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Abstract

Lighthouse is a graph compute engine that has been developed to execute high-level Cypher queries
on very large datasets. By utilizing the Apache Giraph framework, the graph compute engine is
able to run in a distributed and parallel manner. The core functionality of Lighthouse enables
subgraph pattern matching, based on a user provided query, with any given input graph. During a
query execution, Lighthouse has the opportunity to apply various optimizations depending on the
properties of the given query and input graph, and the available hardware. This project has focused
on how to reduce the required memory for executing query plans, allowing smaller Hadoop clusters
with limited memory resources to run more communication-heavy subgraph pattern matching jobs.

Significant reductions of memory requirements have been achieved by reimplementing Lighthouse
as a pipelined compute engine. In fact, any left-deep query plan can now be executed without
Out-of-Core disk access, provided that the input graph fits into the available memory. Prediction
of accurate numbers for message production in bushy query plans has shown to be difficult, often
resulting in multiple execution restarts before a query execution is successfully finished. In addition
to pipelining, several other memory optimizations have been evaluated to give beneficial outcomes.
These optimizations span from changes for when to start computations on paths in bushy query
plans to improved data structures and serialization formats for input graph data and messages.
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Chapter 1

Introduction

This chapter presents a context for this thesis project. First, in section 1.1, the appeal of graph data
structures is discussed and examples of how graphs can be used in multiple fields of industry and
research are given. An overview of advantages gained by utilizing graph processing frameworks is
then presented in section 1.2. Next, in section 1.3, both the design and performance of Lighthouse
are explained together with memory consumption problems which may arise for certain types of
queries and input graphs. A solution using Out-of-Core Giraph for memory-limited executions is
presented in section 1.4, followed by an introduction to an alternative solution utilizing pipelining
in section 1.5. The research questions which constitute the basis for this project are in section 1.6.

1.1 Graph-Structured Big Data

The fundamental flexibility of graphs enables them to represent a large variety of structures. Several
ubiquitous structures can be modeled as graphs, such as transportation systems, social relations,
the Web, disease outbreaks and DNA molecules. When a structure is modeled as a graph, the
related analysis can benefit from previous development of efficient algorithms for general computing
problems. Among others, for finding shortest paths, community detection and quality rating.

Large-scale processing of graphs is already common in multiple fields of industry and research.
Leading IT companies are relying on analysis of large graphs to provide advanced services for their
users. Social networks, for example Facebook and LinkedIn, require a proper understanding of
present social relations to propose creation of new ones to their users. Web search engines, such
as Google Search and Bing, depend on ranking of Web sites to provide relevant results to handled
user queries. DNA sequencing is an example of graph processing for research purposes. It involves
shearing of DNA molecules into fragments and assembling of fragments into genomic sequences.

1.2 Graph Processing Frameworks

The development of an application that needs to perform large-scale graph analysis, from scratch,
can quickly turn into a time consuming effort. To be able to process huge graphs gracefully, many
potential pitfalls need to be considered and some countermeasures must likely also be implemented.
To achieve better computation times, multiple CPU cores can be utilized with parallel graph algo-
rithms. These are usually a lot more complex than their sequential counterparts, often involving
work distribution and synchronization. Larger graphs might not fit into the available memory of
a single machine. This can be handled through use of attached disks and support for serialization
and de-serialization (occurring when offloading or fetching graph partitions to or from the disks).
The application should restrain its number of disk accesses to prevent long computation times.
Problematically, some graphs are too large to be practically stored and processed on one machine.
This creates the need for a distributed computing environment, which introduces problems like
when and how to perform network communication and more machines that can possibly fail.

6



CHAPTER 1. INTRODUCTION

By utilizing a graph processing framework and its corresponding computing model, a programmer
can reduce own development effort for a graph processing application to just involve the implemen-
tation of graph processing logic. Different types of existing frameworks offer various functionality.
Graph databases, a common type of graph processing frameworks, provide create, read, update
and delete methods for working with stored graphs[13]. Using transactions, they protect the in-
tegrity of stored data while allowing multiple queries to be executed simultaneously. Neo4j[10] is
a popular graph database that supports high-level graph queries written in Cypher (described in
appendix C). This language is declarative and simplifies the specification of graph processing jobs.
Apache Giraph (described in appendix B) is another popular framework which enables distributed
graph processing. Differently, it requires users to write applications in Java and to consider the
Pregel computing model (described in appendix A). A Giraph application that can run on a single
machine can also run on a large cluster without any changes to its related code. Before a Giraph job
is started, the input graph is loaded from attached disks into the memory of the utilized workers.

1.3 Lighthouse

Lighthouse is built on top of Apache Giraph to enable graph processing in a parallel and distributed
environment. This type of environment is needed to complete analysis of enormous graphs within
a reasonable time. The fundamental purpose of Lighthouse is to perform large-scale graph pattern
matching. More specifically, to find subgraphs of the input graph which are isomorphic to a graph
representing the provided query. Instead of requiring users to implement graph processing behavior
in Java, as Giraph, Lighthouse allows users to specify graph queries with the Cypher language.
This simplifies users’ work of expressing large-scale jobs to be executed. Lighthouse automatically
starts a Giraph job based on a given query, an input graph and some configurations. The engine
can utilize numerous optimizations to improve the performance of all carried out pattern matching.
Which optimizations are to be applied for an execution, depends on the properties of the job and
the available hardware. The choice of optimizations is for simplicity kept hidden from the user.

A provided Cypher query is used by Lighthouse to generate an in-memory query plan. When the
original version of Lighthouse[6] runs, this plan is executed without taking any job or hardware
properties into consideration. A query plan has the structure of a tree, with each node representing
an operator from the Lighthouse algebra. The solutions from an operator is the input to its parent.
Executions start on the leaf operators which filter initial messages on all the input graph vertices.

Listing 1.1: Example Cypher Query

MATCH (p1 : Person{firstName :”Antonio”})−[:WORKAT]−>(company)−[:IS LOCATED IN]−>(country ) ,
(p2 : Person{firstName :”John”})−[:WORKAT]−>(company)

WHERE p1 . browser = {”Chrome”} AND p2 . browser = {”Chrome”}
RETURN p1 . id , p1 . firstName , p2 . id , p2 . firstName , company . id , country . id

Listing 1.2: Query Plan for Example Cypher Query

StepJoin (PathJoin( StepJoin ( Project ( Select (Scan( firstName :”Antonio”) ,
=({browser} , Chrome)) ,

[ $1 , {firstName } ] ) ,
WORKAT) ,

StepJoin ( Project ( Select (Scan( firstName :”John”) ,
=({browser} , Chrome)) ,

[ $1 , {firstName } ] ) ,
WORKAT)) ,

IS LOCATED IN) ;

The Cypher example query in Listing 1.1 finds pairs of Chrome users, named Antonio and John,
working for the same company. A relationship for the location of a company must exist to return
matches with its corresponding Chrome user pairs. In addition to returning IDs for vertices in
matched subgraphs, the first name of each Person in a match is also returned. Lighthouse creates
the query plan in Listing 1.2 based on the example query. This plan is visualized in Figure 1.1,
which also shows when the different operators are computed. A more detailed explanation of the
query plan and the related computations is given after a presentation of the Lighthouse algebra.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Visualized query plan for the example Cypher query

1.3.1 Lighthouse Algebra

There are two types of Lighthouse operators which have different effects on Giraph job executions.
Global operators often lead to communication between the workers in an execution, while local
operators do not. Since the Pregel computing model forces workers to process transferred messages
in the superstep after they are sent, global operators introduce additional supersteps to executions.

A local operator causes messages to be passed to an operator that is computed on the same vertex.

Scan (first operator of every query path)
Filters solutions based on labels and properties of the current vertex.

Select
Filters away solutions that do not meet a condition.

Project
Retrieves information stored by the current vertex (other than vertex ID) or trims messages.

PathJoin
Joins pattern graphs of solutions which are received from different query paths.

A global operator causes messages to be passed to an operator that is computed on other vertices.

Move
Moves the computation from the current vertex to a previously visited vertex.

StepJoin
Filters solutions based on labels and properties of edges with the current vertex as source.

With this information about the Lighthouse operators, it is simpler to understand how the plan
in Listing 1.2 (visualized in Figure 1.1) represents the Cypher query in Listing 1.1. The execution
of the query plan starts on the leaf operators. The query paths are computed in sequence and
are similar except for the first name they use in their filtering on Scan. In query path 1, Scan
passes through vertices with the firstName property value “Antonio”. In query path 2, Scan passes
through vertices with the firstName property value “John”. When a vertex is “passed through”
by an initial Scan operator, a solution message is passed to the subsequent operator (by calling the
compute method of its corresponding QueryItem object). The Select operators filter away solutions
on vertices that are not representing Chrome users. All solutions meeting the Select condition are
passed to a following operator. When a message reaches any of the Project operators, the firstName
value of the current vertex is added to its solution. The message is then passed to the next operator.
As a non-last global operator, each StepJoin passes the computation to the vertex representing the
company which the Chrome user works for. The computation is passed by transferring a created
solution message to the worker that is responsible for the relevant company vertex. After adding a
message to its network send buffer, a worker starts to compute the other Scan operator of the query
plan for either the same or another vertex. These computations continue until all vertices have been
processed in the first superstep. In the next superstep, on vertices for companies with matched
users, pairs of Johns and Antonios are created with the PathJoin operator. For each message with
a Chrome user pair passed from the PathJoin operator, a complete solution is written to the HDFS
if the last StepJoin finds a relationship to the country in which the related company is located.

8
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In the first superstep of a query plan execution, the Lighthouse compute method in Listing 1.3 is
called once per vertex stored on a worker. At this stage, no messages are passed via the messages
argument. For each query path, the compute method of the path’s first QueryItem is called with
a created initial message as an argument. In all non-initial supersteps, the Lighthouse compute
method is called once per active vertex stored on a worker. For each of these calls, at least one
message is passed via the messages argument. The messages trigger further compute method calls.

Listing 1.3: Lighthouse compute()

public void compute(Vertex vertex , Iterable<Message> messages ) {
<Get worker context used to check query plan and write complete solutions>
i f ( getSuperstep () == 0) {
<Create i n i t i a l messages for a l l paths of the query plan>
<Pass computation for each created i n i t i a l message to f i r s t query item of path>
} e l s e {
<Pass computation for each received message to next query item of path>
}

<Vote to halt>
}

The compute method in Listing 1.4 is executed each time a message is passed to a Select operator.
Specific for Select compute is that it checks whether a Select condition is valid for the handled
solution. This is done by considering data of the received message and the current vertex. As seen
in the last part of the outer if-body, a valid solution which is not yet complete is directly passed
to the parent operator. This behavior is similar for every local operator.

Listing 1.4: Select compute()

public void compute(BasicComputation computationClass , Vertex vertex , Message message) {
<Get worker context used to check query plan and write complete solutions>

i f (<Select expression i s val id for th i s solution>) {
<Increment path step for message>

// Check whether the solut ion i s complete
i f (message . getStep () == workerContext . getNumberOfSteps(message . getPath ( ) ) ) {

<Write complete solution to HDFS>
} e l s e {

<Pass computation to next query item of path>
}}}

The compute method in Listing 1.5 is executed each time a message is passed to a StepJoin
operator. Specific for StepJoin compute is that it checks whether a StepJoin condition is valid for
any of the current vertex’ outgoing edges. As seen in the last part of the outer if-body, a valid
solution which is not yet complete is sent to the target vertex of the related edge. This involves a
message to potentially be transferred to another worker and to be processed by the parent operator.
All global operators pass non-complete solutions to other vertices in the same manner.

Listing 1.5: StepJoin compute()

public void compute(BasicComputation computationClass , Vertex vertex , Message message) {
<Get worker context used to check query plan and write complete solutions>

// Find edges sat i s fy ing the StepJoin condition>
for (Edge edge : vertex . getEdges ( ) ) {

i f (<Edge s a t i s f i e s the StepJoin condition>) {
<Create binding for new message>
<Prepare message with new binding>

// Check whether the solution i s complete
i f (newMessage . getStep ()

== workerContext . getNumberOfSteps(newMessage . getPath ( ) ) ) {
<Write complete solution to HDFS>

} e l s e {
<Send message to target vertex of edge>

}}}}

9



CHAPTER 1. INTRODUCTION

Since the various vertices of an input graph can be stored on different workers (distributed based
on hash partitioning), network communication must often be performed to build solutions which
include several vertices. The Pregel computing model requires that the production of these solu-
tions involves multiple supersteps (see appendix A for a more detailed overview of how the Pregel
computing model works). In executions of the query plan in Listing 1.2, the StepJoin operators of
the two query paths transfer solution messages with information about Chrome users to vertices
which represent their related companies. This means that even though vertices for Chrome users
in the same company are stored on different workers, the PathJoin operator can create solution
messages with pairs of these users on the worker which stores the company vertex.

1.3.2 Left-Deep and Bushy Query Plans

Query plans which do not have any operator with more than one child are called left-deep, while
the others are called bushy. For left-deep query plans, one can interpret the input of each operator
to be solution messages passed from its left incoming path. Since PathJoin is the only available
binary operator in Lighthouse, all bushy query plans must contain at least one PathJoin operator.

(a) Bushy query plan

(b) Left-deep query plan

Figure 1.2: Bushy query plan requiring a smaller number of supersteps

For executions with undirected graphs, PathJoin operators can be utilized to increase concurrency
and reduce the number of required supersteps. A bushy query plan visualized with Figure 1.2a
can match the exact same patterns as a left-deep plan visualized with Figure 1.2b. As an example,
the StepJoin operators can send messages between vertices representing persons having friend
relationships. Since the friend relationships are mutual, it does not matter in which direction the
solution messages are sent. Either of the showed query plans can therefore be used. Other left-deep
plans have corresponding bushy plans that reduce the number of needed supersteps even more.
PathJoins store all received messages in join tables. They should therefore be used with caution,
as available memory after loading the local partition of the graph may be filled up with join tables’
content. In worst case, no memory will be available for storing messages to be sent or received.

With directed graphs, many patterns can only be found using bushy query plans. As an example,
one is looking for pairs of persons named Antonio and John knowing a specific celebrity in a graph
with the following relationships: Antonio and John know the celebrity, but the celebrity does not
have a relationship to any of them. A bushy query plan also visualized with Figure 1.2a can be used
to successfully find this pair. One of the Scan operators passes through vertices with the firstName
property value “Antonio”, the other passes through vertices with the firstName property value
“John”. The StepJoin operators send messages to vertices representing known persons, while the
Select filters away solution messages which are not processed on the specific celebrity’s vertex. For
a left-deep query plan to be able to match the described pattern, the celebrity would need to have
an “is known by” relationship to Antonio or John, forming a chain of relationships with the same
direction. A query plan visualized with Figure 1.2b could in such case be used.
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1.3.3 Messages in Lighthouse

Messages are in this thesis often referred to as solution messages due to their content. Every
message in Lighthouse stores the current state of a single attempt to perform a pattern match.
Listing 1.6 shows the Java data structure that is used to hold message data. It implements the
interface Writable to enable corresponding objects to be serialized and de-serialized. The path
and step variables of a message specify which operator in the query plan should next continue the
pattern matching attempt. A message is passed to the QueryItem object for the next operator via
Lighthouse compute or another QueryItem object’s compute method. The binding of a message
contains all gathered information for the related solution. This data may be needed during later
computations or for being written as part of the complete solution output for a successful pattern
match. The binding structure is inspired by tables from the database world. Its content can be
interpreted as a tuple of a database table, with values on indices corresponding to column numbers.
The values themselves depend on the computed parts of the query plan and the visited vertices.

Listing 1.6: Message Data Structure

public c la s s Message implements Writable {
private byte path ;
private byte step ;
private MessageBinding binding ;
. . .

}

public c la s s MessageBinding
extends ArrayList<Writable> implements Writable , Configurable {
. . .

}

An encountered operator passes messages based on the data of the current vertex, the binding in
the received message and its own parameters. The binding of a message to be passed is built by
altering the binding of the message which was received. Here is a list of the Lighthouse operators
and how bindings in their messages passed are different from the binding in a received message:

Scan
Adds a column with the current vertex’ ID to the message binding.

Select
Does not alter the message binding at all, but performs filtering.

Project
Adds columns with values for specified properties or removes columns.

PathJoin
Creates joined bindings with bindings from the opposite path.

StepJoin
Adds a column with the target vertex’ ID for an edge which meets a condition.

Move
Moves a specified column to the last position in the message binding.

Following is an explanation of the message bindings constructed during an example execution of
the query plan from Listing 1.2. The tables 1.1, 1.2 and 1.3 show the bindings created by the last
computed operators in the two supersteps of the execution. The visualization of the query plan in
Figure 1.1 gives an overview of which parts of the plan’s paths are computed in superstep 0. Here
are the listings for the corresponding query plan components:

Listing 1.7: Query Plan for Example Cypher Query: Part of Path 1 Processed in Superstep 0

StepJoin ( Project ( Select (Scan( firstName :”Antonio”) ,
=({browser} , Chrome)) ,

[ $1 , {firstName } ] ) ,
WORKAT)

11
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Listing 1.8: Query Plan for Example Cypher Query: Part of Path 2 Processed in Superstep 0

StepJoin ( Project ( Select (Scan( firstName :”John”) ,
=({browser} , Chrome)) ,

[ $1 , {firstName } ] ) ,
WORKAT)

The tables 1.1 and 1.2 contain the bindings of messages which are produced by respectively com-
puting the query plan components of listings 1.7 and 1.8. The values in the first column of each
of the tables are set by the related Scan. On path 1, the ID of every vertex having the firstName
property value “Antonio” is added. On path 2, the ID of every vertex with the firstName property
value “John” is added. The Select operators filter away the bindings for vertices which do not rep-
resent people using Chrome. The Project operators create a new column by adding the firstName
property value stored by the vertex of each binding. Next, the StepJoin operators create another
new column by adding values of vertex IDs for companies that encountered people work for.

Table 1.1: Binding Table for Messages Produced by First StepJoin of Path 1

$1 $2 $3

136 “Antonio” 1236
8 “Antonio” 1700

758 “Antonio” 1587

Table 1.2: Binding Table for Messages Produced by StepJoin of Path 2

$1 $2 $3

522 “John” 1587
312 “John” 1300
18 “John” 1587

Table 1.3: Binding Table for Messages with Complete Solutions

$1 $2 $3 $4 $5 $6

758 “Antonio” 522 “John” 1587 10031
758 “Antonio” 18 “John” 1587 10031

Table 1.3 contains the bindings of messages which are produced by the last StepJoin operator, each
representing a complete solution. The table also shows how bindings from the tables 1.1 and 1.2 are
joined by the PathJoin operator. On the vertex with ID 1587, representing a company, one binding
holding the name “Antonio” is received via path 1, while two bindings with the name “John” are
received via path 2. This leads to the creation of two messages after joining all bindings from each
path with all from the other. The last StepJoin operator creates a new column by adding values
of vertex IDs for countries where encountered companies are located. In this case, the vertex ID
for the same country is added for both the bindings, since they involve the same company.

1.3.4 Performance and Scalability

The performance and scalability of the original version of Lighthouse are here considered with
regards to the needed time and memory consumption for executions.

Execution Times

Various types of operations are performed during a Lighthouse execution, each with an impact on
the total execution time. Before any computations are started, disk overhead is introduced when
the input graph is loaded from disks into the memory of the workers. The execution can become
more time consuming if large amounts of output are written to disks. When enabled, Out-of-Core
Giraph (presented in section 1.4) and checkpoints cause additional time consuming disk operations.

12
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Figure 1.3: Execution of a Giraph superstep

The amount of time needed to finish a superstep in Lighthouse depends on the carried out execu-
tions of its three contained components: computation, communication and barrier synchronization.
As visualized in Figure 1.3, the executions of these components overlap during a Giraph superstep.
The computation component is executed in the period compute all. It includes the time needed
to finish the compute calls for all the currently active vertices and to write solution output to the
available HDFS. The communication component is executed in the time span network communica-
tion. It lasts between when the first message and the last message are flushed to the network. The
time it takes to compute the whole superstep is represented with superstep time. It also includes
the time needed for barrier synchronization. The time to first message period lasts between when
the first computation in the superstep starts and the first message is flushed. Giraph can measure
and provide the length of the mentioned time spans if the giraph.metrics.enable option is set.
These numbers can be used for an in-depth analysis of Lighthouse’s performance and scalability.

Listing 1.9: Query Plan for Measurement of Lighthouse Execution Times

Project ( Select ( StepJoin ( Project ( Select ( StepJoin (Scan(Comment) ,
HASCREATOR) ,

=({gender} , male )) ,
[ $1 , $2 , { firstName} , {creationDate } , {gender } ] ) ,

l i k e s ) ,
=({browser} , Chrome)) ,

[ $1 , $2 , $3 , $4 , $5 , $6 , {content } , {creationDate } ] ) ;

Figure 1.4 includes multiple graphs showing the measured duration times and derived speedups
for executions of Query Plan 1.9. The measurements were performed on the SURFsara Hadoop
Cluster, using Giraph release 1.1.0 and the hadoop 2 profile, with the LDBC 10K dataset as input.
This experimental setup is more extensively explained in section 3.1 of the evaluation chapter.

The time needed to finish an execution of the query plan in Listing 1.9, with different numbers
of workers, is presented in Figure 1.4a. Clearly, the total execution time does not scale very well.
When using 160 workers instead of 32, the execution time is just halved despite having 5 times
more workers. The time spent per superstep, with different numbers of workers, is shown in Figure
1.4b. The duration of superstep 2 scales close to linearly with the number of used workers. This
pattern is not apparent for the duration of superstep 1. There are notably small duration times
for superstep 0, despite that this superstep involves the processing of many more vertices than the
others (since all the vertices of the input graph are initially in an active state). However, differently
from the other supersteps, it does not involve any de-serialization of received messages.

Duration times for previously mentioned superstep components are analyzed to get an understand-
ing of which operations reduce the scalability of the system. All presented speedups are calculated
with durations relative to the ones for the execution with 32 workers. The computation time spent
per superstep, with different numbers of workers, is presented in Figure 1.4c. The derived speedups
are shown in Figure 1.4d. The communication time spent per superstep, with different numbers of
workers, is presented in Figure 1.4e. The communication time speedups are shown in Figure 1.4f.
Undoubtedly, the numbers reported by Giraph for communication time in superstep 0 are wrong.
It must take more than 0 milliseconds to transfer the messages of superstep 0 among the workers.

The speedup graphs show that Lighthouse is scalable with regards to computation and communi-
cation time. Both of these metrics scale almost linearly with the number of used workers. Slow
loading of graph partitions from the HDFS may be the bottleneck causing the bad scalability for
the total execution time. Additionally, the long duration times for superstep 1 with many workers
include unknown overhead, potentially caused by some synchronization issues. There are no disks
being touched at this stage, and the corresponding computation and communication times are low.
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(a) Total execution times (b) Superstep times

(c) Computation times (d) Computation speedups

(e) Communication times (f) Communication speedups

Figure 1.4: Measured duration times and derived speedups for executions of Query Plan 1.9

Memory Consumption

The original version of Lighthouse does not take any precautions to ensure that query plan execu-
tions can be performed with limited amounts of available memory. This puts restraints on what
query plans can be executed, and on size and properties of input graphs which can be processed.
Lighthouse is currently only supporting read queries, causing an input graph to stay unchanged
during an execution and to consume a constant amount of memory. Differently, the memory space
that is used to store messages during an execution can vary in size. Query plans matching inter-
esting patterns may lead to exponential growth in numbers of present messages or cause message
bindings to vastly increase in size. Distributed subgraph pattern matching is inherently space
complex, potentially causing workers to run out of available memory. Figure 3.1 in the evaluation
chapter shows how messages in an execution may require more space than the handled input graph.

Several of the previously presented Lighthouse operators can contribute to an increase of memory
required to store messages during an execution. When a Scan operator passes near the same
number of messages as it receives, more space is needed to store the messages it passes than the
messages it receives. This is caused by Scan adding a column with vertex ID to the binding of each
message passed. A Project operator can similarly add multiple columns to message bindings, but
without filtering away any solutions based on a condition. The added columns can store any types
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of data, potentially of huge sizes. The number of messages in the system can increase exponentially
through computation of StepJoin operators. For every received message on a StepJoin, one message
may be passed per outgoing edge of the processed vertex. A PathJoin operator might also lead to
the need for more memory space. In addition to storing all received messages in join tables, it can
pass a number of messages equal to the product of the numbers of messages received from its left
and right incoming paths. The bindings of the passed messages are large, containing columns with
data from bindings of both the PathJoin’s incoming paths.

The number and length of paths in a generated query plan also play a role on the numbers and
sizes of messages in its related executions. In the beginning of an execution, the number of initial
messages created per vertex is similar to the number of paths in the generated query plan. This
means that bushy plans with many paths lead to the creation of more initial messages. Long query
paths will often cause the creation of bindings with many columns and a large number of messages.

Following is an example showing how memory consumption can become a problem with StepJoin:

Figure 1.5: Query plan execution in which increasingly many messages are produced

The query plan execution visualized in Figure 1.5 finds every person who knows someone knowing a
person with the first name Antonio. All the numbers for messages passed by the operators are taken
from a worker after an execution with 4 workers using the LDBC 10K dataset as input. On both
the computed StepJoin operators, each active vertex passes one message per outgoing ’KNOWS’
relationship for every received solution message, giving a significant increase in number of present
messages. The first StepJoin in superstep 0 receives 2’500 messages and leads to 101’153 messages
being sent. Subsequently, the StepJoin in superstep 1 causes more than 13 million messages to be
transferred. The sizes of the messages in the system increase for each computed non-last operator.

Here is an abstract overview of the memory consumption during the execution. The input graph is
evenly distributed among the used workers, filling A percent of memory on each worker. There is a
remaining B percent of memory available to store produced messages during the execution. When
the Scan operator is computed, V number of vertices satisfy the Scan condition, each causing the
first StepJoin to be computed. The StepJoin condition is satisfied for an average E outgoing edges
per processed vertex, causing a total of V *E number of messages to be sent. If E and the sizes of
the sent messages are too large, then B percent of memory will not be sufficient for storage. The
last StepJoin creates more messages, increasing the possibility of running out of memory.

Following is an example showing how memory consumption can become a problem with PathJoin:

Figure 1.6: Query plan execution in which messages are stored in PathJoin tables

The query plan execution visualized in Figure 1.6 finds pairs of people knowing the same person
who works for a specific company. All the numbers for messages passed by the operators are taken
from a worker after an execution with 5 workers using the LDBC 10K dataset as input. Each of
the first StepJoin operators in superstep 0 leads to a total of 79’746 messages being sent. In the
next superstep, messages are joined on the PathJoin and a total of 9’870’498 messages are passed
to the following StepJoin on the worker. This operator passes 21’644’316 messages, all which
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are transferred via the used network. Again, in addition to the increasing number of messages
produced, the message sizes increase for every computed non-last operator.

Once more, an abstract overview of the memory consumption during an execution is presented.
The input graph is evenly distributed among the used workers, filling A percent of memory on each
worker. The remaining B percent of memory is available to store produced messages. After the first
StepJoin operators are computed, some vertices receive messages and compute the PathJoin. For
each of these vertices, m1 messages received from the left path are joined with each of m2 messages
from the right, causing m1 *m2 messages to be passed. The total number of messages which are
passed by a PathJoin is in the most extreme case equal to the product of the total numbers of
messages received from the paths on the worker, M1 and M2. The B percent of available memory
for messages can quickly be overflowed with the M1 +M2 messages stored in join tables and with
the messages to be passed or received on the following non-last global operators.

1.4 Running Giraph with Support of Disks

Apache Giraph is first and foremost designed to execute graph processing jobs in-memory. With
default configurations, the framework will before starting any computations split the provided input
graph and load its partitions into the memory of the utilized workers. Disks are only touched for
writing of output during an execution. With limited memory resources, Giraph may run into two
different problems for jobs that require large amounts of available memory:

1. the input graph is too large to fit into the available memory

2. the input graph fits into the available memory, but the produced messages do not

It is difficult to in advance of any computations predict whether all created messages will fit into
the available memory. This is highly dependent on the behavior of the algorithms to be executed
and the input graph, which impact the number of messages to be stored and their sizes.

As a solution to the problems mentioned above, Giraph offers support for offloading data to the
local disks of the used workers. This feature is called Out-of-Core Giraph[12]. Through splitting
the input graph into more partitions, only having some partitions in memory at the same time, jobs
with larger graphs can be executed. By using a limit for the number of messages each worker can
keep in memory simultaneously, temporarily storing additional messages on disk, jobs involving
more messages can be executed. The disadvantage of using disk operations is that they are slow.

This project explores alternative solutions reducing the memory requirements of Lighthouse query
plan executions. The time-consuming disk operations in Out-of-Core Giraph for messages should be
avoided. With use of pipelining (extensively explained in the next section), eliminating the need for
storing messages on disks, only messages to immediately be processed are created. Unfortunately,
pipelining introduces more supersteps and synchronization. Other memory optimizations are also
explored, reducing the need for both Out-of-Core Giraph and Lighthouse with pipelining.

1.5 Pipelining

To perform a pipelined computation, the required processing must be split into a set of connected
processing elements where the output of an element can be the input of another. It is essential that
the computation produces correct output when the processing elements are executed in parallel.
For Lighthouse, it is convenient to consider the operators of a generated query plan as processing
elements. Pipelining is with dedicated hardware for the different processing elements often used
to achieve a higher throughput when the input is a stream of data. Pipelining is in this aspect
not relevant for Lighthouse, as every available CPU core can be used to compute all the present
operators. Stream input is also not supported by Giraph, in which computations can only start
after the input graph is completely loaded into the memory of the used workers. However, by
enabling pipelining for Lighthouse, the memory consumption for many query plan executions can
be reduced. This through limiting the number of vertices which can start processing query paths
per superstep, at the expense of increasing the number of supersteps which are needed to finish.
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In the original version of Lighthouse, only one global operator on each path of the generated query
plan can be computed per superstep. With pipelining, multiple global operators on the same path
can be computed in the same superstep, increasing the likelihood of all workers being busy.

Pipelining has already been used in database management systems for many years[7]. By passing
tuples directly via an in-memory buffer, on requests of a subsequent operator, there is never a need
to store intermediate tuples on disks. The alternative strategy, called materialization, involves
storing all the output of an operator on disks before it is needed by another. This is generally
in-efficient due to the large amount of required disk writes and reads. Unary operators, such as
Select and Project, have simple pipelined implementations. Input tuples are one at a time fetched
from an input buffer, then processed with results written to an output buffer. Binary operators,
such as NaturalJoin and Division, have more variable and complex pipelined implementations.
Each needing a single output buffer, but varying numbers of input and processing buffers.

An approach for pipelining with operators which pass one tuple at a time, does not lend itself well
to distributed executions with Lighthouse. If a global operator only passes a single solution message
per superstep, the related query plan execution may involve an extreme amount of supersteps to
finish. This is a consequence of the potentially huge number of messages which are to be passed by
a global operator, in addition to Giraph demanding a message transferred over the network to be
processed by an operator in the subsequent superstep. The total network latency experienced for
sending messages will also be high, since messages are not accumulated and sent over the network
together. Lighthouse with pipelining should instead support to pass multiple messages from global
operators per superstep, but in a controlled manner to prevent workers from running out of memory.
The goal should be to keep memory consumption within the limits of the used hardware platform,
while holding the number of needed supersteps to a minimum, avoiding synchronization overhead.

Figure 1.7: Possible memory consumption for query plan executions with and without pipelining

As visualized in Figure 1.7, pipelining is supposed to decrease the maximum memory consumption
for Lighthouse query plan executions which require large amounts of memory. By increasing the
number of used supersteps, the memory consumption should be controlled to stay well within the
memory limit on the available hardware. Pipelining will be particularly useful for path queries
(described in appendix D), which often result in both communication-heavy and memory-hungry
query plans. For pipelined Lighthouse to be preferred over Lighthouse with Out-of-Core Giraph,
the additional synchronization must be less time-consuming than the alternative disk operations.

1.5.1 Lighthouse Query Plan Executions Benefiting from Pipelining

Not all query plan executions can benefit from pipelining. Executions of query plans which contain
only local operators can not. Ignoring join tables, they store very small amounts of messages at a
time, since vertices are sequentially processed and messages are passed directly between operators.
After a message is passed by a local operator, it is immediately handled by the subsequent operator.
Many query plans with non-last global operators can benefit from pipelining. Non-last global
operators cause messages to pile up in network send and receive buffers, which in worst case leads
to executions running out of memory. Various query plans are presented, each with an explanation
of whether its related executions can reduce maximum memory consumption with pipelining. In
the following figures, LM is used as an acronym for “local messages” passed between operators
computed on the same vertex. Similarly, GM is used for “global messages” passed between workers.
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Executions of Left-Deep Query Plans

Following is an overview of different types of query plans and corresponding benefits of pipelining:

Figure 1.8: Query plan with a single operator

Executions of the query plan in Figure 1.8 can not be optimized to use less memory with pipelining.
For each processed vertex, a final solution message may be created by the Scan operator. Instead
of this message being passed to another operator, it is immediately written to the HDFS by the
worker. The memory consumed by the output is after the write operation made available for reuse.
Since multiple messages are never stored in memory at the same time, there is nothing to be gained
by trying to control the amount of messages present during the execution.

Figure 1.9: Left-deep query plan with multiple local operators

Executions of the query plan in Figure 1.9 can not be optimized to use less memory with pipelin-
ing. This is caused by the similar reasons as why the previously discussed executions can not be
optimized. When a worker finishes a computation of the Scan operator with output, the solution
message is immediately passed to the Select operator. Since Scan is a local operator, the Select is
computed before the Scan is again computed on a next vertex. Messages created by the Select are
right away written to the HDFS. Multiple messages are again never stored in memory at the same
time, giving no opportunities to reduce the number of messages present at a time.

Figure 1.10: Left-deep query plan with a global last operator

Executions of the query plan in Figure 1.10 can not be optimized to use less memory with pipelining,
despite the query plan containing a global Lighthouse operator. When the final StepJoin operator
is computed, it creates a solution message per edge matching its condition. These messages are
never further processed and each is immediately written to the HDFS after creation. Since multiple
messages are never stored in memory at the same time, there are no benefits from pipelining.

Figure 1.11: Left-deep query plan with a single non-last global operator

Executions of the query plan in Figure 1.11 can be optimized to use less memory with pipelining.
Since StepJoin is a global operator, the messages produced in a superstep by the non-last StepJoin
can only be processed in the subsequent superstep. The messages are transferred to workers storing
target vertices for matched edges, before they are provided as input for the Select operator. Until
the messages are finally sent, they are stored in the network send buffers on each worker. While a
worker sends solutions, messages from the StepJoin produced on other workers are simultaneously
received and stored. Pipelining should enable control over the number of messages being processed
in each superstep, allowing reduction of the maximum memory consumption.

Executions of the query plans in Figure 1.12 and Figure 1.13 can as well be optimized to use less
memory with pipelining. Each StepJoin operator in the query plans may have the same effect
on the number of messages in executions as the StepJoin of the query plan in Figure 1.11. With
multiple StepJoin operators, the number of present messages in a system can grow exponentially.
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Figure 1.12: Left-deep query plan with two non-last global operators

Figure 1.13: Left-deep query plan with three non-last global operators

In all executions of the two above query plans, message sizes increase for every non-last operator
which is computed. If the same input graph is provided for executions of both the query plans and
the operators in the two query plans have similar parameters, the possibility of available memory
being overflowed will be higher for the query plan in Figure 1.13. This is a consequence of it being
the longest. Pipelining should again provide control over the number of messages to be sent and
received per superstep, thereby also the maximum memory consumption.

Executions of Bushy Query Plans

All executions of bushy query plans generated by Lighthouse can benefit from pipelining. Execu-
tions of bushy query plans which exclusively contain local operators can not, but such query plans
should not under any circumstance be generated. They are fundamentally uninteresting, since the
output of their executions reflects how input graph vertices are distributed among utilized workers.

A PathJoin stores messages it receives during an execution in join tables of encountered vertices.
All memory occupied by join tables is never made available again for storage of other messages.
The amount of memory which can store messages from global operators decreases when join tables
are filled, increasing the possibility for workers to run out of memory. Some query plans contain
non-last global operators after a PathJoin, causing additional storage of messages to be sent and
received. As previously explained, a PathJoin may pass many messages compared to the number
of messages it receives. If a PathJoin is not followed by any non-last global operator, its output
can still significantly affect memory consumption by related messages being stored in join tables.
When an execution is expected to involve PathJoin operators with large input or which produce
many messages, pipelining should be used to ensure completion with limited memory resources.

Following is an overview of different types of query plans and corresponding benefits of pipelining:

Figure 1.14: Bushy query plan with a single PathJoin not followed by non-last global operators

Figure 1.15: Bushy query plan with multiple PathJoin operators
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Executions of the query plans in Figure 1.14 and Figure 1.15 can be optimized to use less memory
with pipelining. The messages produced by each StepJoin in a superstep are passed among workers
and processed in the subsequent superstep. This permits computed PathJoin operators to work
on solutions with information from all vertices of the provided input graph. Since the query plans
are not containing any non-last global operator following a PathJoin operator, final solutions can
be produced in the same superstep as PathJoin output and be written to the HDFS. The messages
passed by the first PathJoin in Figure 1.15 are stored in the join tables of the next PathJoin.
Pipelining enables control over the numbers of messages that are handled by the StepJoin operators
per superstep, allowing reduction of the maximum required memory for storage of messages.

Figure 1.16: Bushy query plan with a single PathJoin followed by a non-last global operator

Executions of the query plan in Figure 1.16 can be optimized to use less memory with pipelining.
Oppositely from the previously discussed query plans in Figure 1.14 and Figure 1.15, the query plan
contains a non-last global operator which follows a PathJoin. The number of messages produced
by the PathJoin has a significant impact on the memory consumption of related executions. The
messages from the PathJoin are not written to the HDFS, but instead processed by the subsequent
StepJoin, causing multiple messages to be stored in memory at the same time. As explained before,
this gives opportunities to reduce the memory consumption with pipelining. Bushy query plans
with late global operators are likely to give very memory-hungry executions with many messages.

1.6 Research Questions

1. How can pipelining be utilized to reduce memory consumption for query executions?

• For which queries and input graphs can executions benefit from pipelining?

• How should workers calculate initial message limits?

• When should new initial message limits be calculated and used?

• What measures can be taken to decrease damages caused by skew in given input data?

• How can a pipelined execution which fails be restarted or continued?

• What problems can occur for pipelined Lighthouse when binary operators are present?

• How can the start superstep for each path of a query plan be set to improve performance?

2. How can used data structures and formats be changed to reduce required amounts of memory?

• In what ways can data structures for input graphs and messages be improved?

• Which data serialization formats should be used for input graphs and messages?

• How can binary join operators of Lighthouse store messages more efficiently?

3. What other optimizations can be used to increase available memory for messages?

• How can selective loading of vertices and edges from the input graph be utilized?

• How does Lighthouse with pipelining perform compared to with Out-of-Core Giraph?

4. Which operators can with implemented optimizations still be considered bottlenecks?

• For which queries and input graphs should these operators be avoided?

5. What memory optimizations should be enabled by default in Lighthouse?
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Chapter 2

Lighthouse Changes

This chapter explains how Lighthouse is improved to require less memory for some executions. For
each presented optimization, a conceptual description and details for how it is implemented are
provided. In section 2.1, changes which enable Lighthouse with pipelining are in-depth explored,
including how and when to calculate initial message limits. Different ways of reattempting failed
executions are also considered. Next, in section 2.2, PathJoin related memory optimizations are
discussed. They involve different approaches for when to start executions of paths in bushy query
plans and various methods for storing messages in join tables. Finally, in section 2.3, improved
data structures and serialization formats for vertices, edges and messages are presented.

2.1 Lighthouse with Pipelining

As made clear in the introduction chapter, pipelining can reduce Lighthouse’s maximum memory
consumption for executions of query plans containing non-last global operators. Lighthouse with
pipelining is implemented by limiting the number of vertices on which query path computations
are started per superstep. This enables fewer messages to be passed between the operators of a
generated query plan per superstep, requiring less available memory to store messages to be sent
or received on non-last global operators. Since all paths of a query plan must be computed for
every input graph vertex before the related execution can finish, more supersteps may be needed
when using pipelining. This introduces additional synchronization and communication overhead.

A query path computation is started on a vertex when the compute method of a path’s initial Scan
object is called with the vertex as an argument. The initiative to a path computation is taken
after an initial message has been created on a vertex. It contains the path’s ID and step number
0. As showed in Listing 2.1, the number of initial messages created per worker in each superstep
is controlled by using the new variables initialMessageCount and initialMessageLimit. Both are
available for all computation on vertices of a worker, via the worker’s WorkerContext object. Each
WorkerContext object is also used after a superstep is finished, when initialMessageCount is reset
to 0, through an automatic call to its provided postSuperstep method.

Listing 2.1: Lighthouse compute() of Pipelined Implementation

public void compute(Vertex vertex , Iterable<Message> messages ) {
<Get worker context used to check i n i t i a l message count and limit>
<Get number of unstarted paths for vertex>
i f (workerContext . initialMessageCount < workerContext . initialMessageLimit

&& numUnstartedPaths > 0) {
<Create i n i t i a l messages for paths of the query plan>
<Pass computation for each created i n i t i a l message to f i r s t query item of path>

}

<Pass computation for each received message to next query item of path>

<Vote to halt when a l l query paths have been started on the vertex>
}
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The number of unstarted query path computations for a vertex is stored in the vertex itself. As seen
in Listing 2.1, it enables a quick determination of whether new initial messages should be created in
a superstep. The number of unstarted path computations for a vertex is also used to decide when it
should be turned inactive, which is done by calling its provided voteToHalt method. If voteToHalt
is called for a vertex before all its related path computations have started, the query plan execution
might end without a complete set of final solutions. Since a vertex which has turned inactive may
never be reset to active again, some path computations are possibly never started. If voteToHalt
is not called for an active vertex in every superstep after all its related path computations have
started, a larger number of supersteps may be executed. In this situation without receiving any
messages, such active vertex can not be processed to create solutions, but force new supersteps to
be started. It also introduces more computational overhead per subsequent superstep being active,
even when other vertices are processed, constituting an additional unnecessary iteration step.

A 1 byte boolean hasStartedAllPaths can be used instead of the 4 byte integer numUnstarted-
Paths in each vertex. However, this seldom reduces the memory consumption for storing vertices
significantly, since all objects in Java are padded to have sizes in bytes being multiples of 8. An
advantage of using the integer numUnstartedPaths is that it enables the creation of a number of
initial messages per superstep exactly equal to the initial message limit. A boolean hasStartedAll-
Paths can only restraint the creation of initial messages to multiples of the number of query paths.
The addition of attributes to the vertex data structure has motivated changes to reduce the re-
quired memory for storing input graphs, which are presented in section 2.3. An approach providing
control over the creation of initial messages per superstep, without adding more data to vertices,
is to use a counter on every worker for the number of vertices on which path computation has
started. The counter determines how many vertices must be iterated in a superstep before initial
messages can be created. This approach utilizes that vertices are processed in the same order in
every superstep, but denies vertices to turn inactive before all initial messages have been created,
giving extra computation overhead. If an unknown number of vertices are inactive, it is impossible
to determine for which vertices to produce initial messages. It is difficult to maintain a counter for
the number of inactive vertices on each worker, since vertices are unpredictably reactivated when
receiving messages between supersteps.

2.1.1 Calculations of Initial Message Limits

If the initial message limit on each utilized worker is set to a low value in the beginning of an
execution, fewer messages are passed by non-last global operators of the query plan in every
following superstep. This enables clusters with less available memory to be used, as smaller amounts
of messages are stored the same time, but forces the execution to spend more supersteps to finish.
The limits for the number of initial messages to be created per superstep should not be set too
small, since this causes a need for unnecessarily many supersteps with associated overhead. If the
initial message limits are set too large, workers in the execution may run out of available memory.
The same limit values must not be used for all executions on a cluster, as various query plans
and input graphs will cause different amounts of messages to be produced. Initial message limits
should be intelligently calculated, considering properties of the handled query plan and the input
graph, to enable any execution to succeed without requiring an excessive number of supersteps.

These numbers are used by a worker to calculate its optimal initial message limit in an execution:

• available unused memory after the local graph partition has been loaded

• number of input graph vertices stored in memory

• ratio between the numbers of out and in messages for each query plan operator

• average size for serialized out messages of each non-last global operator

• number of in messages from each path to every present PathJoin operator

• average size for serialized in messages from each path to every present PathJoin operator

• number of currently active input graph vertices for each present PathJoin operator
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A worker in Lighthouse with pipelining is responsible for controlling its own initial message limit.
This limit is never communicated, requiring the above numbers to have similar values on all sites.
With significant differences, extra measures must be taken to avoid any worker being overloaded
with messages passed. Since Pregel systems run on homogeneous clusters, all workers have physical
memory of identical sizes. An input graph will before an execution be partitioned using a hash
function, giving an even distribution of vertices, causing similar amounts of initial unused memory.

Each worker measures its available unused memory before superstep 0, from the preSuperstep
method of its WorkerContext object, using Giraph’s MemoryUtils class. Garbage collection must
be requested to take place before all memory consumption API calls, to get accurate reports in
return. Since garbage collection is a time consuming operation, it should be initiated as seldom
as possible. An estimation for the number of input graph vertices stored on a worker is calculated
through dividing its worker context’s getTotalNumVertices value by the number of utilized workers.
This takes place during the second superstep of a computation, after all workers have reported the
number of vertices they iterated during the first superstep. Alternatively, the precise number of
vertices stored on each worker can be found by including a counter in all WorkerContext objects.
During the initial superstep, for every vertex processed locally, this counter must be incremented.
The ratio between the numbers of out and in messages for each operator is calculated with statistics
from already performed computation on a query plan. When an operator is used to process a
message on a worker, the inMessageCount of its corresponding QueryItem object is incremented.
Similarly, for each message produced and passed, the QueryItem object’s outMessageCount is
incremented. The QueryItem object of a global operator also stores the related average size for
serialized out messages. This variable changes every time a different size is observed for a message
passed. Figure 2.1 visualizes statistics gathered for operators of a query plan on a single worker
during an execution. In this case, the average sizes for serialized in and out messages were stored
for all encountered operators, not only for global ones, in addition to the out-in ratios for messages.

Figure 2.1: Statistics gathered on a worker during a query plan execution

All calculations of initial message limits during a query execution should be performed defensively,
to decrease the risk of an imbalanced message distribution causing workers to run out of memory.
In addition to the previously presented numbers, a calculation must consider a skew protection
fraction size, ensuring that a part of the available memory is left empty when no skew is apparent.
This memory is used as a buffer when a sudden large amount of messages is produced or received.
Another advantage, of not utilizing all the available memory at once, is that less runtime overhead
is introduced by the garbage collector. It is invoked more often on creation of new Message objects
when the memory is nearly full. Potential message distribution imbalances caused by input skew
in Giraph may be reduced through use of an alternative graph partitioning algorithm, for instance
Spinner[9]. Figure 2.2 shows how memory of workers is consumed during executions. The amount
of memory required to store an input graph’s vertices and edges is constant, while the number and
sizes of created and stored messages vary depending on the handled query plan and input graph.

In the beginning of a superstep, Giraph keeps received serialized messages in a message store on
every worker. For each input graph vertex which is processed by a worker during the superstep, all
related messages are sequentially de-serialized to a single reused Message object. This approach
reduces the numbers of created Message objects and garbage collector invocations, in addition
to the lifetime of received messages as Java objects. The messages to be passed by non-last
global operators are oppositely serialized and added to the worker’s local send buffers. They are
eventually transferred via the used network. To accurately predict the memory consumption of
a worker with an expected set of messages, all memory to be allocated by its data structures for
serialized messages must be considered. This is implemented by multiplying the sum of anticipated
sizes for serialized messages with 1.5. After several attempted test executions of query plans with
little skew, this factor has been favored to ensure that all available memory except skew protection
is consumed. Facebook has similarly implemented multiplication with 1.5 when estimating sizes of
serialized input graphs, taking into account memory fragmentation and inexact byte array sizes[3].
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(a) Left-deep query plans (b) Bushy query plans

Figure 2.2: Workers’ memory during executions of left-deep and bushy query plans

General Calculation Details

Listing 2.2 contains the formulas used by an active worker to calculate its initial message limit.
This limit represents the optimal number of initial messages which it should create per superstep.
The formulas should be examined in the same order as they are listed in. Each shows how a new
named value is calculated. Corresponding Java code is later explained, including a description of
how QueryItem objects of a generated query plan are traversed while carrying out the calculation.

Listing 2.2: Overview of Initial Message Limit Calculation

skew protection mem = skew protect ion fract ion s ize ∗ total mem
predicted max mem pathjoin tables =

SUM( predicted total num in left path ∗ i n l e f t avg s i z e ∗ 1.5 ,
predicted total num in right path ∗ in r ight avg s i ze ∗ 1.5)

total mem messages =
unused mem − skew protection mem − SUM(predicted max mem pathjoins tables )

mem messages nonlast global =
predicted superstep num out ( in i t ia l message l imi t ) ∗ out avg size ∗ 1.5

SUM(mem messages nonlast globals ) = total mem messages
d iv i sor = total mem messages / in i t ia l message l imi t

in i t ia l message l imi t = total mem messages / div i sor

skew protection mem represents the amount of memory which should stay unused on a worker when
there is no input skew or message distribution imbalance in the computation. Its value depends on
the skew protection fraction size, a constant with default value 0.3. This value has proved itself to
be appropriate for executions with smaller amounts of input skew, preventing the garbage collector
to be invoked too often. If commonly executed queries and provided input graphs trigger greater
imbalances, this value should be set larger. total mem is the total amount of available memory to
the worker, a value which is obtained via Giraph’s MemoryUtils.maxMemoryMB method.

predicted max mem pathjoin table is the predicted amount of memory a specific PathJoin opera-
tor’s tables will occupy at the end of the computation. PathJoin tables are gradually filled with
messages and enable mergences of messages arriving in different supersteps. The predicted final
memory consumption for the tables of a PathJoin is based on estimations of how many messages
will in total arrive at the PathJoin during the computation, multiplied with average message sizes.
If an incoming path does not contain other PathJoin operators, the number of messages to arrive
from the path is estimated by multiplying the total number of initial messages to be created on
the worker for the path, with the product of the out-in ratios for the path’s operators before the
PathJoin. If an incoming path contains other PathJoin operators, the number of messages to arrive
from the path is estimated with calculations which are discussed in the next section.

total mem messages is the maximum amount of memory a worker should consume for messages on
global operators when there is no input skew or message distribution imbalance in the computation.
This amount does not include all the unused memory of the worker after loading its input graph
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partition. One memory fraction is reserved for skew protection, while another is reserved for the
messages to be stored in present PathJoin operators’ tables. The amount of consumed memory after
loading an input graph partition is obtained via Giraph’s MemoryUtils.totalMemoryMB method.

mem messages nonlast global is the predicted amount of memory required to store all the messages
produced on a worker per superstep with a specific non-last global operator. This amount depends
on the unknown value of initial message limit. For non-last global operators with an incoming path
not containing any PathJoin operators, the predicted superstep num out function can be expressed
as initial message limit * 1/num paths * PRODUCT(ratios from path start to with nonlast global).
For non-last global operators with an incoming path containing PathJoin operators, the pre-
dicted superstep num out function involves more complex calculations which are discussed in the
next section. The predicted number of messages is multiplied with the stored average message size.

initial message limit is calculated by setting the sum of the predicted amount of memory needed
to store the messages produced on a worker per superstep with each global operator, equal to
total mem messages, the maximum amount of memory the worker should consume for messages
on global operators. Since all the summands of SUM(mem messages nonlast globals) contain the
factor initial message limit, a division on both sides of the equation with this factor causes it to
only be present on one side. The side without is in lack of a better name called divisor. Its value can
be used to calculate initial message limit when already having the value for total mem messages.

Listing 2.3: Calculation of Initial Message Limit

private long calculateInit ialMessageLimit () {
// Calculate d iv i sor for query plan
double d iv i sor = calculatePathDivisor (paths . get (0) , true ) ;

// Avoid zero div i s ion in case non−l a s t global operators are not present
i f ( d iv i sor == 0) {

return Long .MAXVALUE;
}

// Return the calculated i n i t i a l message l imit
return ( long ) (TOTALMEMMESSAGES / div i sor ) ;

}

Listing 2.3 shows the Java method calculateInitialMessageLimit which is utilized in Lighthouse with
pipelining to calculate a worker’s optimal initial message limit. The method calls calculatePath-
Divisor for the main path of the handled query plan. This path has the ID 0 and is different from
other paths as it is guaranteed to end with the plan’s last operator. To avoid consideration of
memory consumption for produced messages on the last operator, the passed argument for the
isMain parameter is true. When no non-last globals operators are present in the query plan, a
large initial message limit is returned to minimize the execution’s number of required supersteps.

Listing 2.4: Calculation of Path Divisor

private double calculatePathDivisor (QueryItemPath currentPath , boolean isMain ) {
double d iv i sor = 0;

<Set end to avoid v i s i t i ng a la s t global operator when travers ing the main path>
for ( int step = 0; step < end ; step++) {

i f ( currentPath . get ( step ) instanceof Move
| | currentPath . get ( step ) instanceof StepJoin ) {

// Increase div i sor on reached global operator
d iv i sor +=

currentPath . get ( step ) . getAverageOutMessageSizeSerialized ( ) ;
∗ 1.5 ∗ calculatePathFactor ( currentPath , step ) ;

} e l s e i f ( currentPath . get ( step ) instanceof PathJoin) {
// Increase div i sor on global operators in r ight query path
int thisPathJoinId = ((PathJoin) currentPath . get ( step ) ) . getId ( ) ;
QueryItemPath right = getPathJoinRightPath( thisPathJoinId ) ;
d iv i sor += calculatePathDivisor ( right , f a l s e ) ;

}}

return div i sor ;
}
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Listing 2.4 shows the Java method calculatePathDivisor which is used in Lighthouse with pipelining
to calculate the divisor on a worker. It is returned from a call with the main path as argument, af-
ter all paths of the handled query plan have been traversed and their divisors have been summed.
The divisor of a path is increased for every encountered non-last global operator with a sum-
mand similar to mem messages nonlast global of Listing 2.2. However, this summand does not
include an initial message limit factor. The called method calculatePathFactor multiplies out-in
ratios and the fraction of initial messages which may cause messages to be passed by the current
operator. This method is later presented in Listing 2.6 and corresponds to the previously used pre-
dicted superstep num out function. When a PathJoin is encountered in the calculatePathDivisor
method, a recursive call with its right path as argument takes place, returning another divisor to
be added. All local operators which are come across during the traversal of operators are ignored.

Calculation Details for Executions of Bushy Query Plans

It is more complex to accurately predict memory consumption in executions of bushy query plans.
Even if executions of bushy query plans have initial message limits which never change, each worker
is likely to increase its memory consumption for every computed superstep. This is a consequence
of PathJoin operators commonly passing small numbers of messages in early supersteps, then large
numbers of messages in late ones. Normally, all non-last global operators and join tables following
a PathJoin are gradually requiring more memory, potentially causing workers to fail. A calculation
of an optimal initial message limit must take into account the growing numbers of messages to be
passed by PathJoin operators in the handled query plan. With continuously filled join tables, the
observed out-in ratio for any PathJoin during the calculation is quickly outdated.

A proposed solution, to handle the changing out-in ratios for PathJoin operators, is to replace
them with forged out-in ratios in all calculations of initial message limits. Each forged out-in ratio
represents the predicted out-in ratio which can be observed for the related PathJoin in the end
of the execution. Listing 2.5 presents how a forged out in ratio is calculated for a PathJoin on a
worker. The predicted total number of messages to be received from a path to the PathJoin on
the worker, represented by predicted total num in left path and predicted total num in right path,
is calculated with a multiplication of the path factor for the path’s previous operators and the
total number of initial messages to be created by the worker. The predicted number of vertices
on the worker to store a join table for the PathJoin after the final superstep of the execution,
represented by predicted total num active vertices, is calculated with the worker’s current numbers
of vertices storing a related join table and already created initial messages, and the total number
of initial messages to be created by the worker. This prediction assumes that the number of
active vertices for the PathJoin grows linearly with the number of created initial messages. The
predicted total number of messages to be passed by the PathJoin on the worker is represented
by predicted total num out. The prediction assumes that on all vertices where the PathJoin is
computed, equally many related messages are received. If the assumptions are violated, more
messages than estimated might be passed by the PathJoin, causing workers to run out of memory.

Listing 2.5: Calculation of Out-In Ratio for PathJoin

predicted total num in left path =
calculate path factor ( le ft path , current le f t path step − 1)
∗ worker total num initial messages

predicted total num in right path =
calculate path factor ( right path , current r ight path step − 1)
∗ worker total num initial messages

predicted total sum num in = predicted total num in left path
+ predicted total num in right path

predicted total num active vert ices = current num active vertices
/ worker current num initial messages
∗ worker total num initial messages

predicted total num out =
predicted total num in left path ∗ predicted total num in right path
/ predicted total num active vert ices

forged out in rat io = predicted total num out / predicted total sum num in
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Listing 2.6 shows the Java method calculatePathFactor which is used in Lighthouse with pipelining
to calculate path factors on a worker. With the provided lastStep argument, a calculation can be
limited to a smaller part of the currentPath passed. A returned pathFactor is calculated considering
the fractions of initial messages to start paths leading towards the last operator, specified by the
method’s arguments, and the out-in ratios for the operators on these paths. The pathFactor ’s
initial value is the fraction of initial messages to start the path containing the last operator. While
the path’s operators are later traversed, the pathFactor ’s value is multiplied with the out-in ratio
for each. If a PathJoin is encountered, a path factor is recursively calculated for its right path.
The path factors for the PathJoin’s incoming paths are summed to pathFactor, since the expected
number of messages a PathJoin passes is a product of its out-in ratio and sum of received messages.

Listing 2.6: Calculation of Path Factor

private double calculatePathFactor (QueryItemPath currentPath , int lastStep ) {
double pathFactor = (double ) 1 / numPaths ;

for ( int step = 0; step <= lastStep ; step++) {
i f ( currentPath . get ( step ) instanceof PathJoin) {

QueryItemPath right =
getPathJoinRightPath ((( PathJoin) currentPath . get ( step ) ) . getId ( ) ) ;

pathFactor += calculatePathFactor ( right , r ight . s i z e () − 2) ;
}

pathFactor ∗= currentPath . get ( step ) . getOutInRatio ( ) ;
}

return pathFactor ;
}

Path factor calculations are required in listings 2.2, 2.4 and 2.5. By multiplying the total number
of initial messages to be created on a worker in an execution with a path factor, an expected total
number of messages to be passed by the worker can be calculated for any operator in the plan. If
the number of initial messages to be created on a worker in a superstep is used instead, an expected
number of messages to be passed by the worker in a superstep for any operator can be calculated.

2.1.2 When to Calculate New Initial Message Limits

As a precaution, a low default value must be used by each worker for its initial message limit
until all statistics needed from the ongoing execution to calculate an optimal limit is available.
Unfortunately, a single default value does not suit all potential combinations of generated query
plans, input graphs and utilized workers. An initial message limit appearing small in one execution,
may in another immediately cause workers to run out of memory. When only having a few workers
with a small memory capacity, a given input graph will occupy a larger fraction of the available
memory, increasing the possibility for workers to fail. During a query plan execution, each worker
should calculate and use an optimal initial message limit instead of the default one. This normally
reduces the number of required supersteps, but still enables the execution to successfully finish.

Two different patterns for when to calculate new initial message limits have been implemented for
Lighthouse with pipelining. With static initial message limits, a calculation of an optimal initial
message limit is performed once by each worker in an execution. With dynamic initial message
limits, eventually a calculation is performed by each worker before every started superstep.

Pipelining with Static Initial Message Limits

As implied by describing the used initial message limits with this calculation pattern as static, the
limit on a worker remains unchanged in an execution after it once has been calculated. Prior to
any calculations taking place, computation statistics must be gathered for every non-last global
operator of the handled query plan (this requires all of them to potentially have been computed).
In executions where some query plan operators are not computed, the calculations of limits should
not be postponed forever. A problem with static initial message limits is that they are calculated
with statistics gathered after a small number of query path computations. These have been started
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on just a few vertices of the input graph, which might not constitute a representative sample for
the whole input graph, possibly causing calculations of too large limits and workers to run out of
memory. The calculation pattern for pipelining with static initial message limits is implemented
in the preSuperstep method of Lighthouse’s WorkerContext class, as showed in Listing 2.7.

Every worker measures its available unused memory before starting the first superstep in an exe-
cution. This previously discussed number is later used when a worker calculates its optimal initial
message limit. Shortly after performing the measurement, a worker temporarily sets its initialMes-
sageLimit to the small constant DEFAULT INITIAL MESSAGE LIMIT. This assignment is only
avoided if the handled query plan does not contain any non-last global operators. In such situation,
the maximum memory consumption for Lighthouse can not be reduced with pipelining. The value
of minimumExecutionLength depends on the processed query plan, as it represents the number of
supersteps required to compute all the present operators for creation of a complete solution. When
the preSuperstep method is called on a worker right before superstep minimumExecutionLength -
1, all the non-last global operators of the query plan have potentially been computed. The worker’s
initialMessageLimit is then calculated and set, changing the number of path computations it can
start per superstep. A RuntimeException is thrown if a negative or zero initial message limit is
calculated. This should only happen if the worker has no available memory for storing messages on
global operators after having reserved memory for skew protection and increasing PathJoin tables.

Listing 2.7: Calculation of Static Initial Message Limit

public void preSuperstep () {
i f ( getSuperstep () == 0) {

AVAILABLEUNUSEDMEMORY = freePlusUnallocatedMemory ( ) ;
}
. . .
// Set new i n i t i a l message l imit
i f ( getSuperstep () == 0 && minimumExecutionLength != 1) {

initialMessageLimit = DEFAULT INITIAL MESSAGE LIMIT;
} e l s e i f ( getSuperstep () < minimumExecutionLength − 1) {

initialMessageLimit = 0;
} e l s e i f ( getSuperstep () == minimumExecutionLength − 1) {

initialMessageLimit = calculateInit ialMessageLimit ( ) ;
i f ( initialMessageLimit <= 0) {

throw new RuntimeException(”Bad i n i t i a l message l imit ! ” ) ;
}}}

Before all supersteps between the first and the calculation of an optimal initial message limit, each
worker’s initialMessageLimit is set to 0. In early versions of pipelined Lighthouse, this prevented
bad predictions for numbers of messages to be received by PathJoin operators with incoming paths
requiring different numbers of supersteps to be computed. Regrettably, this code was not removed
before performing the later presented measurements. With recent versions of pipelined Lighthouse,
the numbers of messages to be received by a PathJoin is predicted with use of calculatePathFactor.

Pipelining with Dynamic Initial Message Limits

As implied by describing the used initial message limits with this calculation pattern as dynamic,
the limit on a worker can be changed multiple times after it once has been calculated. Similar to
with use of static initial message limits, computation statistics must be gathered for every non-
last global operator of the handled query plan before any calculations can take place. The main
advantage of using dynamic initial message limits over static ones is that they gradually improve.
They are calculated with statistics gathered after a growing number of query path computations.
While the number of start vertices which have been used for computations on a worker increases,
the start vertices should afterwards constitute a more representative sample for the whole graph.
With improving initial message limits, less skew protection memory is consumed. The Java code
enforcing the calculation pattern for pipelining with dynamic initial message limits is also placed
in the preSuperstep method of Lighthouse’s WorkerContext class. It is showed in Listing 2.8.

There is one significant difference between the code triggering calculations of static and dynamic
initial message limits. In pipelined Lighthouse with dynamic initial message limits, a worker’s
initialMessageLimit is recalculated for every superstep larger than minimumExecutionLength - 1.
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Listing 2.8: Calculation of Dynamic Initial Message Limit

public void preSuperstep () {
. . .
// Set new i n i t i a l message l imit
i f ( getSuperstep () == 0 && minimumExecutionLength != 1) {

initialMessageLimit = DEFAULT INITIAL MESSAGE LIMIT;
} e l s e i f ( getSuperstep () >= minimumExecutionLength − 1) {

initialMessageLimit = calculateInit ialMessageLimit ( ) ;
i f ( initialMessageLimit <= 0) {

throw new RuntimeException(”Bad i n i t i a l message l imit ! ” ) ;
}}}

2.1.3 Automatic Restart or Continuation of Failed Executions

Even though skew protection memory is made available, workers in pipelined Lighthouse executions
may still run out of memory. Since memory consumption predictions are based on observed out-in
ratios for operators and average message sizes, utilized workers are vulnerable to sudden creation
or receipt of large amounts of messages. Many variations in numbers of present messages during
a query plan execution can be caused by skewed input data. Skew may lead to the outcome of
path computations in various supersteps on a worker to differ, in addition to make some workers
produce or receive more messages than others. An inherent problem for executions of query plans
having operators which pass very few messages is that an operator on a worker might not pass
any messages before the worker calculates an optimal initial message limit. This makes the worker
expect that no messages will ever be received from the operator, potentially causing it to calculate
and use a large initial message limit. If messages are later unexpectedly passed by the operator,
following operators can create large numbers of messages which do not fit into the available memory.

To execute query plans in a pipelined manner with calculated initial message limits is a proactive
approach to prevent executions from trying to store too many messages in memory. All calculations
of initial message limits are based on predicted memory consumption and require knowledge about
the generated query plan and the input graph. A pipelined execution which fails with workers
running out of memory, then is restarted with the same workers, is likely to fail again since the
input vertices are processed in the identical order. To eventually succeed an execution of this job,
pipelined Lighthouse must also be reactive and utilize information about its previous execution
attempts. The used initial message limits in a retry attempt should be more defensive. If a pipelined
Lighthouse execution is solely taking a reactive approach, it does not require any knowledge about
the generated query plan and the input graph, as no predictions are ever performed. An execution
attempt can start with small initial message limits which increase for every performed superstep.
If an attempt suddenly fails, it must be restarted and set to use smaller initial message limits.

Two different mechanisms for automatically reattempting failed query plan executions have been
implemented for Lighthouse with pipelining. The simplest one, described to restart failed execu-
tions, involves to delete all complete solutions written to the HDFS by the last failed execution
attempt, before starting another. The more complicated mechanism, described to continue failed
executions, involves to only delete complete solutions written to the HDFS by the last failed exe-
cution attempt in its final superstep, before starting another attempt.

Automatic Restart of Failed Executions

This mechanism, for automatically reattempting failed query plan executions, works in combination
with both the previously described calculation patterns for initial message limits. For each new
execution attempt started after a failed attempt, all initial message limits are set more defensively.
This ensures that a query plan execution eventually succeeds, provided that the given input graph
fits into the available memory of the used workers and space can be reserved for skew protection
and PathJoin tables. The restart mechanism deletes all complete solutions written to the HDFS by
failed attempts, preventing duplicates of solutions in the output folder after an execution succeeds.
A successful attempt will itself find all complete query solutions and write them to the HDFS.
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The created JobRetryChecker class, presented in Listing 2.9, implements the GiraphJobRetryChecker
interface. Objects of this class are used to force the Giraph framework to automatically reattempt
failed executions. Giraph immediately calls the method shouldRetry after an execution attempt
has failed, then starts a new attempt if the method returns true. Currently, a maximum number of
5 attempts can be started for a specified job. If the execution does not succeed during these, other
reasons than large initial messages limits are likely to make the attempts fail. Before restarting an
execution, a retry.info file is created in the available HDFS with information about the number
of already failed attempts. Before returning true, all previously written solutions are deleted.

Listing 2.9: shouldRetry() of Restart Implementation

public c la s s JobRetryChecker implements GiraphJobRetryChecker {
public boolean shouldRetry (Job submittedJob , int tryCount) {

i f ( tryCount < 5) {
<Create retry . in fo f i l e>
<Flush and close output stream>
<Delete written complete so lut ions from HDFS>
return true ;

}

return f a l s e ;
}
. . .

}

With the restart mechanism enabled, the number of previously failed execution attempts is read
from the preApplication method implemented in Lighthouse’s WorkerContext class. This method is
showed in Listing 2.10. Immediately after an execution attempt is started, Giraph forces the preAp-
plication method to be called on each worker. A worker then tries to read the number of already
failed attempts from the retry.info file in the HDFS. If successful, it sets its RETRY FACTOR
to 0.1 raised to the power of the number of failed attempts. As seen in Listing 2.11, a default or
calculated initial message limit value is multiplied with the retry factor before being assigned to ini-
tialMessageLimit. The preSuperstep method is here implemented to set static initial message lim-
its. By exponentially decreasing the used initial message limits for each execution attempt, smaller
numbers of path computations are started per superstep. The default value of RETRY FACTOR
is 1. This value is never changed in a first execution attempt, causing used initial message limits to
either have default values or be exactly as calculated by the calculateInitialMessageLimit method.

Listing 2.10: preApplication() of Restart Implementation

public void preApplication () {
. . .
// Try to read retry information from f i l e and set new retry factor
Path retryInfoPath = new Path(RETRY INFOLOCATION) ;
i f ( f s . ex i s t s ( retryInfoPath )) {

BufferedReader br = new BufferedReader (
new InputStreamReader( f s . open( retryInfoPath ) ) ) ;

RETRYFACTOR = Math.pow(0.1 , Integer . parseInt (br . readLine ( ) ) ) ;
br . c lose ( ) ;

}}

Listing 2.11: preSuperstep() of Restart Implementation

public void preSuperstep () {
. . .
// Set new i n i t i a l message l imit
i f ( getSuperstep () == 0 && minimumExecutionLength != 1) {

initialMessageLimit = ( long )
(DEFAULT INITIAL MESSAGE LIMIT ∗ RETRYFACTOR) ;

} e l s e i f ( getSuperstep () == minimumExecutionLength − 1) {
initialMessageLimit = ( long )

( calculateInit ialMessageLimit () ∗ RETRYFACTOR) ;
i f ( initialMessageLimit <= 0) {

throw new RuntimeException(”Bad i n i t i a l message l imit ! ” ) ;
}}}
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Automatic Continuation of Failed Executions

This mechanism, for automatically reattempting failed query plan executions, also works in combi-
nation with both the previously described calculation patterns for initial message limits. However,
as later explained, it does not work for failing executions of bushy query plans. For each new exe-
cution attempt started after a failed attempt, most initial message limits are set more defensively.
In a retry attempt, a worker’s first limit is set to the product of a limit used by the worker with
the same ID in the previous attempt and a retry factor. As workers here do not need to consider
the default initial message limit value, some retry attempts avoid to start with very low limits.
Differently from the simple restart mechanism, the continuation mechanism only deletes complete
solutions written to the HDFS by the last failed execution attempt in its final superstep, before
starting a new attempt. One or more workers failed in this interrupted superstep.

A worker should after every superstep append the following to the HDFS file fin/<worker-id>:

1. the number of the superstep

2. its number of related initial messages which may have resulted in complete solutions

3. its initial message limit value

The fin HDFS directory contains worker specific computation information for all finished super-
steps. If a worker can get the number of produced initial messages by workers with the same ID
in previous attempts and which may have resulted in complete solutions, it can prevent creation
of initial messages for complete solutions that are already stored in the HDFS. If a worker can
get the initial message limit which was used by a worker with the same ID in the last successful
superstep, it can set its first limit without considering the default initial message limit value.

Before a superstep is started, the worker with ID 0 writes the number of the superstep to the
file started.superstep in the HDFS. This enables workers to read in which superstep a failed
execution attempt has stopped. The number of the last successful superstep in a failed attempt is
used by each worker in the next attempt to find relevant information of that enumerated above.
There are two important properties of Giraph which allow workers in retry attempts to use counts
for produced initial messages to skip initial message creations, but still produce correct output.
Workers in different attempts with the identical assigned worker ID are responsible for the same
partition of the input graph. A partition has in all attempts its vertices stored in the same order.

Listing 2.12: preApplication() of Continue Implementation

public void preApplication () {
. . .
// Try to read la s t f a i l ed superstep number from f i l e
Path superstepPath = new Path(STARTEDSUPERSTEPLOCATION) ;
i f ( f s . ex i s t s ( superstepPath )) {

BufferedReader br = new BufferedReader (
new InputStreamReader( f s . open( superstepPath ) ) ) ;

LAST FAILED SUPERSTEP = Integer . parseInt (br . readLine ( ) ) ;
br . c lose ( ) ;

}}

With the continuation mechanism enabled, prior to any superstep being started in a retry attempt,
a read of the number of the superstep in which the previous execution attempt failed takes place.
The preApplication method performs the read as presented in Listing 2.12. The number of an
interrupted superstep is only available from started.superstep in retry attempts. In a first query
plan execution attempt, LAST FAILED SUPERSTEP does not change value from the default -1.
In all retry attempts, it is set to a read superstep number. A non-default value for this variable is
later considered by a worker on multiple occasions. First, when deleting output written by the last
failed attempt in its final superstep. Then, when reading the number of related initial messages
which may have resulted in complete solutions and a limit used in the last successful superstep.

All deletion of complete solutions takes place in the preSuperstep method showed in Listing 2.13.
A worker checks prior to the first superstep of an attempt whether LAST FAILED SUPERSTEP
is set to a non-default value. In such case, the previous execution attempt has failed. The worker
is then required to participate in deleting complete solutions from the HDFS to prevent duplicates.
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Each worker deletes the output written by the worker with the same ID in the final superstep of the
previous attempt. Output is located in HDFS files named solution_worker_<worker-id>_attemp

t_<attempt-number>_superstep_<superstep-number>. After deleting output, a worker finds
the above enumerated information for the last successful superstep in its fin/<worker-id> file.
Before each superstep, the worker with ID 0 writes the number of the superstep to the HDFS.
Every worker also opens a stream to an own superstep specific output file. In all retry attempts,
PREVIOUS ATTEMPT INITIAL MESSAGE LIMIT is used in place of the default limit. The
preSuperstep method is here implemented to set static limits. By replacing its last equality operator
with a “greater than or equal to” operator, it can be changed to set dynamic limits instead.

Listing 2.13: preSuperstep() of Continue Implementation

public void preSuperstep () {
i f ( getSuperstep () == 0 && LAST FAILED SUPERSTEP != −1) {

<Delete complete so lut ions from HDFS written in the la s t f a i l ed superstep>

// Read info about the la s t success fu l superstep from f in/<worker−id> in HDFS
<Read number of i n i t i a l messages which may have resulted in complete solutions>
<Read used i n i t i a l message l imit in the superstep>

}

i f (getMyWorkerIndex() == 0) {
<Write number of th i s superstep to HDFS>

}

<Open own superstep output stream>
. . .
// Set new i n i t i a l message l imit
i f ( getSuperstep () == 0 && minimumExecutionLength != 1) {

i f (PREVIOUS ATTEMPT INITIALMESSAGE LIMIT == −1) {
initialMessageLimit = ( long )

(DEFAULT INITIAL MESSAGE LIMIT ∗ RETRYFACTOR) ;
} e l s e {

initialMessageLimit = ( long )
(PREVIOUS ATTEMPT INITIALMESSAGE LIMIT ∗ RETRYFACTOR) ;

}} e l s e i f ( getSuperstep () == minimumExecutionLength − 1) {
initialMessageLimit = ( long )

( calculateInit ialMessageLimit () ∗ RETRYFACTOR) ;
i f ( initialMessageLimit <= 0) {

throw new RuntimeException(”Bad i n i t i a l message l imit ! ” ) ;
}}}

The postSuperstep method of pipelined Lighthouse with the continuation mechanism enabled is
presented in Listing 2.14. It forces each utilized worker to flush and close its output stream after
every computed superstep. Further, it makes a worker increase its finishedInitialMessages, which is
the number of related initial messages that may already have resulted in complete solutions. In the
end, this count and the current initial message limit is appended to the worker’s fin/<worker-id>.

Listing 2.14: postSuperstep() of Continue Implementation

public void postSuperstep () {
<Flush and close own superstep output stream>

// Add count of created i n i t i a l messages in the superstep as la s t element in queue
initialMessageCounts . addLast(new Long( initialMessageCount ) ) ;

<Reset i n i t i a l message count>

// Increase number of i n i t i a l messages which may have resulted in complete so lut ions
i f ( getSuperstep () >= minimumExecutionLength − 1) {

f in ishedInit ia lMessages += initialMessageCounts . removeFirst ( ) ;
}

// Append to f in/<worker−id> in HDFS
<Append number of the f in i shed superstep>
<Append number of i n i t i a l messages which may have resulted in complete solutions>
<Append used i n i t i a l message l imit in the superstep>

}
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As showed in Listing 2.15, a worker does not produce initial messages which possibly have resulted
in complete solutions currently being stored in the HDFS. messageCreationsToSkip specifies how
many initial message creations should be skipped on the worker. To enable all vertices to eventually
vote to halt, a relevant vertex’ started paths count must be incremented for every skipped creation.

Listing 2.15: Lighthouse compute() of Continue Implementation

public void compute(Vertex vertex , Iterable<Message> messages ) {
<Get worker context used to check i n i t i a l message count , l imit and creations to skip>
<Get number of unstarted paths for vertex>
i f (workerContext . initialMessageCount < workerContext . initialMessageLimit

&& numUnstartedPaths > 0) {
i f (workerContext . messageCreationsSkipped < workerContext . messageCreationsToSkip

&& getSuperstep () == 0) {
<Increase number of started paths for vertex without creating i n i t i a l messages>
<Increase number of message creations skipped>

} e l s e {
<Create i n i t i a l messages for paths of the query plan>
<Pass computation for each created i n i t i a l message to f i r s t query item of path>

}}

<Pass computation for each received message to next query item of path>

<Vote to halt when a l l query paths have been started on the vertex>
}

In the Lighthouse versions seen until now, the join tables of a PathJoin must store all the operator’s
previously received messages. To produce every complete solution with the continuation mechanism
enabled, the join tables of a PathJoin must also store messages passed to the operator in already
failed execution attempts. This is not supported with the current implementation. A fix requires
messages stored on PathJoin operators during an execution to be written to the HDFS. These
must then be loaded from the HDFS into join tables in the beginning of following retry attempts.

With the continuation mechanism enabled, each computed superstep can be considered a check-
point. If an attempt fails, the following retry starts path computations as the latest superstep in
which no created initial messages can have resulted in stored complete solutions. When continua-
tion from failures is handled by Lighthouse itself, Giraph’s checkpointing is no longer needed.

2.2 PathJoin Memory Optimizations

A PathJoin in the original version of Lighthouse has similar behavior to that of a so-called Pipelin-
ing HashJoin[16]. It allows solution messages from both its incoming paths to arrive in any super-
step without affecting the number or correctness of solutions passed. This permits use of PathJoin
in pipelined Lighthouse, where the messages from a path can arrive over multiple supersteps. Un-
fortunately, this behavior also requires join tables to consume large amounts of memory. In total,
join tables must store all messages received by any PathJoin until the end of the ongoing execution.

The following presented optimizations introduce changes to the implemented PathJoin, reducing
the related memory consumption. The first two optimizations prevent a PathJoin from having the
behavior of a Pipelining HashJoin. If either pipelining or one of these optimizations is to be used,
some pre-execution analysis should be performed to determine which is the most appropriate. Such
analysis is not explored in this project. The last optimization reduces the amount of memory that is
needed to store a number of messages in join tables. It is particularly helpful with present Pipelining
HashJoin behavior, as this behavior requires more messages to be stored during executions.

2.2.1 Forced Simultaneous Arrivals of Messages from Both Paths

This optimization can not be used in combination with pipelining. It competes with pipelining
as a solution to reduce the maximum amount of required memory during an execution. At its
core, the optimization permits executions of query paths to start in different supersteps and forces
the paths leading to a PathJoin to deliver all messages in the same superstep. This allows a join
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table on a vertex to only exist during the superstep’s compute call for the vertex. Usually, a call
like this will return within a small fraction of the total superstep time. By reducing the periods
join tables are stored in vertex values, later computations are going to benefit with more available
memory for storing messages. The optimization also avoids the extra initial supersteps which are
introduced by the use of pipelining. No computation statistics for paths are ever needed to ensure
simultaneous arrivals. Often, the first operators of query paths lead to large amounts of messages
being transferred. By starting query paths in different supersteps, the numbers of messages being
sent in the various early supersteps can be balanced out. A disadvantage of the simultaneous
arrivals optimization is that some vertices may end up being active for more supersteps. If they
are forced to start in later supersteps, they do not vote to halt immediately after superstep 0.

Figure 2.3 visualizes an optimized execution with multiple PathJoin operators. Instead of starting
all query path computations in superstep 0, requiring join tables for both the PathJoin operators
to be stored over multiple supersteps, an alternative start order is used. The top path is started in
superstep 1, the middle path in superstep 0 and the bottom path in superstep 1. Each join table
only needs to exist for a fraction of a superstep, but all join operations are enabled to take place.

Figure 2.3: Query plan execution in which paths are started in different supersteps

The Lighthouse compute method that enables simultaneous arrivals, showed in Listing 2.16, allows
the paths of a given query plan to be started in different supersteps. The method starts supersteps
based on startSuperstepToPathsMap in the worker context. Each entry in this map has a superstep
number as its key and a list of paths to be started in the superstep as its value. The start superstep
numbers and paths are added to the map after the creation of the query plan tree, knowing the
number of supersteps which are needed to produce a single complete solution. A set with references
to visited PathJoins operators is temporary stored. It is filled when being passed as an argument
in recursive compute calls for local operators. The compute method finally deletes all join tables
for a vertex, using the visited PathJoin set, before deciding whether the vertex can vote to halt.

Listing 2.16: Lighthouse compute() of Simultaneous Arrivals Implementation

public void compute(Vertex vertex , Iterable<Message> messages ) {
<Get worker context used to check query plan and write complete solutions>

// Create an i n i t i a l message for each path to be started in th is superstep
LinkedList<QueryItemPath> paths =

workerContext . getPathsWithStartSuperstep ( getSuperstep ( ) ) ;
i f ( paths != nul l ) {

for (QueryItemPath path : paths ) {
<Create and add an i n i t i a l message to i n i t i a l message l i s t>

}}

// Create a set for re ferences to a l l PathJoin operators reached in th is superstep
<Pass computation for each created i n i t i a l message to f i r s t query item of path>
<Pass computation for each received message to next query item of path>

<Remove re ferences to old memory expensive jo in tables i f present>

<Vote to halt when a l l query paths have been started on the vertex>
}
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The concept of deleting join tables which are not needed anymore, at the end of compute calls,
can also be utilized with pipelining. However, this requires another mechanism to be implemented,
involving that workers in the cluster can signalize to each other when they are finished sending
messages on a path. This can be supported through use of aggregators (described in appendix A)
or end-of-stream messages. When all messages from both sides to a PathJoin have been received
in an execution, the related join tables can be deleted before the next superstep. This will free up
memory on the workers for remaining computations without any influence on creation of solutions.

2.2.2 Forced Prior Arrivals of Messages from Path Passing Fewest Bytes

The smallest incoming path of a PathJoin is here considered to be the one which delivers the
smallest number of bytes. All messages from the smallest path can be forced to arrive at a
PathJoin before any messages from the largest path. Normally, when computing a PathJoin on a
vertex, all messages received from both the incoming paths are stored in the related join table on
the vertex. With this optimization, just messages passed from the smallest query path are stored.
The messages received from the largest path are simply joined with every stored message in the
join table. All joined messages are passed by the PathJoin. Statistics from the early supersteps in
an execution should be used to determine which of the paths leading to a PathJoin is the smallest.
An execution is started with use of pipelining and a small default initial message limit value. After
having gathered the needed statistics, the used workers must agree on which path is the smallest for
each PathJoin. Every present join table is then deleted and the execution is restarted to run with
known smallest paths. In worst case, two incoming paths’ messages consume the same amount of
memory. The required memory for storing join tables can then only be reduced with 50 percent.

Figure 2.4 visualizes another optimized execution of the same query plan as in Figure 2.3. Each
showed superstep number is here relative to the first superstep after the ones in which the statistics
about the present paths were gathered. In this execution, all messages passed to the same PathJoin
have the similar size. As without the optimization, all path computations are started in superstep
0. This causes the message from the top path to reach the first PathJoin in superstep 1 and the
messages from the middle path to arrive in superstep 2. Also, the messages from the bottom path
reach the second PathJoin in superstep 1, while the messages from the first PathJoin arrive in
superstep 2. Each join table only needs to contain messages from its PathJoin’s smallest path.

Figure 2.4: Query plan execution in which paths are started in the same superstep

The Lighthouse compute method that enables smallest-first arrivals is similar to the one which
enables simultaneous arrivals. However, it does not remove references to old join tables. Further,
it requires that a worker context’s startSuperstepToPathsMap, with the information about the start
supersteps for paths, is created based on gathered path statistics and made agreements. A separate
OrderedPathJoin operator can be added to Lighthouse. It must ensure that all messages from one
incoming path are stored in related join tables before it receives any messages from the other path.

The smallest-first optimization can be adjusted to work in combination with pipelining, despite
preventing Pipelining HashJoin behavior. With pipelined Lighthouse, it is difficult for workers to
recognize when every single solution from a smallest incoming path has arrived at a PathJoin.
To avoid that any worker delivers messages from the largest path before all workers have finished
sending messages from the smallest, either aggregators or end-of-stream messages must be used.
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2.2.3 Storage of Serialized Messages in PathJoin Tables

By storing messages in join tables in a serialized form, the sizes of join tables can be kept lower.
For comparison, a serialized empty message has in experiments showed to need 6 bytes of memory,
while an empty message as a Java object requires 88 bytes. Considering these numbers, less than
8 percent of the bytes needed to store an empty message as a Java object are absolutely required.
To store serialized messages in join tables also improves memory consumption predictions, since it
enables collection of accurate information about how much memory present join tables consume.
When storing join tables’ messages as Java objects, the related memory consumption is guessed
with assumptions about the needed space by involved data structures and sizes for primitive types.

Pipelined Lighthouse uses the predictPathPJMemoryConsumption method, showed in Listing 2.17,
to predict the total amount of memory which is needed by a worker to store messages in join tables
at the end of a query plan execution. This memory consumption is together with the size of reserved
skew protection memory used to determine how much space should be utilized to store messages on
global operators. Before a calculation of an initial message limit, the recursive prediction method
is called with the main path as argument. This ensures that every PathJoin in the query plan is
considered. The main path has the ID 0 and is guaranteed to end with the plan’s last operator.
The getAverageOutMessageSizeSerialized method is called once for each operator last preceding
a PathJoin. Before being added to a path’s predictedPJMemoryConsumption, a returned size is
multiplied with the total number of messages which are expected to be passed by the operator and
a factor of 1.5 to take into account the overhead that is introduced by join tables’ data structures.

Listing 2.17: Prediction of Total Memory Consumption for PathJoin Operators

private long predictPathPJMemoryConsumption(QueryItemPath path) {
long predictedPJMemoryConsumption = 0;
for ( int step = 1; step < path . s i z e ( ) ; step++) {

i f (path . get ( step ) instanceof PathJoin
&& ((PathJoin) path . get ( step ) ) . getSide () == Side .LEFT) {
QueryItemPath right =

getPJRightPath ((( PathJoin) path . get ( step ) ) . getId ( ) ) ;
predictedPJMemoryConsumption += predictPathPJMemoryConsumption( r ight ) ;

predictedPJMemoryConsumption +=
predictPathFactor (path , step − 1) ∗ numInitialMessages
∗ path . get ( step − 1) . getAverageOutMessageSizeSerialized () ∗ 1 .5 ;

predictedPJMemoryConsumption +=
predictPathFactor ( right , r ight . s i z e () − 2) ∗ numInitialMessages
∗ r ight . get ( r ight . s i z e () − 2) . getAverageOutMessageSizeSerialized () ∗ 1 .5 ;

}}

return predictedPJMemoryConsumption ;
}

Listing 2.18: Update of Operator Statistics with Message Passed

protected void messagePassed(Message message) {
outMessageCount++;
i f (message . getNumberOfBytesSerialized () != averageOutMessageSizeSerialized ) {

averageOutMessageSizeSerialized =
( averageOutMessageSizeSerialized ∗ (outMessageCount − 1)
+ message . getNumberOfBytesSerialized () ) / outMessageCount ;

}}

The messagePassed method, presented in Listing 2.18, is called each time a message is passed by an
operator. It updates statistics for the operator, such as outMessageCount and averageOutMessa-
geSizeSerialized, and ensures that getAverageOutMessageSizeSerialized returns correct values. In
the future, for efficiency reasons, averageOutMessageSizeSerialized should exclusively be updated
on global operators and operators last preceding a PathJoin. Only the sizes of serialized messages
from these operators are needed to calculate proper initial message limits. For a message passed, a
DataOutputStream is created to find the size of the message when it is stored in a serialized form.
This check is time consuming and causes the JVM’s garbage collector to be triggered more often.
A future improvement should be to only use a single DataOutputStream per worker to find sizes.
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2.3 Improved Data Structures and Serialization Formats

The introduced logic for pipelined Lighthouse requires that additional data is stored in memory.
For each graph vertex, an extra 4 byte integer numUnstartedPaths must be handled. By changing
how data for vertices, edges and messages is stored, the maximum memory consumption during
Lighthouse executions can be reduced. This allows larger graphs to be loaded into the memory of
utilized workers and more messages to be produced. First of all, null references should be used
instead of references to empty data structures. Further, the general and serializable Writable data
structures that are provided by Hadoop and Giraph are memory inefficient and should be avoided.

Listing 2.19: VertexValue with null References

public c la s s VertexValue implements Writable {
private LongArrayWritable labe l s ;
private PropertiesMapWritable propert ies = nul l ;
private IntToPathJoinBindingsMapWritable pathJoinMap = nul l ;

public VertexValue (LongArrayWritable labels , PropertiesMapWritable propert ies ) {
th i s . l abe l s = new LongArrayWritable ( ) ;

}

public PathJoinBindings addToJoinTable(PathJoin operator , Message message) {
i f (pathJoinMap == null ) {

pathJoinMap = new IntToPathJoinBindingsMapWritable ( ) ;
}
. . .

}

public void readFields (DataInput input ) throws IOException {
l abe l s . readFields ( input ) ;
i f ( input . readBoolean ()) {

propert ies = new PropertiesMapWritable ( ) ;
propert ies . readFields ( input ) ;

} e l s e {
propert ies = nul l ;

}
i f ( input . readBoolean ()) {

pathJoinMap = new IntToPathJoinBindingsMapWritable ( ) ;
pathJoinMap . readFields ( input ) ;

} e l s e {
pathJoinMap = null ;

}}

public void write (DataOutput output ) throws IOException {
l abe l s . write (output ) ;
i f ( propert ies != nul l ) {

output . writeBoolean ( true ) ;
propert ies . write (output ) ;

} e l s e {
output . writeBoolean ( f a l s e ) ;

}
i f (pathJoinMap != nul l ) {

output . writeBoolean ( true ) ;
pathJoinMap . write (output ) ;

} e l s e {
output . writeBoolean ( f a l s e ) ;

}}

. . .
}

2.3.1 Replacing Empty Data Structures with null References

A reimplementation of Lighthouse’s original VertexValue class is presented in Listing 2.19. It serves
as one example showing how the representation for an entity can be changed to require less space.
Specifically, the class defines how the data for a vertex should be stored in memory. Instead of
keeping references to empty Writable hash maps, null is used. The write method, which carries
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out serialization of data for vertices, is changed to prevent attempts on serialization of null values.
The serialization format is adjusted to involve boolean values that specify whether hash maps are
present or not. In addition to using null references for both properties and pathJoinMap of vertices,
null references are also used for empty properties and binding of edges and messages, respectively.

The presented VertexValue class involves some changes which are irrelevant for this section’s topic.
Instead of using ArrayListWritable and MapWritable from Giraph and Hadoop, self-implemented
Writable data structures are utilized. The rationale for this change is presented in the next sections.
VertexValue has been merged with its wrapper class VertexValuePJ. Previously, the VertexValuePJ
part of a vertex’ data contained the reference to its pathJoinMap. This merge decreases the numbers
of stored references and objects in Lighthouse executions, reducing the memory storage overhead.

2.3.2 Replacing General Writable Data Structures with Specialized Ones

Instead of using the general and memory inefficient MapWritable from Hadoop, new specialized
serializable hash maps are utilized. During serialization, a MapWritable instance must for each key
and value write the relevant class ID in addition to the bytes for the related object. This is required
since the various keys and values can be of different Writable types. As the new serializable hash
maps are not created for general use, they do not need to write class IDs for the objects they store.
The new hash maps inherit from Java’s HashMap class and implement the Writable interface.
Other hash map implementations which require less memory can alternatively be used as base.

One of the several new memory-efficient Writable hash maps, the specialized IntToPathJoinBind-
ingsMapWritable, is presented in Listing 2.20. It requires that all keys are of type IntWritable and
that values are of type PathJoinBindings. During de-serialization, read fields from the given input
must provide bytes for objects with these types. In addition to using IntToPathJoinBindingsMap-
Writable for the pathJoinMap of a vertex, a similar self-implemented PropertiesMapWritable is
used for properties of vertices and edges. It requires that all keys are of type LongWritable and
that values are of either type LongWritable or Text. When written to a DataOutput object during
serialization, the bytes for each value have to be prefixed with a character which identifies the type.

Listing 2.20: Memory-Efficient Specialized Writable Map

public c la s s IntToPathJoinBindingsMapWritable
extends HashMap<IntWritable , PathJoinBindings> implements Writable {

public void readFields (DataInput in ) throws IOException {
int count = in . readInt ( ) ;
c lear ( ) ;
for ( int i = 0; i < count ; i++) {

IntWritable key = new IntWritable ( ) ;
key . readFields ( in ) ;
PathJoinBindings value = new PathJoinBindings ( ) ;
value . readFields ( in ) ;
put(key , value ) ;

}}

public void write (DataOutput out ) throws IOException {
out . writeInt ( s i z e ( ) ) ;
for (Entry<IntWritable , PathJoinBindings> entry : entrySet ( ) ) {

entry . getKey ( ) . write (out ) ;
entry . getValue ( ) . write (out ) ;

}}}

2.3.3 Replacing Writable ArrayList Structures with Writable Arrays

All previous use of the ArrayList class is replaced with utilization of constant sized arrays. The
LongArrayWritable class, presented in Listing 2.21, is implemented to be used instead of the Lon-
gArrayListWritable class. Such array should contain labels for every vertex. The MessageBinding
class, presented in Listing 2.22, is reimplemented to use an array for columns. Currently, not all
possible column types are supported. Instead of writing the relevant class ID as a prefix for each
column’s bytes during serialization, a character identifying the relevant supported type is written.
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Listing 2.21: Writable Array for Long Values

public c la s s LongArrayWritable extends ArrayWritable {
public LongArrayWritable () {

super (LongWritable . c la s s ) ;
}

public LongArrayWritable (LongWritable [ ] values ) {
super (LongWritable . c lass , values ) ;

}
}

Listing 2.22: MessageBinding with Columns in an Array

public c la s s MessageBinding implements Writable {
private Writable [ ] columns ;

public void readFields (DataInput in ) throws IOException {
int count = in . readInt ( ) ;
columns = new Writable [ count ] ;
for ( int i = 0; i < count ; i++) {

char type = in . readChar ( ) ;
Writable value = nul l ;
i f ( type == ’B’ ) {

value = new BooleanWritable ( ) ;
} e l s e i f ( type == ’L’ ) {

value = new LongWritable ( ) ;
} e l s e i f ( type == ’N’ ) {

value = NullWritable . get ( ) ;
} e l s e i f ( type == ’T’ ) {

value = new Text ( ) ;
} e l s e i f ( type == ’V’ ) {

value = new VertexId ( ) ;
} e l s e {

throw new RuntimeException(
”Can not read column with type char ” + type ) ;

}

value . readFields ( in ) ;
columns [ i ] = value ;

}}

public void write (DataOutput out ) throws IOException {
out . writeInt (columns . length ) ;
for ( int i = 0; i < columns . length ; i++) {

i f (columns [ i ] instanceof BooleanWritable ) {
out . writeChar ( ’B’ ) ;

} e l s e i f (columns [ i ] instanceof LongWritable ) {
out . writeChar ( ’L ’ ) ;

} e l s e i f (columns [ i ] instanceof NullWritable ) {
out . writeChar ( ’N’ ) ;

} e l s e i f (columns [ i ] instanceof Text) {
out . writeChar ( ’T’ ) ;

} e l s e i f (columns [ i ] instanceof VertexId ) {
out . writeChar ( ’V’ ) ;

} e l s e {
throw new RuntimeException(”Can not write column with type ”

+ columns [ i ] . getClass ( ) . getName ( ) ) ;
}

columns [ i ] . write (out ) ;
}}

. . .
}
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Chapter 3

Evaluation

This chapter gives an overview of the real effects of the new Lighthouse optimizations. First, in
section 3.1, the experimental setup for the performed measurements is described. Next, in sections
3.2 and 3.3, performance results for each previously explained optimization are presented and
commented. All evaluation of the implemented optimizations is split into two sections. The first
targets left-deep query plans, while the second copes with bushy query plans. The measurements
show that pipelining can allow multiple types of plans to be executed with less memory, compared
to when using the reference Lighthouse implementation. The pipelined executions of bushy query
plans expose problems of predicting the numbers of messages to be passed from PathJoin operators.

3.1 Experimental Setup

Here is an overview of the hardware, input graph, memory consumption measurement method
and reference Lighthouse implementation used in the carried out experiments. A discussion of two
common pitfalls when running pipelined Lighthouse then follows. By being aware of these pitfalls
when setting configurations for Lighthouse, more pipelined executions can be permitted to finish.

3.1.1 SURFsara Hathi Hadoop Cluster

All experiments take place on the SURFsara Hathi Hadoop cluster1. It consists of around 100
machines and runs Hadoop 2.6. Each machine has 16 CPU cores with a clock speed of 2.6 GHz, 32
GB memory and 1 TB with local disk space. The Giraph framework with release version 1.1.0 is
used on the cluster, set with its hadoop_2 profile limiting the maximum size of every Java heap to
6.7 GB. Many jobs which are normally failing with this amount of memory should ideally succeed
with the new Lighthouse optimizations enabled.

3.1.2 10K LDBC-SNB Data

A dataset generated with the LDBC-SNB Data Generator2 is provided as input graph to all per-
formed measurements. The generator is designed to create graphs which simulate social networks
with characteristics specified via user set arguments[1]. A graph’s size is determined by its number
of contained persons and the number of years its simulated social network has existed. The input
graph used in the following measurements has been generated as a social network of 10’000 per-
sons, which has existed for 3 years, starting from 2010. This dataset requires only 450 MB of disk
space to be stored, but with reference Lighthouse a total of 8 GB memory after being loaded onto
Hadoop workers. The graph contains 1’030’132 vertices and 12’357’981 edges, making an average
of 11 edges per vertex. There is skew in the dataset. As in the real world, some companies have
magnitudes more employees than others, some persons have more social relations than others.

1https://userinfo.surfsara.nl/systems/hadoop/hathi
2https://github.com/ldbc/ldbc snb datagen
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3.1.3 Method for Measuring Memory Consumption

To provide information about memory consumption during experiments, Lighthouse can create
extensive logs with numbers measured via the Giraph API’s MemoryUtils class. By workers re-
questing garbage collection before calling this class’ methods, accurate consumption numbers are
returned. In addition to when performing experiments, proper memory logs are helpful when ad-
justing pipelined Lighthouse’s memory consumption prediction behavior. To decrease execution
times with non-experiment versions of Lighthouse, the number of garbage collection requests are
reduced, causing inaccurate consumption numbers in the memory logs. Alternatively, a system
monitor such as Ganglia3 or a performance evaluation framework like Granular[11] can be used.

3.1.4 Reference Implementation of Lighthouse

Different versions of Lighthouse with optimizations are compared to a reference implementation.
This implementation contains the basic functionality for correct query processing and allows a
query plan to be provided by the user via a file in the HDFS. It starts all the query paths of the
plan, for every vertex of the given input graph, in the first superstep of the initiated execution.

3.1.5 Considered Pitfalls for Pipelined Lighthouse Executions

Based on experience from previously performed experiments, there are two common pitfalls for
pipelined Lighthouse executions which often can be avoided with set configurations:

1. workers running out of physical memory

2. garbage collection on workers reaching the overhead limit

If the calculated initial message limits in an execution are too large, workers may run out of physical
memory. This situation is often caused by the use of a small default initial message limit in early
supersteps, leading to bad predictions of how many messages will be passed by the operators of
the handled query plan. Such problem might be solved by increasing the default initial message
limit. The disadvantage of having a high default limit value is that workers may not have enough
memory to succeed the initial supersteps. Even with a suitable default limit and a large skew
protection fraction size, skew in input graphs may still cause certain executions to unexpectedly
run out of memory. This must be handled by Lighthouse’s restart- or continuation mechanism.

The execution of a query may fail if the garbage collector on a used worker is spending a too large
fraction of the CPU time recovering memory. This can often be prevented by increasing the skew
protection fraction size, ensuring that the physical memory is less frequently filled up. The harms
of having too much skew protection memory is that more supersteps are then required to finish
an execution, in addition to less space being available for storing the input graph and join tables.
Optionally, garbage collectors can be configured to not stop executions when they are heavily used.

3.2 Evaluation of Executions of Left-Deep Query Plans

Every query plan is from now on referred to with the number of the listing it is presented in. To
test Lighthouse’s performance with the new optimizations on left-deep query plans, the two query
plans 3.1 and 3.2 are considered. They are suitable for showing the optimizations’ effects, since
they force workers to produce many messages. An execution may properly start to run on a cluster
with little available memory, but then fail when the amount of present messages in the system grow.
Most of the implemented optimizations set extra limitations for the numbers of stored messages in
the system at a time, preventing workers from running out of memory. Both the query plans have
similar properties as ones for path queries (described in appendix D) with multiple subsequent
StepJoin operators. The two query plans also have some significant differences, increasing the
possibility to find weaknesses for Lighthouse with the various optimizations.

3http://ganglia.sourceforge.net/
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Query Plan 3.1 starts with a Scan operator performing a filter on every vertex of the input graph.
Only vertices with the label ’Person’ continue to compute the next StepJoin operator. For each of
these vertices, a check for whether there is a chain of three relationships labeled ’KNOWS’, leading
to someone with the name Antonio, is carried out. This query plan can be used in an execution of
a path query, trying for every person in the input graph to find the closest related persons named
Antonio. It must be executed after similar plans with one and two StepJoin operators instead.

Query Plan 3.2 leads to a significantly smaller amount of messages being produced than Query
Plan 3.1. It has an early filter with the name of the first person in its solution pattern. This query
plan is supposed to cause difficulties for predictions for memory consumption in certain pipelined
executions, in which workers in the earliest supersteps use a low default initial message limit. After
new initial message limits are calculated and used, some workers might produce very large numbers
of initial messages. They may not have experienced that any messages pass the first operator.

Listing 3.1: Left-Deep Query Plan without Small Out-In Ratio for First Operator

Select ( StepJoin (StepJoin (StepJoin (Scan(Person ) ,
KNOWS) ,

KNOWS) ,
KNOWS) ,

=({firstName} , Antonio ) ) ;

Listing 3.2: Left-Deep Query Plan with Small Out-In Ratio for First Operator

Select ( StepJoin (StepJoin (StepJoin (Scan( firstName :”John”) ,
KNOWS) ,

KNOWS) ,
KNOWS) ,

=({firstName} , John ) ) ;

3.2.1 Reference- versus Pipelined Executions

Following are comparisons of Lighthouse with and without pipelining.

Memory Consumption with Query Plan 3.1

In an environment where every worker has only 6 GB of available memory, an execution of Query
Plan 3.1 with the reference implementation of Lighthouse requires a minimum of 70 workers to
finish successfully. The graph in Figure 3.1 shows the memory consumption on the 10 workers
with the lowest IDs after each superstep. The “Memory limit” line visualizes the total amount of
available memory on each worker. The “Basis consumption” line represents the average worker
memory consumption just after the input graph has been loaded, before any messages are created.

Only 4 supersteps are required to finish the execution, which naturally is one more than the number
of global operators in the query plan. With 70 used workers, the amount of memory required on
each to store a local graph partition is very low. On most workers, less than 130 MB. The highest
memory consumption on all the workers is reached right before starting the last superstep. This is
a result of the exponential increase for the numbers of messages passed per StepJoin. Despite the
maximum memory consumption on the workers is only about 80 percent of the “Memory limit”, it
is not possible to execute the query plan with slightly less workers. The execution of the plan will
then fail, since the garbage collector on some workers is spending a too large fraction of the CPU
time recovering memory (just small amounts on each run). If the garbage collectors are configured
to not stop the execution when reaching the overhead limit, the execution will finish slowly.

Pipelined Lighthouse with dynamic initial message limits can successfully complete an execution
of Query Plan 3.1 on 4 workers with 6 GB of available memory. The graph in Figure 3.2 shows
the memory consumption on all the workers after each superstep. It is clear that with pipelining,
the query plan can be executed on a much smaller cluster. Using dynamic initial message limits,
Lighthouse regularly improves every worker’s initial message limit. The “Defensive limit” line
represents the available memory on each worker, but not including any skew protection memory.
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Figure 3.1: Memory consumption for reference execution of Query Plan 3.1

Figure 3.2: Memory consumption for pipelined execution with dynamic limits of Query Plan 3.1

Instead of requiring 4 supersteps, 54 supersteps are needed. As the skew protection fraction size is
set to 0.3, the “Defensive limit” is 70 percent of the “Memory limit”. This is supposed to prevent
failures with workers running out of memory or garbage collectors dominating workers’ CPU use.
The amount of utilized memory on each worker stays close to the “Defensive limit”, showing that
the predictions for memory consumption are accurate. All use of memory is low in the beginning of
the execution, since only a few messages are produced in the first supersteps with the small default
initial message limit of 1’000. The memory consumption on the workers is slowly decreasing in the
end of the execution, after more workers have created their last initial messages. The workers finish
their production of initial messages in different supersteps. Worker 1 first stops to produce initial
messages in superstep 37, while Worker 2 finally stops to produce initial messages in superstep
50. These variations are a consequence of skew in the input data. The workers do not store the
same number of ’Person’ labeled vertices, these also have various numbers of relationships. Some
workers handle more messages than others, causing calculation of different initial message limits.

Pipelined Lighthouse with static initial message limits can also successfully complete an execution
of Query Plan 3.1 on 4 workers with 6 GB of available memory. The graph in Figure 3.3 shows
the memory consumption on all the workers after each superstep. As explained in the Lighthouse
changes chapter, static initial message limits are oppositely from dynamic limits never changed
after they have been calculated and used.
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Figure 3.3: Memory consumption for pipelined execution with static limits of Query Plan 3.1

Instead of requiring 4 supersteps, 67 supersteps are needed. Some workers occasionally consume
slightly more memory than the “Defensive limit”. However, the calculated static initial message
limits are sufficient to prevent all the workers from being close to run out of memory. The differ-
ences in memory consumption between the executions with static and dynamic message limits are
relatively small, since the used default initial message limit of 1’000 is large enough to make both
perform accurate memory consumption predictions. There are still some noteworthy variations
between the executions. The execution with static initial message limits requires more supersteps
to finish. Also, it starts to decrease memory consumption earlier. This is caused by the larger
differences among the calculated initial message limits. Worker 0 first stops to produce initial
messages in superstep 32, while Worker 2 finally stops to produce initial messages in superstep 63.

In Figure 3.4, the different numbers of initial messages produced by workers per superstep during
executions with dynamic and static initial message limits are showed. As clearly visible, no initial
messages are created on a worker in a superstep after all its path computations have started.

(a) With dynamic initial message limits (b) With static initial message limits

Figure 3.4: Numbers of initial messages produced per superstep for executions of Query Plan 3.1

With pipelined Lighthouse using dynamic initial message limits, both Worker 0 and Worker 1
quickly reduce their production of initial messages. Their dynamic initial message limits improve
while the workers get a better overview of what messages are created with the provided input. This
behavior helps to avoid consumption of more memory than the “Defensive limit”. In some cases,
these adjustments can also prevent workers from running out of memory or garbage collectors from
reaching the overhead limit. With pipelined Lighthouse using static initial message limits, Worker
0 calculates a much larger initial message limit than the other workers, based on statistics gathered
after its first path computations. It does not have the opportunity to reduce this static limit at a
later stage. The effect of the large limit is not fatal for any worker’s memory consumption, since
the other workers calculate smaller initial message limits. Additionally, the messages produced
from limits are distributed across all the used workers, spreading their memory impact.
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The duration of each execution of Query Plan 3.1 was here affected by extra requested garbage
collection, taking place prior to calling Giraph’s MemoryUtils methods before and after every
superstep. The execution with the reference implementation of Lighthouse, involving 70 workers,
lasted for 20 minutes and 21 seconds. Pipelined Lighthouse with dynamic initial message limits,
using only 4 workers, finished after 187 minutes and 44 seconds. On a similar number of workers,
pipelined Lighthouse with static limits needed 199 minutes and 18 seconds to complete.

Memory Consumption with Query Plan 3.2

On a cluster of 4 workers with 3 GB of available memory, an execution of Query Plan 3.2 with
the reference implementation of Lighthouse will fail. The graph in Figure 3.5 shows the memory
consumption after each superstep, with every worker instead having 8 GB of available memory.
The “Memory limit” line visualizes the 3 GB of memory on each worker of the mentioned cluster.

Figure 3.5: Memory consumption for reference execution of Query Plan 3.2

As for the reference execution of Query Plan 3.1, 4 supersteps are required to finish the execution.
With 4 used workers, the amount of memory required on each to store a local graph partition is
around 2 GB. The highest memory consumption on all the workers is reached right before starting
the last superstep. This is again a result of an exponential increase for the numbers of messages
passed per StepJoin. The maximum memory consumption on the workers is just above 4 GB,
which is far more than the 3 GB “Memory limit” of the imagined cluster.

Pipelined Lighthouse with dynamic initial message limits can successfully complete an execution
of Query Plan 3.2 on 4 workers with 3 GB of available memory. The graph in Figure 3.6 shows the
memory consumption on all the workers after each superstep. It is clear that with pipelining, the
query plan can be executed on the previously mentioned cluster with 3 GB of memory per worker.

Instead of requiring 4 supersteps, 17 supersteps are needed. The “Defensive limit” is 80 percent of
the “Memory limit”, leaving 600 MB of memory as skew protection on every worker. The amount
of utilized memory on each worker stays again close to the “Defensive limit”, emphasizing that
the predictions for memory consumption are accurate. The memory use on the workers reaches a
maximum before superstep 6, after the workers have started to produce initial messages according
to larger calculated limits in superstep 3. The effect of the increased production of initial messages
requires a couple of supersteps to show, since the exponential increase for the numbers of present
messages takes place via the global StepJoin operators. Worker 3 first stops to produce initial
messages in superstep 8, while Worker 0 finally stops to produce initial messages in superstep 12.

Pipelined Lighthouse with static initial message limits can not execute Query Plan 3.2 on 4 workers
with 3 GB of available memory, using default pipelining configurations. The graph in Figure 3.7
shows the memory consumption on all the workers after each superstep in a failed execution.
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Figure 3.6: Memory consumption for pipelined execution with dynamic limits of Query Plan 3.2

Figure 3.7: Memory consumption for pipelined execution with static limits of Query Plan 3.2

All the utilized workers run out of memory in superstep 7. The large memory consumption in this
superstep is a consequence of a previous high number of initial message creations. In Figure 3.8b,
the different numbers of initial messages produced by workers per superstep during the execution
are showed. As clearly visible, the initial message production on Worker 2 in superstep 4 is huge.
This is caused by a calculated initial message limit which is much larger than the ones used by the
other workers. Since Worker 2 never experiences that vertices pass the initial filter of the handled
query plan during the earliest supersteps, it assumes it can immediately start path computations
on all its vertices without any significant effects on the future memory consumption. The problem
can be avoided by using a higher default initial message limit. Each worker then has an increased
possibility of experiencing that vertices pass the initial filter in the earliest supersteps, resulting in
an improved accuracy for memory consumption predictions in the next performed limit calculation.

As apparent in Figure 3.8, the default initial message limit value used during the executions of
Query Plan 3.2 with dynamic and static initial message limits is 10’000. This default limit value is
handled differently by the two versions of pipelined Lighthouse. With pipelined Lighthouse using
dynamic limits, each worker in every superstep before the first calculations of limits produces the
default number of initial messages. With pipelined Lighthouse using static limits, each worker only
produces the default number of initial messages in the first superstep. In the remaining supersteps
before the calculations of limits, no initial messages are created. For Query Plan 3.2, each worker
in the execution with dynamic limits tests the initial filter on 30’000 vertices before its first limit
calculation. In the execution with static limits, each worker only tests the initial filter on 10’000
vertices before its limit calculation. This variation is large enough to make the execution with
static limits fail, after some bad memory consumption predictions by a single worker.
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(a) With dynamic initial message limits (b) With static initial message limits

Figure 3.8: Numbers of initial messages produced per superstep for executions of Query Plan 3.2

The duration of each execution of Query Plan 3.2 was here affected by extra requested garbage
collection. The execution with the reference implementation of Lighthouse, involving 4 workers,
lasted for 17 minutes and 11 seconds. Pipelined Lighthouse with dynamic initial message limits,
also involving 4 workers, finished after 17 minutes and 35 seconds.

Execution Times with Query Plan 3.1

Following are execution time comparisons of Lighthouse with and without pipelining. Each worker
used in the measurements, presented in Figure 3.9, has 6 GB of available memory. The execution
times and numbers of required supersteps are measured with various numbers of workers. Every
execution is performed with a minimal number of garbage collection requests. The pipelined setups
are named <calculation pattern>(<skew protection fraction size>-<default initial message limit>).

(a) Execution times (b) Numbers of required supersteps

Figure 3.9: Time and number of supersteps for executions of Query Plan 3.1

The execution times achieved by Lighthouse with Query Plan 3.1 are visualized in Figure 3.9a. The
pipelined setups perform relatively good compared to the reference Lighthouse implementation.
When doubling the number of used workers, an execution time can at best be expected to halve.
In most cases, the execution time decreases far less, specially when running on many workers.
When using 120 workers instead of 40, the execution times are just roughly halved, despite having
3 times more workers. Computation and communication times are in subsection 1.3.4 described to
scale quite well in Lighthouse. With large amounts of workers, other factors may prevent better
speedups, such as slow loading of the input graph from the HDFS to the memory of the workers.

For every number of workers the reference implementation is observed to successfully execute with,
it is not faster than all the pipelined Lighthouse setups. With 70 workers, it performs significantly
worse. This is probably caused by it carrying out a higher amount of slow garbage collection, since
the memory of the workers gets nearly filled up with messages. Even though reference Lighthouse
uses far less supersteps than the pipelined setups, the achieved execution time is relatively weak.
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As showed in Figure 3.9b, the number of supersteps required in executions with static initial
message limits is commonly higher than the number required in executions with dynamic limits.
The reason for this is simple. Even if only a single worker uses a low static initial message limit, it
will make the whole execution require more supersteps. An increase of the skew protection fraction
size is also introducing additional supersteps. Extra supersteps are not observed to result in worse
execution times. This can be utilized by performing extremely defensive memory predictions during
limit calculations, reducing the possibility for running out of memory without apparent overhead.

3.2.2 Pipelined Executions with Restart or Continuation on Failure

Following are measurements showing the effects of the abilities to restart or continue failed exe-
cutions. Query Plan 3.1 is executed with pipelined Lighthouse using a skew protection fraction
size of 0, not utilizing any skew protection memory at all. The previously presented “Defensive
limit” is without the skew protection equal to the “Memory limit”. This is supposed to make some
workers run out of memory, at least once during a job execution. Each of the 4 used workers in
the measurements has 6 GB of available memory. The default initial message limit is set to 1’000.

In Figure 3.10, the memory consumption during an execution of pipelined Lighthouse with dynamic
initial message limits and support for automatic restart of failed executions is visualized.

Figure 3.10: Memory consumption for pipelined execution with restart of Query Plan 3.1

The memory consumption numbers from workers 1 and 2 for the first execution attempt were not
added to the execution’s memory logs. However, the numbers from the other workers in the attempt
show a very high memory consumption. The execution fails in superstep 6, as some workers run
out of memory or spend too much time on performing garbage collection. After the failed attempt,
all the solutions written to the HDFS are deleted. The execution is then reattempted with a retry
factor affected by the the attempt number. Unavoidably, the restart causes the total number of
needed supersteps to increase. The memory consumption is low in the earliest supersteps after
the restart, since the initial message limits used in these supersteps are based on the default limit.
As more messages are produced with calculated limits, the memory consumption gets stabilized
around 4 GB on the workers. Following the restart, the apparent memory consumption patterns
are similar to the ones seen for the pipelined execution of Query Plan 3.1 presented in Figure 3.2.
In that execution, 1800 MB of memory was reserved for skew protection on each worker.

In Figure 3.11, the memory consumption during an execution of pipelined Lighthouse with dynamic
initial message limits and support for automatic continuation of failed executions is visualized.

Again, the memory consumption numbers from multiple workers for the first execution attempt
were not added to the execution’s memory logs. The attempt fails in superstep 6, after a too high
memory consumption on the utilized workers. All the solutions written to the HDFS before and
during superstep 5 are not deleted prior to starting the next execution attempt. The total number
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Figure 3.11: Memory consumption for pipelined execution with continuation of Query Plan 3.1

of supersteps required to finish is not significantly reduced by avoiding to reproduce these solutions.
If a failure takes place at a later point, the continuation mechanism can drastically decrease the
number of needed supersteps compared to when using the restart mechanism. Because the second
execution attempt considers the previous attempt’s initial message limits, it can immediately start
to produce many initial messages. This is clearly showed in Figure 3.12, where it is visible that the
restart implementation of Lighthouse goes back to use of a small limit based on the default limit
value, while the continuation implementation does not. The way the continuation mechanism sets
an attempt’s first initial message limits is not always optimal. A bad limit may mislead the next
attempt and potentially cause another failure. The continuation mechanism enables the execution
to finish after 59 supersteps. When the restart mechanism was used, 63 supersteps were needed.

(a) With restart of failed attempts (b) With continuation of failed attempts

Figure 3.12: Numbers of initial messages produced per superstep for executions of Query Plan 3.1

The duration of each execution of Query Plan 3.1 was here affected by extra requested garbage
collection. The last execution attempt by pipelined Lighthouse with dynamic initial message limits
and the restart mechanism, involving 4 workers, lasted for 191 minutes. The total time for the
execution was 211 minutes and 57 seconds. The last execution attempt by pipelined Lighthouse
with dynamic limits and the continuation mechanism, also involving 4 workers, finished after 166
minutes and 32 seconds. The total time for the execution was 187 minutes and 45 seconds.

3.2.3 Evaluation of Improved Data Structures and Serialization Formats

Following are measurements showing the effects of the presented changes to the data structures
and serialization formats used for storing vertices, edges and messages. Query Plan 3.2 is executed
on 4 workers with 8 GB of available memory. The graph in Figure 3.13 shows the average memory
consumption on the workers after each superstep, with and without the new structures and formats.
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The memory consumption of the listed versions of Lighthouse, each utilizing different data struc-
tures and serialization formats, should be interpreted in a sequence. The “Null vertex” implemen-
tation is similar to reference Lighthouse, but it also includes the “Null vertex” change. The “Merge
vertex” implementation is as well similar to reference Lighthouse, but it includes both the “Null
vertex” and the “Merge vertex” changes. This pattern continues and ends with “Avoid message”.
“Full” represents reference Lighthouse with all of the new data structures and serialization formats.

Figure 3.13: Memory consumption for executions with storage optimizations of Query Plan 3.2

Only a few of the changes lead to any significant impact on Lighthouse’s memory consumption. The
“Null vertex” implementation, which instead of referencing empty data structures in vertex values
uses null references, reduces the memory consumption for storing the input graph by 42 percent
compared to reference Lighthouse. This makes more memory available for storing messages. Vertex
values are at different times during an execution stored either as Java objects or in a serialized
form. The “Avoid vertex” change, which prevents use of bad data structures in vertex values, such
as MapWritable for vertex properties, further reduces the memory consumption for storing the
input graph by 72 percent. None of the changes reduce the memory needed for storing messages
significantly. Totally, the memory consumption for storing the input graph is reduced by 84 percent.

The execution with the reference implementation of Lighthouse, involving 4 workers, lasted for 7
minutes and 6 seconds. The Lighthouse version with all the data structure and serialization format
changes enabled, also involving 4 workers, finished after 2 minutes and 41 seconds. These numbers
indicate that a reduced memory consumption for storing the input graph during a Lighthouse
execution has a positive effect on its duration. This may be a consequence of workers spending a
smaller time loading the input graph into their memory and less triggered garbage collection.

3.3 Evaluation of Executions of Bushy Query Plans

To test Lighthouse’s performance with the new optimizations on bushy query plans, the two query
plans 3.3 and 3.4 are considered. They are suitable for showing the optimizations’ effects, since
they force workers to produce many messages. Both of the query plans have a single PathJoin
operator, but only one of them has a StepJoin operator following the PathJoin. The differences
between the plans increase the possibility of finding weaknesses for the implemented optimizations.

Query Plan 3.3 can not cause creations of complete solutions, but it serves to trigger a high memory
consumption. It starts with Scan operators performing a filter on every vertex of the input graph.
Because the initial filters are equal, if a vertex passes the Scan operator of one of the query paths,
it also passes the Scan operator of the other. All ’Person’ labeled vertices are passed through.
The next StepJoin operators produce messages for connected chains of two relationships labeled
’KNOWS’. The messages with IDs for the involved vertices are joined by the PathJoin on receiving
vertices. Every joined message is filtered away to ensure that no solutions are written to the HDFS.
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Query Plan 3.4 allows messages to be transferred among workers after its PathJoin is computed,
via a StepJoin operator. The two query paths of the plan start similarly as in Query Plan 3.3.
However, before the PathJoin is computed, messages are only sent to vertices with one ’KNOWS’
labeled relationship in between. Every joined message represents a non-complete solution with a
single group of persons knowing each other. For each joined message, the last StepJoin operator
creates and sends messages to vertices for companies where the Person joined on works. It should be
difficult to guess the numbers of solutions which are passed by the PathJoin. This can potentially
lead to inaccurate predictions of how much memory is needed to store messages on the last StepJoin.

Listing 3.3: Bushy Query Plan without StepJoin Operator after PathJoin

Select (PathJoin( StepJoin ( StepJoin (Scan(Person ) ,
KNOWS) ,

KNOWS) ,
StepJoin (StepJoin (Scan(Person ) ,

KNOWS) ,
KNOWS)) ,

=({firstName} , NULL) ) ;

Listing 3.4: Bushy Query Plan with StepJoin Operator after PathJoin

Select ( StepJoin (PathJoin( StepJoin (Scan(Person ) ,
KNOWS) ,

StepJoin (Scan(Person ) ,
KNOWS)) ,

WORKAT) ,
=({name} , Pres ident Air l ines ) ) ;

3.3.1 Forced Simultaneous Arrivals of Messages from Both Paths

Following are measurements showing the effect of forcing query path computations to be started
so that all messages from paths arrive at a PathJoin simultaneously. At the end of a superstep in
which messages are received with a PathJoin, all related join tables are deleted. Query Plan 3.3 is
executed on 10 workers with 6 GB of available memory. The graph in Figure 3.14 shows the average
memory consumption on the workers after each superstep, with and without the optimization.

Figure 3.14: Memory consumption for execution with simultaneous arrivals of Query Plan 3.3

The effect of the simultaneous arrivals optimization shows later in the query plan execution, when
the numbers of messages stored in the PathJoin tables are normally high. The required memory
by the “Simultaneous” implementation, after the last superstep, is the same as when no messages
are present in the system. During its execution, the memory consumption is at one point in the
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last superstep similar to the highest visible memory consumption of reference Lighthouse. This is
not apparent in the graph, since all join tables are deleted just before the end of the superstep.
Lighthouse executions are with the optimization not having a reduced memory consumption for a
PathJoin operator in the superstep it is computed. Though, following computations in the next
supersteps benefit with more available memory for storing messages. The reference implementation
of Lighthouse often unnecessarily consumes memory for PathJoin tables until the end of executions.

The execution with the reference implementation of Lighthouse, involving 10 workers, lasted for
16 hours and 49 minutes. The Lighthouse implementation with simultaneous arrivals of messages,
also involving 10 workers, finished after 19 hours and 57 minutes.

3.3.2 Forced Prior Arrivals of Messages from Path Passing Fewest Bytes

Following are measurements showing the effect of forcing query path computations to be started
so that all messages from the path which passes the fewest bytes to a PathJoin arrive before any
messages from the other path. This allows every PathJoin to exclusively store messages from its
smallest incoming path (passes the smallest number of bytes) in related join tables. For different
jobs, the possible reduction of needed memory, enabled through use of the optimization, varies with
the input graph and the generated query plan. The extent of the reduction depends on the numbers
and sizes of messages passed from the query plan’s paths. Query Plan 3.3 is executed on 10 workers
with 6 GB of available memory. Since both the query paths in the plan are equal and produce
similar messages, the stored join tables in the execution should finally consume half the amount
of memory compared to with reference Lighthouse. The graph in Figure 3.15 shows the average
memory consumption on the workers after each superstep, with and without the optimization.

Figure 3.15: Memory consumption for execution with smallest-first arrivals of Query Plan 3.3

The effect of the smallest-first arrivals optimization also shows later in the query plan execution.
The “Smallest-First” implementation requires one more superstep, since its computations on the
smallest path are delayed. In superstep 1, reference Lighthouse produces almost twice as many
messages as the optimized implementation. All these messages are stored in join tables, requiring
a total of 1806 MB of memory. With the optimization, the join tables finally require only 908 MB
of memory. During the execution of the “Smallest-First” implementation, there is a larger memory
consumption right before superstep 3 than after. Prior to this superstep, received messages are
stored in addition to the messages in join tables. Following superstep 2, the present tables do not
increase in size. Query Plan 3.3 does not contain any non-last global operators after the PathJoin.
If this would be the case, the optimized implementation benefit with more available memory.

The execution with the reference implementation of Lighthouse, involving 10 workers, lasted for
16 hours and 49 minutes. The Lighthouse implementation with so-called smallest-first arrivals of
messages, also involving 10 workers, finished after 18 hours and 12 minutes.
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3.3.3 Storage of Serialized Messages in PathJoin Tables

Following are measurements showing the effect of storing serialized messages in PathJoin tables.
The optimization is implemented to reduce join tables’ sizes. Additionally, it enables all utilized
workers to calculate better initial message limits, using accurate sizes for present PathJoin tables.
Query Plan 3.3 is executed on 10 workers with 6 GB of available memory. The graph in Figure 3.16
shows the average memory consumption on the workers after each superstep, with and without the
optimization. The reference Lighthouse implementation stores join table messages as Java objects.

Figure 3.16: Memory consumption for execution with serialized table messages of Query Plan 3.3

The effect of the serialized table messages optimization shows later in the query plan execution.
Prior to starting superstep 2, both reference Lighthouse and the “Serialized” implementation con-
sume almost 500 MB of memory for received serialized messages. With the reference implementa-
tion of Lighthouse, the received messages are sequentially de-serialized and end up being stored as
Java objects in various PathJoin tables. When storing the messages in this manner, the same data
which required 491 MB before starting the superstep consumes around 1806 MB. By storing table
messages in a serialized form, as done with the “Serialized” implementation, a slight increase of
average memory consumption is still experienced. This is likely caused by a sub-optimal memory
allocation for serialized messages in the PathJoin tables. Giraph itself stores serialized messages,
received from other workers, in special message stores. If non-last global operators are present after
a PathJoin, further execution with the optimized implementation have more available memory.

The execution with the reference implementation of Lighthouse, involving 10 workers, lasted for
16 hours and 49 minutes. The Lighthouse implementation with storage of serialized messages in
PathJoin tables, also involving 10 workers, finished after 39 hours and 5 minutes.

3.3.4 Reference- versus Pipelined Executions

Following are memory consumption comparisons of Lighthouse with and without pipelining.

Memory Consumption with Query Plan 3.3

As apparent in Figure 3.16, the maximum memory consumption in executions of Query Plan 3.3
is reached in the end of the last superstep, when all messages from both paths are stored in the
PathJoin’s tables. Pipelining can not reduce this maximum memory consumption. It only affects
the numbers of messages passed per superstep, not the numbers of messages stored in join tables.
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Memory Consumption with Query Plan 3.4

On a cluster of 4 workers with 4 GB of available memory, an execution of Query Plan 3.4 with the
reference implementation of Lighthouse will fail, since the invoked garbage collectors spend a too
large fraction of the CPU time recovering memory. The graph in Figure 3.17 shows the memory
consumption after each superstep, with every worker instead having 6 GB of available memory.
The “Memory limit” line visualizes the 4 GB of memory on each worker of the mentioned cluster.

Figure 3.17: Memory consumption for reference execution of Query Plan 3.4

Only 3 supersteps are required to finish the execution, which naturally is one more than the largest
number of subsequent global operators in the query plan. With 4 utilized workers, the amount of
memory required on each to store a local graph partition is around 2 GB. The highest memory
consumption on all the workers is reached right before starting the final superstep, after the last
StepJoin operator in the query plan has been computed. The maximum memory consumption on
the workers is almost 4 GB, similar to the “Memory limit” of the imagined cluster.

Pipelined Lighthouse with static initial message limits and support for automatic restart on failure
can successfully complete an execution of Query Plan 3.4 on 4 workers with 4 GB of available
memory. The graph in Figure 3.18 shows the memory consumption on all the workers after each
superstep. It is clear that with pipelining and automatic restart on failure, the query plan can be
executed on the previously mentioned cluster with 4 GB of memory per worker.

Figure 3.18: Memory consumption for pipelined execution with static limits of Query Plan 3.4
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Instead of requiring 3 supersteps, 21 supersteps are needed, spread over 3 execution attempts. In
each of the two earliest attempts, only memory consumption numbers from one worker were added
to the execution’s memory logs. The first execution attempt fails in superstep 4, after a too high
memory consumption on the utilized workers. This is a consequence of very large calculated initial
message limits, causing the workers to produce many messages on the last StepJoin. Worker 0, the
only worker with consumption numbers for the attempt added to the execution’s memory logs, has
a visible increase in required memory. The second attempt fails in superstep 9. Again, the workers
run out of memory, despite the calculated limits being close to one-tenth of the ones calculated
in the previous attempt. The execution of the query plan finally succeeds in the third attempt.
Every calculated limit in this attempt is around one-hundredth of the ones calculated in the first.

It is not implemented any continuation mechanism for pipelining with bushy query plans. Anyway,
that would not help much in this case. The previously described continuation mechanism does not
delete complete solutions produced in supersteps where all workers succeed. The failing attempts
end before any superstep is finished with a significant amount of solutions written to the HDFS.

The duration of each execution of Query Plan 3.4 was here affected by extra requested garbage
collection. The execution with the reference implementation of Lighthouse lasted for 3 hours and
32 minutes. Pipelined Lighthouse with static limits and the restart mechanism, with less available
memory, finished after 14 hours and 19 minutes. The much longer duration can be explained by the
earlier attempts executing slowly with a full memory, spending more time on garbage collection.
The last execution attempt by pipelined Lighthouse needed 3 hours and 52 minutes to complete.
To reduce the experienced execution time, it may be a better approach to start with small initial
message limits and carefully increase them while tracking the memory consumption. This might
prevent large amounts of garbage collection and multiple retries after workers run out of memory.

Finally, a more extreme pipelined execution is presented. Pipelined Lighthouse with static initial
message limits and support for automatic restart on failure can also successfully complete an
execution of Query Plan 3.4 on 5 workers with 2 GB of memory. The graph in Figure 3.19 shows
the memory consumption after each superstep. Since the input graph itself roughly requires a total
of 8 GB memory after being loaded onto the workers, a total of 2 GB is left for storing messages.

Figure 3.19: Memory consumption for pipelined execution with static limits of Query Plan 3.4

Instead of requiring 3 supersteps, 65 supersteps are needed, spread over 3 execution attempts. The
skew protection fraction size is set to 0.1, preventing failures with workers calculating negative
initial message limits. After the input is loaded, each worker has almost 400 MB of free memory.
Only some of it can be used to store messages without extensive triggering of the garbage collector.

The duration of this execution of Query Plan 3.4 was affected by extra requested garbage collection.
The last execution attempt by pipelined Lighthouse with static initial message limits and the restart
mechanism, involving 5 workers, lasted for 2 hours and 19 minutes. The total time for the execution
was 5 hours and 17 minutes. This is far less than the duration of the previous pipelined execution.
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Conclusion

As the presented measurements clearly show, pipelining can be utilized to achieve reduced and
bounded memory consumption during Lighthouse executions. It enables smaller Hadoop clusters
with limited memory resources to run more communication-heavy subgraph pattern matching jobs.
Any left-deep query plan can now be executed without Out-of-Core Giraph disk access, provided
that the input graph fits into the memory of the started workers. Any bushy query plan can also
be executed without extra disk access, provided that the input graph and created PathJoin tables
fit into the workers’ memory. If used garbage collectors are not configured to never stop an ongoing
execution, some executions may fail if only a small amount of the memory is available for storing
messages and the garbage collectors spend a too large fraction of the CPU time recovering memory.

The handling of initial message limits in pipelined Lighthouse seems to work well. However, the
first supersteps which are computed to gather statistics for calculations of optimal initial message
limits might end with a failure. Unfortunately, a single default limit value does not fit all potential
combinations of handled query plans, input graphs and utilized workers. A limit appearing small in
one execution, might in another lead to workers running out of memory. The performed calculations
of initial message limits give suitable values with left-deep query plans, but only when the available
statistics closely reflect the whole execution. Since most executions of bushy query plans perform
bad output predictions, potentially causing restarts and long execution times, PathJoin should for
now be avoided if possible. Changes to PathJoin related predictions are presented as future work.
Buffers are successfully used against input data skew and extensive triggering of garbage collection.

In addition to pipelining, several other implemented optimizations have shown to be advantageous
for executions. Generally, the new data structures and serialization formats enable graph partitions
to be stored using less memory. The presented optimizations for executions of bushy query plans
also give positive effects. Memory consumption can be drastically reduced by storing the messages
in join tables in a serialized form. With deletion of join tables which are not needed anymore, at
the end of compute calls, memory is not unnecessarily occupied for remaining computations. If all
messages from the path which passes the fewest bytes to a PathJoin are forced to arrive before any
from the other path, further reduction of memory consumption is achieved. The two last mentioned
optimizations require more cooperation among the used workers in pipelined Lighthouse, including
agreements for when the last message on a path is passed and which paths produce the most data.

The pipelining functionality should with default configurations be utilized by Lighthouse, both for
left-deep and bushy query plans, despite making the execution logic more complicated. Many extra
supersteps are mainly introduced when an execution risks running out of memory. However, an
increased number of computed supersteps has showed to not affect the execution time significantly.
Lighthouse with pipelining may underestimate memory consumption during predictions. In worst
case, this causes an execution attempt to run out of memory (which will also happen without any
pipelining). Conveniently, automatic restarts ensure that pipelined executions eventually succeed.
To reduce execution times with left-deep plans, reproduction of complete solutions in performed
retry attempts can be avoided. The improved data structures and serialization formats, and storage
of serialized messages in join tables, should be enabled by default in Lighthouse. Differently, the
changes for computation start on paths need more adjustments to work properly with pipelining.
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Future Work

This chapter presents potential future work for improvements to Lighthouse. The proposed changes
span from further development of Lighthouse’s pipelining functionality to general memory opti-
mizations and methods that reduce execution times. Each should be implemented and evaluated.

5.1 Changes to Lighthouse with Pipelining

Following is potential future work which involves changes to pipelined Lighthouse.

5.1.1 Add Broadcasting of Initial Message Limits

Currently, there is no communication based cooperation among the utilized workers for calculation
and use of initial message limits. The risk of some workers having extreme initial message limits,
causing the execution to fail, can be reduced by forcing workers to broadcast their calculated initial
message limits. Before computations, each worker should select for use the median or smallest limit
in the set of broadcasted initial message limits, reducing its chance for running out of memory.

5.1.2 Add Broadcasting of Worker States

Some overloading of workers with messages should be prevented through sharing of worker states.
These states might also be used to balance out how many messages a worker can transfer to others.
A broadcasted state must contain the numbers of messages passed (or to be) by a worker. Workers
should consider the total numbers of messages which have been (or are to be) passed from other
workers to a target worker, preventing popular targets from being drowned with messages and
getting a high memory consumption. If all workers in an execution are able to track the memory
consumption of each other, they can also adjust the amounts of messages they send accordingly.

5.1.3 Introduce Pipelined Global Operators

The implemented pipelining functionality for Lighthouse only restricts the numbers of initial mes-
sages which are produced in every started superstep. The pipelining functionality can thus not
prevent workers from running out of memory if global operators in the middle of the query plan
suddenly start to produce large amounts of messages. Work for solving this issue has been started.
With some initial changes, one message buffer is used per present global operator on each worker.
During a superstep, a buffer is filled with messages when the number of messages passed by the
associated operator exceeds a calculated limit. These messages are handled in the next superstep.
All initial message limits and operator limits are recalculated before a superstep, taking into ac-
count the current numbers of buffered messages. The changes make global operators pipelined with
own effective send limits. Separate pipelined versions of Move and StepJoin should be introduced.
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5.1.4 Improve Predictions for PathJoin Output

After the pipelined executions of Query Plan 3.4 (presented in the evaluation chapter), it is clear
that Lighthouse’s predictions for output from PathJoin operators are inaccurate. This is caused by
two flaws. First, the predictions do not consider that the numbers of messages which are received
by a PathJoin on different vertices may vary significantly. This gives large underestimations for the
amount of output. Second, most predictions for the number of vertices that store a join table for a
specific PathJoin at the end of the final superstep are far off. The simple upscaling of the numbers
of vertices which store join tables, before the calculation of an initial message limit, usually results
in gigantic numbers. This amplifies the underestimations for PathJoin output. In late supersteps,
more messages reach a PathJoin on vertices which already store a relevant join table.

5.1.5 Enable Gradually Increasing Initial Message Limits

Instead of improving the predictions for output from PathJoin operators, a different direction for
selection of initial message limit values may be taken. A small default limit value can be carefully
increased, based on memory consumption observations. For bushy query plans, the extra growth of
memory consumption during late computations, caused by PathJoin operators, must be considered.
The risk of running out of memory might be reduced, but with a cost of more required supersteps.

5.1.6 Base Memory Predictions on Input Graph Histograms

Potentially, other methods for gathering statistics relevant to the execution can improve the mem-
ory consumption predictions. For instance, generated histograms for the input graph may be used.
The histograms should contain numbers for occurrences of labels and property values. Realistically,
it will be hard to characterize how each operator impacts an execution based on this information.

5.1.7 Pipelined Lighthouse versus Lighthouse with Out-of-Core Giraph

This is not a potential improvement requiring changes, but a comparison to be performed. Early on,
a performance comparison between pipelined Lighthouse and Lighthouse with Out-of-Core Giraph
was planned. It was supposed to involve various executions of jobs in similar memory constrained
environments. Unfortunately, it has shown difficult to configure Out-of-Core Giraph. On the same
set of workers, a job which completes with pipelined Lighthouse, but not with reference Lighthouse,
has not yet been observed to complete with Lighthouse using Out-of-Core Giraph.

5.2 Implement Selective Loading of Input

Unfortunately, selective loading of input vertices and edges has not been added to Lighthouse
during this project, despite being mentioned in the research questions. This promising optimization
should soon be implemented. It is expected to significantly reduce the amount of needed memory,
for storing the input graph, in many executions. As an example, if only vertices with one specific
label are relevant for the production of complete solutions for a provided query, just vertices with
that label and important edges should be loaded into the workers’ memory before the computations.

5.3 Reduce Execution Times

The new memory optimizations’ effect on execution times has not been a focus point in this project.
The implementations for the optimizations may be adjusted to additionally reduce execution times,
involving less overhead. For instance, improvements can reduce the time required to find sizes for
messages stored in a serialized form. Such sizes, for messages received by PathJoin operators and
messages passed by global operators, are often considered in memory predictions. Further, changes
to reduce the amount of necessary garbage collection during executions should be explored.
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Pregel Model

The Pregel computing model[8] was developed by Google for scalable and fault-tolerant processing
of large input graphs. It was inspired by the Bulk Synchronous Parallel model[15] and enables graph
processing using multiple machines and threads in parallel. The BSP model requires computation
to proceed in global supersteps, each containing concurrent computation, communication and a
barrier synchronization. A superstep in a Pregel job involves an iteration over input graph vertices,
calling a user defined compute function once for every active vertex. The function can process
messages sent to the vertex in the previous superstep, modify the vertex value or its outgoing
edges and send messages which can be processed by other vertices in the next superstep. The
compute function can be executed for different vertices in parallel, even on the same worker.

The vertex-centric view provided by Pregel allows implemented applications to not consider the
distribution of graph vertices among workers. The forced barrier synchronization at the end of
each superstep also simplifies the process of writing correct graph applications, removing the risks
for deadlocks and livelocks.

A Pregel job starts with every vertex of the input graph having an active state. This causes the
user defined compute function to be executed for all vertices in the first superstep. When being
processed, a vertex can change its state to inactive by calling a provided vote-to-halt function.
Vertices with an inactive state will not be processed in subsequent supersteps. An inactive vertex
will only be reset to active if it receives a message. The execution of a Pregel job terminates when
every vertex is inactive and there are no messages left to be received.

The Pregel model also introduces concepts such as combiners and aggregators. Combiners may be
used to reduce communication, while aggregators are useful for global sharing of data.

Combiners
The user can in some cases utilize combiners to decrease the amount of data being passed between
workers. If every worker will perform a reduction operation on values of its received messages, the
senders can in advance take advantage of this knowledge and combine the messages to be sent. If
every worker will perform a max() operation on received values, each sender only needs to pass its
highest message value. A combiner is implemented with a function specifying how to combine two
messages into a single one. Pregel does not give guarantees for which messages are combined.

Aggregators
A vertex can provide values to globally available aggregators. An aggregator performs a reduction
operation on received values and provides a result to workers in the following superstep. Predefined
aggregators are provided for common reduction operations, but Pregel also supports user-defined
ones. Aggregators can be utilized for everything from leader election to production of statistics.
One can use a sticky aggregator if the reduction operation should be performed on values from all
the previous supersteps.
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Apache Giraph

Apache Giraph[2] is an open source implementation of the Pregel framework, using the Pregel
computing model. It is currently used at Facebook[4] to analyze their social graph formed by users
and their relations. Following are an important class and an essential interface when using Giraph.

class WorkerContext
Data shared by vertices on a worker must be stored in a WorkerContext object. This data will not
be globally shared.There is one worker context object per worker in a computation. This object can
be accessed from the user defined compute method which is executed once for every active graph
vertex in a superstep. Its data structures can be directly read and set. The used WorkerContext
class may be implemented by the user, but must inherit from the WorkerContext class provided
by Giraph. The used WorkerContext class also specifies what every worker should do before and
after each superstep, in preSuperstep() and postSuperstep(), and before and after the application,
in preApplication() and postApplication(). This behavior may depend on the worker data.

interface Writable
The classes used for vertices, edges and messages must implement the interface Writable. This
enables the data of their corresponding objects to be serialized and de-serialized. The Writable
interface requires the classes to implement readFields() taking values from a DataInput object
and write() adding values to a DataOutput object. Vertices and edges are prior to a computation
serialized before being distributed to workers. This reduces the amount of data which must be
transferred over the network. When the workers receive their serialized parts of the input graph,
they de-serialize the vertex data and store vertices as Java objects in memory. Messages are
serialized before being passed to vertices. Edges and messages are de-serialized on the fly before
being processed.

The Giraph framework provides additional functionality to what is described for the Pregel comput-
ing model, among others master computation, sharded aggregators and out-of-core computation.

class MasterCompute
Apache Giraph supports use of a MasterCompute class defining a master vertex which is used
to perform computation between each superstep. The master vertex will be created and stored
on the master, and be processed with its user defined compute method before any other worker
vertex. The compute method can conveniently register and set aggregators, affecting worker vertex
computations in the same superstep.

Sharded Aggregators
Sharded aggregators may be utilized to reduce the computation and communication performed by
the master. In applications with normal aggregators, the master must receive, process and send
data, potentially in such amounts that the master becomes a bottleneck. A sharded aggregator is
differently from a normal aggregator assigned to a worker. This worker performs the aggregation
and sends its result value to the master. The master will when finished send a value back to the
worker, which then distributes this value to all the other workers.
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Cypher Query Language

Cypher[5] is a query language created for use with Neo4j graph databases. It is inspired by SQL,
which it shares among others keywords like WHERE, ORDER BY and UNION with. The main
advantage of writing graph queries with a declarative language such as Cypher, is that one avoids
to describe in detail how computations of solutions must be performed.

A Cypher query is aimed to be executed on a labeled property graph. This type of graph stores
nodes and relationships with labels and properties. A label specifies a type for an entity, while a
property is a pair with the property name and an entity specific value. Labels are often used to
specify what properties a vertex or a relationship contains. For example, a vertex with the label
’Person’ should be guaranteed to contain values for properties named ’firstName’ and ’birthDate’.

In Cypher, nodes and relationships in patterns are expressed as follows:

Node: (), (id), (:LABEL), ({name: value})
A node is expressed with a parenthesis pair. An identifier can be used for later referencing
the node or its property values. Restrictions on labels for a node or stored property values
can also be set as shown.

Relationship: -->, -[id]->, -[:LABEL]->, -[{name: value}]->
A relationship between nodes is expressed with an arrow. An identifier can be used for later
referencing the relationship or its property values. Restrictions on labels for a relationship
or stored property values can also be set as shown.

Here are the two most important elements of Cypher read queries:

MATCH
The MATCH clause is used to search for patterns in the stored graph.

Listing C.1: Return Stored Nodes with ’Person’ Label

MATCH (p : Person)
RETURN p

Listing C.2: Return Stored Relationships with ’Friendship’ Label between Specified Vertices

MATCH ({name: ’Luke Skywalker ’})−[ r : Friendship]−>(:Robot)
RETURN r

WHERE
The WHERE keyword is often used together with MATCH to additionally filter patterns.

Listing C.3: Return ’Person’ Nodes with Specified Property Values

MATCH (p : Person)
WHERE p. gender = ’male ’ AND p. country = ’Netherlands ’ AND p. age >= 100
RETURN p
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Path Queries

The Cypher path query syntax1 is currently not supported by Lighthouse. Though, the functional-
ity for finding paths with variable length or shortest paths can be implemented in Lighthouse with
use of left-deep query plans. The number of StepJoin operators in a used query plan determines the
maximum number of relationships in the potential result paths. In path query computations, Se-
lect operators must check whether reached vertices are end-vertices. If a reached vertex is a looked
for end-vertex, a result path is found and can be written to the available HDFS. If a reached vertex
is not an end-vertex, the computation must continue to the next StepJoin operator of the query
plan, which possibly passes new messages to related vertices.

Following is a query plan which can be used to find the shortest friend relation paths between
person A and person B. The query computation starts with finding the vertex for person A via
the Scan operator, then performs StepJoin passing the computation to all related friends. This
involves the creation of a number of messages equal to the number of friends of person A. The
vertices for the friends are then with the Select operator checked whether they represent person
B. If not, the next StepJoin operator must be computed.

Figure D.1: Path query requiring an unknown number of supersteps

For every executed StepJoin in the query plan in Figure D.1, there may be an exponential increase
of messages in the system. If too many messages are present in the system at the same time,
workers may run out of available memory and cause the query plan execution to fail. To reduce
the possibility for this scenario to happen, the approach for the computation must be changed.
Functionality can be added to avoid messages being passed in loops, removing some unnecessary
memory consumption. The implemented pipelining functionality can be used to set a limit on the
number of present messages in the system. Pipelined Lighthouse should be efficient for path queries
with many start vertices, but is likely to struggle with estimation of accurate memory consumption
with few. This is thoroughly explained in the evaluation section of the thesis.

Some extensive work has recently been done on shortest path queries in Lighthouse[14]. It considers
how path queries can be represented as query plans and introduces a new shortest path operator.

1http://neo4j.com/docs/stable/introduction-pattern.html# variable length
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