inside these predicate-tags: ”Ex-
ample.com” and ”John Watts”, respectively. The graphical representation of these two triples is
shown in Figure 8.

A shortcoming of RDF is that it is not possible to store properties (or other metadata) on
a predicate between a subject and an object [53]. For example, it is not possible to attach
a ’certainty statement’ to a predicate. Consider the RDF triple {ex:Alice foaf:knows ex:Bob},
where ex and foaf are abbreviations for the used namespaces3 example and friend-of-a-friend,
respectively. In standard RDF, it is not possible to attach a certainty statement on the predicate
knows, indicating how certain it is that Alice knows Bob. A proposed extension of RDF (RDF* )
tries to provide a solution to this problem, introducing the notion of ’triples about triples’. In
other words, the subject or object of a triple can be a triple of itself. This allows to create triples
that can both express that Alice knows Bob, and that this relationship exists with a certainty
of 0.5. To express this, the first triple {ex:Alice foaf:knows ex:Bob} is the subject of the triple
{ex:subject ex:certainty 0.5}. Together - in one combined triple - this looks as follows:

<<ex:Alice foaf:knows ex:Bob>> ex:certainty 0.5

Figure 8: A visual representation of two RDF triples with the same subject, but different predi-
cates and objects.

3A namespace in RDF refers to a collection of elements which can be used as subjects, predicates or objects.
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3.3 Graph query languages

Where SQL is used as the query language for traditional, relational databases, languages like
Gremlin are used to execute queries (or rather traversals) on graph databases. A graph query
language is (or should be) capable of supporting a variety of query types [49]:

• Adjacency queries: testing whether vertices are adjacent. For example, the two vertices
v1 and v2 are adjacent if there exists an edge ei which connects these vertices in a relation
ei = (v1, v2).

• Reachability queries: testing whether vertices are connected by a path through the
graph. For example, the vertex v2 is reachable from vertex v1 if there exists a path (a
combination of connected edge relationships) between these vertices. The two edge rela-
tionships e1 = (v1, v3) and e2 = (v2, v3) show that there exists a path between vertices v1
and v2 via vertex v3.

• Pattern matching queries: finding a specific pattern [subgraph] of vertices and edges.
For example, the pattern matching query PMQ = (V,E,R) with V = (v1, v2), E = e1
and R = {e1(l) = (v1, v2)} returns true if there exists a subgraph with vertices v1 and v2
connected by a relationship with the label l: e1(l) = (v1, v2).

• Summarization queries: summarizing query results, for example finding a maximum,
minimum or average. For example, calculating the total value of a certain vertex attribute
of a connected graph with vertices v1, v2 and v3 by adding up all values from this numerical
attribute per vertex.

3.3.1 Gremlin

Gremlin is a query language for property graphs and part of the TinkerPop [11] framework.
Titan is an example graph database that uses Gremlin as its graph query language, but any
graph database or framework that implements the Blueprints 4 [15] property graph database
modal can in principle make use of Gremlin. It provides solutions for the expression of many
types of graph queries (graph traversals) in ”a more understandable manner than with traditional
programming languages” [13].

An example property graph on which Gremlin can execute graph queries is presented in
Figure 9. Gremlin is based on graph traversals, where the starting point of a traversal is either
a vertex or an edge. A small example of a program in Gremlin is the following one [14]:

[1] g = TinkerGraphFactory.createTinkerGraph()

[2] v = g.v(1)

[3] v.out(’knows’).filter{it.age > 30}.out(’created’).name

These lines of code result in the following behavior:

1. The graph presented in Figure 9 is used in many Gremlin examples, which has promoted this
graph into a standard, easy to create graph in Gremlin. The method createT inkerGraph()
initiates this specific property graph, and stores it in variable g.

4Blueprints is a collection of interfaces, that allows developers to ”plug-and-play” their graph database backend.
It consists of the data flow framework Pipes, the graph traversal language Gremlin, the object-to-graph mapper
Frames, the graph algorithms package Furnace and the graph server Rexter. Find more information at Blueprints
website [15].
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2. The nodes in the graph are numbered with identifiers. The vertex with ID 1 is stored in
variable v to use later on.

3. The real graph traversal happens in this line. Starting from vertex v, this line finds all
outgoing edges of v that contain the label knows. This intermediate set of resulting ver-
tices is then exposed to the filter age > 30, reducing this intermediate set to only those
vertices of which the age-attribute has a value higher than 30. Finally, from this new set
of intermediate vertices, all outgoing edges with the label created are followed, and the
name-attributes of this final set of vertices on the end of these edges are printed to the
console.

In human language, we now found all projects that were created by people that we (the vertex
v) know and are older than 30 years.

Figure 9: An example property graph database.

3.3.2 Cypher

Cypher is ”a declarative graph query language that allows for expressive and efficient querying
and updating of the graph store” [22]. The language is used as the graph query language for the
graph database Neo4j [16]. One of the goals of Cypher is that it is a human-readable language for
developers as well as operations professionals. Constructs in Cypher are based on English prose,
where optimizations in the language are based on better readability and not on easier writing.
Cypher is inspired by the relational database language SQL, and uses part of the SQL-slang for
the same purposes (for example WHERE and ORDER BY ).
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An example graph database that can be queried using Cyper is shown in Figure 10. The
following program contains some example lines of codes in the Cypher query language.

[1] MATCH (user)-[:friend]->(follower)

[2] WHERE user.name IN [’Joe’, ’John’, ’Sara’, ’Maria’, Steve’]

AND follower.name =~ ’S.*’

[3] RETURN user, follower.name

These lines of code result in the following behavior:

1. The MATCH clause retrieves all users (vertices) that have a ’friend’-relationship with
another user. The resulting set of users is stored in the variable follower; the vertices on
the other end of this relationship are stored in the variable user.

2. The WHERE clause filters the set of users that has been found in the previous line. It
only stores users having one of the names from the list and starting with the letter S.

3. The RETURN clause simply returns the earlier created variables, for example printing
them to the console.

In other words, these lines of code return pairs of the form < user, follower.name >, where user
is a complete user object, and follower.name is the name-attribute of a follower object. In the
case of the graph from Figure 10, the resulting pairs are the following ones:

• < Node[3][name : ”John”], ”Sara” >

• < Node[4][name : ”Joe”], ”Steve” >

Figure 10: An example property graph database that can be queried by Cypher.

3.3.3 SPARQL

The previously discussed languages are all real graph query languages, in the sense that they are
designed to execute queries on real graph databases. SPARQL (SPARQL Protocol and RDF
Query Language) is designed to execute queries on RDF (see section 3.2.5).
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We can use the SPARQL language to execute queries on RDF-triples. The basic syntax of
SPARQL is similar to the SQL syntax, working with the SELECT, FROM and WHERE clauses.
Consider the following SPARQL query, that can be executed on the RDF triple store that was
presented in Figure 8:

[1] PREFIX si: <http://www.example.com/rdf/>

[2] SELECT ?name

[3] WHERE { ?website si:author ?name . }

The first line defines that a specific namespace for the predicate relationship is used in the
query. The third line retrieves all triples of the form <subject, predicate, object >, where the
subject is stored inside the variable ?website, the object in the variable ?name and the relationship
(predicate) is si:author. Finally, the second line provides the ?name variable of all entries as the
result of the query, in this case the only result is the name John Watts.

SPARQL provides a specialized way to execute graph traversals, which are called property
paths [24]. These property paths can be constructed using the sequence operator (/), which
basically represents the hops over vertices that are visited in a graph traversal. An example
SPARQL query is presented below.

[1] ?x foaf:mbox <mailto:alice@example> .

[2] ?x foaf:knows/foaf:knows/foaf:name ?name .

This query retrieves the names of all people who are exactly two (foaf:knows) steps away
from Alice. The first line retrieves Alice’s identity (her name) based on her email address, and
saves this name in the variable ?x. The second line then searches for all people who are exactly
two (foaf:knows) steps away from Alice, and stores these people in the variable ?name. The
”two steps away from Alice”-part is represented by the path foaf:knows/foaf:knows; this path
is constructed using the earlier mentioned sequence operator (/). This path first retrieves all
people who know Alice (one step away), and subsequently retrieves all people who know people
who know Alice (two steps away). This behavior is similar to graph traversals in specialized
graph query languages like Gremlin (section 3.3.1) and Cypher (section 3.3.2).

3.3.4 SQL

SQL (Structured Query Language) is primarily designed to execute queries on relational database
management systems, but with some assumption as to how the data in such a relational database
is stored, SQL can also be used to query a graph-based data structure.

In order for SQL to behave like a graph query language, the data in the relational database
should be saved in a format that is similar to the triples of RDF. Tables in the database should
consist of three columns, two of them being representations of vertices, and the other one being
the representation of an edge (relationship between the vertices): < vertex1, vertex2, edge >.
For example, consider the following database table:

vertex1 vertex2 edge
John Sara follows
Maria Robert follows
Sara Maria follows

This table represents a graph with four users as vertices, and three edges defining (directed)
’follows’- relationships between these users. Figure 11 is a graphical representation of this graph.

Standard SQL queries can now be used in order to find answers on questions like ”give me
all users that Sara follows. This query is shown in code below.
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[1] SELECT vertex2

[2] FROM table

[3] WHERE vertex1="Sara" AND edge="follows"

This query returns the only user that Sara follows: Maria.

Figure 11: A visual representation of a graph-based table of a relational database.

Graph traversals in SQL can also be imitated by using recursive SQL in combination with the
UNION (ALL) operator. Recursive SQL starts with a non-recursive part, for example retrieving
a vertex in the graph that has specific properties, such as a name. Then, starting from this vertex,
the recursive part of the query keeps fetching new vertices until a predefined final destination
(another vertex) has been reached. The path through the graph that is obtained in this way
generally has to satisfy a predefined condition, for example the absence of cycles. The result is a
collection of traversals through the graph. This collection can be further analyzed, for example
by searching for the smallest path between two vertices, based on the combined numerical weight
on the edges that lie on the path between the start vertex and the destination vertex.

The syntax of recursive SQL with the UNION ALL operator is as shown below [77].

WITH RECURSIVE <cte_name> (column, ...) AS (

<non-recursive_term>

UNION ALL

<recursive_term>)

SELECT ... FROM <cte_name>;

In the above query, the abbreviation CTE stands for Common Table Expression, which allows
to split big, complicated queries into subqueries, to ensure better readability. In the syntax above,
cte name is a variable that points to a complete SQL query, of which the output can be used in
the FROM clause (e.g. FROM cte name) of another query.

Image a recursive SQL query that returns all paths (and their total length) between two
vertices A and B, with the goal of finding the shortest path between A and B. This query is split
in two parts, based on the syntax that is presented above: a non-recursive term and a recursive
term. The non-recursive term selects the starting vertex (vertex A) and all its outgoing edges.
Then, the recursive term follows the outgoing edges from vertex A, stores the vertices on the
other end of these edges in an intermediate result, and uses these vertices as an input for the
next recursion step (a recursion step has access to the results - in this case a vertex set - of the
previous recursion step). This process continues until all paths through the graph that have been
found in the recursion have reached the destination vertex. The output is the set of all paths
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from vertex A to vertex B, with their total, combined length. Finally, the shortest path can be
retrieved from this output set. might give

more ex-
ample
code

might give
more ex-
ample
code

3.4 Graph benchmarks

Graph benchmark systems are used to test how well graph database systems performs given a
data set and queries that will be executed on this data set. The following subsections describe
a couple of these systems: the Linked Data Benchmark Council (LDBC) in section 3.4.1, the
Transactional Processing Performance Council (TPC) in section 3.4.2 and Graphalytics in section
3.4.3.

3.4.1 Linked Data Benchmark Council (LDBC)

The Linked Data Benchmark Council (LDBC for short) is an organization formed by researchers
from universities and the industry that offers independent benchmarks for both RDF- and graph
technologies [54]. The vision of the LDBC is that without an effort to provide such bench-
marks, there will be no good way for end-users to compare graph database systems and no good
guidelines for the developers of such systems, which could endanger the future of this technology.

LDBC benchmarks Currently, there are two benchmarks that are being developed and main-
tained by the LDBC, which are the Social Network Benchmark (SNB) and the Semantic Pub-
lishing Benchmark (SPB) [55].

• The SNB focuses on graph data management workloads, and tries to mimic the events of a
real social network like Facebook or Twitter. It contains a collection of short read queries,
complex read queries and update queries, which are fired on a database management system
in a predefined distribution. This distribution is set up in such a way that it contains many
short read queries (e.g. looking up a person or a message) and update queries (e.g. adding a
new message) in between the complex queries (e.g. looking up friends of friends, introducing
the need for deeper graph traversals).

• The SPB focuses on the management and usage of RDF metadata about of media assets or
some form of creative works, like productions from the British Broadcasting Corporation
(BBC). The SPB contains two separate workloads. The first workload is the editorial
workload, which mimics the behavior of the (semi-automated) process of inserting, editing
and deleting metadata into a database. The second workload is the aggregation workload,
which simulated the aggregation of content from the database to use it in some external
source, for example on a website. The aggregation is performed by a set of (SPARQL)
queries.

Because the data collection of OBI4wan is originating from the social network Twitter, this
research uses the SNB to compare how queries on this data perform on different database man-
agement systems.

LDBC data set In addition to their benchmarks, the LDBC has also developed a data gen-
erator called DATAGEN. This data generator can generate data that is similar to the data of
a real social network, containing persons, organizations where those persons work for, places
where those persons live in, messages created by those persons, tags used in those messages, fo-
rums in which those messages are posted, etc [56]. The final data set that DATAGEN produces
contains correlations between the attributes of entities. For example, persons who where born
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in Germany have a first- and last name which occur often in that country. DBpedia has been
used to provide such information. Another example is that people who are located in the same
place often share the same interests, which may be propagated into the tags they use in their
messages. Summarized, DATAGEN tries to produce a social network data set that is as realistic
as possible.

DATAGEN can produce data sets of different sizes. The total size of a data set is based on
the number of persons that a user can give as an input for data creation, or by a numeric scale
factor that represents the total amount of data in gigabytes. The output format of DATAGEN
is either CSV or Ntriple (an RDF-related format).

3.4.2 Transactional Processing Performance Council (TPC)

The Transactional Processing Performance Council (TPC) is an organization that defines bench-
marks for transactions on databases, such as inventory controlling, money transferring or some
kind of reservation processing. There exist some variants of TPC, which are described in full
detail on TPC’s benchmark overview website [25]. A quick overview of the variants is given in
the list below.

TPC-C The TPC-C benchmark simulates the managing of a product or service. Examples of
transaction on the database are the insertion of new products/services, checking the status
of products/services, monitoring a products stock, etc.

TPC-DI The TPC-DI benchmark (for Data Integration) simulates the unification of data from differ-
ent sources. In other words, it transforms data that is arriving from different organizations
in different formats into one unified, standardized format. An example of data integration
is when two (or more) organizations merge together, introducing the need to transform
their different data formats into one uniform data format.

TPC-DS The TPC-DS benchmark (for Decision Support) simulates decision making based on a data
set in the database. An example of decision making is a medical database that contains
data about diseases and its symptoms, that helps doctors to diagnose a patient with a
disease based on the patient’s symptoms. Another decision support benchmark is provided
by TPC-H, which contains more queries than TPC-DS.

TPC-E The TPC-E benchmark is an On-Line Transaction Processing (OLTP) workload, which
simulates entering and retrieving data into and from a database. An example is an orga-
nization or person that acts as the middleman between a customer and another company,
by receiving an order from the customer (entry into a database) and processing that order
to send it to the company (processing and retrieving from a database).

TPC-VMS The TPC-VMS benchmark (for Virtual Measurement Single System Specification) is a
combination of TPC-C, TPC-E, TPC-H and TPC-DS. It requires to set up three database
workloads on one single server, and then choose and execute one of these four benchmarks
on all three databases. The result of TPC-VMS is the minimum value of the three bench-
mark executions.

TPCx-HS The TPCx-HS benchmark (x for Express) provides a way to measure the performance and
availability of systems and platforms that use the Apache Hadoop File System API for big
data processing.
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3.4.3 Graphalytics

Graphalytics is a ”big data benchmark for graph-processing platforms” [57]. The main goal of
Graphalytics is to provide benchmarks for distributed graph processing platforms, although also
traditional graph databases like Titan and Neo4J are supported. Another goal for Graphalytics
is to develop a platform that is ”future-proof”, in a way that it can be used in any (currently
unknown) new graph platform. To make this possible, Graphalytics is built in such a way that
a new graph platform only needs to write its own platform-specific algorithm implementation in
order to execute the benchmarks. The data set that can be used for the benchmark is generated
using a subset5 of the data that is produced by the LDBC’s DATAGEN (see section 3.4.1).

The benchmarks provided by Graphalytics use algorithms that mimic real world scenarios.
Currently there are five algorithms built into Graphalytics, but given the extendibility of Grapha-
lytics this number may increase in the future. The four algorithms are general statistics (vertices
and edges count), breadth-first search (starting at a root vertex, first visit all its neighbors, then
all neighbors of its neighbors, etc.) connected components (find all connected entities of a vertex)
and community detection (find strongly connected groups) and graph evolution (predicting graph
evolution).

3.5 Other database systems

3.5.1 MonetDB

MonetDB is a column store, meaning its technology is built on the representation of database
relations as columns (as opposed to row-based representation, see below for a discussion of both
the row-based and column-based representations). This principle enables storage of entities of
up to hundreds of megabytes swapped into main memory and stored on disk [10]. Furthermore,
MonetDB is also designed for multi-core parallel execution on desktops, to reduce the execution
time of complex queries [10]. Distributing the processing of queries can be done by using a map-
reduce scheme for simple problems or by taking the distribution of processes into consideration
at database design time to support more complex cases [10].

Column-based databases differ from row-based databases in a couple of ways, each of them
having their own advantages and disadvantages. Row-based databases can efficiently return
complete objects (row entries) with all their attributes, making them a good choice for handling
OLTP (transaction) workloads, consisting of many small queries that each retrieve or update a
handful of rows. Column-based databases are more efficient to return results based on OLAP
(analysis) queries, for example a query that retrieves all objects of which the ’datetime’ property
falls inside a certain range. Row-based databases can imitate the behavior of column-based
databases slightly by keeping (part of) the database in an index that consists of mappings
between row IDs and column values.

Discussion of MonetDB is not thorough enough at this moment. See the explanation of
MonetDB that Peter provided during the meeting on Tuesday, March 17, and use this explanation
to update this section. TODOTODO

MonetDB will be the ’competitor’ of Titan in the benchmark sessions of this project. The
advantage of MonetDB is that it is designed to be usable with not only the relational model
(with SQL as query language), but also with a variety of emerging models like object-oriented,
object-relational [78] and subsequently - in the interest of this research - a graph-oriented model.
All data in MonetDB is stored in Binary Association Tables (BATs), consisting of two columns.
Various data formats can be mapped into BATs. For example, each column in a relational model
can be mapped into a BAT, where the right side of the BAT contains the column value, and

5Graphalytics only uses person entities and the ’knows’ relationship between those persons.
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the left side contains an identifier [78]. This process of mapping can be summarized as ’vertical
fragmentation’, which optimizes I/O and memory cache access and allows for data abstraction,
thus supporting a variety of data models [78].

3.5.2 Virtuoso

Virtuoso is an object-relational SQL database [44], able to store data in either a row-based
format or - like for example MonetDB - a column based format. The database is implemented
as a server, which contains a Data Management layer and a Web & Internet layer. The former is
responsible for managing the data and querying it, using for example the SQL query language;
the latter is to expose this data layer to the web and thereby to its users.

Virtuoso is not used as one of the databases-under-test in this research, but it has been used
in other research projects that implemented database- and query handlers to use Virtuoso in
LDBC benchmarks - specifically the Social Network Benchmark. These handlers are open source
and can be found in LDBC’s GitHub repository6. The query handler implementations that can
be found in this repository have been taken as a starting point to create query handlers for
MonetDB, which is one of the databases-under-test in this research project.

3.6 A note on graph standards

The previous sections have shown a wide variety of graph databases and graph query languages,
all with different methods to store a graph database and execute queries on it. At the moment
of writing, there is no real standard regarding graph databases, graph query languages and their
syntax and semantics. Transferring a graph database from one solution to another easily can
therefore be a daunting task. Consider the property graph model that is used by Titan. Even
this specific type of graph database is not standardized, allowing multiple ways to store such a
graph database. For example, multiple properties of the same type can be saved with a vertex
in two different ways: (1) each property type occurs only once, with the possibility to store a list
of values per property type, or (2) each property type can occur more than once, storing only
one value per property.

To clarify these two different methods, consider storing telephone numbers as a property on
a vertex. The first storage method would store a list of phone numbers for the telephone number
property, which would look as follows:

Vertex A

Telephone number(s): {012-3456789, 789-6543210}

The second storage method would store one value per property, allowing for multiple prop-
erties of the same type:

Vertex B

Telephone number: 012-3456789

Telephone number: 789-6543210

This lack of standardization of the graph database model makes it difficult to perform the
same experiment on different graph database systems, because it is not always trivial to transfer
the used data set (and the format it is in) from one graph database solution to another. This
has consequences when the research that is presented in this paper would be performed again
using another graph database solution and -query language.

6https://github.com/ldbc/ldbc snb implementations
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3.7 Research questions

The following research questions have been answered in this section and/or will be answered in
this report.

• Graph networks: in the most general form: what are graph networks, what do they look
like, how and where are (and could they be) used?

• Graph databases: which graph databases are available at this moment (’market re-
search’)? Which of these graph databases are suitable to use in combination with the
OBI4wan data set?
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4 Titan

This section provides an overview of the Titan distributed graph database. Section 4.1 provides a
broad overview of Titan, also discussing the Tinkerpop Stack [11] which elements are integrated
with Titan. Section 4.2 details Titan’s architecture, describing its internals (the BigTable data
model and how this is used by Titan), the data- and indexing backend layers supported by Titan,
the query capabilities with graph query language Gremlin and the possibilities to remotely access
a Titan graph database.

4.1 Titan overview

In the most general sense, Titan is a graph database engine. An overview of the high-level Titan
architecture is shown in Figure 12. Titan’s main focus is on ”compact graph serialization, rich
graph data modeling, and efficient query execution” [27]. For batch loading large amounts of
data into Titan and for large-scale graph analytics, Titan uses Hadoop. Furthermore, between
the Titan layer and the disk layer sit two more layers: a storage layer and an indexing layer.
Both of these layers support a few systems and their adapter implementation, for example storage
adapters for Cassandra7, HBase8 and BerkeleyDB9, and indexing adapters for ElasticSearch10

and Lucene11. Titan has implemented the TinkerPop Stack12 and its Blueprints API into its
own TitanGraph API. One of the elements of the TinkerPop Stack is the graph query language
Gremlin, which is also used as Titan’s query language. A more in-depth explanation of the
TinkerPop Stack and its integration into Titan is given in section 4.1.1.

Figure 12: A high-level overview of the Titan architecture.

7http://cassandra.apache.org/
8http://hbase.apache.org/
9http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html

10https://www.elastic.co/
11https://lucene.apache.org/
12http://tinkerpop.incubator.apache.org/
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4.1.1 TinkerPop Stack

The TinkerPop Stack is a platform containing building blocks to develop high-performance graph
applications [43]. The version of Titan used in this research (version 0.5.4) is integrated with
version 2 of the TinkerPop Stack. The stack consists of six blocks:

Blueprints the foundation of the stack, providing the bridge between a database and the rest of the
stack.

Frames providing a ”frame” around a Blueprints graph, exposing it as a Java object.

Pipes guiding data from input to output.

Furnace a package of graph algorithms for analysis on graphs.

Gremlin a graph query language to traverse a graph’s content.

Rexster a server that can be wrapped around a graph, to make it remotely accessible through a
REST API.

Note: future versions of Titan (versions 1.x) will be integrated with version 3.x of the
TinkerPop Stack. In version 3.x, all building blocks of the TinkerPop Stack have been merged
and are referred to as Gremlin.

4.2 Titan architecture

The following subsections describe Titan’s architecture in more detail. A broad overview of Titan
has already been given in the related work (see section 3.2.1).

4.2.1 Internals

Internally, Titan stores graphs in the adjacency list format. In this format, a graph is stored
as a collection of vertices, with one vertex per row of the adjacency list file. Each row consists
of the vertex’ properties and outgoing edges to other vertices.The adjacency list can be stored
in any storage backend that implements the BigTable data model (see below), for example
Cassandra and HBase (which are storage backends that are natively supported by Titan). The
architecture of the BigTable data model is described in the next paragraph. How Titan utilizes
this architecture for storing graphs is described in the paragraph after that.

BigTable data model The BigTable data model (shown in Figure 13) is derived from Google’s
Cloud BigTable data model, and consists of an arbitrary number of data rows which are uniquely
defined and sorted by a key. Each row can contain multiple cells, which further consists of a
column-value pair. Each of the values in such a column-value pair is uniquely defined by the
combination of the key and the column in the key’s row. How Titan utilizes this structure to
store graphs is discussed in the next paragraph below.

Titan data model Titan uses the BigTable data model to store graphs, as shown in Figure
14. Each row is uniquely defined by a vertex id (the row’s key). Each vertex stores both all of
its properties and outgoing edges. In the BigTable model, both properties and edges are a row’s
cells. Again, each property and edge (e.g. each cell) contains a column-value pair, as shown in
Figure 15. This figure shows that the column and value are built up differently for properties
and edges.
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Figure 13: The BigTable data model.

An edge’s column is built up by four elements. The label id is unique within a Titan graph
and assigned by Titan itself (e.g. each edge has one edge label, which is defined by this id).
Appended to the label id is a single direction bit that defines if the edge is an outgoing edge or
an incoming edge. The sort key is defined with the edge’s label, and can therefore be used in a
graph traversal to find all edges with a certain label (for example one could find all edges with
the label ”knows”, which is a relationship that shows that the two vertices on both ends of the
edge know each other). The adjacent vertex id refers to the edge’s incoming vertex, and is stored
as an offset to the edge’s outgoing vertex (e.g. the vertex referenced to by this row’s vertex id).
Finally, the edge id uniquely defines this edge.

An edge’s value is built up by two elements. The signature key contains the compressed
signature properties of an edge. The second element contains any other properties that are
attached to this edge.

A property’s column is built up by just one element, which is the key id that uniquely
defines the property. The property’s value is built up by two elements, the first being the
unique property id and the second being the actual property’s value.

Figure 14: The Titan storage layout, based on the BigTable data model as shown in Figure 13.

Figure 15: The relation layout inside a BigTable cell. shown here for both properties and edges.

4.2.2 Data storage layer

The data storage layer is the layer between the Titan client and the disk. This layer provides
an adapter that tells the Titan client how it should talk to the disk storage. The actual system
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used in the data storage layer should at least support the BigTable data model. Titan provides
native support for a few of these systems, among which are Cassandra, HBase and BerkeleyDB.
Any other storage system that supports the BigTable data model can be implemented into Titan
by manually writing an adapter for the storage system. The three natively supported systems
are globally discussed in the paragraphs below.

Cassandra Apache Cassandra is an open-source noSQL database system, designed to scale
over multiple nodes in multiple data centers over multiple geographically separated locations.
Nodes in a Cassandra cluster are positioned in a ring. There is no notion of master-slave; each
node is homogeneous and equally important. Nodes communicate with each other using the
gossip protocol. In the gossip protocol, nodes are sending out communication messages to three
other nodes in the cluster at a set time interval (for example each second). A communication
message contains information about the node itself and about other nodes known by this node.
This ensures that each node in the cluster quickly learns about all the other nodes in the cluster,
for example if a node is down or if a new node has recently been added.

Figure 16 shows the process of writing new data into a Cassandra cluster. New data is
written into two places: a commit log shared by all nodes that contains information about the
written data, and a in-memory table called memtable. When the configured maximum size of the
memtable has been reached, the data that is stored in the memtable is written to (flushed) to an
SSTable (Sorted Strings Table, a key-value store sorted by keys) which is stored on disk. Once
data has been written into an SSTable, this table is ”closed” and cannot be written to again.
Therefore, a node in a Cassandra cluster can maintain multiple SSTables to allow multiple
memtable flushes. From time to time, multiple SSTables are written into one larger SSTable,
during a process called compaction.

Figure 16: A schematic overview of writing data into Cassandra.

Figure 17 shows the process of reading data from a Cassandra cluster. When a Cassandra
cluster receives a request for data, this data could be in multiple places: in the memtable, in one
of the SSTables or on one of the larger SSTables stored on the disk. First, Cassandra checks if
the memtable contains the requested data. If the data is not present in the memtable, Cassandra
checks the bloom filter attached to SSTables.A bloom filter is a boolean structure that tells if a
piece of data is certainly not inside a certain position (value of zero), or might be in a certain
position (value of 1). In this case, the position of data is an SSTable. If the bloom filter tells
that a piece of data might be in a certain SSTable, then Cassandra checks the sorted keys in the
SSTable. If the requested data is found in an SSTable, it is fetched from disk and returned to
the user. If the requested data is not found in an SSTable, Cassandra checks the partition key
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cache, which contains the location of the requested data. Using offset information Cassandra
jumps to the right location and fetches the data from there (see Figure 17).

Figure 17: A schematic overview of reading data from Cassandra.

Cassandra distributes data automatically over all nodes in a cluster. A tool called the par-
titioner takes care of this distribution. In its default setting, data is distributed randomly over
all nodes in the cluster, maintaining an even distribution across the cluster. Data replication
is configured by the replication factor, which value defines the number of nodes over which the
same piece of data is replicated.

In Titan, Cassandra can run in multiple modes: local server mode, remote server mode,
remote server mode with Rexster and Titan embedded mode [34]. In local server mode, Titan
and Cassandra run on the same machine and communicate over localhost sockets. In remote
server mode, Titan and Cassandra reside on different machines and are connected to each other
using a Titan configuration file that contains the address of the Cassandra machine. In remote
server mode with Rexster, a Rexster instance is wrapped around a Titan graph; communication
with both Titan and Cassandra is handled by Rexster. In embedded mode, Titan and Cassandra
run in the same JVM and communicate with each other using process calls.

HBase Apache HBase is the Hadoop database, storing data in a distributed fashion and en-
abling scalability [35]. HBase is built upon Hadoop’s Distributed File System (HDFS) and pro-
vides fast lookups in indexed files that reside on HDFS. Figure 18 shows a schematic overview
of the HBase architecture [36]. HBase is based on a master-slave construction, where globally
speaking the master coordinates the work which the slaves will execute. The slaves in HBase are
called regions, and a single region stores part of the HBase tables. Each region consists of two
elements: the memstore and the hfile. When new data is written to HBase, it is first written to
the memstore (containing sorted key-value pairs of data). When the memstore is full (or when
a signal has been given to clear the memstore), the data from the memstore is written to hfile
(also containing sorted key-value pairs) for storage on disk. All new data that is written into
HBase is also written into the write-ahead log (WAL). Because the WAL contains all data write
transactions, it can be used to recover from failure of one of the regions. When the maximum
size of a region has been reached, the region is split into two new regions containing parts of the
data of the old region. HBase can scale using this splitting strategy.
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Figure 18: A schematic overview of the HBase architecture.

When a client writes into HBase, it gets in contact with one of the regions. The client will
first write to the WAL, registering the write in the HBase system. Afterwards, the data is written
into the region’s memstore.

When a client sends a read request to HBase, the data to be read could reside in multiple
places. Inside a region, the data could be inside the memstore or inside an hfile. Furthermore,
recent reads are stored in a read-cache. A read request will first search for the data in the read-
cache, then in the region’s memstore and finally in the region’s hfile. If not every data requested
is found in the current region (because data could be stored over multiple regions), HBase will
also use bloom filters to find the remaining data. A bloom filter can compute the location of
certain data, giving the client handles to retrieve the data from some region [37].

HBase can scale because of the region splits discussed earlier. When a region is split, the two
new regions will be created on the same node as the old region. Later on - for cluster balancing
reasons - the HBase master can decide to transfer a region to another node in the cluster. Data
replication is defaulted to three locations: new data is written to the local node, to a secondary
node and to a tertiary node.

In Titan, HBase can run in multiple modes: local server mode, remote server mode and
remote server mode with Rexster. See the details for each of these modes in the Cassandra
details mentioned earlier.

BerkeleyDB In contrast to the distributed fashion of Cassandra and HBase, BerkeleyDB is
a single-server database system that runs in the same JVM as Titan. Therefore, when using
BerkeleyDB a Titan graph cannot be distributed over multiple machines without splitting the
graph into multiple, isolated parts. Because a social network is generally not easily partitioned,
BerkeleyDB is not a good backend solution for this research project and therefore a more detailed
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description of its internal structure is omitted.

4.2.3 Indexing layer

The indexing layer is - like the data storage layer - another layer between the Titan client
and the disk. Titan has its own indexing backend for composite graph indexes, but needs
external indexing backends for mixed indexes. Composite indexes can retrieve vertices by a fixed
composition of keys. For example, an index that is composed of two keys can only be used in
graph traversals that use both keys - graph traversals with only one of the two keys do not make
use of the composite index. In contrast, mixed indexes composed of multiple keys can also be
used in graph traversals that use a subset of these keys.

Titan provides native support for three indexing backends: Lucene, ElasticSearch and Solr.
These three systems are globally discussed in the paragraphs below.

Lucene A Lucene index consists of a collection of documents. Each document is composed
of fields, and each field contains a collection of terms (Strings). Each term is a key-value pair,
where the key is the term itself and the value is the documents in which the term occurs. This
kind of indexing is known as reversed indexing : listing the documents a term is contained in [38].
A normal index would work in the opposite way: listing the terms inside a document. In Titan,
a vertex can be seen as a document, a field the set of properties of a vertex, and a term as one
of those properties.

Indexes can be separated into multiple segments. For example, when a new document (or in
Titan’s case, a new vertex) is added to the index, a new segment is created for that document.
When the amount of segments in an index gets to big, multiple segments will be merged into
one bigger segment. Removing terms from an index is not done immediately. Instead, removed
terms will be flagged as ’deleted’. When a segment containing removed terms is being merged
with another segments, the removed terms will be removed from the index physically.

Figure 19 shows an example of a segment inside an index [39]. This segment contains two
documents, named Lucene in action (with id 0) and Databases (with id 1). The five terms that
occur in both documents are shown in the segment’s table. For example, the term data occurs
in both documents, the term Lucene occurs only in the document Lucene in action and the
term sql occurs only in the document sql. When a user searches for all documents (in Titan: all
vertices) in which the term data occurs (in Titan: a property with a certain value), the Lucene
index would return the id’s of the document (vertices) in which the term data occurs, in this
case those documents with id’s 0 and 1.

In Titan, Lucene can be used for indexing purposes by setting Lucene as the used indexing
backend in the Titan configuration.

ElasticSearch ElasticSearch is basically a layer around Lucene. It uses Lucene for all indexing
and searching purposes, but provides a user-friendly, RESTful API that developers can work
with to use Lucene’s indexing power. Furthermore, where Lucene is built to be used on a single
machine, ElasticSearch supports distributed environments with multiple machines inside a cluster
[40].

Figure 20 shows the layout of an ElasticSearch cluster consisting of three nodes. One of the
nodes is assigned as the master, and will manage the whole cluster (e.g. add new nodes, remove
old nodes, transferring indexes from one node to another, etc.). Each node contains one or more
shards. A shard is a single instance of Lucene, and holds (parts of the) indexed data. Shards can
be replicated over multiple nodes in the cluster. In the figure, the primary shards are indicated
by P1, P2 and P3, and each of these shards has two replicas distributed over all nodes in the
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Figure 19: The architecture of the insides of a Lucene Index.

cluster. These replicas are R1, R2 and R3. When one of the primary shards fails for some reason,
one of the replicas can take over the role of the primary shard so data will not be lost.

Figure 20: The layout of an ElasticSearch cluster.

In Titan, ElasticSearch can be used for indexing purposes by setting ElasticSearch as the
used indexing backend in the Titan configuration.

Solr Like ElasticSearch, Solr is a layer around Lucene, and adds its own functionality on top of
that. A Solr cluster consists of a collection of documents, where each document contains fields of
a certain type [81]. For example a document about a person could contain a firstname-field (of
type String), a lastname-field (also of type String) and a birthday-field (of type Date). All fields
are indexed and searchable, which makes it possible to search for all documents (for example all
persons) with a certain firstname, or to search for persons who where born before a certain date.

Solr can be used in distributed environments using SolrCloud. The architecture of Solr
has much similarities with that of ElasticSearch. although other naming is used. Each single
index in SolrCloud is called a core, and multiple logically related cores can be combined into a
collection. Then, collections can be distributed over multiple shards, which can be located on
multiple machines in the cluster. A normal shard is called a primary shard, and any replica that
is created based on this shard is called a replica shard.

In Titan, Solr can be used for indexing purposes by setting Solr as the used indexing backend
in the Titan configuration.
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4.2.4 Query capabilities

Titan uses the graph query language Gremlin (which is part of the TinkerPop Stack) as the
default query language for Titan graphs. A more detailed description of Gremlin has been given
in the related work section of this paper (see section 3).

4.2.5 Remote access

The Gremlin graph query language can be used for local graph traversals, but Titan also supports
remote queries using TinkerPop’s Rexster. Rexster can be thought of as a ’layer’ around a
Titan instance, exposing a REST interface with which clients can communicate. Rexster can
be implemented on an arbitrary number of machines, creating multiple graph access points to
the same graph within one cluster. For example, consider a cluster with two machines, called
machine01 and machine02. If Rexster is configured to the same Titan instance on both machines
(regardless of which machine contains the Titan instance), then clients can send their graph
queries to both machine01 and machine02.

4.3 Research questions

The following research questions have been answered in this section and/or will be answered in
this report.

• Architecture: Titan supports the partitioning (distribution) of a graph. What is the
best way to partition a social media graph with Twitter data (e.g. partition on time, or
on location, or on personal networks, etc.)?

– This is a big project on its own, and is therefore outside the scope of this report. It
would fit as a research question for any future work.

• Architecture: Titan claims to be a scalable graph database. Is Titan indeed as scalable
as it claims to be? Is Titan ’future-proof’, can it continue to scale out indefinitely?

• Architecture: what is the TinkerPop framework, and how is Titan related to this frame-
work? Are there any benefits of using Titan in combination with the TinkerPop framework?

• Architecture: how is data stored in a Titan graph database?

• Architecture: how (to what extend) is ElasticSearch integrated into Titan?

• Architecture: how can clients interact with a Titan graph database from a remote loca-
tion? How much latency does this introduce, and is the latency a limiting factor?

• Architecture: what is Gremlin, and how is Gremlin integrated into Titan. How does the
execution of a Gremlin query on a Titan graph database work?

• Architecture: is the graph query language Gremlin expressive enough to execute the
benchmarks (which were created based on designed business questions)?
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5 MonetDB

This section provides an overview of the MonetDB column store. Section 5.1 provides a broad
overview about MonetDB. The architecture of MonetDB is detailed in section 5.2, containing
information about query processing with both the SQL query language and MonetDB’s own
MAL-language, details about how data is stored in MonetDB, and how MonetDB can be remotely
accessed.

5.1 MonetDB overview

MonetDB is a column-store database. Instead of storing data as rows - the way in which data is
stored in most relational database systems - MonetDB stores data as columns. For example, see
the example data in Table 1. This table shows how a row-oriented database systems would store
its data: each row contains one object with all of its properties (defined by the three columns id,
firstname and lastname.

id firstname lastname
1 John Smith
2 Ronald Waterman
3 Jessie Pinkman

Table 1: Example row-based data store

In a column-oriented data store, data is not stored in rows, but in columns. Each column
shown in Table 1 will be stored in its own file, which contains key-value pairs with the key being
the column’s contents, and the value being references (by id) to the object to which this content
belongs. For an example, see Table 2. The contents of this table show how the lastname columns
would be stored: the lastname itself as the key and a pointer to the object id as the value.

Smith 1
Waterman 2
Pinkman 3

Table 2: Example column-based data store

5.2 MonetDB architecture

The following subsections describe MonetDB’s architecture in more detail. A broad overview of
MonetDB has already been given in the related work (see section 3.5.1).

5.2.1 Query processing

Queries are processed by MonetDB using three software layers: the parsing layer, the optimiza-
tion layer and the interpreter layer. The first layer (parsing) provides adapters that can translate
queries from a high level language (like SQL, or SPARQL) into MonetDB’s own query language,
the MonetDB Assembler Language (MAL). The second layer (optimization) is a collection of op-
timization modules. For example, this layer ensures that the MAL programs that were created
in the first layer are optimized to be as efficient as possible. Finally, the third layer (interpreter)
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uses various modules to interpret the optimized MAL program, and use the right interpreter for
the right MAL statements.

As has been stated earlier, MonetDB uses its own language MAL for query execution. How-
ever, because MonetDB contains parsers that can transform higher level query languages into
MAL, it is also possible to use SQL (or another supported language) with MonetDB. For this
project, MonetDB is used in combination with the SQL query language. The next two paragraphs
provide some general information about using SQL and MAL with MonetDB.

SQL MonetDB supports SQL since 2002, and is largely based on the SQL’99 [71] and SQL’03
[72] definitions. However, the actually supported definitions depend largely on the requirements
of MonetDB’s user base. Therefore, some SQL features that are defined in the ’99- and ’03
definitions are not supported in MonetDB (although this has not introduced problems for the
research in this project), and some of the language constructs supported by MonetDB are not
contained in SQL’99- and SQL’03 definitions.

A full overview of SQL definitions supported by MonetDB and how to use them can be found
in MonetDB’s SQL Reference Manual13.

MAL While users can use MonetDB with high-level query languages like SQL and SPARQL,
the actual execution of queries on a MonetDB instance is performed using the MonetDB Assem-
bler Language (MAL). It is possible to program queries in MAL, although it is not encouraged
to do so [41]. A full overview of MAL (including for example its syntax, interpreters, optimizers
and other modules) can be found in the MonetDB Internals section on MonetDB’s website14.

5.2.2 Data storage

All data (all columns) in MonetDB is stored in what are called Binary Association Tables (BATs).
A BAT consists of < surrogate, value > tuples, where the surrogate (the head) is a virtual id,
which can be thought of as the array index of a BAT. The value (the tail) is the actual content of
a column, in the example sketched in Table 2 the values of the BAT would be last names. Figure
21 shows the architecture of BAT tables, and how they interoperate with higher level languages
like SQL, XQuery and SPARQL [69]. Every query that is fired onto a MonetDB database is
transformed into the MonetDB Assembler Language (MAL), which can communicate with BAT
tables. For example, a query in one of the higher level languages could ask for all objects of
which the year of birth is equal to 1927. In MAL, such a query would be transformed into a
MAL statement: select(byear, 1927). The select() function consists of two arguments, the first
being the BAT table to search in, and the second being the value to search for. In this case, the
BAT table byear contains two values which are equal to 1927, namely those with IDs 1 and 2.
These results are returned in yet another BAT table. Using the returned IDs, the names of the
people to which these IDs belong can be fetched from the BAT table name, using these IDs.

BATs are stored in two memory arrays: one for the surrogate (head) and one for the value
(tail). In the case that the values that are stored in the tail array are of variable length, the tail
array is split into two arrays: one containing offset values, and the other containing the actual
content pointed to by the offset values in the first array. When the values in the head array are
densely packed and ascending (e.g. when the values are just indexes: 0, 1, 2, ...),then the head
array can be omitted and retrievals from the tail array can be made by just referencing to an
index value [70].

13https://www.monetdb.org/Documentation/SQLreference
14https://www.monetdb.org/Documentation/MonetDB/Introduction
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Figure 21: The architecture of MonetDB’s BAT tables.

5.2.3 Hash tables

In (relational) databases, queries which contain a join between multiple tables are generally using
hashing techniques for faster lookups between the joined tables. MonetDB also uses a hash-join
algorithm for joining tables. The basic algorithm of creating a hash-join consists of the following
steps, given two tables L and R:

1. Tables L and R are partitioned using a hash function on the join attribute. These partitions
are then stored on disk, with the assumption that every created partition can be stored
into main memory completely.

2. Each partition pair (containing all data with the same hash function result, e.g. the same
attribute used for the join) is loaded into main memory, and a hash table is created for the
smallest partition.

3. The other (larger) partition finds matches on the attribute used in the join using the hash
table of the smaller partition.

This hash-join algorithm results in faster lookups in case of joined tables. MonetDB auto-
matically creates new hash tables for joins when they first occur in a query, and are reused in
future queries that use the same join.

5.2.4 Optimizer pipelines: the mitosis problem

As discussed in section 5.2.1, MonetDB uses an optimization layer, consisting of a collection of
optimization modules which are used to let MAL queries execute as efficiently as possible. One
of these optimizations is the mitosis pipeline, which splits up the columns of a table and divides
them over multiple CPUs, in order to achieve a parallel query execution. While this technique
is beneficial for some queries (with no dependencies to columns of other tables), it results in
significantly reduced execution time for others. The following example shows a situation in
which the mitosis optimization decreases the performance.
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Consider two database tables: a person table containing information about persons (with
columns id, firstname and lastname) and a knows table (with columns personid1 and personid2 ),
which contains an entry between two persons if they know each other. These two tables are
visualized and filled with some dummy data in Table 3.

id firstname lastname
1 John Smith
2 Sara DeGeneres
3 Pablo Garcia

personid1 personid2
1 2
1 3
2 3

Table 3: An example of person table (on the left) containing information about persons, and a
knows table (on the right), containing a relation entry between two persons if they know each
other.

Consider a query that takes a person ID as input (the start entity), and outputs all persons
with a certain first name (also given as input) who are exactly three ”knows-steps” away from
the start person entity (without visiting a person twice on such a path). This query requires a
join between the person table and the knows table, on the person ID attribute and the knows
personid1/personid2 attributes. MonetDB’s hash-join achieves this join by first partitioning all
the joins, and then creating hash tables for fast lookups. But then, the mitosis optimizer also
partitions the two tables on their columns, with the idea of dividing the total amount of work
over multiple CPU cores, which theoretically results in faster performance. However, the mitosis
optimizer removes the earlier created hash tables and creates new ones for the partitioned tables,
which is a costly process. It gets even worse, because the partitioned tables and their new hash
tables are not stored. So for every time a query like this is executed, the mitosis algorithm
again partitions the tables and again creates new hash tables. With relatively large tables,
the time needed by the mitosis optimizer to partition tables and create new hash tables could
become larger than the actual query execution, resulting in unwanted overhead. To conclude:
this example shows that the mitosis optimizer and the resulting partitioning of table columns is
not always beneficial towards the query execution.

5.2.5 Remote access

MonetDB is running locally on a machine, but can be accessed remotely by setting up a Mon-
etDB server. A MonetDB server can be started by initializing a MonetDB daemon (man-
aging a database farm), using the monetdbd command. The command monetdbdcreate <
local − dbfarm − filepath > creates a new MonetDB database farm on the local file system.
After setting up the database farm, it can be started using the command monetdbstart <
local − dbfarm− filepath >.

When the database farm is running, new databases can be added to the farm using the
monetdb command (without the trailing ’d’). For example, to create a new database called
twitter one would issue the command monetdbcreatetwitter. The new database is created in
maintenance mode, so that the user can first setup the database before making it accessible.
When all initialization has been performed, the new database can be started with the command
monetdbstarttwitter. From then on out it is accessible remotely through the MonetDB server.

There exist various language bindings to connect to a MonetDB server instance, either locally
or remotely. At the moment of writing, MonetDB supports JDBC, ODBC, PHP, Perl, Ruby
and Python interface libraries. For example, a connection to a remote MonetDB database can
be setup in JDBC using the following command:
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Connection con = DriverManager.getConnection(

"jdbc:monetdb://127.0.0.1:54321", "monetdb", "monetdb");

The first argument to the getConnection() function is the (remote) address and port number
at which the MonetDB database runs. The second and third argument are the username and
password used for authentication.

5.3 Research questions

The following research questions have been answered in this section and/or will be answered in
this report.

• Architecture: what is the best way to store Twitter data in a MonetDB data store? More
general: how is data stored in MonetDB?

• Architecture: how does MonetDB work internally? What is the underlying architecture
of MonetDB (column-store)?

• Architecture: how (in what format) does MonetDB store its data?

• Architecture: how can data that is stored in a MonetDB database be queried? What is
MonetDB’s MAL language? Which query language (SQL or MAL) can in theory perform
better, given the written queries are optimal?

• Architecture: how can clients interact with a MonetDB database from a remote location?
How much latency does this introduce, and is the latency a limiting factor?
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6 Test data generation

In section 6.1, the need for extra test data apart from the real Twitter data from OBI4wan is
detailed, along with some examples of programs or data stores that can deliver this test data.
The LDBC DATAGEN is the test data generator that is used in this research. Section 6.2
describes how test data is generated using the LDBC DATAGEN. Section 6.3 shows how the
output from the LDBC DATAGEN is transformed so that it suits the input format required by
the databases under test. Section 6.4 shows the process of loading the transformed test data into
the databases under test.

6.1 In need of test data

In order to compare how well database systems perform on the storage of graph data and the
querying on that graph data, we first need to create such data. In the light of OBI4wan, the
best source of data would be their collected Twitter data, but the problem is that this data
set is not complete. While the OBI4wan Twitter data set does contain information about how
many followers and friends a user has (because this number is attached to each collected tweet),
who these followers and friends are exactly (the actual followers- and friends relations) are not
contained in the raw tweet data, which means that this data has to be retrieved separately. The
friends and followers of a user can be retrieved by using the Twitter API, but this would be
a process of months due to the limits Twitter poses on its API. Therefore, another data set
that does contain all necessary information for querying graphs is needed. There are various
sources that provide this kind of data, for example the collection of real social network data
at the Stanford Network Analysis Platform (SNAP)15, or (social) network data generators like
Lancichinetti-Fortunato-Radicchi (LFR)16 and LDBC DATAGEN17. Among other data, the two
network data generators LDR and LDBC DATAGEN contain person vertex data and relationship
edge data between this vertex data, filling the missing data gap of the raw Twitter data set as
collected by OBI4wan.

6.1.1 Stanford Network Analysis Platform (SNAP)

The Stanford Network Analysis Platform (SNAP) contains a collection of categorized data sets.
One of them is the social network category, which contains data from various social networks
like Twitter, Facebook and Google+. The data sets consist of various files, containing vertices
with attributes and edges (relations) between those vertices [26].

6.1.2 Lancichinetti-Fortunato-Radicchi (LFR)

The Lancichinetti-Fortunato-Radicchi (LFR) method is a benchmark for community detection,
and tries to create a social graph network that resembles real social network graphs as closely
as possible [58]. The algorithm for generating graphs is centered around communities. A vertex
is given a degree and is assigned to a community based on an exponent from the power law
distributions γ and β, respectively. Power law distributions are chosen because research has
shown that real world social graph networks also seem to be following them when it comes to
degree distribution of vertices [58] [60] . Furthermore, 1−µ of edges from a vertex are connected
to another vertex within the community, and µ edges from that vertex are connected to another
vertex not in the community [59].

15http://snap.stanford.edu/data/index.html#socnets
16https://sites.google.com/site/andrealancichinetti/files
17https://github.com/ldbc/ldbc snb datagen
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6.1.3 LDBC DATAGEN

The LDBC DATAGEN generates a collection of people and their attributes (for example their
name, gender and birthday), plus their activity in a social network (for example the posts and
comments that these people post in certain forums, the places they live in, the organizations
they work for and the knows-relations [one persons knows another person] they have with each
other) [56]. The social network is built in such a way that attributes of an entity are correlated
and also influence the relationships with other entities.

6.1.4 Choosing the data source to use

The final choice for a data set to use should be one that is as close to the OBI4wan data set
as possible. In other words, the data set that will be used in this project should be a data set
that resembles the likes of a real social network. When this is taken into account, the SNAP-
and LDBC data sets are the best options. Between these two, LDBC has the advantage of also
providing a benchmark system in which the LDBC data set can be used. For this reason, the
final choice for the data set to use in this project is the one from LDBC.

As mentioned before at the beginning of this section, at the start of this project the raw
data set of tweets as collected by OBI4wan was not fully complete. Over time, the friends- and
followers of users from the OBI4wan data set have been collected, which completed the initial
OBI4wan data set. In other words: at some point during this project we did have enough friends
and followers to use in combination with the initial OBI4wan data set, which would in theory
cancel the need of another test data source. However, we have made the decision to keep using
the LDBC data set anyway, and the reason for this is twofold.

First, the LDBC data set is nicely scalable and can generate data in various data sizes. This
makes it easy to benchmark both Titan and MonetDB under different loads. While the OBI4wan
data set is scalable on the number of tweets, it is much harder to scale on the number of friends
and followers. Just taking less users (and their friends and followers) does not work, because the
users and their friends and followers should be matched against the users who posted the tweets
that are in a certain OBI4wan data subset. In comparison, scalability of the LDBC data set
takes care of this automatically, because it only includes those users who have posted a tweet,
and no others.

Second, by using the LDBC data set as a proxy for the real Twitter data set of OBI4wan, we
can compare the two and evaluate the realism of the LDBC data set. This helps the LDBC in
its development towards a data set that is as realistic and close to real social network data sets
as possible.

6.2 Generating test data

The LDBC DATAGEN generates a social network based on the persons in that network, and
their attributes. The person’s attributes are correlated, and will also influence the relationship
between a person and other entities. For example:

• the place where a person lives influences that persons name and the interests of that person.

• a person can only comment on another person’s post if they have become friends earlier,
and persons can only become friends if they are both registered to the social network.

• posts and comments are influenced by real world events. For example, when a political
election takes place, people will talk about this election in their messages more often than
on average (e.g. the topic is trending).
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• people who are ”similar” (e.g. similar interests, living in the same place, working for the
same organization, etc.) have a higher chance of being friends.

The creation process of a social network consists of three phases. Phase one is the person
generation, in which all persons and their attributes are created. Phase two is the friendship
generation, in which friendship relations between persons are created (based on the persons
attributes as mentioned earlier). Finally, phase three is the person activity generation, in which
all posts and comments created by persons are created.

The LDBC DATAGEN can output social networks of different sizes. The total size of the
network is based on a given number of persons, starting year and total number of years, or on
a scale factor which references the approximate data size of the network in gigabytes (e.g. SF1
contains 1GB of data, SF3 contains 3GB of data, etc.). The output of the LDBC DATAGEN is
split into CSV-files that contain vertices and their attributes, and CSV-files that contain edges
(relationships) between vertices, potentially containing edge labels such as the creation date of
the edge.

When executing a benchmark to test the quality of a database system, it is necessary to test
the system with different data sizes in order to test how scalable the system is. The LDBC
DATAGEN option to generate a data set with a specific size therefore comes in handy.

6.2.1 Stripping down the LDBC data set

The full LDBC data set is shown in Figure 22. Some vertices and relations that are contained in
the LDBC data set are not present in a real Twitter data set, such as the data set of OBI4wan. For
example, Twitter data sets do not contain vertices like City, Country, Continent and University
or Company. To make the LDBC data set more similar to the data set of a real Twitter network,
we have excluded vertices and edges, resulting in a stripped-down version of the LDBC data set.
The vertices and edges that are used in this project are enumerated in Table 4.

Vertices Edges
Person knows (Person knows Person)
Post likes (Person likes Post/Comment)

Comment replyof (Comment replyof Post/Comment)
Tag hascreator (Post/Comment hascreator Person)

hastag (Post/Comment hastag Tag)

Table 4: The vertices and edges of the complete LDBC data set that are used in this project.

6.3 Translating test data to database input

6.3.1 LDBC DATAGEN output format

The LDBC DATAGEN can output data in CSV format or in Ntriple (more verbose) format. This
research will use the CSV format, as the extra data from the Ntriple format will not be used.
The CSV-files are split into files containing vertices and their attributes, and files containing the
edges between vertices, potentially containing edge labels. Examples of both file types can be
found in Figures 23 and 24.
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Figure 22: The full LDBC data set, with all vertices and edges.

16492674424341|David|Smith|female|1985-11-21|2012-09-30T06:55:10.913+0000|

11.6.91.153|Firefox|

Figure 23: Output CSV-file containing information about a vertex (in this case a person). The
attributes are ID, first name, last name, gender, birthday, creation (registration) date, IP address
and used browser.

16492674424341|16492674424863|2012-09-30T08:13:06.697+0000|

Figure 24: Output CSV-file containing information about an edge (in this case a ”knows”-relation
between two persons). The attributes are ID person A, ID person B, creation date (of relation).

6.3.2 Translation scripts

Each database has different ways of loading data into databases; the same is true for the two
database systems used in this research: Titan and MonetDB. Therefore, the output from the
LDBC DATAGEN needs to be translated into a format that is compatible with the respective
database systems. The following paragraphs show this translation process for both Titan and
MonetDB.
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Titan supports a variety of data input/output (IO) formats, which are the SequenceFile
format, special Titan formats, GraphSON format, EdgeList format, RDF format and Script
format. Each format is shortly described below.

SequenceFile A SequenceFile is the native binary file format that is used by Hadoop. The FaunusVertex
and FaunusEdge objects provided by Titan both implement Hadoop’s Writable interface,
which means they can be captured by a SequenceFile [28].

Special Titan Titan supports both Cassandra and HBase as its database backend. Special Titan IO
formats can be used to read and write from one of these back-ends: TitanCassandraIn-
put/OutputFormat and TitanHBaseInput/OutputFormat [29].

GraphSON The GraphSON format is a vertex-centric input format: each line contains one vertex with
its attributes and a list of all vertices that have a relation with this vertex [30].

EdgeList The EdgeList format is a plain text file, where each line contains one edge. Each line
consists of the source vertex ID, the sink vertex ID and an edge label. Note that this
format only stores the ID of a vertex, and no other attributes. Also, an edge can have only
one edge label when using the EdgeList format [31].

RDF The RDF format consists of triples with a subject and an object, connected to each other
by a predicate. It is similar to the EdgeList format, but vertices in RDF point to the
vertex location, which can hold all attributes and other information for that vertex [32].

Script The Script format is a special format used by Titan. The user has to define its own script
that will be used when loading data into Titan. An input file is read line by line, and the
script’s content parses each line and creates vertices and edges based on the user-defined
format.

The raw CSV-files that are output by the LDBC DATAGEN are not directly usable with one of
the Titan IO formats, which makes the user-defined ScriptInputFormat the best choice for writing
data into a Titan database. The output format depends on the back-end that is used for the
Titan database, and can be either TitanCassandraOutputFormat or TitanHBaseOutputFormat.

6.3.3 Translating LDBC DATAGEN output into Titan Script IO format

The user-defined input format that is used in this research is detailed in a BitBucket repository18.
A Pig script is used to translate the LDBC DATAGEN output data into the user-defined format
that is used by Titan’s Script IO. In the full script, all relation types, property (attribute)
types, entity types and data types that are present in the LDBC DATAGEN output are put into
enumerations, resulting in smaller output files. The exact relation-, property-, entity- and data
types that the Pig script has to take into account must be specified in a special schema input
file. For this project, only a selection of vertices, their respective properties and accompanying
edges are specified in this schema input file (see section 6.2.1 for an enumeration of these vertices
and edges). In the output files, each line contains exactly one vertex with all of its attributes
and relations to other vertices. The total number of output files is at least equal to the total
number of vertex types - all vertices of the same type are put into the same output file, although
one vertex type can be spread over multiple files to reduce the size per file.

Figure 25 shows an example output line. This line is built up as shown in the list below.

18https://bitbucket.org/RenskeA/test/wiki/Home
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• One the first line, we have the tuple (0,1,173). The 0 means this tuple is an ID (data type),
the 1 means that it is a person (entity type) and the 173 is the actual ID.

• The next item is a quadruple (4,6,2,Zheng). The 4 means that this quadruple is a property,
the 6 means that it is the ”first name” property (property type), the 2 means that the
property is a string (data type), and ”Lei” is the actual property value.

• The following five items (continuing on the second line in Figure 25) are also quadruples
containing vertex attributes: the gender (female), birthday (1989-05-06), creation date
(2010-02-28T07:31:07.363+0000), IP address (27.50.135.189) and used browser (Internet
Explorer).

• The first item on the third line is (3,1). The 3 means that this is a relation, the 1 means
that the relation is a friend (relation type). The following list contains the persons’ friends,
for example the tuple (0,1,3298534892049), where the 0 means this tuple is an ID, the 1
means that it is a person and 3298534892049 is the actual ID.

• The last line also contains relations, but now of the enumeration type 4, which is a like. The
next tuple contains the vertex where this relation points to (with ID 206158956528). The
last quadruple is an edge label of the date type, with the value 2012-03-16T04:18:17.605+0000.

(0,1,173)|(4,6,2,Zheng)|(4,7,2,Lei)|(4,8,2,female)|(4,9,1,1989-05-06)|

(4,1,1,2010-02-28T07:31:07.363+0000)|(4,2,2,27.50.135.189)|(4,3,2,Internet Explorer)|

(3,1)|(1,3,{((0,1,3298534892049)),...})|

(1,4,{((0,0,206158956528),(4,1,1,2012-03-16T04:18:17.605+0000)),...})

Figure 25: An example output line created by a Pig script that translates the output from LDBC
DATAGEN into a user-defined output format.

6.4 Loading test data into databases

When the data is in the right input format for a database system, the next step is to start the
actual loading process. Data can be loaded into a MonetDB database using the COPY INTO
statement - this does not require any extra work other than just executing this statement - but
loading data into Titan requires more work. The next subsection will describe the process of
loading data into Titan using the database’s ScriptInputFormat in combination with Hadoop.

6.4.1 Loading data into a Titan database

Section 6.3.2 has detailed the process of translating the LDBC DATAGEN output data set into
a user-defined format that can be used to load the data into a Titan database. This process
has created one or more output files for every entity type: persons, posts, comments and tags.
Titan’s Script IO format uses these files as input and reads them line by line. The user has to
write his own script (written in the Groovy language) to define how each line should be parsed
and written into a Titan database. The script that is used for this research takes the steps shown
below for each line in the input files.

1. Each vertex has an ID, but ID’s are not unique over all vertex types. Therefore, we use a
special ID for each vertex in Titan. This special ID is just another vertex attribute which is
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indexed, and is of the form < vertextype > − < vertexid > (for example: person−12345).
The first step of the user-defined script is to create a new Titan vertex with this ID as its
first attribute. In addition, Titan assigns its own internal ID to each vertex, which faces
the same uniqueness problem as before. In order to resolve this issue, all IDs are suffixed
with a single number that is unique for each vertex type. This ensures that all internal
Titan vertex IDs are unique throughout the whole graph. Note that this suffixing solution
is only possible when the total number of vertex types is not more than ten. In this case,
there are four vertex types, as shown in section 6.2.1: Person, Post, Comment and Tag.

2. Next, the script iterates over the next tuples/quadruples, which can be of type ’relation’,
’label’ or ’property’.

(a) A relation always exists between two vertices. The outgoing vertex is known, because
it is the same vertex which line is currently processed. The incoming vertex is retrieved
by its ID, and the function addEdge(direction, type, invertexID) is used to add the
new edge. If the new edge contains an edge label, this label is attached to the new
edge object using the function setProperty(key, value).

(b) A label specifies the vertex type (Person, Post, Comment or Tag). It adds this label
as a normal vertex property.

(c) A property is an attribute that is attached to a vertex, using the function addProperty(key, value).

6.4.2 Using Hadoop for parallel data loading

Titan uses a Hadoop cluster to load large amounts of data in parallel into a Titan graph. The
input data (each line of this data consisting of a vertex with all its properties and incoming- and
outgoing edges) is split into multiple parts, which are then divided over the available machines
in the Hadoop cluster. Each machine uses the earlier described user-defined input script to read
the input data line by line and writes vertices and edges to a Titan graph. This writing process
consists of two MapReduce jobs: the first having both a Mapper- and a Reducer-part, and the
second only having one Mapper-part. Both jobs and their Mapper- and Reducer steps are listed
below.

1. (Job 1): for each vertex (e.g. each line of the input data), the pair <temporary ID,
permanent Titan-assigned ID> is written into the Hadoop file system (HDFS).

2. (Job 1): a Reducer reads this pair and pushes it to all edges, so that Titan knows to
which two vertices (incoming and outgoing) an edge is connected. This information is then
written into the HDFS.

3. (Job 2): a Mapper writes all vertices and edges from the HDFS into the Titan graph
backend (Cassandra).

Manually defining Titan’s schema An extra MapReduce job is added when the graph’s
schema has not been manually defined. In that case, the graph’s schema (the possible labels and
data types for vertices and edges) is inferred automatically. This is done just prior to the final
Mapper-step of the second job that writes all vertices and edges to the Titan graph backend. To
prevent the extra time that is needed to automatically infer the graph’s schema, in this research
the schema is manually defined before data is loaded into the graph. Creating a schema for a
Titan graph is done by using the graph’s management system, which is called by the following
statement:
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mgmt = t.getManagementSystem()

First, the possible edge labels and their multiplicity are set. An edge’s multiplicity can be of
one of the following five settings:

MULTI Multiple edge labels of the same type between two vertices are possible.

SIMPLE At most one edge label of a certain type between two vertices is possible.

MANY2ONE At most one outgoing edge label of a certain type is possible, but there is no constraint on
the number of incoming edge labels of this type.

ONE2MANY At most one incoming edge label of a certain type is possible, but there is no constraint on
the number of outgoing edge labels of this type.

ONE2ONE At most one incoming- and one outgoing edge label of a certain type is possible on vertices.

Next, all properties that can be added to vertices are created in the graph’s management
system. Each property type has a cardinality setting, which can be SINGLE (at most one value
for a property) or LIST or SET (multiple values for a property is possible). The final step in
creating the schema is to define the possible vertex types, after which all changes are committed
to the management system. The full schema declaration is shown below.

// create a new TitanFactory graph on a Cassandra/ElasticSearch backend

println "Opening new TitanFactory"

t = TitanFactory.open("conf/titan-cassandra-es.properties")

// get management system

println "Get ManagementSystem"

mgmt = t.getManagementSystem()

// create edge labels

println "Creating edge labels"

hascreator = mgmt.makeEdgeLabel(’hascreator’).multiplicity(Multiplicity.MANY2ONE).make()

hastag = mgmt.makeEdgeLabel(’hastag’).multiplicity(Multiplicity.MULTI).make()

replyof = mgmt.makeEdgeLabel(’replyof’).multiplicity(Multiplicity.MANY2ONE).make()

knows = mgmt.makeEdgeLabel(’knows’).multiplicity(Multiplicity.MULTI).make()

likes = mgmt.makeEdgeLabel(’likes’).multiplicity(Multiplicity.MULTI).make()

// create property keys

println "Creation property keys"

// persons

println "Creating person property keys"

firstname = mgmt.makePropertyKey(’firstname’).dataType(String.class)

.cardinality(Cardinality.SINGLE).make()

lastname = mgmt.makePropertyKey(’lastname’).dataType(String.class)

.cardinality(Cardinality.SINGLE).make()

gender = mgmt.makePropertyKey(’gender’).dataType(String.class)

.cardinality(Cardinality.SINGLE).make()
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birthday = mgmt.makePropertyKey(’birthday’).dataType(String.class)

.cardinality(Cardinality.SINGLE).make()

// posts and comments

println "Creating post and comment property keys"

imagefile = mgmt.makePropertyKey(’imagefile’).dataType(String.class)

.cardinality(Cardinality.SINGLE).make()

language = mgmt.makePropertyKey(’language’).dataType(String.class)

.cardinality(Cardinality.SINGLE).make()

content = mgmt.makePropertyKey(’content’).dataType(String.class)

.cardinality(Cardinality.SINGLE).make()

length = mgmt.makePropertyKey(’length’).dataType(Integer.class)

.cardinality(Cardinality.SINGLE).make()

// tags

println "Creating tag property keys"

name = mgmt.makePropertyKey(’name’).dataType(String.class)

.cardinality(Cardinality.SINGLE).make()

url = mgmt.makePropertyKey(’url’).dataType(String.class)

.cardinality(Cardinality.SINGLE).make()

// multiple entities

println "Creating other property keys"

creationdate = mgmt.makePropertyKey(’creationdate’).dataType(String.class)

.cardinality(Cardinality.SINGLE).make()

locationip = mgmt.makePropertyKey(’locationip’).dataType(String.class)

.cardinality(Cardinality.SINGLE).make()

browserused = mgmt.makePropertyKey(’browserused’).dataType(String.class)

.cardinality(Cardinality.SINGLE).make()

// create vertex labels

person = mgmt.makeVertexLabel(’person’).make()

post = mgmt.makeVertexLabel(’post’).make()

comment = mgmt.makeVertexLabel(’comment’).make()

tag = mgmt.makeVertexLabel(’tag’).make()

// create indices

type = mgmt.makePropertyKey(’type’).dataType(String.class).make()

iid = mgmt.makePropertyKey(’iid’).dataType(String.class).make()

mgmt.buildIndex(’byType’,Vertex.class).addKey(type).buildCompositeIndex()

mgmt.buildIndex(’byIid’,Vertex.class).addKey(iid).buildCompositeIndex()
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// commit all changes

mgmt.commit()

After the schema has been inferred, the next step is to transfer the graph input data to
Hadoop’s file system (HDFS), from which it can be loaded into the graph.

Loading data with Hadoop After the graph’s schema has been setup and input data has
been written to HDFS, the actual data loading with Hadoop can be executed. It is possible to
setup a custom Hadoop cluster for this task, as Titan’s data loading with Hadoop uses normal
MapReduce jobs as described earlier. From Titan’s perspective, there are some necessary con-
figuration options to set, such as pointers to the input data, the index- and storage backend,
Hadoop’s datanode and namenode locations and the default file system location. While setting
up the Hadoop cluster to load data into Titan, some issues had to be resolved along the way.
The errors which were thrown and the solution that solved the errors are discussed below.

Error: Container launch failed for container xxx : org.apache.hadoop.yarn.exceptions.InvalidAuxServiceException:
The auxService:mapreduce shuffle does not exist.
Solution: It must be explicitly defined that the mapreduce shuffle service is used in MapReduce
jobs. This can be set in the yarn-site.xml configuration file:

yarn.nodemanager.aux-services=mapreduce_shuffle

yarn.nodemanager.aux-services.mapreduce.shuffle.class=org.apache.hadoop.mapred.ShuffleHandler

Error: Error: java.io.IOException: Could not commit transaction due to exception during per-
sistence. Caused by: java.lang.OutOfMemoryError: GC overhead limit exceeded.
Solution: The main reason behind this problem can be found in the last part of the error
message: GC overhead limit exceeded. GC stands for garbage collection. The error is thrown
when the JVM that executes (part of) the MapReduce job spends more than 98% of its time
doing garbage collection, after which less than 2% of the heap is recovered. To prevent this error,
the available heap size for both map- and reduce jobs should be increased. Furthermore, the
extra option -XX:-UseGCOverheadLimit can be added in the configuration to prevent checks on
time spend in garbage collections. All these configuration settings are in the mapred-site.xml
configuration file:

mapreduce.map.java.opts=-Xmx1024m

mapreduce.reduce.java.opts=-Xmx1024m

Error: org.apache.hadoop.mapreduce.Job - Task Id : attempt xxx, Status : FAILED. Container
[pid=17420,containerID=container xxx] is running beyond physical memory limits. Current us-
age: 1.0 GB of 1 GB physical memory used; 1.8 GB of 2.1 GB virtual memory used. Killing
container.
Solution: In a previous solution, the heap size for JVM processes was set to 1 GB. However,
the default limit for map- and reduce containers is also set to 1 GB, which is the cause for the
error message shown above. Best practices for Hadoop state that the JVM heap size should be
around 75% of the total container size. In this case, a JVM heap size of 1 GB means that the
container size should be around 1.3 GB. In general, first the container size is set, and then the
JVM heap size. For example, if the container size is set to 4 GB (4096 MB), then the JVM heap
size should be set at 0.75× 4096 = 3072 MB. Container sizes and JVM heap sizes can be set in
the mapred-site.xml configuration file:
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mapreduce.map.memory.mb=4096

mapreduce.reduce.memory.mb=4096

mapreduce.map.java.opts=-Xmx3072m

mapreduce.reduce.java.opts=-Xmx3072m

Error: java.lang.OutOfMemoryError: Java heap space
Solution: Larger data sets generally need more amount of memory (or more data splits divided
over more processes). In the case of loading data into Titan, there could be certain vertices
which have a lot of incoming- and outgoing edges. During the addition of edges to a vertex,
these edges must be kept in memory. When the total data size of all the edges is larger than
the set memory limit, then a Java heap space error is thrown. This issue can be resolved by
reserving more memory for map- and reduce containers.

Error: org.apache.hadoop.mapreduce.Job - Task Id : attempt xxx, Status : FAILED. Attemp-
tID:attempt xxx Timed out after 600 secs.
Solution: Vertices with many incoming- and outgoing edges (see the previous error and solution)
might cause a timeout, because it takes a relatively long time before the map (or reduce) job
has finished. The default timeout setting is set to 600 seconds. In order to solve this error, this
default setting can be changed in the mapred-site.xml configuration file. A value of zero means
that the timeout is disabled:

mapreduce.task.timeout=0

6.4.3 Loading data into a MonetDB database

Loading the LDBC DATAGEN output into MonetDB is relatively simple. MonetDB supports
SQL’s COPY INTO statements, which can use a CSV-file as input for a SQL database table.
The database table to which the content of the CSV-file is copied must have the same number
of columns (and their respective data types) as the content in the CSV-file. For example, to
copy the line from Figure 23 into a MonetDB database table, this table must have six columns
(for each of the six attribute values): an ID column of type BIGINT, a firstname column of
type VARCHAR(x), a lastname column of type VARCHAR(x), a gender column of type VAR-
CHAR(6), a birthday column of type DATE and a creationdate column of type TIMESTAMP.
The resulting COPY INTO statement has the following syntax:

COPY INTO <tablename> FROM ’<filename>’;

6.5 Research questions

The following research questions have been answered in this section and/or will be answered in
this report.

• Data: the LDBC data generator can generate a data set that is a representation of a
real social network. What does this data set look like? Which entities are created, what
properties do they have and what relationships between entities exist?

• Data: how is the data set from the LDBC data generator generated (e.g. how does the
data generator work internally)?
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• Data: how can output from the LDBC data generator be used as input for both database
solutions (Titan and MonetDB)? What is the best format into which the LDBC data can
be translated (if multiple formats are supported by the database solution)?
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7 OBI4wan data usage

This section provides information about how the Twitter data set from OBI4wan is used in the
benchmarks that are executed in this research. Section 7.1 shows the structure of the Twitter
data as it is stored by OBI4wan. Section 7.2 shows the process of translating the OBI4wan data
set into an input format that is accepted by the databases under test. Section 7.3 shows how a
missing part of the OBI4wan data set - the friends- and followers set of the top users (most active
in terms of created messages) from the OBI4wan data set - is constructed, using the Twitter API
to retrieve this data (also see section 2.1.1). Section 7.4 provides an analysis about three graphs
that were generated from the OBI4wan data set and the extra friends- and followers data, which
provide information about the structure of the OBI4wan data set. Finally, section 7.2 describes
the process of loading the translated OBI4wan data set into the databases under test.

7.1 OBI4wan data format

The Twitter data archive of OBI4wan consists of gzipped archives, where each month is split into
three parts to reduce the size of the individual archive files. For example, in November three
archive files are created: one for November 1st until November 10th (named 2014nov1.gz ), one
for November 11th until November 20th (2014nov2.gz ) and finally one for the rest of the month,
from November 21st until November 30th (2014nov3.gz ).

Each line in the archive contains exactly one tweet in JSON format. An example tweet is
shown in Figure 26. The attributes of interest contained in the JSON are explained in the list
below.

id message ID given by Twitter.

user accountname of the user that posted the tweet.

content message content

published timestamp from the moment the message was posted on Twitter

sentiment sentiment value (enumeration) given to the message based on its content

sourcetype platform on which the message was posted

language language of the message’s content

friends number of this user’s friends at this message’s publish timestamp

followers number of this user’s followers at this message’s publish timestamp

statuscount total number of messages posted by this user at this message’s publish timestamp

loc location from which this message was posted

source application from which this message was posted

hashtags hashtags used in this message (tags preceded by the official hashtag symbol (#)

mentions users mentioned in this message (names preceded by the official mention symbol (@)

inreplytoid ID of the parent message to which this message is a reply (or -1 if this message is an original
status update)
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posttype message type, being STATUS (original message), RETWEET or REPLY

url exact URL that leads to this message on Twitter

2014nov3/test/535648671644536832 {"id":"535648671644536832", "user":"kimber33",

"content":["@ter808 so I’m catching up on #TheVoice & someones singing I wanna

dance w somebody, to get saved by America... Clearly my vote goes to her"],

"published":"2014-11-21T04:19:29.000Z", "indexed":"2014-11-21T04:22:21.479Z",

"sentiment":1, "sourcetype":"twitter", "language":"EN", "rank":1, "friends":295,

"followers":45, "statuscount":7376, "loc":"Rhode Island",

"source":"Twitter for iPhone", "hashtags":["thevoice"], "mentions":["ter808"],

"inreplytoid":"-1", "accountname":"" ,"posttype":"STATUS",

"url":"http://twitter.com/kimber33/status/535648671644536832/","host":"twitter.com"}

Figure 26: Example tweet from the OBI4wan archive, in JSON format.

7.2 Translating the OBI4wan data set into database input

Before the OBI4wan Twitter data set can be put into Titan and MonetDB, it needs to be
translated into a format that is supported by these two database systems. The most efficient
solution is to reuse the translation scripts that have been used to translate the data from the
LDBC DATAGEN into a format that is readable by the two database systems. The remaining
task would then be to translate the OBI4wan Twitter data set into the same format as the
LDBC DATAGEN output format. In general, the LDBC DATAGEN data output format can be
considered as an efficient format, because it consists of vertex-files (including vertex properties)
and edge-files (including edge properties), which is equal to how graph databases store their data.

A Python script is used to translate the OBI4wan Twitter data set into the LDBC DATAGEN
data format. The process of this translation is described in the list below.

1. The Python script accepts an OBI4wan gzipped archive file, which contains tweets from
a certain time frame. The lines in this archive file are read one by one, with each line
containing the JSON representation of a tweet. The contents of this line are described in
section 7.1.

2. The tweet’s JSON is being processed by two functions: create vertices() and create edges().
Based on the tweet’s JSON, these two functions will create the same files as those that
are output by the LDBC DATAGEN: files containing vertices and their attributes and files
containing edges, potentially containing edge labels. The inner workings of both functions
are discussed in the next two steps.

(a) The function create vertices() creates one file per vertex type (in this case persons,
posts, comments and tags), each file containing one vertex and its attributes per line.
For each vertex type, the information for a vertex is contained in the tweet’s JSON.
For example, a vertex of type ’post’ can retrieve the post’s timestamp, language and
content directly from the tweet’s JSON.

(b) The function create edges() creates one file per edge type, each file containing one edge
and potentially its attributes per line. Again, all information that is needed for the
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edges is contained in the tweet’s JSON. For example, an edge of type ’comment post’
(e.g. a comment that is a reply on a post) can retrieve the comment ID (which is
the tweet’s ID) and the post to which the comment is a reply (which is the tweet’s
’inreplyto’ ID) from the tweet’s JSON.

When all tweets from the OBI4wan Twitter archive are processed, all vertex- and edge files
have been filled with content originating from tweet’s JSON. However, there is one piece of
information that is not contained in the tweet’s JSON, and that is the followers/friends data
set. Each tweet contains the number of followers and friends that the user who posted the tweet
has at the moment of posting, but who those followers and friends are is not known. The next
section shows how this information has been retrieved, using the official Twitter API.

7.3 Creating the friends/followers data set

Tweets from the OBI4wan archive contain information about the number of friends and followers
of the user who posted the tweet, but no information about who these friends and followers are.
To get this information, we need to use the Twitter API with the username or ID of a user as
input parameter in order to retrieve a list of friends and followers for that user. The Twitter API
provides separate endpoints for retrieving the friends- and for retrieving the followers of a single
user: the GET friends/ids and GET followers/ids endpoints, respectively. Both endpoints allow
for the retrieval of at most 5000 entities (friends or followers) per user per API call. When the
retrieved friend- and follower sets are stored for each user that occurs in the OBI4wan Twitter
data set (e.g. all users who have posted one or more tweets that have been collected by OBI4wan),
the friends/followers data set can be constructed.

The two API endpoints which can be called to receive a user’s friends/followers are rate-
limited at 15 calls per 15 minutes (e.g. 1 call per minute). So, with one authentication token, it
is possible to receive at most 5000 friends or 5000 followers for one user per minute19. With each
extra authentication token available, the number of available calls per minute increases with one.
For example, with 20 authentication tokens, one can call the two Twitter API endpoints that
retrieve a user’s friends or -followers 20 times per minute.

The total number of unique users per OBI4wan Twitter archive file is 3.5 million on average.
With 20 authentication tokens, and the assumption that only the first 5000 friends and followers
of a user will be retrieved, it still takes at least 122 days ( 3.000 hours, 175.000 minutes) to
retrieve the first 5000 friends and followers for all users. This is a very long time, especially
considering the fact that the followers and friends of a user can change over time. With this
retrieval rate, a user’s friends and followers are only updated once every 122 days. When real-
time and up-to-date information is required, this method of creating a friends/followers graph
does not suffice, but for statistical purposes this data set is still interesting to use. For this
research the friends/followers data set is needed because some benchmark queries depend on this
information. However, it is not required that this information is up-to-date for benchmarking
purposes, so also an out-of-date friends/followers data set is good enough. For this research,
only the top million users (sorted descending by how many tweets each user has posted) have
been taken out from the complete set of 3.5 million users, and for these users their friend- and
follower data sets have been retrieved.

In short, the process of keeping the friend- and follower data sets up-to-date is outside the
scope of the benchmarks that are executed in this project. On the other hand, it is still interesting
to think of algorithms which can be used to keep the data set up-to-date (outside the scope of

19In order to let users with a lot more friends and/or followers not become a bottleneck in this process, only
the first 5000 friends/and followers are retrieved for each user.
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benchmarks). After all, up-to-date data is essential to perform real-time analysis on this data,
which OBI4wan does. Section 7.3.3 proposes an unimplemented algorithm that does this.

7.3.1 Program execution

The execution of the program that retrieves a user’s friends and followers is described below.

1. The program accepts an input file with on each line a Twitter username, in this case the
file contains a total of 1 million usernames.

2. Before retrieving followers and friends using the Twitter API, the program sets up the
environment that is required to actually use the Twitter API. This setting up requires an-
other input file, which contains authentication tokens from Twitter users that are attached
to the application. These tokens can be used to make calls to the Twitter API. The more
tokens are in the input file, the more requests one can make to the Twitter API per time
interval.

3. Based on a Twitter username, the program uses the Twitter4J library20 to retrieve the
followers and friends of the user, with a maximum of 5000.

4. After the friends and followers of a Twitter user have been retrieved, they are written to
an output file in JSON format. The JSON contains an attribute pointing to the Twitter
user, and two lists containing the IDs of this user’s friends and followers. An example line
in the output file is shown in Figure 27.

{"name":"esrayucel571","followers":[3032153789,2810764899,2857458725,...],

"friends":[252601950,365260141,1689115598,...]}

Figure 27: Example line from the friends/followers JSON file.

7.3.2 Translating friends/followers JSON to user relations file

The last step of translating the OBI4wan archive data format to the LDBC DATAGEN data
format is to translate the friends/followers JSON output to the person person edge relation
file (e.g. person A knows person B). This translation is relatively simple: for each line in the
friends/followers JSON, we need to output a line for each relation between the current user and
one of his followers, and a line for each relation with one of his friends. The example line as
shown in Figure 27 would translate into the person person relations file as shown in Figure 28.

7.3.3 Keeping the friend- and follower data sets up-to-date

The initial retrieval of the friend- and follower data sets takes a relatively large amount of time.
However, when this initial data set has been retrieved, it can theoretically be kept up-to-date
using the algorithm described in the steps below. Again, note that this is only a proposed
algorithm which is not further implemented in this project.

20http://twitter4j.org/en/
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3032153789|esrayucel571|knows

2810764899|esrayucel571|knows

2857458725|esrayucel571|knows

esrayucel571|252601950|knows

esrayucel571|365260141|knows

esrayucel571|1689115598|knows

Figure 28: Example lines from the person person relations file.

1. After a tweet (T ) has been retrieved by OBI4wan, the tweet’s JSON (as shown in Figure
26) is stored. This JSON contains - among other attributes - the user (U) who created the
tweet and the number of friends and followers of the user (Tfr and Tfo, respectively). These
friend- and follower numbers are also stored for each user (U∗) in the initially retrieved
friends/followers data set (F ), together with a timestamp (t) of the last time these numbers
have been retrieved using the Twitter API.

2. The friend/follower numbers in tweet T created by user U can differ from the friend/follower
numbers stored for user U∗. The general idea of this algorithm is to make a new call to
the Twitter API to retrieve the up-to-date friend- and follower sets for U∗ if they increased
or decreased with a certain factor (f). This factor can be defined on user level, based
on an average rate (δ) with which the friend/follower numbers change for user U∗ given
a predefined timeframe. This rate can be determined over a period of time and kept up-
to-date after the initialization with the friend/follower numbers in each new tweet created
by this user. User’s whose δ is relatively high should be updated with new friend/follower
numbers more often than user’s with a lower value for δ.

The number of Twitter API calls that can be made to retrieve an user’s friends and followers
are rate limited, both on time and on size (see the start of section 7.3, which discusses the
Twitter API endpoints used for these retrievals). This rate limit is set to 15 calls per 15 minutes
(e.g. one call per minute) per API token per endpoint, with a maximum size of 5.000 friends
or followers per call. For example, when only one API token is available, the maximum amount
of friends or followers that can be retrieved for one user is 5.000. This rate limit means that
friend/follower numbers cannot be retrieved continuously. Instead, API calls should be made in
such a way that the rate limit set by Twitter is never broken. The following example shows how
this can be done.

Consider the situation that is described in the list below.

• Total number of users: 1.000

• Available API tokens: 20

• Average for δ is 1.0

Given this data, the friend/follower numbers can be updated for 20 users per minute, meaning
that each user U∗ can be updated every 1000/20 = 50 minutes. Users U∗ with a high value for
δ (higher than the average) should receive an update more often than users U∗ with a low value
for δ (lower than the average). For example, consider a user A (δ = 0.7) and a user B (δ = 1.3),
where δ = 1.0 is the average. The values for δ for each user determine how often this user should
receive an update, relative to the average user update rate. In this case, user A would receive
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an update every 50/0.7 ≈ 71 minutes, and user B would receive an update every 50/1.3 ≈ 38
minutes. Such an update can be triggered when a tweet is retrieved. When the update interval
for the user U that posted this tweet has expired, then the friend/followers number is updated.
In theory, it is possible that there are no more API calls left because the number of users that
need an update at a certain moment in time is too high. In this case, a first-in-first-out queue
should be set up that contains the users to update as soon as a new API call is available.

Note that this approach assumes that only one API call is needed to retrieve all friends/fol-
lowers of a user. However, there exist users who have more than 5.000 followers or friends (or
both), meaning that one API call does not retrieve the full set. If you want to retrieve all follow-
ers and friends of a user when their update interval has expired, then a queue is also necessary
because one user could require multiple API calls and thereby potentially more calls than the
available calls per timeframe.

7.4 OBI4wan graph analysis

To obtain a better understanding of the OBI4wan data, we can analyze it. Detecting communities
is one of the most relevant methods of analyzing (social) graphs [62]. A community can be defined
as a set of vertices which have many connections among them, but relatively few connections
with other vertices in the graph. Among others, community detection can provide information
about how the network is structured, how vertices (for example persons) interact with each other
and which role these vertices (persons) have in a network (for example, some person could be
the connecting link between two communities, some person could be the center of a community
[containing links to all other vertices in the community,] etc.).

There exist a variety of community detection algorithms, of which Scalable Community De-
tection (SCD) seems to be the most promising, having the fastest execution time compared to
other algorithms like Walktrap [63], Infomap [64], Oslom [65], Link Clustering Algorithm (LCA)
[66] and BigClam [67].

The SCD has been used in [68], where the structure of communities in real graphs (like Ama-
zon and YouTube) have been compared to communities in graphs generated by graph generators,
such as LFR21 and LDBC DATAGEN22. Using SCD, the following five structural indicators have
been calculated: (global) clustering coefficient, triangle participation ratio (TPR), bridge ratio,
diameter and conductance. These five structural indicators are now discussed shortly.

Clustering coefficient The clustering coefficient is a number between 0 and 1, where 0 means that there is no
clustering at all in a graph (or community), and 1 means that the graph (or community)
contains only disjoint clusters (which are not connected to each other but only contain
connections to other vertices within the cluster). The clustering coefficient is defined more
formally by the probability that given two edges that share a vertex, there is a third vertex
that closes a triangle (e.g. edges A and B can share a vertex X, edge A is also connected
to vertex Y , edge B is also connected to vertex Z, and a third edge C between Y and Z
closed the triangle). See Figure 29

TPR Given a set of vertices S and a vertex x, the triangle participation ration (TPR) is defined
by the number of triangles in S that x is contained in. A triangle is defined by three distinct
vertices x, y and z, where x is connected to y, y is connected to z and z is connected to x
(see Figure 29).

21https://sites.google.com/site/andrealancichinetti/files
22https://github.com/ldbc/ldbc snb datagen
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Bridge ratio Given a set S with vertices (an induced subgraph of a community) and an edge e ∈ S.
Edge e is called a bridge if e disconnects the set S (e.g. the community) from the rest of
the graph. The bridge ratio is calculated by finding the set of neighbours of every vertex
in S - thereby retrieving all edges between vertices in S and between vertices in S with
vertices outside S - and calculating how many of those edges are bridge edges.

Diameter The diameter of a graph (or community) is defined by the maximum number of steps that
is needed to travel from one vertex to another in that graph. In other words, it is the
”longest shortest path” between two vertices in a graph.

Conductance A community’s conduction can be thought of as the level of isolation of a community from
the rest of the graph [68]. Another way of thinking about conductance is to consider a
random walk that starts at some vertex in a community. When the community is well-
connected, it will take longer for the random walk to step out of the community, because
the chance of traversing to another vertex inside the community is higher than the chance of
traversing to a vertex outside the community. The longer the random walk will stay in the
community, the more isolated the community is and the higher the value for conductance
of this community will be. More formally: given a graph G and a set of vertices S which is
a subgraph (community) of G, the conductance can be calculated by dividing the number
of edges leaving S by the summed number of neighbours for every vertex in S.

X

Y Z

A B

C

Figure 29: Example of a graph triangle

The implementation of SCD can be found on their GitHub repository23, and works as follows:

1. Given a graph in unique EdgeList format (the same edge will appear only once), the SCD
algorithm first finds all communities in that graph. If the EdgeList of the graph is contained
in the file network.dat, then finding the graph’s communities is done by executing the
following command:

./scd -f ./network.dat

The SCD algorithm is based on finding triangles in the graph and creating communities
based on those triangles. However, there exist vertices which do not participate in triangles.
The SCD algorithm puts these vertices in their own community of size one, which may
pollute the final results. Therefore - after the communities have been detected by SCD -
all communities with size less than three (e.g. all communities with vertices which are not
participating in any triangle) are removed from the community set.

23https://github.com/DAMA-UPC/SCD
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2. Once the communities of the graph have been found, SCD’s CommunityAnalyzer can be
executed to calculate all structural indicators discussed earlier. Given the EdgeList of the
graph in file network.dat, the calculated communities in communities.dat and an output
file to write the results to in output.csv, the following command will calculate the structural
indicators:

./communityAnalyzer -f network.dat -p communities.dat -o output.csv

The SCD- and CommunityAnalyzer algorithms output a CSV-file, where each line contains
the structural indicator results for one of the communities of the input graph. The next three
subsections present the results of the CommunityAnalyzer algorithm for three graphs: the friend-
s/followers graph in section 7.4.1 - of which the construction and contents has been discussed
earlier, the ”mentioned” graph in section 7.4.2 (containing a relation between person A and
person B if person A has mentioned person B in a tweet) and the ”retweeted” graph in section
7.4.3 (containing a relation between person A and person B if person A has retweeted a tweet
that was posted by person B).

7.4.1 Friends/followers graph statistics

First, we will analyze the results from executing SCD’s algorithm on OBI4wan’s friends/followers
graph, as shown in the histograms of Figure 30.

Clustering coefficient The clustering coefficient in Figure 30a shows that the majority of the
graph’s cluster has a relatively low clustering coefficient, meaning that they contain few closed
triangles. There is a small peak at the extreme right of the histogram, showing those commu-
nities with a clustering coefficient (close to) 1. These communities are (quasi-)cliques, where
all vertices are connected to each other. The overall low clustering coefficient means that the
(OBI4wan) Twitter network does not contain many clusters in which the vertices (persons) are
highly connected. Another explanation for the small clustering coefficient value of communities
should become clear when looking at the following example. Consider a user A, which is con-
tained in the OBI4wan data set, called DOBI . Then consider another user B, not in DOBI . User
A and user B could both have relationships with other users (the set Uother) not in DOBI , and
users in Uother could have relationships among each other, forming a cluster, called C. However,
because user B and users in Uother are not contained in DOBI , their followers- and friends re-
lationships are not known, preventing the recognition of cluster C or resulting in a much lower
clustering coefficient value compared to when the data set DOBI would have been fully complete.

TPR The triangle participation ratio (TPR) in Figure 30b shows two peaks at the extremes,
and the rest of the communities is divided over the intermediate ranges. This shows that many
communities either have zero (or very few) vertices that close triangles, or (almost) all vertices
close triangles.

Bridge ratio Figure 30c shows that most of the clusters have a relatively small bridge ratio.
The communities with a bridge ratio of zero (on the left extreme of the histogram) are the
communities that do not have a bridge edge. The communities with a bridge ratio of one
(on the right extreme of the histogram) are the communities that consist only of bridge edges.
A low bridge ratio value means that there are not many communities which contain an edge
which disconnects the community from the rest of the graph. This might be an indication that
communities have many connections (edges) to vertices outside the community, meaning that
communities are unlikely to be completely cut off from the rest of the graph.

67



(a) Clustering coefficient (b) TPR

(c) Bridge (d) Diameter

(e) Conductance

Figure 30: Distribution of the statistical indicators for the OBI4wan friends/followers graph (1
million users).
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Diameter The diameter value in Figure 30d shows that most of the communities have a
diameter of either zero or two. Generally, a (sub)graph can have a diameter of zero if (1) the
graph does not contain any vertices or has just one vertex, or if (2) the graph contains vertices but
no edges. The SCD results of the OBI4wan followers/friends graph show that no communities
consist of zero vertices, and also all communities contain more than zero edges. However, in the
SCD algorithm - given that S is the set of vertices in a community - the diameter is calculated
by taking the community’s actual diameter, and divide it by the log of the size of S, plus one
(e.g. log(|S|) + 1). When the result of this calculation is a number between 0 and 1 (which is the
case if the actual diameter value is low), and the algorithm levels down the result, then diameter
values of zero are possible. This might be an indication that communities have a small actual
diameter value, and are thus well-connected.

Conductance Figure 30e shows the conductance of communities. For the majority of the
communities, the conductance is high (close to 1), meaning that most of the communities are
not very well isolated from each other.

7.4.2 Mentioned graph statistics

Next, we will analyze the results from executing SCD’s algorithm on OBI4wan’s ”mentioned”
graph, as shown in the histograms of Figure 31.

Clustering coefficient The clustering coefficient in Figure 31a shows that the value for every
community is equal to zero. This is due to the fact that the number of triangles in each community
is also equal to zero. This means that given a person A, a person B and a person C, there is
no community in which person A mentions person B, person B mentions person C and person
C mentions person A. This could be normal behavior in the Twitter network, as usually people
just mention other people in their tweets when they have a (public) conversation with each other.

TPR Again, because there are no triangles in each of the communities (see the details about
the clustering coefficient above), the TPR for all communities is equal to zero. This is shown in
Figure 31b.

Bridge ratio Figure 31c shows that all communities have a bridge ratio equal to or lower than
0.5, with a majority of the communities having a bridge ratio of exactly 0.5. A bridge ratio of
0.5 means that the number of bridges (counting a bridge twice, once for each vertex connected to
the bridge) is equal to half of the number of edges that connect members of the community with
each other. The relatively low bridge count value indicates that many of the communities do
not have many bridges going outside the community. This can be explained by looking at how
people use mentions on Twitter. Most of the mentions occur in a conversation between people,
for example a conversation between person A, B and C. In this conversation, these people will
mention each other a lot, but are not likely to mention any other person D (where D is not equal
to A, B or C).

Diameter Figure 31d shows the diameter of all communities is equal to 2. In other words, it
never takes more than two steps to travel from one person in a community to another.
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(a) Clustering coefficient (b) TPR

(c) Bridge (d) Diameter

(e) Conductance

Figure 31: Distribution of the statistical indicators for the OBI4wan mentioned graph (all tweets).
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(a) Clustering coefficient (b) TPR

(c) Bridge (d) Diameter

(e) Conductance

Figure 32: Distribution of the statistical indicators for the OBI4wan retweeted graph (all tweets).

Conductance Figure 31e shows the conductance of communities. Many of the communities
have a conductance that is relatively high, with the majority having a conductance between 0.9
and 0.95. This means that most of the communities have a relatively bad isolation - changes are
high that you will often travel from one community to another when randomly walking through
the graph. This can be explained by looking at the following example. Person A could be
in a community together with person B and person C, where the three persons mention each
other a lot during a conversation. However, changes are high that person A is involved in other
conversations with other people as well, meaning that there are also a lot of edges originating
from person A and arriving at persons from other communities.

7.4.3 Retweeted graph statistics

Finally, we will analyze the results from executing SCD’s algorithm on OBI4wan’s ”retweeted”
graph, as shown in the histograms of Figure 32.

Clustering coefficient The clustering coefficient in Figure 32a shows that the majority of the
clusters have clustering coefficient equal to 1, with the other communities having a clustering
coefficient somewhere between 0 and 1, rather evenly distributed over those other communities
(except for two relatively larger peaks at ranges 0.55-0.60 and 0.70-0.75). Almost all communities
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with a clustering coefficient of one consist of three vertices, with a diameter of two, a TPR of
one and a bridge ratio of zero. These communities could consist of three persons A, B and C,
where person A has retweeted a tweet from person B, and person C has retweeted person A’s
retweet, indirectly also retweeting person B’s tweet. This closes the triangle between A, B and
C (TPR of 1), introduces a ”longest shortest path” (thus the diameter) from person C to B
via A of length 2, and contains no connections to other nodes (bridge ratio of 1). See Figure
xx for a graphical representation of this community. The communities with a smaller clustering
coefficient have the same kind of structure, but contain more vertices.

A

B C

retweeted retweeted

retweeted

Figure 33: An example community of three persons, where person A has retweeted a tweet from
person B, and person C has retweeted person B’s retweet, thereby also indirectly retweeting
person A’s tweet.

TPR Figure 32b shows that the majority of the communities have a TPR of 1. These commu-
nities are already explained above in the clustering coefficient paragraph. There also exist some
communities with a TPR of 0, meaning that there exist no triangles in these communities. These
communities could consists of a person A, who has retweeted tweets from many other persons.
Such a community contains only outgoing edges from person A to other persons, but no edges
between these other persons.

Bridge ratio Figure 32c shows that most of the communities have bridge ratio equal to zero,
meaning that these communities do not have any bridges. This type of community has been
discussed in the paragraph about the clustering coefficient.

Diameter Figure 32d shows that most of the communities have a diameter equal to 2. Again,
this type of community has been discussed in the paragraph about the clustering coefficient.

Conductance Figure 32e shows that the majority of the communities has a conductance higher
than 0.5, with peaks at the range from 0.85 to 0.95. This shows that communities are not very
well isolated. This can be explained by considering a person A, who could be part of many
communities in which one of person A’s tweet has been retweeted by some people (where each
community is based on another of person A’s tweets). There could be a lot of other persons
similar to person A, meaning that communities are not isolated but connected to each other
through such persons.

7.5 OBI4wan data versus LDBC data

The previous sections have shown statistics about the OBI4wan data set, which is a subset of the
real Twitter network. The LDBC data set also claims to be a good representation of a real social
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network, although the type of network that is created by the LDBC DATAGEN is more like a
Facebook network than a Twitter network. Nevertheless, it is worth to compare the statistical
indicators of the OBI4wan data set to those of the LDBC data set. Section 7.5.1 shows how the
LDBC data set from which the structural indicator values can be obtained has been created,
which is based on the configuration used in [68]. Section 7.5.2 compares the structural indicator
values of the OBI4wan friends/followers graph with the LDBC friends graph, where friends are
defined as two people knowing each other.

7.5.1 Creating structural indicators for LDBC

Information about the friends and followers (e.g. two persons knowing each other) is directly
contained in the LDBC data set, in the form of the person knows person relation file. This file
contains - among other data - two person IDs on each line, representing the knows relation (edge)
between two persons. Table 5 shows the average of the five structural indicators discussed in
previous sections.

friends/followers mentions retweets LDBC friends
CC 0.2018 0 0.7807 0.2781

TPR 0.4374 0 0.9320 0.6446
Bridge 0.2867 0.3629 0.0516 0.0209

Diameter 1.9641 2 2.0406 2.0311
Conductance 0.9750 0.7830 0.7513 0.8873

Table 5: Summary of the structural indicators for the OBI4wan friends/followers graph, the
OBI4wan mentions graph, the OBI4wan retweets graph and the LDBC friends graph.

The first three columns are average values for the friends/followers-, mentions- and retweets
graph extracted from the OBI4wan data set, respectively. The final column contains average
values for the knows relation between to persons extracted from the LDBC data set. The LDBC
data set used to obtain these statistical indicator values has been created by setting only the
parameter for the number of persons to a custom value of 150K. The rest of the parameters use
their default values. This recreates the experiments from [68].

Side note To calculate the average numbers for the five structural indicators as shown in Table
5, we have used the SCD algorithm in combination with its CommunityAnalyzer24. The SCD
algorithm creates communities based on a graph input file, where this input files contains one
edge per line. In this case, each line contains a knows relation between two persons, defined by
the IDs of the two persons involved in the relation. The CommunityAnalyzer then takes these
created communities and the original graph input file, and outputs structural indicator values
per community, of which five are shown in Table 5. A problem of the SCD algorithm is that is
cannot handle numbers larger than uint32 t, but some person IDs from the LDBC data set are
larger than that. Therefore, all person IDs have been translated into the uint32 t format, using
the script shown below.

filename = sys.argv[1]

filename = sys.argv[1]

with open(filename) as f:

g = open("output.dat", "wb")

24https://github.com/DAMA-UPC/SCD

73



(a) Clustering coefficient (b) TPR

(c) Bridge (d) Diameter

(e) Conductance

Figure 34: Distribution of the statistical indicators for the LDBC friends graph (based on the
person knows person relationship).

for line in f:

parts = line.split("|")

number1 = ctypes.c_uint32(int(parts[0])).value

number2 = ctypes.c_uint32(int(parts[1])).value

edge = "{0} {1}\n".format(number1, number2)

g.write(edge)

Using the resulting output file, the structural indicator values can be calculated per commu-
nity. The histograms for these values are shown in Figure 34, their average values are shown in
the last column of Table 5.

7.5.2 Comparing OBI4wan data and LDBC data

The following five paragraphs compare the histograms of the OBI4wan friends/followers graph
(see Figure 30) to the histograms of the LDBC friends graph (see Figure 34). Also, the differences
between the average values in Table 5 are discussed. Based on the findings, we can say something
about how realistic (part of) the LDBC data set is compared to a real Twitter friends/followers
graph like the one obtained from the OBI4wan data set.
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Clustering coefficient See Figure 30a for the OBI4wan clustering coefficients and Figure 34a
for the LDBC clustering coefficients. For both histograms, the majority of the communities have
a clustering coefficient close to zero. The difference is that the peak for OBI4wan lies between 0
and 0.05, while the peak for LDBC lies between 0.15 and 0.20. This is also shown by the average
value, which is 0.2018 for OBI4wan and 0.2781 for LDBC. So, the histogram shapes are similar,
but the LDBC histogram is shifted to the right.

TPR See Figure 30b for the OBI4wan TPR values and Figure 34b for the LDBC TPR values.
For both histograms, the majority of the communities have a TPR between 0 and 0.05, or
between 0.95 and 1. The rest of the communities have TPR values divided equally over the
rest of the values between 0 and 1. The highest peak for OBI4wan lies between 0 and 0.05,
while the highest peak for LDBC lies between 0.95 and 1. This difference in peaks is represented
by the average value for TPR, which is higher for LDBC (0.4374 in the case of OBI4wan and
0.6446 in the case of LDBC). So, the histogram shapes are similar, but the peaks on both ends
of the histogram are switched between OBI4wan and LDBC. This means that relatively many
LDBC communities contain vertices which are contained in one (or more) triangles, compared to
OBI4wan communities. In other words: communities in LDBC are more tightly knit together in
LDBC. This translated back to the difference between communities in a Facebook network (to
which the LDBC data set can be compared) and communities in a Twitter network: Facebook
communities tend to be more closely connected than Twitter networks because a relationship
between two persons on Facebook is more like a real friendship than on Twitter (e.g. people
can follow each other on Twitter without knowing each other in real life, because they like the
content of each other’s tweets).

Bridge See Figure 30c for the OBI4wan bridge values and Figure 34c for the LDBC bridge
values. Both histograms have a peak between 0 and 0.05. The OBI4wan histogram also has a
peak between 0.95 and 1, while the LDBC histogram does not have this peak. The missing of
this peak on the right for LDBC might be caused by the translation of person IDs from one data
format to another (see the side note in section 7.5.1, because the histograms for LDBC in [68]
actually does contain this peak. The missing peak does also have a consequence for the average
bridge value, which is higher for OBI4wan than for LDBC (0.2867 and 0.0209, respectively). The
average bridge value in [68] will probably be closer to the OBI4wan value because of the right
peak in the histogram.

Diameter See Figure 30d for the OBI4wan diameter values and Figure 34d for the LDBC
bridge values. For both histograms, the majority of the communities have a relatively low
diameter. The highest peak for OBI4wan is a diameter of 2, while the highest peak for LDBC
is a diameter of 3. The second largest peak for both histograms is a diameter of 0, and both
OBI4wan and LDBC do not have communities with a diameter of 1. The difference between
OBI4wan and LDBC is that OBI4wan contains a few communities with a relatively high diameter,
but the total number of communities with a high diameter is negligible (five with a diameter of
8, two with a diameter of 9 and 2 with a diameter of 14).

Conductance See Figure 30e for the OBI4wan conductance values and Figure 34e for the
LDBC conductance values. For both histograms, the majority of the communities have con-
ductance close to 1. Almost all OBI4wan communities have a conductance between 0.9 and 1,
while LDBC also contains two small peaks between 0.75 and 0.85. This is shown in the average
conductance value, which is higher for OBI4wan (0.9750) than for LDBC (0.8873). A higher

75



conductance means that communities are not very well isolated and based on the two histograms
and average values this is more the case for OBI4wan than for LDBC. Again, this can be re-
lated back to the type of social network of both data sets. The OBI4wan data set is a Twitter
data set, which generally contains a less amount of isolated communities than a Facebook data
set. Facebook communities are more representative of real world communities, in which friends
tend to knit together into a relatively isolated community. Users on Twitter are not necessarily
only connected to their real friends, but also to other persons they find interesting. This makes
communities less isolated from each other.

7.5.3 Conclusion: OBI4wan friends/followers versus LDBC friends

In conclusion, the five histograms for the OBI4wan friends/followers graph and the LDBC friends
graph are rather similar, except for the triangle participation ratio (TPR) and conductance. Both
of these differences can be related back to the type of social network, where the OBI4wan data
set is real Twitter data and the LDBC data set is more a Facebook-like network. Future work
could focus on closing the gap between a Twitter data set and the LDBC data set, primarily
by working on the differences between the two for the TPR- and conductance values. For
both structural indicators, it is important that during the creation of the LDBC data set more
inter-community communication is added, by introducing more relationships between persons of
different communities.

7.6 Research questions

The following research questions have been answered in this section and/or will be answered in
this report.

• Data set: given the structure of the OBI4wan data set or the LDBC data set, what is the
fastest, most efficient, best way to transform the data set to a graph-based format that can
be used by graph databases (Titan)?

• Architecture: what is the best way to store Twitter data in a MonetDB data store?
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8 Benchmarks setup and execution

In this section, the setup and execution of the LDBC benchmarks is described. Section 8.1
shows how the LDBC driver for both Titan and MonetDB has been implemented, giving detailed
information for each query handler that has been written. Section 8.2 describes how the database-
specific implementations have been validated for correctness, using validation sets from the LDBC
validation GitHub repository25. Section 8.3 shows further benchmark setups, for example the
values of various properties that can be specified when running an LDBC benchmark. Section 8.4
shows which benchmarks have been run for both Titan and MonetDB, and details the hardware
specifications of the machines on which the two database backends were implemented and the
benchmarks were run. The results from these benchmarks are analyzed in section 8.6.

8.1 Creating the LDBC Driver

The full Interactive Workload of the LDBC Social Network Benchmark (LDBC SNB IW) con-
sists of 14 complex queries, 7 short queries and 8 update queries. These queries are based on the
social network data that is output by the LDBC DATAGEN, which structure resembles that of
Facebook, meaning it also contains entities like forums on which users post messages, organiza-
tions that people are connected to, interests the person has, etc. Not all of these entities are used
on Twitter, which is the social platform from which the OBI4wan data is collected. In order to
let the LDBC data resemble the data structure of Twitter, some entities and consequently some
queries are taken out from the LDBC benchmark set. After stripping down the LDBC data set
and benchmark queries, the following data and queries remain:

Vertices person, post, comment, tag

Relations comment hasCreator person, comment hasTag tag, comment replyOf comment, comment replyOf post,
person knows person, person likes comment, person likes post, post hasCreator person, post hasTag tag

Complex queries 1, 2, 4, 6, 7, 8, 9, 13, 14

Short queries 1, 2, 3, 4, 5, 7

Update queries 1, 2, 3, 6, 7, 8

For the LDBC SNB IW benchmark to work, each of the remaining queries needs a query
handler. This query handler takes care of receiving data input for the queries (delivered by
LDBC SNB IW substitution parameters during a benchmark run), building up queries for the
respective database system (with the Gremlin language for Titan, and SQL for MonetDB),
executing these queries on the database system and processing the results that the database
system returns. During the construction of the query handlers, a lot of example has been drawn
from existing implementations for Titan and Virtuoso26, which can be found in LDBC’s SNB
implementation GitHub repository27. In addition to the LDBC SNB IW, a few queries from the
LDBC SNB Business Intelligence workload (LDBC SNB BI) have been taken from the GitHub
repository28. Where the IW queries all start from a predefined query, the BI queries consider the
whole graph in their execution. This leads to a graph-centric analysis (for BI), in comparison
to the vertex-centric analysis (for IW). The next subsections will discuss the LDBC SNB IW
query handlers and the LDBC SNB BI query handlers for both Titan and MonetDB. The textual
definitions of all queries can be found in Appendix A.

25See https://github.com/ldbc/ldbc snb interactive validation
26https://github.com/openlink/virtuoso-opensource
27https://github.com/ldbc/ldbc snb implementations/tree/master/interactive
28https://github.com/ldbc/ldbc snb implementations/tree/master/bi/virtuoso/queries/sql
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8.1.1 LDBC SNB IW driver for Titan

Often used constructs Some of the constructs used when constructing query handlers for
Titan come back regularly. These constructs are discussed below. In the details about the various
query handlers, often a reference to a ”global construct” that is discussed here is given.

PipeFunction In Gremlin, a PipeFunction is often used in order to process the results (or intermediate
results) of a query. Gremlin’s filter() and order() functions can use such a PipeFunction
in order to further process (intermediate) results. Consider an imaginary Gremlin query
that contains the following vertices in its result:

Vertex A: {id: 123, firstname: "John", lastname: "Carter"}

Vertex B: {id: 456, firstname: "Sara", lastname: "DeVries"}

Vertex C: {id: 789, firstname: "John", lastname: "Waldorf"}

On this set of results, we could use a filter() function, with as argument the name of a
PipeFunction, for example filter(HAS NAME). The implementation of theHAS NAME
function in Java could look as below.

final PipeFunction<Vertex, Boolean> HAS_NAME = new PipeFunction<Vertex, Boolean>() {

public Boolean compute(Vertex v) {

return v.getProperty("firstname").equals(friendFirstName);

}

};

Each PipeFunction always contains the compute() function, which iterates over all the
vertices that are in the (intermediate) result set. In this specific case, it check for each vertex
in the set if it’s firstname property equals the content of the variable friendF irstName.
If it does, True is returned and the vertex remains in the set, otherwise False is returned
and the vertex is removed from the set.

Getting vertex All vertices in the Titan graph contain a custom vertex ID property, called iid. The syntax
of the iid consists of the vertex type, followed by a dash and then the actual vertex ID:
<type>-<id> (for example person-12345 ). The following Java function retrieves a V ertex
object by its ID and type (t is a variable that points to an instance of the Titan graph).

public Vertex getVertex(long id, String type) {

String vertexId = String.format("%s-%d", type, id);

Iterable<Vertex> vertices = t.getVertices("iid", vertexId);

if (vertices.iterator().hasNext()) {

return vertices.iterator().next();

}

return null;

}

If the getV ertices() function contains vertices, the next object in the set is returned.
Because all vertex IDs are unique, this set can only contain one instance - or zero if the
vertex has not been found, in which case null is returned.
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Friend-of-Friend Some of the LDBC queries require to retrieve all people who are friends or friends-of-friends
of some person. ”Friends-of-friends” are those persons who are two ”knows” relation steps
away from some person - they are the friends of the friends of some person. The basic logic
behind a function that needs to retrieve all friends and friends-of-friends, is to retrieve all
people who are one or two ”knows” relation steps away from some person. The following
function achieves this:

public Set<Vertex> getFoF(long rootId, TitanDb.TitanClient client) {

Set<Vertex> res = new HashSet<Vertex>();

Vertex rootVertex = client.getVertex(rootId, "person");

GremlinPipeline<Vertex, Vertex> gp = (new GremlinPipeline<Vertex, Vertex>(rootVertex));

gp.both("knows").aggregate(res).both("knows").aggregate(res).iterate();

res.remove(rootVertex);

return res;

}

Starting at some person vertex retrieved by the function getV ertex(), the GremlinP ipeline
traverses all friends and friends-of-friends of this person through the double ”knows” re-
lationship construct. Gremlin’s aggregate() function collects and stores all of the (inter-
mediate) resulting vertices in the variable res, which is a Set with Vertex objects. In a
GremlinPipeline, iterating over all (intermediate) results - in this case iterating over all
friends of the start person - must be done manually with the iterate() function.

Adding vertices Adding a vertex to a Titan graph can be done by using the addV ertex() function and
storing the result in a V ertex object. Vertex attributes can then be added to the new
vertex by calling the setProperty() function on the new Vertex object, which accepts two
parameters: the key and the value of the new property. The following method can add a
new vertex to a Titan graph.

public Vertex addVertex(long id, String type, Map<String, Object> properties) {

Vertex v = t.addVertex(null);

if (v == null) {

return null;

}

v.setProperty("iid", getNewVertexId(id, type));

v.setProperty("type", type);

for (Map.Entry<String, Object> p : properties.entrySet()) {

v.setProperty(p.getKey(), p.getValue());

}

return v;

}

This function receives the ID, type and properties (attributes) of the new vertex, and
creates a new vertex with the given ID and properties.

Adding edges Adding a new edge between two vertices in a Titan graph can be done by using the
addEdge() function. This function accepts four parameters: optionally an ID used ”under-
the-hood” by Titan, the outgoing vertex, the incoming vertex and an edge label. When
creating a new edge, the reference to this new object can be stored in an Edge object. On
this new Edge object the function setProperty() can be called, which adds a new property
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(a key and a value are accepted parameters) to the edge. The following method can add a
new edge to a Titan graph.

public void addEdge(Vertex vOut, Vertex vIn, String label, Map<String, Object> properties) {

Edge e = t.addEdge(null, vOut, vIn, label);

for (Map.Entry<String, Object> entry : properties.entrySet()) {

e.setProperty(entry.getKey(), entry.getValue());

}

}

This function receives the outgoing vertex, the ingoing vertex, an edge label and edge
properties, and creates a new edge with this data.

Complex queries

Query 1 This query requires to store the number of steps from one person to another via the
’knows’ relationship, with a maximum of three steps. Storing these number of steps can
be achieved by creating a Set of Vertex objects for each step number, e.g. all vertices that
are reached after 1 step, 2 steps and 3 steps. To store the intermediate steps, we can use
Gremlin’s store() function. Finally, a filter() is used to only store those vertices of which
the firstname property is equal to the value given by the substitution parameters, and
the final result set is ordered ascending by the person’s last name and then the person’s
identifier.

Query 2 Two PipeFunctions are used in this query. The first is a filter() function which filters
out all vertices from an intermediate result set that have a date that is larger than the
maximum date given as a substitution parameter. The second is an order() function which
order the final result descending by creation date and ascending by message identifier.

Query 4 This query finds all tags attached to some post A that were not used in other posts before
post A - with post A’s creator being a friend of some start person that is given by the
substitution parameters. To produce correct results, we need to find to sets of tags: set
A which contains all tags that were used in some person’s posts before date X, and set B
which contains all tags that were used in the post that was created at date X. The final
query then finds all tags from posts that were created by the start person’s friends (set B),
except those tags that were used in earlier created posts (set A). Excluding a set of tags
is possible using Gremlin’s except() function, which accepts a set (of tags) as parameter.
The number of times a tag occurs in the result set can be calculated by using Gremlin’s
groupCount() function.

Query 6 All friends and friends of friends of some start person can be retrieved by using the special
getFoF () function as discussed in the ”often used constructs” paragraph. Starting from
this Set of Vertex objects (persons), the query finds all posts of these persons that contain
the tag given by the substitution parameters. Next, all tags that co-occur with this tag
on the found posts need to be retrieved. We can use Gremlin’s back() function to return
to an earlier position in the graph traversal, while keeping the already found posts and
their tags in memory. This makes it possible to first find all posts with the given tag from
the substitution parameters, and the find all other tags on these posts using the back()
function and the hasNot() function to exclude the tag from the substitution parameters.
In code, this construct looks as follows:
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.as("post").out("hastag").has("name", tagName)

.back("post").out("hastag").hasNot("name", tagName)

Finally, Gremlin’s groupCount() function can be used to count the number of posts that
contain both the tag from the substitution parameters and some other tag.

Query 7 This query retrieves all persons who have liked a post created by some start person that is
given by the substitution parameters. In addition, the query checks whether a person who
has liked a post is friends with (knows) the start person. For this check, a Set with Vertex
objects that contains all friends of the start person is stored. If a result person is contained
in this set of friends, then we know that this person is friends with the start person.

For each person, only the most recent post that this person has liked must be returned.
This can be done by first collecting all posts that a person has liked, and then compare the
creation date of these posts to return the most recent one.

Query 8 This query is relatively straightforward. Starting at some start person given by the sub-
stitution parameters, the query retrieves all comments on messages that were created by
the start person. These comments are stored in a comment variable, and the person who
posted the comment is stored in a commenter variable. Finally, the results are sorted
descending by the comment creation date.

Query 9 All friends and friends of friends can again be retrieved using the special getFoF () function
that has been discussed earlier. The resulting Vertex objects can be stored in a Set called
friends. Starting at those friends, a graph traversal retrieves all messages that were created
by these friends which were posted before a given date. All posts that were posted after
this date can be filtered out by using Gremlin’s filter() function. Finally, the results are
sorted descending by the message creation date.

Query 13 When finding the shortest path between two vertices, one of the challenges is to not visit
the same vertex twice in one graph traversal. This would introduce loops in the traversal,
which never leads to the shortest path in a graph. In other words, during each traversal
iteration, we need to skip those vertices that have been visited before. This can be done
in Gremlin by storing all vertices that have been visited before in a Set of Vertex objects,
which could be called x. The code for such a traversal is shown below:

start.as("x").both("knows").except(x).store(x).loop("x", ...)

Gremlin’s loop() function can contain a total of three parameters. The first parameter is
a reference to the point where the next iteration of the loop needs to start, in this case at
the point that is called x. The second parameter is the stop condition; when this condition
has been reached, Gremlin breaks out of the loop. The third and final parameter can emit
intermediate results to the console. For this query, the second parameter with the stop
condition is important. We need to continue searching for the shortest path until the end
vertex for which is searched has been found. This can occur when either the end vertex
is contained in Set x, or when the current vertex is equal to the end vertex. In code, this
looks as follows (where bundle.getObject() retrieves the current Vertex object):

!x.contains(end) && !bundle.getObject().equals(end);

With this stop condition, the traversal stops as soon as the shortest path has been found.
The length of this path can be returned as the result of this query.
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Query 14 This query is similar to query 13. Again, the shortest path between two vertices must
be found, but there are two differences compared to query 13. We now need to find all
shortest paths and the vertices that are on that path, and we need to calculate a weight
for each path. The strategy for this query is to split the finding of the shortest paths from
calculating the weight of these paths. In other words, we will first find all shortest paths,
and afterwards calculate a weight for each of these shortest paths.

Finding the shortest path works similar as in query 13, with a few differences. A Stack
is kept in memory, which contains the shortest path found until now at the top. If the
graph traversal finds another path that is longer than the current shortest path, this path
is not taken into account for the final result. Another difference is that not only the length
of the shortest path is needed for the final result, but also all vertices which are on this
shortest path. Outputting all vertices on a path can be done by using Gremlin’s path()
function, which outputs the path list.

Finding the weight of all shortest paths can be done by looping through all found
shortest path. For each path, all consecutive vertices on the path are considered. So, in
each iteration (starting at an index of i = 1), vertices i and i − 1 are considered. Two
consecutive persons add to the weight of the path when one of the persons has replied to a
post or comment of the other person. In the first case (reply to a post), 1 is added to the
total path weight, in the second case (reply to a comment), 0.5 is added to the total path
weight. The final path weight is the sum of all replies on posts or comments by each pair
of consecutive persons in a shortest path.

Short queries

Query 1 The first short query just retrieves one Vertex object (a person) from the graph. This can
be done by using the getV ertex() function which has been discussed earlier.

Query 2 This query can be split into two parts. In the first part, the 10 last messages created by
a start person that is given by the substitution parameters are retrieved and stored in a
message variable. The returned messages are sorted descending by their creation date
using Gremlin’s order() function.

In the second part, for each found message the root post in the conversation is retrieved.
Retrieving the root post in a conversation can be found by starting at some message in
the conversation, and traverse back up to the conversation root by following the ”replyOf”
relationship. When a message does not have this relationship, it means it is the root
message in the conversation and that the traverse has completed. In Gremlin, this can be
achieved by using the following piece of code:

message.as("start").out("replyof").loop("start", true, true).as("rootMessage");

This loop keeps traversing up through the ”replyOf” relationship until it does not exist
anymore, and at that moment the current message in the conversation - which is the root
message - is stored in the variable rootMessage.

Query 3 This query finds all friends of a start person as given by the substitution parameters, and
the date at which the friendship started. This required information of both the friend
vertex and the friendship edge. In the Gremlin graph traversal, both entities need to be
stored. Starting from the start person, first the friendship (”knows”) edge is stored by
using Gremlin’s bothE() function, which retrieves all edges originating from or arriving at
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the start person. Next, starting at this set of edges, we can use Gremlin’s bothV () function
to retrieve all vertices which are at the end of the set of edges, in this case being all friends
of the start person. Finally, the results are ordered descending by the friendship creation
date using Gremlin’s order() function.

Query 4 Like short query 1, this query just retrieves one Vertex object (a comment or a post),
which means that we can use the earlier mentioned getV ertex() function again. Because
the substitution parameter only gives an ID to search for, we do not know whether the
message is a comment or a post. This problem can be solved by first trying to find a
comment which has the given ID. When this does not return a Vertex object (e.g. when
the getV ertex() function returns null), the vertex must be a post an we search for the
given ID in combination with ”post” as the vertex type.

Query 5 This query is the same as short query 4, but returns other attributes from a message (post
or comment) than query 4.

Query 7 The result for this query can be found in two steps. First, all comments that are replies to
the start message given by the substitution parameters must be found, ordered descending
by their creation date using Gremlin’s order() function. Then we need to know if the
author of the reply knows the author of the start message. We can figure this out by first
retrieving all friends of the author of the start message, store these friends in a Set, and
then check if an author of a reply is contained in this set of friends. The final challenge of
this query is that the content of a message should be returned. For comments, there exists
only one type of message content (only text), but the content of a post could be textual
(content attribute) or an image (imagefile attribute). We can solve this challenge by first
trying to retrieve the content attribute of a message. If this returns null, then we know
that the message is a post and contains an imagefile attribute, which can then be retrieved.

Update queries The update queries either add new vertex to the graph, a new edge, or both.
For example, the addition of a new comment requires the addition of a new vertex (the comment
itself) and the addition of new edges (to the person who created the comment, and to any tags
that are contained in the comment). Adding vertices and edges in Titan can be done by using the
special addV ertex() and addEdge() function, which have been discussed in the previous ”often
used constructs paragraph”.

8.1.2 LDBC SNB IW driver for MonetDB

Often used constructs

Substitution parameters The LDBC benchmark provides substitution parameters for each query. For MonetDB all
complex- and short queries are specified in separate SQL-files, which are loaded into each
query handler as a String. In order to insert the substitution parameters into those queries,
the queries contain placeholder at the positions where substitution parameter values should
be inserted at runtime. These placeholder always have the same syntax: @ < placeholder >
@. For example, if the substitution parameter for a query contains a person’s ID, the
placeholder in this query is @Person@. The function that transforms a SQL-file to a
String is shown below.

public static String file2string(File file) throws Exception {

BufferedReader reader = null;

try {
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reader = new BufferedReader(new FileReader(file));

StringBuffer sb = new StringBuffer();

while (true) {

String line = reader.readLine();

if (line == null) {

break;

}

else {

sb.append(line);

sb.append("\n");

}

}

return sb.toString();

} catch (IOException e) {

throw new Exception("Error openening or reading file: " + file.getAbsolutePath(), e);

} finally {

try {

if (reader != null) {

reader.close();

} catch (IOException e) {

e.printStackTrace();

}

}

}

}

This function opens the file containing the SQL-code, reads through it line by line, and
appends each line to a StringBuffer object. This returns a String, potentially containing
placeholders. Finally, these placeholders can be replaced by the substitution parameters
by calling Java’s replaceAll() function on the String.

Date formatting All date/time attributes are stored in the MonetDB database as a TIMESTAMP. The date
values that are given by the substitution parameters are a Java Date object, and need
therefore be formatted before they can be used in SQL statements. There are two places
where date formatting is needed: from the substition parameters to SQL strings, and from
a SQL result to a long variable.

– From substitution parameters to SQL strings: Date/time objects from the
substitution parameters are a Java Date object, and should be translated into a SQL
Timestamp object. Furthermore, all Timestamps must be of the GMT time zone.
The following code will transform the substitution parameters into the right format:

SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

TimeZone gmtTime = TimeZone.getTimeZone("GMT");

sdf.setTimeZone(gmtTime);

This creates a SimpleDateFormat object. Finally, the format() function can be called
on this object in order to format a substitution parameter into the correct format.
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– From SQL result to long: Date/time objects are given as a SQL TIMESTAMP
object when they are part of a SQL result. In order to parse such a TIMESTAMP
into a long variable, we can use the following function:

public static Long getTimeStampFromSql(ResultSet queryResult, int columnIndex) {

Calendar calendar = Calendar.getInstance();

calendar.setTimeZone(TimeZone.getTimeZone("GMT"));

Timestamp ts;

try {

ts = queryResult.getTimestamp(columnIndex, calendar);

return ts.getTime();

} catch (SQLException e) {

e.printStackTrace();

return new Long(-1);

}

}

This function creates a Calendar object which is set to the GMT time zone. Then,
the SQL TIMESTAMP is retrieved from the SQL result with the getT imestamp()
function, and the resulting long timestamp value will be formatted into the GMT
time zone.

Timestamp difference Complex query 7 needs to calculate the difference between two timestamps. The function
shown below accepts two timestamps, and returns the number of minutes between these
two timestamps.

CREATE FUNCTION GetTimestampDifference(Timestamp1 TIMESTAMP, Timestamp2 TIMESTAMP)

RETURNS INT

BEGIN

RETURN

(Timestamp1 - Timestamp2) / 60000;

END;

Friendship test A couple of queries need to know whether two persons are friends or not. In SQL terms, this
means that we need to know if the two persons that are given as an input to this function
exists in the person person relationship table. The code for this function is shown below:

CREATE FUNCTION AreTheyFriends(ThisPersonId1 BIGINT, ThisPersonId2 BIGINT)

RETURNS INT

BEGIN

RETURN

SELECT 1 FROM person_person pepe WHERE pepe.personid1 = ThisPersonId1 AND

pepe.personid2 = ThisPersonId2;

END;

Latest likers Complex query 7 needs to retrieve the latest persons that liked a message from some start
person. This data can be retrieved by matching the person from the message person rela-
tion (messagehasCreatorperson) with the person message relation (personlikesmessage).
The code for this function is shown below:
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CREATE FUNCTION GetLatestLikers (ThisPersonId BIGINT)

RETURNS TABLE (personid BIGINT, creationdate TIMESTAMP)

BEGIN

RETURN

SELECT person_message.personid, MAX(person_message.creationdate) as creationdate

FROM person_message, message_person

WHERE

message_person.personid = ThisPersonId AND

message_person.messageid = person_message.messageid

GROUP BY person_message.personid

ORDER BY MAX(person_message.creationdate) DESC

LIMIT 20;

END;

Latest messages Short query 2 needs to retrieve the 10 latest messages for a certain start person, and also
the root message in the conversation of those messages. The best strategy for this query
is to first retrieve the 10 latest messages for the start person, and only search for the
conversation root message for those 10 messages instead of for all found messages created
by the start person. Retrieving these latest messages can be done by using the function
displayed below:

CREATE FUNCTION GetPersonsLastMessages(ThisPersonId BIGINT)

RETURNS TABLE (id BIGINT, imagefile TEXT, content TEXT, creationdate TIMESTAMP)

BEGIN

RETURN SELECT messages.id, messages.imagefile, messages.content, messages.creationdate

FROM messages, message_person

WHERE

message_person.personid = ThisPersonId and

message_person.messageid = messages.id

ORDER BY messages.creationdate DESC

LIMIT 10;

END;

This function accepts a person ID as input parameter, and returns a table with the 10
latest messages (order descending by creation date) of that person. For each message the
id, image file, content and creation date are returned.

Conversation root Short query 2 needs to find the root message in a conversation. The following function can
return this root message, given the ID of a message in a conversation:

CREATE FUNCTION GetMessageConversationRootId (ThisMessageId BIGINT)

RETURNS BIGINT

BEGIN

-- get the type of the current message’s parent

DECLARE ThisMessageType STRING;

SET ThisMessageType = GetMessageType (ThisMessageId);

-- if the type of this message is ’post’,

-- then we have reached the root of the conversation

86



IF (ThisMessageType = ’post’) THEN

RETURN ThisMessageId;

END IF;

-- get the id of the current message’s paren

SET ThisMessageId = GetMessageParentId (ThisMessageId)

-- recursive call to walk to the root of the conversation

RETURN GetMessageConversationRootId (ThisMessageId);

END;

The function is setup as a recursive function, that keeps returning itself until the current
message in the conversation is of type ”post” and therefore the root in the conversation.
This ”post” message is returned by the function.

Complex queries

Query 1 Retrieving all persons who are at most three ”knows” relation steps away from some start
person given by the substitution parameters can be expressed in SQL by using UNION
ALL. Separate SELECT queries can retrieve all persons at 1 step, 2 steps and 3 steps
away, which can then be combined using the UNION ALL statement. This results in
one dynamic table, from which the persons with a first name given by the substitution
parameters can be retrieved.

Query 2 This query retrieves the content of a message, not knowing if this message is a comment
or a post. In the latter case, the content could be both textual (content attribute) or an
image (imagefile attribute). For this query, both attributes are being retrieved, and the
one that is not null is taken as the message’s content.

Query 4 This query retrieves those tags from messages that have not been used in messages that
were posted earlier. In SQL, this can be expressed using the NOT EXISTS statement. The
first SELECT statement selects all tags that occur in posts between two dates from some
start person as given by the substitution parameters. Then, the NOT EXISTS part of the
query retrieves all tags that occur in posts before the timeframe of the first SELECT query,
excluding those from the final result.

Query 6 Retrieving the friends and friends of friends of some start person as given by the substitution
parameters is expressed in SQL by two separate SELECT queries which are combined using
the UNION statement. The first SELECT query selects all directs friends of the start
person, and the second SELECT query selects all friends of friends of the start person.
Using UNION instead of UNION ALL makes sure the final set does not contain duplicate
persons. This ”friends-of-friends” set is then used for the rest of the query, which retrieves
posts and tags based on some tag given by the substitution parameters.

Query 7 In the SELECT part of the query, two functions are used. The first isGetT imestampDifference(),
which accepts two TIMESTAMP objects and calculates the difference between them in min-
utes. The second is AreTheyFriends(), which accepts two BIGINTSs as person ID’s and
checks whether the two persons are friends (e.g. are bound by the ”knows” relationship).
Another function is used to dynamically create a table: the function GetLatestLikers().
This function accepts a BIGINT as a start person’s ID, and returns a table with all persons
who have liked a message that has been created by the start person. This last function has
been introduced, because a dynamic table that is directly written down in a SQL query
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does not support the use of the ORDER BY statement. This workaround (putting the
dynamic table in a separate function) solves this support problem.

Query 8 In order to retrieve the comments on messages of some start person given by the substitution
parameters, we need to use two instances of the message person table (which is the relation
messagehasCreatorperson). The first instance is responsible for the binding between the
start person and the messages this person has posted, and the second instance is responsible
for the binding between a reply message on one of the start person’s messages and the
creator of this reply. In SQL, multiple instances of the same table can be instantiated by
giving both instances a different alias, for example mepe1 and mepe2:

from message_person mepe1, message_person mepe2, ...

Query 9 The first part of this query retrieves the friends and friends of friends of some start person
given by the substitution parameters, which works the same as in complex query 6. The
next step - retrieving all messages (both posts and comments) from this resulting set of
persons is straightforward: binding the persons to the messages they have created using
the message person table (relation messagehasCreatorperson).

Query 13 The algorithm for finding the shortest path in a SQL database system (specifically Mon-
etDB) has been based on the paper ”Using the MonetDB database system as a platform for
graph processing” [61]. This paper has proposed a solution for shortest path graph traver-
sal in MonetDB using a couple of temporary tables which support the shortest path finding
process. These extra tables are called mpath, mpathtotal and mtemp, all containing one
column of type BIGINT representing the ID of a vertex. The algorithm (in pseudo-code)
is shown below.

In the initialization phase, the source vertex (the vertex at which the graph traversal starts)
is inserted in both the mpath and mpathtotal tables. Then, a while loop is started which
only returns if the sink has been found (the vertex that needs to be found in the graph
traversal) or when the mpath table is empty (in which case no new vertices have been
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found in the current iteration, meaning that all vertices have been visited without finding
the sink vertex).

In each iteration of the while loop, the following steps are executed:

1. Find all neighbours of the nodes in mpath, continuing the graph traversal to the next
series of vertices. Store these new vertices in mtemp.

2. Delete all entries from mpath.

3. Insert all vertices in mpath which are in mtemp, but not in mpathtotal. This ensures
that no vertex is visited twice in one graph traversal, eliminating the possibility of
cycles in the traversal (mpathtotal contains all vertices which have been visited at
some time during the current graph traversal).

4. Insert all vertices from mpath into mpathtotal. Because the previous step has ensured
that all vertices currently in mpath are not present in mpathtotal, there will be no
duplicates in mpathtotal after this step.

5. Delete all entries from mtemp.

6. The last step is to check if the graph traversal has terminated, because the sink vertex
has been found or because all vertices of the graph have been visited (e.g. no new
vertices have been found in this iteration, leaving mpath empty).

Query 14 This query is similar to query 13 (finding the shortest path between two vertices), but
with a few additions. First, in this query not only the length of the shortest path must
be calculated, but also all shortest paths and all vertices that are on those paths must be
retrieved. Furthermore, a weight has to be assigned to each path. This weight is calculated
by taking each consecutive pair of vertices (persons) from a path, and add 1 to the total
weight if one of the persons has replied to a post of the other person, and add 0.5 to the
total weight if one of the persons has replied to a comment of the other person.

In order to achieve this in MonetDB, we will again use the extra tables that were introduced
in query 13, but with the addition of two columns for mpath, mpathtotal and mtemp. The
first of these new columns is called cost (data type DOUBLE) and holds the cost of a path.
The cost of a path is calculated after all shortest paths have been found, so it will remain
at a default value during the shortest path finding phase of the algorithm. The second new
column is called pathString (data type String) and holds a comma-separated String of all
the vertices which are currently on the path. The while-loop of query 13 is also executed
in this query, but with a few additions at some steps, as shown below:

1. Each new node that has been found in this step is added to the current pathString
column value, using SQL’s CONCAT structure:

CONCAT(CONCAT(mpath.pathString, ’-’), edges.personid2) AS pathString

Here, the current value of the path String (mpath.pathString is concatenated with the
newly found vertex (edges.personid2). The CONCAT structure is used twice, because
it only supports concatenation of two Strings, while we need the concatenation of three
Strings.

2. No additions to deleting all entries from mpath.

3. Like in query 13, all entries from mpath which are not in mpathtotal are inserted into
mtemp. Checking if an entry is present in mpath but not in mpathtotal is done by
comparing the node column from both tables (which was the only column in the extra
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tables from query 13). All other information (cost and the current pathString) are
then automatically transferred to the mtemp table.

4. No additions to inserting all entries from mpath to mpathtotal.

5. No additions to deleting all entries from mtemp.

6. No additions to check fro graph traversal termination.

When a shortest path has been found, we can retrieve all shortest path of that length
from mpathtotal by retrieving all entries from that table who’s current value of the node
column is equal to the sink node. Each of these entries has found the sink node in the
same iteration (e.g. with the same path length) as the first shortest path that was found,
meaning that all shortest paths will be retrieved from the table.

The next step is to calculate each path’s weight. This can be done by looping through the
set of paths, and calculating a weight for each pair of consecutive vertices in each path (e.g.
starting at an index i of 1, calculating the weight of vertex i and i− 1 in each iteration of
a for loop). The following piece of code shows how to check if one of the person vertices
has created a reply on one of the other person’s messages, which would add the value of 1
to the current weight of the path:

-- reply of p2 to post of p1

SELECT COUNT(*) AS weight

FROM post_person pope, comment_post copo, comment_person cope

WHERE

pope.personid = Source AND

pope.postid = copo.postid AND

copo.commentid = cope.commentid AND

cope.personid = Sink

UNION ALL

-- reply of p1 to post of p2

SELECT COUNT(*) AS weight

FROM post_person pope, comment_post copo, comment_person cope

WHERE

pope.personid = Sink AND

pope.postid = copo.postid AND

copo.commentid = cope.commentid AND

cope.personid = Source

The two SELECT statements will find all replies of a person to a post of the other person,
and counts the number of replies (e.g. adding the value of 1). The structure for replies
on comments works in a similar way, but then the COUNT(*) value is multiplied by 0.5
to ensure a weight of 0.5 for each reply on a comment. UNION ALL is used instead of
UNION to allow for duplicate weight values.

Short queries

Query 1 Retrieving a person based on an ID given by the substitution parameters is simply done
by using a SELECT on the person’s ID.

Query 2 This query uses the GetPersonsLastMessages() function which has been discussed in the
”often used constructs” paragraph in order to get the 10 latest messages created by a
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start person as given by the substitution parameters. Of these 10 messages, also the root
message in the conversation is retrieved. The benefit of using a function to retrieve the 10
latest messages and returning them in a temporary table is that we need to find the root
message in the conversation for only those 10 messages, and not for all messages created by
the start person. Also, the GetMessageConversationRootId() function is used to retrieve
the root message in a conversation, given the ID of a message in a conversation.

Query 3 All information to retrieve a person’s friends and the date at which they became friends
can be retrieved from the person person table (relation personknowsperson). Given a
start person by the substitution parameters, this person is person A in the relation table,
the friend is person B in the relation table, and the date at which they became friends is
in the creationdate table.

Query 4 A message could have textual content (content property) or an image (imagefile property)
as its content. The SQL query tries to retrieve both, and the query handler determines
which one contains the actual content value.

Query 5 Retrieving a message’s author based on the message ID can be done by using themessage person
table (relation messagehasCreatorperson). The message ID is the message-part of the ta-
ble, the person ID is the person-part of the table. Getting the author’s name involves
retrieving a person entry from the persons table by the person’s ID.

Query 7 Determining whether two persons (where one person is the creator of a message, and the
other person is the creator of a reply on that message) are friends can be achieved by using
the earlier discussed AreTheyFriends() function. Retrieving a message as given by the
substitution parameters and getting the comments on that message is straightforward.

Update queries The update queries add new vertices and/or new edges to the SQL tables,
which just requires a simple INSERT INTO statement. Because posts and comments are com-
bined in a message table in the MonetDB database (the type of the message - post or comment
- is determined by a column in this messages table), an insert of a post or comment needs an
INSERT INTO both the posts/comments table and the messages table. The same is true for
edges, for example an INSERT INTO the comment post table also needs an INSERT INTO the
comment message table.

8.1.3 LDBC SNB BI driver

The LDBC SNB benchmark does not only contain vertex-centric queries - as in the Interactive
Workload described before - but also graph-centric queries. These queries are combined in the
Business Intelligence (BI) workload. At the time of writing, there exists only a Virtuoso SQL
implementation of the BI queries - there is no detailed explanation of what each query is designed
to do. Based on this existing SQL implementation, the list below shows the textual description
for each of the BI queries that have been used in this research, from the perspective of MonetDB
(e.g. as SQL queries). Because the data set from the LDBC DATAGEN has been stripped down,
only the BI queries that contain the entities that remain are taken out from the complete set of
24 BI queries.

Query 3 This query measures the frequency of tag use in two consecutive months, and calculates
the difference between these tags. The 100 tags that differ the most in frequency are taken
as the result for this query. This query is executed by fetching frequency data for both
months in two sub-queries, where in each sub-query the frequency of each unique tag is
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calculated. The counts per tag in the two sub-queries are then distracted from each other
to retrieve the difference.

Query 6 This query retrieves all messages (either posts or comments) created by persons which
contain a given tag. It then calculates the total number of likes that each person received
on those messages, and calculates a score based on the number of posts, the number of
comments and the number of likes. The result is given by the top 100 persons, ordered
by this score. This query is executed by first retrieving all messages from persons which
contain the given tag and then summing up these intermediate results, grouped by persons.

Query 7 This query retrieves the 100 persons that received the most likes on messages that contain
a given tag. This query is executed by first retrieving all messages that contain the given
tag (grouped by person), and then retrieves and counts all likes that were received on these
messages. Finally, the messages are joined with the persons who created them in order to
deliver the final result of the most liked persons for a given tag.

Query 8 This query retrieves the top 100 most used tags that are used in comments that reply to a
post containing a given tag. This query is executed by retrieving all comments that were
created in reply to a post with the given tag, where the comment does not contain the
given tag. Then, all other tags that were used in the comments are retrieved, grouped and
counted for the final result.

Query 12 This query retrieves the 100 most liked persons, defined by those persons who received the
most likes on their created messages, given that these messages were created after a given
date. Only the messages that received more than 100 likes are considered. This query
is executed by retrieving all messages that received more than 100 likes and were created
after the given date, and then retrieving the persons who posted these messages.

Query 18 This query retrieves the number of messages created by each person after a given date,
and shows per number of messages how many persons have created that many messages.
This results in a histogram containing the number of persons that have created a certain
number of messages. This query is executed by retrieving the number of messages created
by each person after the given date, and then grouping the results on the count of persons
that have created a certain number of messages.

Query 20 This query retrieves the frequency of each tag in messages. This query is executed by
retrieving all tags from created messages, and grouping them per unique tag.

8.2 Validating the LDBC SNB IW driver

Custom database implementations must be validated for correctness before the LDBC bench-
marks start. Currently, there exist two validation sets on the LDBC SNB Interactive validation
GitHub repository29. Both validation sets contain the output from the LDBC DATAGEN (in-
cluding substitution- and update parameters), and a file (called validation params.csv) which
contains the expected results of the benchmark run.

The LDBC benchmark configuration contains a special property called validate workload.
When this property is set to true, the data set that is loaded into the database under test is
checked for validity. In addition, the property validate database must be set to the location of
the validation params.csv file. Finally, the ldbc.snb.interactive.parameters dir should point to a

29https://github.com/ldbc/ldbc snb interactive validation
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directory which contains the substitution- and update parameter files. If preferred, the update pa-
rameters could be put into another directory and pointed to by the ldbc.snb.interactive.updates dir
property. See the earlier mentioned LDBC validation repository on GitHub for more information
and for the exact configuration files.

8.2.1 Stripping down the validation set

In order to make the LDBC data created by the LDBC DATAGEN look more like Twitter
data, the output from the generator has been stripped down as discussed in section 8.1. The
consequence is that also the expected result set from the validation params.csv file has to be
stripped down, so that it only contains those results that can be output by the stripped down
data set. Otherwise, the validation set would incorrectly mark results as wrong because the
data that should have been returned simply does not exist in the stripped version of the LDBC
DATAGEN data set.

A script has been written that strips down the validation set to contain only those results
contained in the stripped down LDBC DATAGEN data set. The script accepts the original
validation params.csv file, and outputs the stripped down version of this file. The script iterates
over all LDBC queries (complex, short and update), and only keeps those query result parameters
which are supported by the stripped down LDBC DATAGEN data set. All LDBC queries which
are not touched by the scripted are assumed to be non-existent in the stripped down LDBC
DATAGEN data set and are removed completely.

For example, complex query 1 only supports the three parameters ID, firstname and lastname
in the stripped down version. The following piece of code calls a function which accepts the
substitution parameters, the expected result, the result parameters to keep and the query that
is currently processed:

set_updated_validation(params, result, [0, 1, 2], ’query1’)

Then, a new list with results is created, called new results. This list will contain only those
result properties which are at an index given as an input to the function (the keep input param-
eter). Finally, the results are written to the stripped validation params.csv file. The function
with the code containing the aforementioned is shown below:

def set_write_query(params, result, keep, query):

query_name = params.pop(0)

new_results = []

for index, item in enumerate(result):

if index in keep:

new_results.append(item)

new_results.insert(0, query_name)

write_to_file(new_results, result)

8.2.2 Validating the Titan and MonetDB drivers

With all configuration files setup correctly, the validation run of the LDBC benchmark can be
executed by using the following command:

java -cp target/jeeves-0.2.jar com.ldbc.driver.Client

-P validation/validate.properties -P <any-other-properties-file>
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The jeeves-0.2.jar file contains the Java executable with the LDBC benchmark code. The
class from this executable that is executed is com.ldbc.driver.Client. Then, the validation con-
figuration properties file is given as an input parameter. Finally, any other extra properties file
can be given as an input, for example a properties file containing information that is needed
for connection to the database under test (e.g. the database address and port number, login
information, etc.).

When the validation run is successful, a ”success”-message is shown, together with all the
executed queries. See the example output below.

***

Successfully executed 28 operation types:

4 / 4 LdbcQuery10

4 / 4 LdbcQuery11

...

***

Missing handler implementations for 0 operation types:

***

Unable to execute 0 operations:

***

Incorrect results for 0 operations:

***

Client Database Validation Successful

If one (or some) of the queries did not return the expected result, then the validation run is
marked as ”failed”. The queries for which the actual result is not equal to the expected result
are stored in two files: a file containing the actual result for the query, and a file containing the
expected result for the query. These two files can then be used by the developer in order to find
out what went wrong, so that any errors can be fixed.

When the validation run has been successful, the actual LDBC benchmark can be run on the
database under test.

8.3 Benchmark set-up

Before the LDBC benchmark can be executed on both Titan and MonetDB, various configuration
files and property files have to be setup correctly. The LDBC validation configurations as shown
on the LDBC validation GitHub repository [42] have been taken as a starting point for the
configuration of Titan and MonetDB. Some of the configuration parameters have the same values
for Titan and MonetDB, others are slightly different.

The following subsection shows the general configuration for both Titan and MonetDB, and
afterwards two subsections show the specific configuration for Titan and MonetDB.

8.3.1 Setting up the general benchmark configuration

Both Titan and MonetDB have a properties file that is called workload.properties. This file
contains information about the actual workload that is used in the LDBC benchmarking process,
the location of the database implementation class, the parameter directories for the substitution
parameters and the update parameters, the amount of short queries compared to the amount
of complex queries, the frequency of each of the complex queries, and the complex-, short- and
update queries that should be enabled for the benchmark. The paragraphs below discuss these
configuration parameters in more detail.
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workload value: com.ldbc.driver.workloads.ldbc.snb.interactive.LdbcSnbInteractiveWorkload
Contains the path of the workload class that will be used in the LDBC benchmark run.

Apart from the SNB Interactive Workload, other (future) versions of the LDBC Social Network
Benchmark (SNB) could contain other types of workload, such as the Business Intelligence
Workload or the Graph Analytics Workload. More information about the various types of SNB
workloads can be found on the LDBC website30.

database value: com.ldbc.driver.workloads.titan/MonetDB.db.TitanDb/MonetDb
Contains the path to the class containing the specific database implementation, for Titan or

for MonetDB. This database implementation contains code to connect to the Titan- or MonetDB
database, code to maintain this connection over multiple query executions and some other code
needed for database operations. In other words: this configuration parameter points to the
database under test.

ldbc.snb.interactive.parameters dir value: substitution parameters directory
Contains the (local) filepath to the directory containing the substitution parameters for the

current workload. The LDBC DATAGEN outputs these substitution parameters together with
the rest of the benchmark data. The substitution parameters are variables inserted into the
benchmark queries at runtime.

ldbc.snb.interactive.updates dir value: update parameters directory
Contains the (local) filepath to the directory containing the update parameters for the cur-

rent workload. Like the substitution parameters, the update parameters are output by LDBC
DATAGEN together with the rest of the benchmark data. The update queries use the update
parameters to insert new records in the database under test.

ldbc.snb.interactive.short read dissipation value: 0.2
Contains the short reads random walk dissipation rate, a value between 0 and 1. A value

closer to 1 means fewer random walks and therefore fewer short reads. The value 0.2 is the
default value.

ldbc.snb.interactive.LdbcQueryX freq value: default
Contains the frequency of complex queries upon benchmark execution time. A higher number

means that more update queries are executed in between the complex queries. This value should
be set for all uses complex queries. For the benchmark runs in this research, the default values
have been chosen.

ldbc.snb.interactive.LdbcQueryX enable value: true or false
Defines whether or not a certain query is executed during benchmark runs or not. For this

research, all queries that support the stripped down data set are executed. See section 8.1 for an
overview of the supported queries. This value should be set for all complex-, short- and update
queries.

Another type of configuration file that is set for both Titan and MonetDB are the files ldbc driver monet.properties
and ldbc driver titan.properties. These files configure the LDBC driver itself. The paragraphs
below show these driver configuration options in more detail, also showing the used setting for
the benchmark runs in this research.

30http://ldbcouncil.org/benchmarks/snb
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status value: 5
Time interval (in seconds) at which to show information about the current benchmark run.

An example of such an information line is shown below:

5668 [WorkloadStatusThread-1443340504544] INFO

com.ldbc.driver.runtime.WorkloadStatusThread - Runtime [00:00.191.000 (m:s.ms.us)],

Operations [4], Last [00:00.041.000 (m:s.ms.us)],

Throughput (Total) [20.94] (Last 0s) [20.94]

This line contains information about the time in milliseconds into the benchmark run (here:
5668), the elapsed time from the benchmark data point of view (e.g. looking at the timestamps
contained in the benchmark data, here: Runtime [00:00.191.000 (m:s.ms.us)]), the number of
operations executed up until this point (here: Operations [4]), the execution time of the last
operation (here: Last [00:00.041.000 (m:s.ms.us)]) and the total- and last operation throughput
(here: Throughput (Total) [20.94] (Last 0s) [20.94]).

thread count value: 24
The number of threads used by the LDBC benchmark. The number of threads defines how

many operations can be thrown at the database under test concurrently. In this case, the
LDBC benchmark can run 24 threads, meaning that 24 different operations can be executed
concurrently. For testing purposes, this value could be set to 1 in order to execute operations
one at a time.

name value: LDBC
Name that is given to the benchmark run.

results dir value: results directory
Local filepath to the directory that will contain the results of the LDBC benchmark run. This

directory will eventually contain three result files: (1) a file containing the actual benchmark
results (e.g. for each query the number of times it has been executed, the minimum-, maximum
and mean execution times, etc.), (2) a file containing the execution log, only if the configuration
parameter shown below (results log is set to true) (with - in order - all the queries that have
been executed) and (3) a file containing the configuration for the benchmark run.

results log value: true
If set to true, the benchmark outputs the benchmark log file as shown above (see the paragraph

about the results dir configuration parameter).

time unit value: MILLISECONDS
Time unit in which to measure benchmark execution times. This configuration parameter can

be set to one of the following values: NANOSECONDS, MICROSECONDS, MILLISECONDS,
SECONDS or MINUTES.

time compression ratio value: 1.0E-4
When this configuration parameter is set to 1, then all operations in the benchmark are

executed exactly at their timestamp value. A value between 0 and 1 speeds up the benchmark,
a value bigger than 1 slows down the benchmark (e.g. a value of 0.5 executes the benchmark
operations two times faster; a value of 2 executes the benchmark operations two times slower).
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validate workload value: false
If set to true, the benchmark is run in validation mode, to check whether the current query

implementation is correct for the database under test. If set to false, the ”default” benchmark
is executed.

workload statistics value: false
If set to true, extra statistics about the benchmark workload are calculated, such as the

operation mix.

spinner wait duration value: 0
Contains a time value (in milliseconds) specifying how long the benchmark should wait be-

tween each iteration in a busy wait loop. When set to a value larger than zero, this configuration
parameter can take some load off the CPU.

ignore scheduled start times value: false
If set to true, the benchmark does not take into account the actual query start times, but

just executes all queries as fast as possible. If set to false, the actual start times are considered
when running the benchmark.

In addition to the configuration parameters described above, Titan and MonetDB have some
database-specific configuration parameters that must be set for a correct benchmark run. These
parameters are discussed in the next two paragraphs.

8.3.2 Titan-specific configuration parameters

Titan contains one additional configuration file, that specifies some parameters for the Titan
graph database. This file is called titan.properties, and its content is shown below:

storage.backend=cassandra

storage.hostname=192.168.64.205

index.search.backend=elasticsearch

index.search.hostname=192.168.64.205

index.search.elasticsearch.client-only=true

cache.db-cache=true

cache.db-cache-clean-wait=20

cache.db-cache-time=180000

cache.db-cache-size=0.25

The first two sets of configuration parameters contain address information about the storage-
and indexing backend used, in this research Cassandra and ElasticSearch. The final set of
configuration parameters contain cache settings, namely (1) enabling the cache, (2) setting the
time to wait before cleaning the cache after the maximum caching time has expired, (3) setting
the maximum cache time and (4) setting the maximum cache size as a percentage of the heap
space.
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8.3.3 MonetDB-specific configuration parameters

MonetDB also contains one additional configuration file, that contains authentication credentials
for the MonetDB database instance. This file is called MonetDB.properties, and its contents are
the username and password for the MonetDB database instance.

8.4 Running the benchmarks

The LDBC benchmarks are executed on machines of CWI’s SciLens cluster. The CWI is the
Dutch centre for mathematics and computer science (Centrum voor Wiskunde en Informatica).
The SciLens cluster is built to handle massive amounts of data for research purposes. The cluster
consists of various machine types with different configurations, named diamonds, stones, bricks,
rocks and pebbles31. The LDBC benchmarks in this research are using two of these machines
types: the bricks machines for running the LDBC benchmark on a Titan graph database, and the
diamonds machines for running the benchmark on a MonetDB database. In Titan’s case, some
of the benchmarks use multiple brick instances in a distributed setting, while MonetDB only uses
a single-machine architecture with just one diamond machine. The LDBC benchmark driver is
located on another bricks machine, which is not the same machine (or machines) on which the
Titan graph database is located. The specifications of the diamonds- and bricks machine are
listed in Table 6.

Machine name diamonds bricks

CPU
GenuineIntel

96 cores
2.4GHz (2.9GHz turbo)

GenuineIntel
32 cores

2.0GHz (2.8GHz turbo)
Memory 1024GB (1TB) 256GB

Disk 4x2TB
4x2TB (HDD)

8x128GB (SSD)

Network
2x10GB/s (ethernet)

4x40GB/s (infiniband)
1GB/s (ethernet)

40GB/s (infiniband)

Table 6: Machine specifications of the diamonds and bricks machines of CWI’s SciLens cluster.

The following to subsections provide more information about running the LDBC benchmark
on Titan and MonetDB.

8.4.1 Running the Titan benchmark

The Titan graph database is located on one or more bricks machines from the CWI SciLens
cluster. Benchmarks have been executed for Titan with one Cassandra backend, four Cassandra
backends and eight Cassandra backends. For this research, version 0.5.4 of Titan (with Hadoop
version 2) has been used.

Titan problems Up until a scale factor of 10, benchmarks have been executed on Titan
without any problems other than the increasing amount of time the benchmarks took for each
higher scale factor. However, loading data for the benchmark on scale factor 10 - and especially
benchmarks on scale factor 30 or higher seems to be problematic for Titan. The problems arise
at the moment Hadoop writes edges to the graph, which is the final part of the Hadoop process

31See https://www.monetdb.org/wiki/Scilens-configuration-standard
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as detailed in section 6.4.2. While most of the reduce jobs succeed in writing their edges to
the Titan graph, there are some reduce jobs which seem to have difficulty doing this. Based
on the type of data that is loaded into the graph (a social network), the reasoning about why
some of the reduce jobs are slow could refer back to the fact that social networks are hard to
evenly distribute over multiple locations. Each social network contains some vertices which have
a relatively high in- and/or out-degree compared to other vertices. Reducers that have the task
of loading exactly the edges for those vertices into the graph have to do relatively more work
than other reducers, which could be the reason for being relatively slow.

One solution could be to distribute the edges more evenly over the available reducers, so that
each reducer receives more or less the same amount of work. In theory, this would then eliminate
the slow reducers. Titan dedicated a special chapter of its documentation on partitioning the
input data in such a way that the data is more evenly distributed, using cluster partitioning
[45]. When the cluster.partition configuration parameter is set to true, elements of the graph are
randomly distributed across the cluster. The cluster.max-partitions configuration parameters can
then be set to represent the number of virtual partition blocks that will be created. According
to the documentation, this number should be roughly twice the number of backend instances
used to store the graph. Finally, the ids.flush configuration parameter should be set to false
for graph partitioning to work correctly. Setting this parameter to false delays the assigning of
IDs to vertices and edges to the moment when the transaction commits, instead of assigning
immediately upon creation. This prevents the assignment of all edges which are connected to
the same vertex to the same reducer job based on the vertex ID, introducing the high load on
one reducer as discussed earlier.

While this solution could work in theory, practice shows that it does not. The same problem
arises, and there are still reducers who seem to receive more work than others. Both with and
without the graph partitioning detailed above, some of the slow reducers finish with an I/O
exception, not able to committing the transaction due to an exception during persistence of the
graph data:

Error: java.io.IOException:

Could not commit transaction due to exception during persistence

In the end, this error can be related back to an OutOfMemoryError for the java heap space
in Cassandra:

Caused by: java.lang.OutOfMemoryError: Java heap space

In an attempt to overcome this problem, the heap size of the Cassandra backend instances has
been increased manually. First to the maximum heap size as posed by Cassandra, which is 8GB.
When the heap space is set higher, this could give problems with the Java garbage collection
and the Operating System’s page cache [46]. However, when the 8GB heap size did not solve the
problem, the java heap size has been set to a value of 64GB, which is 1/4th of the total amount
of memory available on the used machines. Unfortunately, this too did not solve the problem of
slow reducers.

8.4.2 Running the MonetDB benchmark

The MonetDB database is located on a single diamonds machine from the CWI SciLens cluster.
For this research, version 11.21.5 of MonetDB has been used.
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MonetDB problems Up until a scale factor of 10, benchmarks have been executed on Mon-
etDB without any problems other than the increasing amount of time the benchmarks took for
each higher scale factor. However, executing benchmarks on MonetDB of scale factor 30 or
higher introduced problems regarding the total execution time. According to the specifications
of the LDBC benchmark [73], benchmarks have to cover at least two hours of benchmark data
(e.g. based on the timestamps of the messages in the benchmark, there should be at least two
hours between the first and last message). This matches with an operation count (e.g. the total
number of operations that will be executed during the benchmark), for example an operation
count of 2̃75.000 for scale factor 30. However, when executing the SF30 benchmark on Mon-
etDB, the query execution time for some queries rose up to a level where it would take hours
to complete, or not complete at all due to a timeout. The shortest path queries (query 13 and
14) are two examples of such queries. Even when lowering the operation count to a level where
all queries are executed at least once (too low operation counts skip some queries due to their
interval settings), the query execution times were still way above a reasonable execution time.

Efforts have been taken in order to try and reduce the execution times for MonetDB. Initially,
the tables created in MonetDB did not have an explicitly defined primary key, which caused
MonetDB to sometimes create query plans which were not optimal. For example, the best query
plan for queries starting at a single vertex is to narrow down the total amount of data to the scope
of this single vertex, instead of to some other column. Setting primary keys helps MonetDB to
create this optimal query plan. Furthermore, initially some of the queries did some unnecessary
work regarding the joining of tables. For example, when tables have already been joined in a
sub-query, there is no need for another join between the same tables in the final part of the
query. These unnecessary joins have been eliminated in the course of this project. However,
these efforts have not led to (significantly) faster execution times.

8.5 Introducing Virtuoso

Sections 8.4.1 and 8.4.2 shown that both Titan and MonetDB have some problems regarding
loading data (Titan) and running benchmarks on this data (MonetDB), especially as the amount
of data grows larger. Therefore, while both systems could in theory be used on relatively small
amounts of data, they are not (yet) suitable for use with larger amounts of data. To find a
solution for this, we have taken a quick look at another database system which has also executed
the LDBC data set and -benchmarks. This system is Virtuoso, which has been described earlier
in section 3.5.2.

Virtuoso’s implementation of the LDBC data set and -benchmark can be found on GitHub
[47]. This page shows how Virtuoso can be installed on a Linux environment, and contains scripts
that can be used to load LDBC data sets into a Virtuoso database. In addition to Titan and
MonetDB, the LDBC benchmarks have also been executed on the same scale factors as used for
Titan and MonetDB (scale factors 1, 3 and 10). Without going into further details of Virtuoso
and how this database system works internally (which is outside the scope of this report), the
Virtuoso benchmarks add another platform to the comparison of (graph) database systems.

8.6 Analyzing benchmark results

The next subsections contain the results of the LDBC benchmark runs for both Titan and
MonetDB. First, a general analysis is given per query type, regardless of the scale factor. Then
a specific analysis is provided per scale factor for remarks that do not fit in the general analysis.
For each scale factor, graphs show the number of queries executed in total (count), the mean
execution time per executed query in milliseconds (mean) and the min- and max execution times
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per executed query in milliseconds (min/max ). The JSON output that contains all these values
is also added for reference. The graphs and JSON output can be found in appendix B.

8.6.1 LDBC SNB IW benchmark, general analysis

For each query type (complex, short or update), there are some general remarks about the
obtained results for MonetDB and Titan, regardless of the scale factor. For example, there
might be queries which are always performing slower/faster on one database system compared
to another database system. This general analysis is given in the paragraphs below, where each
paragraph discusses the queries of one query type.

Complex queries Four of the complex queries have significant different execution times be-
tween MonetDB and Titan: queries 6, 9, 13 and 14. On the first two queries, Titan performs
significantly slower than MonetDB. On the second two queries, MonetDB performs slower than
Titan, although the difference is less significant then for the first two queries.

Both query 6 and query 9 require to retrieve the friends and friends-of-friends of some start
person. Titan’s implementation of these queries requires two separate graphs traversals: the first
retrieves all friends and friends-of-friends, and the second uses this subset as the starting point
for the rest of the query. The set with friends-of-friends can become a relatively large subset of
data, which in combination with the two separate graph traversals might be the cause of Titan’s
slow execution.

Query 13 and query 14 are both shortest path queries, trying to find the length of the shortest
path (query 13) or all shortest paths and their weight, defined by some algorithm (query 14).
For both queries, MonetDB performs less well than Titan, and the difference in execution time
is getting bigger when the scale factor increases. This shows that ”real” graph queries like a
shortest path algorithm do not perform very well on a relational/column database system like
MonetDB, while a dedicated graph database like Titan - which should be optimized for this type
of queries - performs relatively well.

Virtuoso is performing better on all complex queries than both Titan and MonetDB. Titan
is only faster than Virtuoso in executing query 7 on scale factor 1, and is on par with Virtuoso
on the same query on scale factor 3.

Short queries On all scale factors, the short queries perform significantly better on Titan than
on MonetDB, up to multiple orders of magnitude (four orders of magnitude for short query 1 on
scale factor 1, and even five orders of magnitude for short query 1 on scale factor 3). What is
also important to note, is the fact that there is a large gap between the minimum and maximum
execution times on MonetDB. The minimum execution time is comparable to the mean execution
time on Titan, while the maximum execution time is up to three orders of magnitude higher than
the minimum execution time. The fact that multiple threads (24 in total) are executing queries
at the same time might an explanation for this large gap: the maximum execution times might
be measured at periods of high load, causing queries to have a higher-than-average execution
time.

Virtuoso is faster than both Titan and MonetDB on short queries 2 and 3, and on par with
Titan on the other short queries. When there are differences between Titan and Virtuoso on
those other short queries, then the differences are not significant.

Update queries Like with the short queries, Titan performs faster on all update queries than
MonetDB, although the differences are not always as big as with the short queries. The most
expensive update queries for MonetDB are queries 1 and 7, which have the most significant
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differences compared to Titan. Both of these queries require the insertion of one or more new
edges, besides the insertion of a new vertex.

Query 1 inserts a new person vertex into the database, and consequently also all edges from
this new person to other persons (e.g. knows relations between persons). There could be more
than one person that the new person knows, possibly requiring multiple edge insertions.

Query 7 inserts a new comment vertex into the database, and consequently also the edge
from this new comment to the person who created the comment (e.g. the hascreator relation),
and the edge to the post to which the comment is a reply (e.g. the replyof relation). In other
words, both query 1 and query 7 require inserts into multiple tables (at least two for query 1,
and two for query 7), which causes relatively much trouble for MonetDB. Also query 6, which
inserts a new post, requires the insertion into multiple tables: the table holding all posts and the
table holding the hascreator relationship. However - while query 6 is slower on MonetDB than
on Titan - the difference in execution time between MonetDB and Titan is not as significant as
for queries 1 and 7.

Virtuoso is on par with Titan on update queries 2, 3, 6 and 7, and slower than Titan on
update queries 1 and 8. Virtuoso is faster in all update queries than MonetDB.

Titan Cassandra backends Titan claims to be a scalable graph database system, meaning
that it supports multiple backend nodes where graph data can be stored. In the case of this
research, these backends are Cassandra instances. All executed benchmarks have been executed
on Titan using one Cassandra backend, four Cassandra backends and eight Cassandra backends.
The results of these three benchmarks per scale factor are bundled into graphs for the complex-
, short- and update queries (see Appendix B.1. In theory, spreading the data over multiple
backends means that every backend has to do less work regarding the retrieval of a result for
a query. However, the downside of multiple backends is that they need to communicate with
each other and combine data from multiple locations in order to obtain the final result for a
query. Multiple backends are then only faster than a single backend when the benefit of doing
less work weights bigger than the downside of communication and data combining. The graphs
in Appendix B.1 show that this is not the case: the more Cassandra backends that are used, the
longer it takes for queries to complete. In other words, queries lose more time in communication
and data combining than they win in sharing the work over multiple locations. The main reason
for this is that the data in the graph is social network data, which is very hard to distribute over
multiple locations without introducing edge cuts32, thereby introducing many communication
between the backends.

8.6.2 LDBC SNB IW benchmark, SF1 specific analysis

The results of the LDBC SNB Interactive Workload (IW) benchmark on scale factor 1 (SF1) can
be found in the following three figures in appendix B:

• Complex queries: see Figure 35

• Short queries: see Figure 36

• Update queries: see Figure 37

8.6.3 LDBC SNB IW benchmark, SF3 specific analysis

The results of the LDBC SNB Interactive Workload (IW) benchmark on scale factor 3 (SF3) can
be found in the following three figures in appendix B:

32A cut edge is an edge whose endpoints are location on different machines.
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• Complex queries: see Figure 41

• Short queries: see Figure 42

• Update queries: see Figure 43

The results of scale factor 1 show that complex query 14 is around 1.5 times slower on
MonetDB than on Titan. For scale factor 3, the same query performs more than 27 times
slower on MonetDB than on Titan, which is a significant difference. The fact that MonetDB
is not optimized for real graph queries like finding all shortest paths and their weights is really
beginning to show when the scale factor increases: an increase in scale factor of 3 causes an
increase in execution time of 18.

8.6.4 LDBC SNB IW benchmark, SF10 specific analysis

The results of the LDBC SNB Interactive Workload (IW) benchmark on scale factor 10 (SF10)
can be found in the following three figures in appendix B:

• Complex queries: see Figure 47

• Short queries: see Figure 48

• Update queries: see Figure 49

8.6.5 Conclusions about LDBC SNB IW

While some of the complex queries are performing better on MonetDB than on Titan, the major-
ity of the queries (including short queries and update queries) are performing significantly better
on Titan. The shortest path traversals (complex queries 13 and 14) are becoming significantly
slower on MonetDB compared to Titan with each increase of scale factors. The same is true
for the short- and updates queries. In a real-world scenario most of the queries executed on a
database system that holds a social network are short- and update queries, while the complex
queries are executed much less. Therefore, when choosing between MonetDB and Titan as the
database system in an interactive workload scenario, Titan is the best choice.

8.6.6 LDBC SNB BI benchmark on MonetDB on SF1, SF3 and SF10

The results of the LDBC SNB BI benchmark on scale factor 1, 3 and 10 (SF1, SF3 and SF10)
for MonetDB can be found in Figure 53 in appendix B.

8.7 Research questions

The following research questions have been answered in this section and/or will be answered in
this report.

• Benchmarks: how can one benchmark be executed on both a graph database (Titan) and
a column database (MonetDB) without introducing any kind of advantage/disadvantage for
one of the database types (e.g. because of how benchmarks can be expressed in queries, you
do not want to lose performance or precision because the query language lacks expression)?
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– Because Titan and MonetDB cannot use the same query language, one can never
exclude all advantages/disadvantages of one database system compared to another.
For example, the graph query language Gremlin (used by Titan) is more suitable for
graph-like queries, while SQL (used by MonetDB) is more suitable for transactional
queries.

• Data: which part of the data that is output by the LDBC data generator is useful to use
in benchmarks to represent the Twitter social network? Which queries of the LDBC driver
are useful to use in benchmarks to represent the Twitter social network?

• Driver: how can the drivers for both database solutions be validated?

• Data: how long does it take to load data of different scale factors into the database
solutions? Does this time increase linearly with the data size?

• Benchmarks: how to interpret the results from the LDBC driver benchmarks? How
should differences in execution times per query for both database solutions be interpreted?
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9 Discussion & Conclusion

he Dutch company OBI4wan delivers a complete solution for social media monitoring, webcare
and social analytics. In order to do this, they are collecting data from various social networks,
such as Twitter and Facebook. Using various types of ElasticSearch- and SQL-queries, OBI4wan
can provide insights in this large amount of data. For example, organizations can keep track
of how people talk about them on these social networks and whether this talk has a positive
or negative sentiment. However, more complex queries are hard to answer with the querying
capabilities of ElasticSearch and SQL. For example, one might want to find all users who have
mentioned a single (or multiple) topic(s), are not further than three steps away from some (or
multiple) person(s), and have created their account after a certain date (or in a certain period
between a start- and end date). Using traditional relational databases, queries like these have
proven to be difficult to execute because of the large amount of required joins. On the other
side, graph networks and graph databases are designed to answer these type of questions

This report compares the centralized solution of the more traditionally based database Mon-
etDB to the distributed, graph-based database solution of Titan. Both database systems have
been described in detail in this report. The decentralized graph database Titan provides a plug-
gable storage- and indexing backend, with native support for Cassandra, HBase, BerkeleyDB
(storage backend), ElasticSearch, Solr and Lucene (indexing backend). Queries can be executed
on Titan using the graph query language Gremlin. The centralized column store MonetDB used
so-called Binary Association Tables (BAT) to store its data, which can be queried with either
SQL or the more lower level MonetDB Assembly Language (MAL). In this report, SQL has been
used as the query language.

In order to test both database systems, the dynamically generated dataset from the Linked
Data Benchmark Council (LDBC) has been used. This data set represents a real social media
network with the likes of Facebook. To make the data set look more like a Twitter data set - and
thereby more representative of the real OBI4wan data set - some elements from the LDBC data
set have been stripped out. Using transformation scripts, the data set has been transformed
into a format that can be read by either MonetDB (SQL COPY INTO statements) or Titan
(adjacency lists loaded into a Titan instance using Hadoop).

Another section of the paper has focused on the real data set from OBI4wan, providing some
analysis on this data set and comparing it to the fictional LDBC data set. While there are some
differences between both data sets, these differences are not too significant and can be overcome
to make the LDBC data set look more like a real Twitter social network.

Finally, the benchmark that has been executed on both MonetDB and Titan is the Social
Network Benchmark (SNB), also from LDBC. This benchmark executes a variety of complex
queries on both databases, ranging from retrieving friends-of-friends in a graph traversal to
retrieving the latest likes on messages created by some person his friends. In addition, the
SNB executes relatively simple short queries like retrieving a person’s profile information or this
person’s last messages. These short queries have been added to the benchmark to make it more
realistic: short queries like these are likely to occur more often than the complex queries. Finally,
the SNB executes update queries like inserting a new person or a new message into the database.
Unfortunately, the benchmark results for both MonetDB and Titan are not promising for large
amounts of data. The bigger the data set becomes, the more problems this introduces for both
database systems. Titan has difficulties loading big data sets into a graph, which either takes a
very long time (up to multiple days) or does not succeed at all. MonetDB has difficulties with
executing queries, especially the more graph-like queries such as finding the shortest path in a
network. Therefore, the same conclusion can be drawn for both database systems: loading data
into the database and executing benchmark queries does work for relatively small data sets, but
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more and more problems are introduced as the data set grows in size. So, while both systems
may look promising in theory, they do not seem capable of handling a large social network, at
least not at this point. The fact that a social network is complex and cannot be distributed over
multiple machines easily is one of the reasons for the problems that arise with larger data sets.

Because both Titan and MonetDB have some problems, another database system has been
introduced into the comparison: Virtuoso. Virtuoso has been working on executing the LDBC
benchmarks in the past, and the accompanying implementation is freely available on GitHub
[47]. Virtuoso has a plus over both Titan and MonetDB in that it does not present any problems
regarding loading data and executing the benchmarks. Furthermore, it is faster than both Titan
and MonetDB in its execution of the complex queries of the LDBC benchmark. For the short- and
update queries, Virtuoso is always faster than MonetDB, and mostly on par with Titan. These
results are introducing Virtuoso as another competitor in the comparison of (graph) databases,
and at this point even the best possible choice regarding a (graph) database that is suitable for
executing graph-like queries in real-time.

10 Future work

Both Titan and MonetDB have difficulties with the handling of relatively large social networks.
Titan’s problems can be related back to the nature of a social network: largely scattered and
hard to distribute. MonetDB has difficulties with executing graph-like queries, which is explain-
able because MonetDB is not designed for this type of queries. In order to make MonetDB more
suitable as a database that can store a graph network and answer graph queries, a future project
(coordinated by the Centrum Wiskunde en Informatica [CWI] and OBI4wan) will extend Mon-
etDB with these graph querying capabilities. This project will results in a dashboard in which
graph queries can be executed, with the extended MonetDB as the backend.

Another untouched subject is the distribution of a social network. The connections in a social
network are very complex, because there are not only connections inside communities within the
social network, but also between persons in different communities. On forehand, one cannot
easily tell what these communities will look like, and consequently how the social network can
best be distributed over multiple locations. In theory, every social network could have its own
best distribution scenario, but this scenario is not suitable for all social networks. A future
project can try to find the best possible algorithm to distribute any social network.

10.1 Research questions

The following research questions have been answered in this section and/or will be answered in
this report.

• Future: based on the research that has been conducted for this master thesis, what future
work could be performed in order to extend on this research? How would future work
relate to this research?
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A LDBC queries textual definitions

This appendix provides the official query descriptions for the LDBC Social Network Benchmark
Interactive Workload, as provided in the first public draft of the Social Network Benchmark [73].

A.1 Complex query 1

Friends with a certain name Given a start Person, find up to 20 Persons with a given first
name that the start Person is connected to (excluding start Person) by at most 3 steps via
Knows relationships. Return Persons, including summaries of the Persons workplaces and places
of study. Sort results ascending by their distance from the start Person, for Persons within the
same distance sort ascending by their last name, and for Persons with same last name ascending
by their identifier

A.2 Complex query 2

Recent posts and comments by your friends Given a start Person, find (most recent) Posts
and Comments from all of that Person’s friends, that were created before (and including) a given
date. Return the top 20 Posts/Comments, and the Person that created each of them. Sort
results descending by creation date, and then ascending by Post identifier.

A.3 Complex query 4

New topics Given a start Person, find Tags that are attached to Posts that were created by
that Person’s friends. Only include Tags that were attached to friends’ Posts created within a
given time interval, and that were never attached to friends’ Posts created before this interval.
Return top 10 Tags, and the count of Posts, which were created within the given time interval,
that this Tag was attached to. Sort results descending by Post count, and then ascending by
Tag name.

A.4 Complex query 6

Tag co-occurrence Given a start Person and some Tag, find the other Tags that occur together
with this Tag on Posts that were created by start Person’s friends and friends of friends (excluding
start Person). Return top 10 Tags, and the count of Posts that were created by these Persons,
which contain both this Tag and the given Tag. Sort results descending by count, and then
ascending by Tag name.

A.5 Complex query 7

Recent likes Given a start Person, find (most recent) Likes on any of start Person’s Post-
s/Comments. Return top 20 Persons that Liked any of start Person’s Posts/Comments, the
Post/Comment they liked most recently, creation date of that Like, and the latency (in minutes)
between creation of Post/Comment and Like. Additionally, return a flag indicating whether the
liker is a friend of start Person. In the case that a Person Liked multiple Posts/Comments at the
same time, return the Post/Comment with lowest identifier. Sort results descending by creation
time of Like, then ascending by Person identifier of liker.
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A.6 Complex query 8

Recent replies Given a start Person, find (most recent) Likes on any of start Person’s Post-
s/Comments. Return top 20 Persons that Liked any of start Person’s Posts/Comments, the
Post/Comment they liked most recently, creation date of that Like, and the latency (in minutes)
between creation of Post/Comment and Like. Additionally, return a flag indicating whether the
liker is a friend of start Person. In the case that a Person Liked multiple Posts/Comments at the
same time, return the Post/Comment with lowest identifier. Sort results descending by creation
time of Like, then ascending by Person identifier of liker.

A.7 Complex query 9

Recent posts and comments by friends or friends of friends Given a start Person, find the
(most recent) Posts/Comments created by that Person’s friends or friends of friends (excluding
start Person). Only consider the Posts/Comments created before a given date (excluding that
date). Return the top 20 Posts/Comments, and the Person that created each of those Posts/-
Comments. Sort results descending by creation date of Post/Comment, and then ascending by
Post/Comment identifier.

A.8 Complex query 13

Single shortest path Given two Persons, find the shortest path between these two Persons in
the subgraph induced by the Knows relationships. Return the length of this path.

A.9 Complex query 14

Weighted/unweighted paths Given two Persons, find all (unweighted) shortest paths between
these two Persons, in the subgraph induced by the Knows relationship. Then, for each path
calculate a weight. The nodes in the path are Persons, and the weight of a path is the sum
of weights between every pair of consecutive Person nodes in the path. The weight for a pair
of Persons is calculated such that every reply (by one of the Persons) to a Post (by the other
Person) contributes 1.0, and every reply (by ones of the Persons) to a Comment (by the other
Person) contributes 0.5. Return all the paths with shortest length, and their weights. Sort results
descending by path weight. The order of paths with the same weight is unspecified.

A.10 Short query 1

Person profile Given a start Person, retrieve their first name, last name, birthday, IP address,
browser, and city of residence.

A.11 Short query 2

Person recent messages Given a start Person, retrieve the last 10 Messages (Posts or Com-
ments) created by that user. For each message, return that message, the original post in its
conversation, and the author of that post. If any of the Messages is a Post, then the original
Post will be the same Message, i.e., that Message will appear twice in that result. Order results
descending by message creation date, then descending by message identifier.
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A.12 Short query 3

Person friends Given a start Person, retrieve all of their friends, and the date at which they
became friends. Order results descending by friendship creation date, then ascending by friend
identifier.

A.13 Short query 4

Message content Given a Message (Post or Comment), retrieve its content and creation date.

A.14 Short query 5

Message creator Given a Message (Post or Comment), retrieve its author.

A.15 Short query 7

Message replies Given a Message (Post or Comment), retrieve the (1-hop) Comments that
reply to it. In addition, return a boolean flag indicating if the author of the reply knows the
author of the original message. If author is same as original author, return false for ”knows”
flag. Order results descending by creation date, then ascending by author identifier.

A.16 Update query 1

Add Person Add a Person to the social network.

A.17 Update query 2

Add Post Like Add a Like to a Post of the social network.

A.18 Update query 3

Add Comment Like Add a Like to a Comment of the social network.

A.19 Update query 6

Add Post Add a Post to the social network.

A.20 Update query 7

Add Comment Add a Comment replying to a Post/Comment to the social network.

A.21 Update query 8

Add Friendship Add a friendship relation to the social network.
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B LDBC benchmark results

This appendix contains the results of the LDBC Social Network Benchmarks on various data
scale factors, visualized in JSON and in graphs. Per scale factor, the number of executed queries
per query type (count), the mean execution time per query type in milliseconds (mean) and the
min- and max execution time per query type in milliseconds (min/max ) are shown in graphs.
Furthermore, the JSON result data from the LDBC data generator are shown.

B.1 LDBC Interactive Workload

B.1.1 Scale factor 1

See these Figures for the graphs created from the output JSON:

• Figure 35 (complex queries)

• Figure 36 (short queries)

• Figure 37 (update queries)

• Figure 38 (complex queries Titan)

• Figure 39 (short queries Titan)

• Figure 40 (update queries Titan)

The output JSON itself (for all query types) is shown these Tables:

• Table 7 (MonetDB)

• Table 8 (Virtuoso)

• Table 9 (Titan, 1 Cassandra backend)

• Table 10 (Titan, 4 Cassandra backends)

• Table 11 (Titan, 8 Cassandra backends)

B.1.2 Scale factor 3

See these Figures for the graphs created from the output JSON:

• Figure 41 (complex queries)

• Figure 42 (short queries)

• Figure 43 (update queries)

• Figure 44 (complex queries Titan)

• Figure 45 (short queries Titan)

• Figure 46 (update queries Titan)

The output JSON itself (for all query types) is shown these Tables:

• Table 12 (MonetDB)
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• Table 13 (Virtuoso)

• Table 14 (Titan, 1 Cassandra backend)

• Table 15 (Titan, 4 Cassandra backends)

• Table 16 (Titan, 8 Cassandra backends)

B.1.3 Scale factor 10

See these Figures for the graphs created from the output JSON:

• Figure 47 (complex queries)

• Figure 48 (short queries)

• Figure 49 (update queries)

• Figure 50 (complex queries Titan)

• Figure 51 (short queries Titan)

• Figure 52 (update queries Titan)

The output JSON itself (for all query types) is shown these Tables:

• Table 17 (MonetDB)

• Table 18 (Virtuoso)

• Table 19 (Titan, 1 Cassandra backend)

• Table 20 (Titan, 4 Cassandra backends)

• Table 21 (Titan, 8 Cassandra backends)

B.2 LDBC Business Intelligence Workload

See Figure 53.
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query count mean min max 50th perc. 90th perc. 95th perc. 99th perc.
complex1 112 5940.29464286 49 58454 1287 23316 45178 56258
complex13 153 23346.5098039 1936 74700 9550 61306 65100 69068
complex14 59 110655.525424 3295 1320512 67860 142800 225464 1300800
complex2 79 3806.73417722 355 48436 2021 3301 7173 46686
complex4 81 3408.67901235 134 55226 1744 3647 10559 45078
complex6 9 8158.66666667 1083 54762 2275 4483 54762 54762
complex7 60 3173.93333333 83 47838 1608 3126 3379 47636
complex8 324 4822.38888889 8 58998 1613 3953 43994 56280
complex9 8 2328.75 781 4104 2430 2817 4104 4104

short1 1116 4538.86290323 0 58888 1521 4197 41668 51118
short2 1116 4679.61917563 217 57832 1786 4344 41590 53136
short3 1116 5262.99731183 2 65276 1655 6381 45362 57848
short4 1104 4166.87228261 0 58984 1530 3668 40266 51388
short5 1104 4291.06521739 4 57514 1706 4045 31735 52684
short7 1104 4059.03442029 3 60094 1571 3798 31741 51640

update1 3 21857.6666667 3343 56978 5251 56978 56978 56978
update2 298 1028.67114094 1 50872 68 1919 3406 45920
update3 383 758.248041775 1 47964 69 328 3343 11136
update6 204 1184.46078431 2 59028 155 312 4914 48116
update7 203 4818.12807882 4 69052 255 9808 49706 65348
update8 34 2488.44117647 2 57822 125 300 6031 57822

Table 7: MonetDB statistics on scale factor 1.
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query count mean min max 50th perc. 90th perc. 95th perc. 99th perc.
complex1 112 40.0803571429 7 912 8 105 182 312
complex13 154 26.3701298701 1 180 11 43 45 178
complex14 59 67.593220339 4 847 42 97 142 707
complex2 79 131.962025316 4 873 64 347 427 867
complex4 81 187.407407407 45 876 135 287 386 862
complex6 9 449.444444444 176 1052 383 655 1052 1052
complex7 61 121.524590164 4 909 48 267 365 760
complex8 326 151.791411043 14 879 74 347 499 837
complex9 7 456.428571429 232 935 399 661 935 935

short1 1090 2.06330275229 0 181 1 3 5 12
short2 1090 40.7064220183 1 217 41 66 108 193
short3 1090 7.57889908257 0 229 2 29 41 43
short4 1084 13.057195572 0 212 1 41 42 48
short5 1084 2.64760147601 0 49 1 3 6 41
short7 1084 14.1291512915 1 210 3 42 43 51

update1 2 399.0 7 791 7 791 791 791
update2 298 3.62416107383 1 108 2 4 7 70
update3 385 2.42857142857 0 120 2 3 4 20
update6 198 2.61111111111 1 53 1 4 7 13
update7 209 9.03827751196 1 834 3 10 18 47
update8 32 128.9375 1 643 17 433 528 643

Table 8: Virtuoso statistics on scale factor 1.
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query count mean min max 50th perc. 90th perc. 95th perc. 99th perc.
complex1 112 878.375 119 6293 723 1155 1981 4795
complex13 153 106.568627451 1 2303 70 181 238 418
complex14 59 69852.6101695 16942 421872 34456 202640 348432 412048
complex2 79 13588.4683544 1 22934 13573 18733 20140 22688
complex4 81 4351.27160494 617 10583 4182 8637 9095 10315
complex6 9 496133.333333 396368 587072 504768 565664 587072 587072
complex7 60 91.2 1 519 29 227 254 421
complex8 324 4077.2962963 154 22635 3465 8781 12049 18298
complex9 8 472414.75 75516 688256 482960 578528 688256 688256

short1 1122 0.310160427807 0 80 0 1 1 2
short2 1122 542.751336898 0 9375 239 1302 2276 4820
short3 1122 26.0053475936 0 2705 7 43 130 285
short4 1110 1.13153153153 0 204 1 1 2 3
short5 1110 1.10720720721 0 164 1 2 2 5
short7 1110 5.07387387387 0 265 2 10 13 20

update1 3 3.66666666667 2 5 4 5 5 5
update2 298 3.04697986577 1 10 3 4 5 7
update3 383 3.08355091384 1 42 3 4 4 7
update6 204 2.99509803922 1 59 2 4 5 8
update7 203 5.27093596059 2 14 5 8 9 13
update8 34 3.02941176471 2 8 3 4 4 8

Table 9: Titan statistics on scale factor 1, 1 Cassandra backend.
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query count mean min max 50th perc. 90th perc. 95th perc. 99th perc.
complex1 112 803.857142857 154 7309 550 1593 2347 3655
complex13 153 99.4509803922 1 1400 53 191 331 965
complex14 59 62776.5254237 12818 496192 23659 195440 326592 412624
complex2 79 14067.0253165 1 27996 13664 20505 23134 26059
complex4 81 4567.0 517 13719 3864 8583 10917 12789
complex6 9 644561.777778 483024 868832 613600 807232 868832 868832
complex7 60 109.666666667 0 1382 33 232 264 405
complex8 324 4299.71604938 134 20195 3720 8717 11915 16236
complex9 8 699256.25 89416 1600832 601920 849600 1600832 1600832

short1 1079 0.68860055607 0 222 0 1 1 2
short2 1079 587.976830399 1 14267 294 1389 2356 4131
short3 1079 26.3540315107 0 2442 8 43 110 292
short4 1082 0.963955637708 0 45 1 2 2 3
short5 1082 1.35489833641 0 199 1 2 2 3
short7 1082 4.72458410351 0 211 3 11 13 20

update1 3 37.6666666667 2 108 3 108 108 108
update2 298 3.96644295302 2 251 3 4 5 7
update3 383 3.37336814621 1 132 3 4 5 6
update6 204 3.59803921569 2 28 3 5 6 9
update7 203 6.3842364532 2 68 5 9 11 17
update8 34 4.55882352941 1 59 3 4 4 59

Table 10: Titan statistics on scale factor 1, 4 Cassandra backends.
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query count mean min max 50th perc. 90th perc. 95th perc. 99th perc.
complex1 112 831.794642857 121 6145 583 1561 2618 4762
complex13 153 108.267973856 1 1118 64 205 450 958
complex14 59 76296.5423729 15665 574464 30102 236216 444272 502640
complex2 79 14840.7088608 1 30323 14786 20547 23421 28770
complex4 81 5367.37037037 680 20269 4749 9685 10517 16826
complex6 9 916878.222222 681920 1723136 827648 994592 1723136 1723136
complex7 60 97.7833333333 1 313 33 259 274 298
complex8 324 4849.62345679 156 25819 4334 10649 14089 22783
complex9 8 842535.25 96792 1635840 813248 986560 1635840 1635840

short1 1076 0.899628252788 0 213 1 1 2 3
short2 1076 655.096654275 2 13637 320 1619 2404 4443
short3 1076 28.282527881 0 1336 9 44 142 331
short4 1085 2.38709677419 0 1384 1 2 2 3
short5 1085 1.65622119816 0 66 1 3 3 4
short7 1085 4.97880184332 0 55 3 12 16 23

update1 3 3.66666666667 2 7 2 7 7 7
update2 298 4.05033557047 2 92 3 5 5 6
update3 383 3.56396866841 1 50 3 4 5 6
update6 204 3.65196078431 2 29 3 5 6 10
update7 203 6.66502463054 3 108 5 9 10 13
update8 34 3.23529411765 2 6 3 4 4 6

Table 11: Titan statistics on scale factor 1, 8 Cassandra backends.
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(a) Count

(b) Mean

(c) Min/max

Figure 35: LDBC benchmark on SF1 data, complex queries. The Titan data shown in the graphs
uses one Cassandra backend.
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(a) Count

(b) Mean

(c) Min/max

Figure 36: LDBC benchmark on SF1 data, short queries. The Titan data shown in the graphs
uses one Cassandra backend.
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(a) Count

(b) Mean

(c) Min/max

Figure 37: LDBC benchmark on SF1 data, update queries. The Titan data shown in the graphs
uses one Cassandra backend.
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(a) Count

(b) Mean

(c) Min/max

Figure 38: LDBC Titan benchmark on SF1 data, complex queries.
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(a) Count

(b) Mean

(c) Min/max

Figure 39: LDBC Titan benchmark on SF1 data, short queries.
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(a) Count

(b) Mean

(c) Min/max

Figure 40: LDBC Titan benchmark on SF1 data, update queries.
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query count mean min max 50th perc. 90th perc. 95th perc. 99th perc.
complex1 329 17461.7386018 115 422768 4104 45742 59716 305072
complex13 450 73766.3955556 51 587232 15086 267808 385072 458352
complex14 175 2591579.12 6614 5399808 2641408 5399808 5399808 5399808
complex2 231 22707.4112554 830 414992 5160 54592 126196 382288
complex4 238 22101.7478992 117 503280 4184 49956 89580 403616
complex6 27 21998.2592593 3798 200320 9226 12678 125224 200320
complex7 179 16483.7206704 240 432496 3858 11163 56684 360832
complex8 952 22381.9716387 7 507264 3515 49226 148944 387424
complex9 22 7201.27272727 1466 44900 5003 10939 10968 44900

short1 3245 19013.8089368 0 502512 3447 45710 128164 360848
short2 3245 21976.3830508 476 506848 4288 51254 152088 377008
short3 3245 25127.1812018 2 579488 4069 56042 181304 393024
short4 3260 20241.15 0 503280 3593 46710 145120 350640
short5 3260 20139.2315951 45 507232 3981 47036 128384 372736
short7 3260 19139.2828221 3 505472 3916 45172 126860 346000

update1 4 52399.75 8766 177016 10159 177016 177016 177016
update2 895 8749.94860335 1 459200 1 7436 12367 291472
update3 1524 8006.4488189 1 435056 1 8038 12876 227072
update6 389 9161.8714653 2 462304 3 12 14446 376528
update7 687 24114.9839884 3 570336 12 31531 201200 409024
update8 94 13628.0851064 2 309744 3 16244 54676 293472

Table 12: MonetDB statistics on scale factor 3.

127



query count mean min max 50th perc. 90th perc. 95th perc. 99th perc.
complex1 330 28.296969697 1 591 12 59 116 235
complex13 452 10.6128318584 1 425 2 41 42 59
complex14 175 14.1542857143 1 448 2 42 42 124
complex2 232 147.844827586 1 1411 2 550 884 1020
complex4 239 315.221757322 4 1848 209 759 932 1354
complex6 27 3072.25925926 168 6064 2882 4970 6045 6064
complex7 179 72.530726257 7 1058 10 204 265 730
complex8 956 105.432008368 0 917 22 349 473 774
complex9 22 1164.0 1 4802 2 4030 4362 4802

short1 3250 0.859076923077 0 16 1 1 2 4
short2 3250 73.6996923077 0 590 42 175 227 366
short3 3250 6.068 0 221 2 16 40 42
short4 3219 10.4836905871 0 216 1 41 41 57
short5 3219 1.09288598944 0 207 1 1 2 5
short7 3219 6.51071761417 0 227 1 40 41 44

update1 4 5.75 2 10 3 10 10 10
update2 897 1.38573021182 0 19 1 2 2 5
update3 1538 1.48764629389 0 73 1 2 2 8
update6 366 11.6612021858 0 1217 1 3 10 158
update7 695 26.0374100719 0 1984 2 18 97 635
update8 98 54.7040816327 1 1035 3 63 310 912

Table 13: Virtuoso statistics on scale factor 3.
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query count mean min max 50th perc. 90th perc. 95th perc. 99th perc.
complex1 329 2929.73860182 930 16668 1975 6129 8690 13325
complex13 450 576.213333333 1 7058 336 1056 1680 4732
complex14 175 94304.2342857 1 310080 87184 152528 196032 282176
complex2 231 33725.4069264 169 50804 33634 44166 45654 49084
complex4 238 9061.82773109 700 28953 8888 14399 16882 20007
complex6 27 1557622.51852 1110272 2103424 1510720 1914944 1993088 2103424
complex7 179 78.1787709497 1 593 32 189 220 478
complex8 952 9017.12289916 998 32737 6874 17180 19632 25390
complex9 22 1606682.18182 1160832 2095616 1621504 1971840 1981760 2095616

short1 3235 0.474188562597 0 166 0 1 1 3
short2 3235 716.319938176 0 21912 253 1592 2803 8738
short3 3235 30.6608964451 0 2562 9 57 179 332
short4 3241 0.958346189448 0 286 1 1 2 4
short5 3240 1.25432098765 0 326 1 2 2 4
short7 3240 5.41635802469 0 1603 3 11 14 19

update1 4 4.75 2 10 2 10 10 10
update2 895 2.89273743017 0 270 2 4 5 7
update3 1524 2.52887139108 0 78 2 4 4 6
update6 389 2.27506426735 1 9 2 4 5 7
update7 687 4.54294032023 1 252 4 6 8 11
update8 94 2.48936170213 1 5 2 4 4 5

Table 14: Titan statistics on scale factor 3 (1 Cassandra backend).
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query count mean min max 50th perc. 90th perc. 95th perc. 99th perc.
complex1 329 3738.14589666 962 23307 2455 8881 10687 16372
complex13 450 665.371111111 1 13615 354 1423 2277 5298
complex14 175 98122.3771429 2 308688 94364 158088 207800 298592
complex2 231 36704.025974 566 59640 36562 47168 50406 57286
complex4 238 11791.1428571 66 30197 11680 20017 21845 27922
complex6 27 2082331.25926 1654272 3645696 1996800 2373632 2497024 3645696
complex7 179 77.4413407821 1 450 36 193 223 270
complex8 952 10114.4926471 1053 40666 7680 18963 22119 27960
complex9 22 2189861.81818 1522432 3042816 2044608 2693632 2911232 3042816

short1 3225 0.530852713178 0 77 0 1 1 2
short2 3224 788.86662531 0 21164 289 1802 2900 10085
short3 3224 31.8830645161 0 1045 9 66 180 369
short4 3241 1.05584696081 0 269 1 1 2 3
short5 3241 1.28170317803 0 67 1 2 2 3
short7 3241 5.58284480099 0 451 3 13 15 22

update1 4 4.75 2 10 3 10 10 10
update2 895 2.52290502793 1 47 2 3 4 5
update3 1524 2.34842519685 1 41 2 3 4 4
update6 389 2.41388174807 1 38 2 4 5 7
update7 687 6.41775836972 1 1390 4 7 8 13
update8 94 2.94680851064 1 63 2 4 4 6

Table 15: Titan statistics on scale factor 3 (4 Cassandra backends).
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query count mean min max 50th perc. 90th perc. 95th perc. 99th perc.
complex1 329 4189.04255319 857 19625 2738 9844 12181 19061
complex13 450 638.748888889 0 11311 327 1316 2464 5243
complex14 175 101650.342857 2 318160 98224 164264 205992 304384
complex2 231 41448.3246753 687 69708 41276 53552 55698 64246
complex4 238 13793.6470588 63 35840 14112 22586 26568 30792
complex6 27 2432103.11111 1648960 4141312 2395008 2841088 3102080 4141312
complex7 179 104.402234637 1 2626 44 226 260 452
complex8 952 11275.9789916 1527 42062 9068 20855 23611 31314
complex9 22 2670088.72727 1627712 3867008 2518784 3324160 3631232 3867008

short1 3253 0.84260682447 0 70 1 1 1 2
short2 3253 917.412849677 0 21553 362 1950 2992 11953
short3 3253 35.7568398401 0 2461 10 71 194 408
short4 3286 1.17894096166 0 49 1 2 2 3
short5 3285 1.67397260274 0 298 1 2 3 4
short7 3285 6.47579908676 0 338 3 15 18 28

update1 4 3.0 2 5 2 5 5 5
update2 895 2.77765363128 0 68 3 4 4 5
update3 1524 3.58595800525 1 1393 2 4 4 6
update6 389 2.92544987147 1 76 2 5 6 10
update7 687 4.87190684134 2 65 4 7 9 13
update8 94 2.3829787234 1 5 2 3 3 5

Table 16: Titan statistics on scale factor 3 (8 Cassandra backends).
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(a) Count

(b) Mean

(c) Min/max

Figure 41: LDBC benchmark on SF3 data, complex queries. The Titan data shown in the graphs
uses one Cassandra backend.
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(a) Count

(b) Mean

(c) Min/max

Figure 42: LDBC benchmark on SF3 data, short queries. The Titan data shown in the graphs
uses one Cassandra backend.
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(a) Count

(b) Mean

(c) Min/max

Figure 43: LDBC benchmark on SF3 data, update queries. The Titan data shown in the graphs
uses one Cassandra backend.
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(a) Count

(b) Mean

(c) Min/max

Figure 44: LDBC Titan benchmark on SF3 data, complex queries.
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(a) Count

(b) Mean

(c) Min/max

Figure 45: LDBC Titan benchmark on SF3 data, short queries.
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(a) Count

(b) Mean

(c) Min/max

Figure 46: LDBC Titan benchmark on SF3 data, update queries.
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query count mean min max 50th perc. 90th perc. 95th perc. 99th perc.
complex1 13 258419.923077 398 3089408 25509 42262 42262 3089408
complex13 18 1072008.77778 14995 3688960 169096 3496064 3503360 3688960
complex14 7 3911351.42857 171488 5399808 5399808 5399808 5399808 5399808
complex2 9 377759.0 2767 3186688 27637 65720 3186688 3186688
complex4 10 20544.7 1565 59452 5610 54378 59452 59452
complex6 1 25228.0 25228 25228 25228 25228 25228 25228
complex7 7 27031.1428571 9781 37772 28976 34818 37772 37772
complex8 39 192062.897436 3959 3179904 30965 61092 115464 3179904

short1 119 169788.647059 1 3179904 21545 59130 189488 3158400
short2 119 30927.9663866 1966 192832 25422 53980 67600 171168
short3 119 330615.571429 4 3369984 31647 207472 3123584 3355520
short4 112 255951.830357 3 3191552 28074 146768 3125760 3171200
short5 112 112851.3125 3 3108096 27086 64224 77472 3096832
short7 112 211076.223214 8 3184640 27031 74396 1513792 3164288

update2 43 4639.8372093 4 178864 36 1568 3766 178864
update3 79 46615.7974684 3 3377280 30 1544 11421 204968
update6 16 17931.125 8 139288 2616 19374 102956 139288
update7 35 150207.657143 7 3380480 11 10142 171728 3380480
update8 8 56.625 6 403 7 9 403 403

Table 17: MonetDB statistics on scale factor 10.

query count mean min max 50th perc. 90th perc. 95th perc. 99th perc.
complex1 1090 18.8091743119 7 599 12 45 47 89
complex13 1492 5.74195710456 1 593 2 5 41 43
complex14 578 4.73875432526 1 132 2 5 8 43
complex2 766 14.6422976501 1 879 2 15 33 375
complex4 787 127.763659466 4 2591 105 187 257 898
complex6 89 1189.59550562 6 3790 1194 1865 2280 3008
complex7 590 29.7542372881 3 932 8 49 77 445
complex8 3151 14.568390987 0 911 6 41 46 93
complex9 73 63.7123287671 1 1451 2 138 354 984

short1 10711 1.51769209224 0 276 1 3 4 6
short2 10711 36.7428811502 0 633 41 45 79 207
short3 10711 3.67444683036 0 435 2 6 8 41
short4 10773 7.8243757542 0 599 1 41 41 43
short5 10773 2.6619326093 0 432 1 3 5 41
short7 10772 11.7257705162 0 621 3 42 43 56

update1 10 63.7 2 604 3 8 604 604
update2 3198 1.62382739212 0 265 1 3 4 6
update3 5566 1.59935321595 0 168 1 3 4 6
update6 984 4.77134146341 0 871 2 5 8 56
update7 2230 5.07668161435 0 665 2 6 14 66
update8 295 24.0203389831 0 956 2 38 119 499

Table 18: Virtuoso statistics on scale factor 10.
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query count mean min max 50th perc. 90th perc. 95th perc. 99th perc.
complex1 1089 25814.2066116 1 311584 15000 49324 80316 241008
complex13 1492 7291.71715818 1 205336 2473 13401 36784 79764
complex14 579 239826.83247 1 2315648 181736 447072 590368 1242688
complex2 765 55452.4888889 857 326976 45856 88024 128436 249288
complex4 787 52424.0775095 1 506096 40550 83408 136872 275280
complex6 90 4833619.2 3287040 5399808 5024512 5399808 5399808 5399808
complex7 591 118.490693739 1 8764 29 217 267 555
complex8 3149 99.4045728803 1 32250 35 142 203 364
complex9 74 4683067.72973 218880 5399808 4790016 5399808 5399808 5399808

short1 10755 0.660344026034 0 359 0 1 1 3
short2 10754 1616.59010601 0 114212 494 2771 6279 26501
short3 10754 94.3448019342 0 33778 15 111 250 615
short4 10815 6.91558021267 0 30430 1 2 2 6
short5 10815 1.57993527508 0 93 1 2 3 5
short7 10815 17.1420249653 0 31823 5 16 20 30

update1 10 3.1 2 7 2 5 7 7
update2 3194 3.03600500939 0 1726 2 4 4 7
update3 5553 2.5586169638 0 345 2 4 4 7
update6 991 2.03229061554 0 46 2 4 5 7
update7 2227 3.65289627301 0 307 3 6 7 11
update8 293 2.35153583618 0 62 2 3 4 6

Table 19: Titan statistics on scale factor 10 (1 Cassandra backend).
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query count mean min max 50th perc. 90th perc. 95th perc. 99th perc.
complex1 1089 22890.3425161 1 203624 15227 46948 62938 140112
complex13 1492 5039.23659517 1 213344 1967 9480 20184 52924
complex14 579 178000.319516 1 981632 151544 307872 402256 581120
complex2 765 57281.6718954 4014 219120 50388 96452 130128 161480
complex4 787 51411.9707751 1 226744 44276 85456 115868 168776
complex6 90 4979133.86667 2885760 5399808 5247232 5399808 5399808 5399808
complex7 591 73.730964467 1 683 28 209 241 375
complex8 3149 67.4163226421 3 35254 32 117 162 284
complex9 74 4886299.2973 220512 5399808 5125632 5399808 5399808 5399808

short1 10796 1.12189699889 0 3492 1 1 1 2
short2 10795 1593.46465956 0 132992 532 2973 5593 19413
short3 10795 71.2566929134 0 33750 16 133 269 734
short4 10857 1.42967670627 0 410 1 2 2 4
short5 10857 5.10988302478 0 29254 1 2 3 4
short7 10857 14.1015013355 0 37574 4 16 19 30

update1 10 2.9 2 6 2 4 6 6
update2 3194 2.58484658735 0 208 2 3 4 6
update3 5553 2.52332072753 0 393 2 3 4 6
update6 991 2.4702320888 1 305 2 4 5 8
update7 2227 4.64032330489 1 1513 3 6 8 12
update8 293 2.18088737201 0 8 2 3 4 6

Table 20: Titan statistics on scale factor 10 (4 Cassandra backends).
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query count mean min max 50th perc. 90th perc. 95th perc. 99th perc.
complex1 1089 26923.3425161 1 400592 15649 52304 74412 252704
complex13 1492 5516.28686327 1 118904 2236 10611 27608 52444
complex14 579 183720.174439 2 1757952 140664 329472 445776 774752
complex2 765 62597.0980392 3724 289200 54796 92156 144600 212856
complex4 787 61037.935197 1 579488 51738 85944 135240 233352
complex6 90 5213671.82222 2318592 5399808 5399808 5399808 5399808 5399808
complex7 591 74.7495769882 1 510 29 206 237 359
complex8 3149 63.2372181645 1 10395 35 128 174 292
complex9 74 5177670.16216 282176 5399808 5399808 5399808 5399808 5399808

short1 10749 0.993673830124 0 248 1 1 2 2
short2 10748 1811.24581317 0 109360 594 3323 7004 24478
short3 10748 77.3903982136 0 31801 18 128 272 720
short4 10804 10.5603480193 0 33638 1 2 2 3
short5 10804 4.75601629026 0 29632 2 3 3 4
short7 10804 8.88624583488 0 8346 4 17 21 32

update1 10 3.2 2 5 3 4 5 5
update2 3194 2.73356293049 1 63 3 4 4 5
update3 5553 2.92688636773 0 1265 2 4 4 5
update6 991 2.67507568113 1 93 2 4 5 10
update7 2227 4.77503367759 1 1119 4 6 8 11
update8 293 3.44368600683 1 239 2 3 4 6

Table 21: Platform statistics on scale factor 10 (8 Cassandra backends).
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(a) Count

(b) Mean

(c) Min/max

Figure 47: LDBC benchmark on SF10 data, complex queries. The Titan data shown in the
graphs uses one Cassandra backend.
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(a) Count

(b) Mean

(c) Min/max

Figure 48: LDBC benchmark on SF10 data, short queries. The Titan data shown in the graphs
uses one Cassandra backend.
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(a) Count

(b) Mean

(c) Min/max

Figure 49: LDBC benchmark on SF10 data, update queries. The Titan data shown in the graphs
uses one Cassandra backend.
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(a) Count

(b) Mean

(c) Min/max

Figure 50: LDBC Titan benchmark on SF10 data, complex queries.
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(a) Count

(b) Mean

(c) Min/max

Figure 51: LDBC Titan benchmark on SF10 data, short queries.
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(a) Count

(b) Mean

(c) Min/max

Figure 52: LDBC Titan benchmark on SF10 data, update queries.
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Figure 53: Execution time in milliseconds for LDBC SNB BI queries on MonetDB on scale
factors 1, 3 and 10.
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