
Vrije Universiteit Amsterdam
Faculty of Sciences, Department of Computer Science

Centrum Wiskunde & Informatica

Mihai Varga
student number 2591442

Just-in-time compilation in MonetDB
with Weld

Master’s Thesis in
Parallel and Distributed Computer Systems

Supervisor:
Prof. Dr. Peter Boncz
Vrije Universiteit Amsterdam
Centrum Wiskunde & Informatica

Second reader:
Dr. Hannes Mühleisen
Vrije Universiteit Amsterdam
Centrum Wiskunde & Informatica

July 2018

Abstract

Query evaluation techniques that rely on interpretation often incur overhead generated by the interpre-
tation process itself and the materialization between the operators. These issues can be solved through
the query compilation technique, in which a query is evaluated by generating and compiling a specifi-
cally tailored program. In this thesis we aim to solve MonetDB’s excessive intermediate materialization
overhead through just-in-time (JIT) query compilation. For this purpose we use Weld, a library which
offers JIT compilation and data flow optimizations through its functional intermediate representation.
We evaluate two Weld integration approaches into MonetDB, by translating individual operators from
MonetDB’s columnar algebra, and by producing a complete Weld program from the relational algebra
using a data-centric code generation technique.

Contents

1 Introduction 3

2 Background 5
2.1 Database systems . 5
2.2 Query evaluation techniques . 5
2.3 MonetDB . 7

2.3.1 Relational algebra . 7
2.3.2 MAL and GDK . 9
2.3.3 Parallelism in MonetDB . 10

2.4 Weld . 11
2.4.1 Compilation and optimizations . 12
2.4.2 Memory management . 12

3 Motivation and design 14
3.1 MAL-Weld . 15
3.2 REL-Weld . 16
3.3 Research questions . 16

4 Implementation 17
4.1 MAL-Weld . 17

4.1.1 Select . 18
4.1.2 Project . 19
4.1.3 Aggregation . 19
4.1.4 Join . 22
4.1.5 Summary . 22

4.2 REL-Weld . 23
4.2.1 Scan . 25
4.2.2 Select . 26
4.2.3 Project . 26
4.2.4 Aggregation . 26
4.2.5 Join . 26
4.2.6 TopN . 27
4.2.7 Summary . 27

5 Evaluation 28
5.1 MonetDB + Weld vs MonetDB . 29
5.2 Multicore performance . 31
5.3 Performance issues . 31
5.4 Code quality and maintainability . 34

5.4.1 Compilation time . 34
5.4.2 Maintainability . 35

1

6 Related Work 37

7 Conclusion 40
7.1 Contributions . 40
7.2 Answers to research questions . 40
7.3 Future work . 41

2

Chapter 1

Introduction

In the fields of business intelligence and data mining we often encounter analytical workloads character-
ized by ad-hoc queries that are meant to be served by the underlying databases interactively. MonetDB
[5] is a columnar store database developed at the Centrum Wiskunde & Informatica that specializes in
online analytical processing (OLAP). MonetDB has been around for almost 20 years and has offered a
pioneering solution to speedup the execution time of analytical queries by introducing the column-at-a-
time processing model.

The MonetDB interpretation pipeline processes an incoming query in several steps, as shown in Figure
1.1 on the left side. First, the query is parsed and translated into relational algebra, a formal representation
of the operations that are about to be performed on the relational data. Then, the relational algebra is
transformed into MonetDB Assembly Language (MAL) which is an internal representation of the query
plan in the form of operations that are applied on one or several columns at a time. MAL is an interface
to the underlying kernel called GDK, which acts as the execution engine and is responsible for actually
executing the operations.

Boncz et al. show in [6] that unfortunately MonetDB’s implementation of the column-at-a-time process-
ing model suffers from excessive intermediate materialization between the operators. In this thesis we
investigate whether the query execution time can be improved and the amount of materialization reduced
by integrating Just-In-Time (JIT) compilation into MonetDB’s query processing pipeline. JIT compi-
lation is the process of generating executable code on the fly, at runtime. The benefit of JIT is that an
optimized compiled program can be created for ad-hoc queries, by taking advantage of any information
that can be derived from it, from the underlying system or from the data flow of the query.

In our implementation we use Weld [14] to deploy JIT compilation inside MonetDB. Weld is a common
runtime that aims to optimize data intensive applications by fusing work from different systems. It
offers a functional intermediate representation (IR), which allows developers to express computations
across different libraries and then rely on the runtime to optimally execute them. We identify two Weld
integration opportunities. The first method works at the MAL interpretation layer of MonetDB and
replaces MAL instructions that would otherwise call functions from GDK with new instructions that
generate Weld code. The second idea is to produce Weld code directly from the relational algebra using
the code generation technique described in [12] and which we will detail in the following chapters. The
two approaches are shown side by side with the canonical MonetDB interpretation pipeline in Figure
1.1.

This thesis is structured as follows: Chapter 2 provides background information on MonetDB and Weld;
we present our motivation and summarize the two integration techniques in Chapter 3; Chapter 4 provides
implementation details of our work and in Chapter 5 we evaluate the performance of the new query
system in its two variants; we discuss related work in Chapter 6 and, finally, in Chapter 7 we conclude
our work.

3

relational algebra

SQL

SELECT …
FROM table

MAL

MAL instruction

MAL instruction

MAL instruction

GDK

relational algebra

SQL

SELECT …
FROM table

Weld JIT

Weld
program

relational algebra

SQL

SELECT …
FROM table

Weld JIT

MAL instruction

MAL instruction

MAL instruction

Weld
program

MAL

MAL instruction

MAL instruction

MAL instruction

MonetDB evaluation pipeline MAL-Weld pipeline REL-Weld pipeline

Figure 1.1: The three query evaluation pipelines considered in this thesis. Left: the standard MonetDB
pipeline where the SQL query is transformed into a relational algebra, then the algebra is used to generate
a MAL program, which is eventually evaluated by the GDK kernel. Center: the MAL-Weld pipeline
in which we assemble a Weld program from smaller Weld statements generated for individual MAL
instructions. Right: The REL-Weld pipeline in which we produce the complete Weld program based on
the relational algebra.

4

Chapter 2

Background

This chapter offers background information related to our work. We first begin by discussing several
query evaluation techniques, how they perform on modern hardware and what lead to the adoption of the
column-at-a-time processing model in MonetDB. We then describe MonetDB’s architecture and intro-
duce the components we worked with in our Weld integration. Lastly, we discuss Weld’s capabilities as
a runtime and as a JIT compilation system.

2.1 Database systems

A Database Management System (DBMS) allows users to store, manipulate and access data in a database.
A special form of DBMS is the Relational DBMS in which the databases hold records using a relational
data model. The stored data is usually split into tables where columns define the attributes and each row
constitutes a record. The tables can be defined by a schema which holds information about the physical
structure of the tables and the relationships between them.

Data stored in a relational DBMS can be queried with dedicated domain-specific languages, with SQL
being the most popular example. The interpretation engine of a DBMS uses an abstract representation of
the query, called the relational algebra. The algebra expresses the query in terms of connected operators,
very often in a tree-like structure, in which the internal nodes represent algebraic operators such as Select,
Project or Join and leaves represent the relations (the data). These operators will be described in Section
2.3.1 in the context of MonetDB.

2.2 Query evaluation techniques

The most common approach to evaluating a query is to have a set of predefined operators that can be
arranged in any order to express complex computational intents. Any SQL query can be expressed in
such a tree of operators. The freedom to formulate ad-hoc queries forces the system to deal with them
dynamically, typically by creating an interpreter for such operator trees.

The Volcano iterator model [8] is one of the best known processing models for such a system. With
Volcano, each operator from the relational algebra tree exposes three canonical methods, open(), next()
and close(), and the query is evaluated by recursively calling next() on each node and then its children,
starting from the root, until all the tuples have been pulled through the tree. This type of evaluation
data flow is known as tuple-at-a-time. Due to its simplicity the Volcano model is a popular choice for
DBMSs. However it incurs a high instruction interpretation overhead. The goal of a query engine is to
process data as fast as possible, which means utilizing the available hardware components, such as the

5

CPU or the memory, at their peak performance. On modern hardware the memory and I/O bandwidths
have increased to a point where the instruction interpretation cost has become non negligible and can
actually hinder the rest of the system. While the query interpretation has also become faster with the
advancements in hardware, CPU cycles spent on this could instead be used to actually operate on data.
Ailamaki et al. [2] show that databases can suffer from poor code and instruction locality which leads to
excessive CPU stalls and ultimately suboptimal hardware usage. The poor performance can be attributed
to the tuple-at-a-time evaluation technique. The recursive next() calls extensively use the instruction
cache and generate numerous cache misses, which in turn prevent the compiler from exploiting modern
CPU features such as deep pipelining and SIMD instructions. At the same time, it fails to expose the
potential of processing multiple tuples in parallel, leading the CPU to achieve low IPC (instructions per
cycle).

MonetDB is best known for its column-at-a-time processing model, in which entire columns are pro-
cessed in a tight loop. Compared to the tuple-at-a-time model, the internal nodes from the query plan no
longer consume a single row, but an entire column at once, and can similarly produce a whole column
as their result. The main benefit of this evaluation technique is that the interpretation overhead is no
longer proportional to the number of tuples, but instead to the number of operators. In MonetDB, the
interpretation cost is determined by the length of the MAL program which has been generated from the
relational algebra. Therefore, for MonetDB the interpretation overhead is negligible compared to the
amount of useful operations.

A variant of the tuple-at-a-time model has been implemented in a new query engine for MonetDB called
X100 [6]. The technique named "vectorized execution model" reduces the interpretation overhead of
the tuple-at-a-time model by moving a vector of tuples through the tree of operators, instead of a single
tuple.

A different query execution technique is presented by Neumann in [12]. It relies on compiling the query
to machine code rather than interpreting it as in the iterator model. This new approach comes from
the observation that the traditional algebraic operator model is focused on the operators themselves,
thus drawing a clear boundary between the execution phases of the query. Instead, by compiling the
query to native machine code, the processing becomes data-centric. This new data flow is denoted by
Neumann as the produce-consume model in [12]. The resulting execution model is also tuple-at-a-time,
but unlike in the Volcano model where data is pulled upwards in the query plan, data is now pushed
from one operator to another. The advantages of this approach over interpreting the query are the lack
of interpretation overhead and the fact that the generated code can be tuned to perform optimally on the
given hardware.

The produce-consume code generation technique works by identifying operator pipelines in the relational
algebra. The pipeline is defined as a chain of operators that do not materialize the data in their evaluation.
At the opposite end there are pipeline-breaker operations, which require the entire data to be made
available before producing any result. For example, an aggregation that computes the sum of the values
in a column requires all the tuples to be evaluated before producing the result, whereas a projection
that doubles the values in a column can apply the multiplication operation on individual data points and
immediately make them available to the next operator. We will discuss operator pipelines in more detail
in Chapter 4, in which we also provide an example in Figure 4.2 of how pipelines can be identified in the
query plan. The performance gains of the produce-consume evaluation technique is that materialization
is limited only to the operators that absolutely require it and the fact that during the execution of pipelined
operators the tuples can remain in the fast CPU cache while several operators are applied on them. In
other words, the techniques benefits from a better data cache locality.

6

Kernel

Back end

Front end

Relational algebra optimizer

MAL generator

MAL optimizer

MAL interpreter

GDK kernel

SQL query

SQL query parser

BATs

Figure 2.1: MonetDB’s three layered architecture.

2.3 MonetDB

Relational table data in MonetDB is stored column-wise, in specialized data structures called binary as-
sociation tables, or BATs. A BAT has two columns, a head and a tail. The head column usually column
usually represents a unique object identifier (oid) and the tail holds the actual data values. The architec-
ture of MonetDB is shown in Figure 2.1 and is split into the frontend, the backend and the kernel. An
incoming SQL query is parsed, abstracted into an algebraic tree and subsequently transformed into MAL
instructions in the frontend. The MAL instructions are then optimized in the backend. MAL represents
an interface to the underlying kernel, the GDK, which offers access to the storage layer. The optimized
MAL plan is passed to the kernel for execution. Complex expressions from the relational algebra can be
broken down into a sequence of BAT-specific algebraic operators in the frontend, which map to MAL
instructions and are implemented in the kernel as simple and CPU-friendly array operations.

MonetDB is a DBMS that specializes in providing high performance for analytical queries [5] and its
main performance drives are the columnar storage and the BAT algebra operations that are used to express
the query plan in simple operations applied on whole columns at a time. The points of interest for our
thesis are the MAL generator and the MAL optimizer. The MAL generator is a module that emits MAL
instructions based on the algebraic tree - we will replace the generated instructions with Weld code. The
MAL optimizer creates an optimal set of MAL instructions right before the MAL interpreter calls into
the GDK kernel for their interpretation. We will modify the optimizer’s workflow and instead use it to
emit Weld code from groups of MAL instructions.

2.3.1 Relational algebra

The relational algebra is generated after the SQL query has been parsed. It provides a logical plan for the
query and it can be visualized as a tree where the nodes are algebraic operators and the edges are data

7

dependencies. To showcase an example of the relational algebra produced by MonetDB, we will use the
SQL query from Figure 2.2 which is take from [12] as it contains the most common algebraic operations:
Select, Project, GroupBy and Join. MonetDB translates the query in Figure 2.2 to the relational algebra
in Listing 2.1. Later this query will be referenced again to show the data pipelines that can be identified
from the plan and how we can generate Weld code that perfectly fits on the pipeline model. We will now
briefly explain the basic relational algebra operators in MonetDB.

Table Is the operator used for reading data from disk. It works with a single table at a time, and
as the storage model is MonetDB is columnar, it returns only those columns that are needed
throughout the query execution.

Select Filters data based on one or more predicates.

Project It can select a subset of columns from the input, apply operations on them and produce new
columns. It can also be used to simply rename columns. In addition, the operator can be used
to sort the data given a sort key.

Group By Performs an aggregation over a set of columns using the specified aggregation function. If
there is a Group By key, the result will be a set of columns, otherwise the aggregations will go
into a single bucket and the result will be a set of scalars.

Join The Join operator family, including Semi Join, Anti Join, Outer Join, etc. combine tuples from
the left and the right hand sides of the join relations. MonetDB can choose at runtime between
implementation such as merge or hash join.

TopN The TopN operator selects only a range of values from the resulting output.

select *

from R1, R3
(select R2.z, count(*)
from R2
where R2.y = 3
group by R2.z) R2

where R1.x=7 and R1.a=R3.b and R2.z=R3.c

Figure 2.2: SQL query from [12].

Listing 2.1: Relational algebra produced by MonetDB for Figure 2.2
| project (
| | join (
| | | join (
| | | | select (
| | | | | table(sys.r1) ["r1"."a" NOT NULL, "r1"."x" NOT NULL] COUNT
| | | |) ["r1"."x" NOT NULL = int "7"],
| | | | table(sys.r3) ["r3"."b" NOT NULL, "r3"."c" NOT NULL] COUNT
| | |) ["r1"."a" NOT NULL = "r3"."b" NOT NULL],
| | | project (
| | | | group by (
| | | | | select (
| | | | | | table(sys.r2) ["r2"."y" NOT NULL, "r2"."z" NOT NULL] COUNT
| | | | |) ["r2"."y" NOT NULL = int "3"]
| | | |) ["r2"."z" NOT NULL] ["r2"."z" NOT NULL, sys.count() NOT NULL as "L3"."L3"]
| | |) ["r2"."z" NOT NULL, "L3" NOT NULL as "r2"."L3"]
| |) ["r3"."c" NOT NULL = "r2"."z" NOT NULL]
|) ["r1"."a" , "r1"."x" , "r3"."b" , "r3"."c" , "r2"."z" , "r2"."L3"]

8

2.3.2 MAL and GDK

MAL specifies the query’s data flow. As MAL is interpreted through the GDK kernel that interfaces
with the actual operating system and storage layer, the MAL-GDK execution can be likened to a virtual
machine architecture. The MAL program is generated from the optimized relational algebra in the fron-
tend and is then passed to the backend to be further optimized. A MAL program can have variables,
instructions and functions, and it can specify complex computations while still maintaining a level of
abstraction over GDK. BATs are at the heart of a MAL program, and as BATs are immutable in a typical
read-only analytical query, each operation that is applied on a BAT will result in the creation of a new
transient BAT, i.e. a BAT that is valid only for the duration of the query evaluation.

At the storage level MonetDB stores individual columns from the relational table as <head, tail> tables.
The head column is the oid (object identifier) which maps to an index in the tail column. In practice
the oids are consecutive values in ascending order and the head column is not actually written to disk
or represented in memory, as the oids can be computed knowing just the first oid and the number of
elements. On disk and in memory, a BAT is an ordinary C-array which makes reading and processing
data columns trivial. A string column is handled differently from columns of other data types: a string
BAT is backed up by two arrays, one containing the actual null-terminated strings separated by metadata,
and the other containing indexes that tell where the individual strings start from in the string array.

As we will be dealing with MAL instructions in our Weld translation it is useful to understand the
syntax. MAL is a strongly typed language and therefore every variable or parameter, BAT or scalar,
has an associated type. The base types are bit (int8), bte (int8), sht (int16), int (int32), lng (int64), oid
(int64), flt (float), dbl (double) or str. MonetDB supports hge (int128) as well, but as Weld doesn’t have
an equivalent we have disabled its support. Instructions also accept parameters with a polymorphic type
named any_1 which is resolved at runtime. Namespaces, or MAL modules, are designed to improve
the organization and the type and function resolutions. An instruction’s signature consists of the MAL
module and the instruction name. For example, algebra.thetaselect is the notation for the thetaselect
function that resides in the algebra module. Listing 2.2 shows shows the signature of thetaselect, which
takes as arguments a data column b with lng values, a candidate list which is also a BAT, a constant
val - the right operand and a string constant called op that represents the comparison operation. The
instruction returns the oids of the values that satisfy the x < op predicate.

Listing 2.2: MAL instruction showcase. The thetaselect instruction is part of the algebra module, it
takes four arguments (two BATs and two constants) and returns a single BAT
/* Instruction signature */
algebra.thetaselect(b:bat[:any_1], s:bat[:oid], val:any_1, op:str):bat[:oid]

/* The instruction used in a MAL program */
X_3:bat[:oid] := algebra.thetaselect(X_1:bat[:lng], X_2:bat[:oid], 2400:lng, "<":str);

As MAL instructions are executed one-by-one, control is passed for each to the GDK library where the
actual data processing part takes place. Certain MAL instructions, such as algebra.join, have several
implementations to choose from. The GDK library can determine at runtime which one to use, for
example which join strategy to choose, hash or merge join, depending on whether the input columns are
sorted or not. Then, if for example the hash join algorithm is chosen, GDK can decide on which of the
two columns to build the hash table and which to probe with. Choosing the algorithm implementation
dynamically is what allows MonetDB to execute the core part of the algorithm in a tight loop over the
data. Listing 2.3 shows the main part of the MAL program which is generated from the query in Figure
2.2.

9

Listing 2.3: MAL program generated from the relational algebra in Listing 2.1
X_20:bat[:int] := sql.bind(X_6:int, "sys":str, "r1":str, "x":str, 0:int);
C_7:bat[:oid] := sql.tid(X_6:int, "sys":str, "r1":str);
C_29:bat[:oid] := algebra.thetaselect(X_20:bat[:int], C_7:bat[:oid], 7:int, "==":str);
X_10:bat[:int] := sql.bind(X_6:int, "sys":str, "r1":str, "a":str, 0:int);
X_31:bat[:int] := algebra.projection(C_29:bat[:oid], X_10:bat[:int]);
C_33:bat[:oid] := sql.tid(X_6:int, "sys":str, "r3":str);
X_35:bat[:int] := sql.bind(X_6:int, "sys":str, "r3":str, "b":str, 0:int);
X_41:bat[:int] := algebra.projection(C_33:bat[:oid], X_35:bat[:int]);
(X_49:bat[:oid], X_50:bat[:oid]) := algebra.join(X_31:bat[:int], X_41:bat[:int], nil:

BAT, nil:BAT, false:bit, nil:lng);
X_42:bat[:int] := sql.bind(X_6:int, "sys":str, "r3":str, "c":str, 0:int);
X_58:bat[:int] := algebra.projectionpath(X_50:bat[:oid], C_33:bat[:oid], X_42:bat[:int

]);
X_61:bat[:int] := sql.bind(X_6:int, "sys":str, "r2":str, "y":str, 0:int);
C_59:bat[:oid] := sql.tid(X_6:int, "sys":str, "r2":str);
C_77:bat[:oid] := algebra.thetaselect(X_61:bat[:int], C_59:bat[:oid], 3:int, "==":str)

;
X_68:bat[:int] := sql.bind(X_6:int, "sys":str, "r2":str, "z":str, 0:int);
X_80:bat[:int] := algebra.projection(C_77:bat[:oid], X_68:bat[:int]);
(X_81:bat[:oid], C_82:bat[:oid], X_83:bat[:lng]) := group.groupdone(X_80:bat[:int]);
X_84:bat[:int] := algebra.projection(C_82:bat[:oid], X_80:bat[:int]);
X_85:bat[:lng] := aggr.subcount(X_81:bat[:oid], X_81:bat[:oid], C_82:bat[:oid], false:

bit);
(X_87:bat[:oid], X_88:bat[:oid]) := algebra.join(X_58:bat[:int], X_84:bat[:int], nil:

BAT, nil:BAT, false:bit, nil:lng);
X_97:bat[:lng] := algebra.projection(X_88:bat[:oid], X_85:bat[:lng]);
X_96:bat[:int] := algebra.projection(X_88:bat[:oid], X_84:bat[:int]);
X_95:bat[:int] := algebra.projection(X_87:bat[:oid], X_58:bat[:int]);
X_94:bat[:int] := algebra.projectionpath(X_87:bat[:oid], X_50:bat[:oid], X_41:bat[:int

]);
X_93:bat[:int] := algebra.projectionpath(X_87:bat[:oid], X_49:bat[:oid], C_29:bat[:oid

], X_20:bat[:int]);
X_92:bat[:int] := algebra.projectionpath(X_87:bat[:oid], X_49:bat[:oid], X_31:bat[:int

]);
sql.resultSet(X_142:bat[:str], X_143:bat[:str], X_145:bat[:str], X_147:bat[:int],

X_149:bat[:int], X_92:bat[:int], X_93:bat[:int], X_94:bat[:int], X_95:bat[:int],
X_96:bat[:int], X_97:bat[:lng]);

2.3.3 Parallelism in MonetDB

To achieve parallelism MonetDB splits the columnar data horizontally and applies the same query plan
on each fragment. Parallelization is carried out at MAL level and it is handled by three MAL optimizers.
Mitosis partitions the data horizontally, Mergetable pushes the column fragments through the operators
as much as possible without having to recombine them and Dataflow identifies independent parts of the
MAL program and runs them in parallel. One of the operations that require synchronization and which is
often encountered in analytical queries is the Aggregation. A first aggregation step can be run in parallel,
where each thread computes the aggregation on its own data, but then the thread local partial results are
merged together sequentially. Joins can also be run in parallel, if the two join columns are each split into
N horizontal partitions then each thread must perform N joins in which it matches its own left partition
with the other threads’ N right partitions.

10

2.4 Weld

Weld [14] is a runtime library which improves the performance of data intensive applications by allowing
the users to express computation intents throughout a data pipeline specified in Weld’s IR, which is in
turn compiled into an efficient program. The generated Weld program is compiled and executed only
when the computation expression has been completely defined and a materialization of the results is
required. Therefore, by having a broad overview of the data flow, several optimization passes can be
applied to create an optimized version of the program in terms of memory usage and CPU instructions.
An example of how Weld can be used is shown in Figure 2.3. The runtime collects pieces of Weld code
from three different library functions and compiles them into an optimized program that can work on the
input data.

Figure 2.3: Weld collects and combines fragments of IR from different libraries and then produces
optimized machine code. Figure 2 from [14].

Weld’s IR is constructed around two main concepts: nested parallel for-loops and builders, which indicate
what operations are applied on the data. Weld supports basic primitives, such as integers: i8, i16, i32,
i64, floats: f32, f64, structures and vectors. Structures are similar to the ones in the C language and
follow the same padding rules between structure members. A vector (vec) in Weld is actually just a
structure with two members: a pointer to the data C array and an associated length of type i64. Weld also
supports type inference; the ? placeholder can be used to define a builder and the type will be inferred
during compilation. At the time of writing there are 5 builders available in Weld, which support the +,
*, min and max merging operations:

appender[T] Creates a new vector by appending values of type T to itself.

merger[T, op] Combines values of type T using the op operations. The result is a scalar or a struct of
scalars.

dictmerger[K, V, op] Builds a dictionary K -> V and aggregates multiple values associated to the same
key using the operator op.

groupmerger[K, V] Builds a dictionary K -> vec[V]. Unlike the dictmerger, values are no longer coa-
lesced and are instead added to a vector.

vecmerger[T, op] Combines structures {index:i64, T} into a vec[T] at the given index.

A Weld program consists of functions and expressions. The syntax of a function in Weld is |a_1:
type_1, a_2:type_2, ...| expr_1; expr_2; ..., in which the function takes a list of typed input
parameters a_i:type_i, has several expressions in its body and returns the result obtained by evaluating
last expression. As an example, the function |a:i32, b:i32| let c = a + b; c * c has a and b of
type i32 as input parameters. It will save the sum a + b in the variable c and then return c * c as its result.
The function can contain any number of expressions followed by the ; keyword and a single one at the
end, without ;, which acts as a return statement. New immutable values can be introduced using the let
statement and blocks of expressions can be contained inside parentheses.

11

The for-loop in Weld takes three parameters for(vec, builder, update) and applies the update func-
tion on every element of the vector vec, possibly merging a value in the builder. At the end of the
iterations, the for-loop returns a new builder which incorporates all the updates that were carried out
inside the for-loop body. The third parameter in the for-loop, the update function, also takes three pa-
rameters |b, i, n|, where b is a builder in which it can merge the result, the iteration number i and n
represents the value vec[i]. The update function can either return the result of the merge operation or the
unmodified builder.

An important design feature of Weld is that only a single merge operation can be applied on a builder,
and every such an operation returns a new builder. Builders are write-only data structures and the result
operations transforms them into read-only data structures. For example calling result on an appender
will return an immutable vector. Builders are considered linear types, which means that each builder
should be used in a linear sequence of operations (several merge operations followed by a single result).
This restriction allows the runtime to apply the merge operations on the same memory location instead
of forking it, as it would be necessary if a builder would be used twice.

Listing 2.4 shows a Weld program that takes as input a vector of i64 integers. It filters the elements
of the vector and appends those that pass the filter into the appender builder, and then it computes the
cumulative sum of the remaining numbers. At the end, result is called on the builder and the final result
is returned to the user.

Listing 2.4: An example Weld program which first filters a vector and then computes the sum of the
numbers that pass the filter.
|x:vec[i64]|
let filtered = for(x, appender[?], |b, i, n|

if(n < 3L, merge(b, n), b)
);
let sum = for(result(filtered), merger[?], |b, i, n|

merge(b, n)
);
result(sum)

2.4.1 Compilation and optimizations

The Weld runtime can perform various optimizations on the given Weld program, such as loop tiling or
vectorization, but the optimizer we are most interested in is the loop fusion. There are two types of loop
fusion, hereby named vertical and horizontal loop fusion. The former combines two for-loops when the
second loop iterates over the result produced by the first, while the latter combines two loops that iterate
over the same data, but produce different results. The effects of the optimizer can be seen in Figure
2.4.

The final step in the Weld pipeline is to compile the optimized program. After the Weld code has
been optimized, it is transformed into LLVM IR 1 which is then compiled into a binary. The binary is
dynamically linked to the main process as a library, and the Weld program can then be executed.

2.4.2 Memory management

Weld distinguishes between two types of memory allocations: owned by the user or by the runtime. The
user owns the input data and is responsible for bookkeeping it. Any memory that is allocated during
the execution of the Weld program is owned by the runtime, including the results. Therefore additional
overhead is incurred when copying the result data into an area owned by the user. Ideally we should be

1https://llvm.org/docs/LangRef.html

12

|x:vec[i64]|
let mul = for(x, appender[?], |b, i, n|

merge(b, n * 2L)
);
let add = for(result(mul), appender[?], |b, i, n|

merge(b, n + 1L)
);
result(add)

|x:vec[i64]|
let comb = for(x, appender[?], |b, i, n|

merge(b, n * 2L + 1L)
);
result(comb)

Original Vertical loop fusion

(a)

|x:vec[i64]|
let prod = for(x, merger[?, *], |b, i, n|

merge(b, n)
);
let sum = for(x, merger[?, +], |b, i, n|

merge(b, n)
);
{result(prod), result(sum)}

|x:vec[i64]|
let comb = for(x, {merger[?, *], merger[?, +], |b, i, n|

{merge(b.$0, n), merge(b.$1, n)}
);
result(comb)

Original Horizontal loop fusion

(b)

Figure 2.4: Loop fusion in Weld

able to just reference the memory addresses returned in the result, but as Weld does not free any memory
during its execution, we need to deallocate everything at the end in order to restore the system to its
previous memory state.

13

Chapter 3

Motivation and design

The column-at-a-time execution model from MonetDB solves the main problem of the tuple-at-a-time
model by better utilizing the CPU and reducing the interpretation overhead, but it relies heavily on mate-
rialization between operators. This excessive materialization is the side effect of the query interpretation
being operator-oriented, in that the evaluation is centered around individual operators that exchange in-
formation through materialized data. This technique affects the performance of the evaluation, as it
becomes limited by the memory bandwidth

We presented the architecture of MonetDB’s query engine in Figure 2.1 and we saw that SQL queries
are expressed internally first as a relational algebraic tree and then as a sequence of MAL instructions.
On both representations optimizations are applied in certain stages in the interpretation pipeline. As the
execution is columnar, the input and output of each MAL operator consists of materialized columns.
For example, an expression such as a * (b + c), in which two columns are added and subsequently
multiplied with a third, will become two MAL operators: the addition b + c will be stored into a result
(a column), which will then be passed to the multiplication with a.

Boncz et al. show in [6] that the amount of materialization has a significant impact on MonetDB’s
performance. In this thesis we aim to reduce the materialization and thus improve the query execution
time by introducing JIT compilation of (or parts of) the query to native machine code into MonetDB’s
interpretation pipeline. In this way, we hope to bring the performance closer to the the hardware limits.
A JIT compiled query will benefit from a data-centric evaluation, as the boundaries between operators
are removed.

To this end, we identify two modules in Figure 2.1 that can act individually as the entry point of the added
JIT logic: the MAL generator, a module that emits MAL instructions based on the algebraic tree and the
MAL optimizer, which creates an optimal set of MAL instructions right before the MAL interpreter calls
into the GDK kernel for their interpretation. Either one of these modules can become the incision point
into the interpretation pipeline and we will use them in two different approaches to JIT integration. Our
first approach will be to change the MAL optimizer’s workflow to create new MAL instructions that emit
Weld code instead of using the default instruction implementation from GDK. We will henceforth denote
this process as the MAL-Weld method. The second approach is to replace the MAL instructions created
by the MAL generator with Weld code. We will refer to this method as the REL-Weld implementation.
The two approaches are depicted in Figure 1.1, side-by-side with the canonical MonetDB interpretation
pipeline.

The following sections will briefly explain the design of the two approaches and in Section 3.3 we pose
our research questions.

14

3.1 MAL-Weld

For a given query the MAL program expresses the computation intent in terms of BAT operators. The
MAL instructions are usually function calls that map directly to a BAT operator implementation in the
GDK kernel. Conceptually, the MAL instructions are chained together by variables, instructions take
input parameters and return their results in one or more variables which will act as the input to other
instructions. As a consequence of the interpreted operator-centric column-at-a-time execution model,
the results return by MAL instructions are always materialized BATs.

Our approach to solve this problem is to translate the GDK implementations of BAT operators into
Weld’s IR. The idea is to produce snippets of Weld statements, that correspond to the involved MAL
instruction, so that in the end we obtain a coherent Weld program that preserves the semantics of the
MAL program. Most BAT operators perform simple operations over one or two columns and usually
involve a single for-loop, so the Weld translation will as well mostly consist of a for-loop. We then rely
on Weld’s compiler to identify chained operators and apply loop fusion to combine multiple for-loops
into a single one and thus reduce the amount of materialization.

Weld

MAL instruction
Data dependency

Weld
program

Figure 3.1: The MAL program is a directed graph, in which vertices are MAL instructions and the edges
data dependencies between them. Groups of Weld-compatible MAL instructions that form a sub-graph
can be pulled out into a single node, which generates Weld code, compiles it to machine code and runs
it. The input and output of this node are BATs, therefore it can be seamlessly integrated into the existing
instruction graph.

An important observation is that, as the translation is performed MAL instruction by MAL instruction,
we can choose which instructions to translate and for which preserve the original GDK call. This is
important because certain MAL instructions are highly particular or optimized, so they may not have a
Weld equivalent. Moreover, sometimes it can be useful for us to delegate a task to the GDK kernel, if it
can be solved better and faster through the native call. The MAL program can be viewed as a directed
graph where the nodes are the instructions and the edges are the data dependencies between them. In
our translation we identify which MAL instructions can be translated to Weld and then rearrange the
MAL program so that translatable instructions form a subgraph that can be collapsed into a single single
node without causing a data dependency cycle. Each Weld-able subgraph will result in a complete Weld
program which is constructed by the individual nodes that belong to it. As there is a large number
of MAL instructions, this approach allows us to have a modular integration of Weld into MonetDB
which can operate seamlessly with the standard MAL instructions. Figure 3.1 depicts the described
process.

15

3.2 REL-Weld

For a given query the relational algebra offers a broader view over the data flow than the generated
MAL program. Our second approach to improve the query evaluation time in MonetDB is to completely
replace the column-at-a-time execution model with the produce-consume model described in Section
2.2. The relational algebra is represented as a tree, in which the internal nodes are the operators and the
leaves are the relations. Using the produce-consume model we can generate a Weld program based on
the relational algebra that contains the entire query evaluation logic. In [12] Neumann categorizes certain
operators as being pipeline breakers - they either remove the data from the CPU cache or, in the worst
case, require materializing the input. The goal is to determine the operator pipelines in the algebraic tree
and to fuse them together. The fused sequence becomes one or several nested for-loops in which multiple
operations are performed on a tuple in a pipelined fashion.

The MAL program is generated from the relational algebra as well, so in the MAL-Weld translation
presented above we are basically asking Weld to recreate the algebra through loop fusion. Due to the
nature of the MAL program and the intermediate and auxiliary results that MAL instructions produce we
do not expect Weld to be able to identify all the fusion opportunities, which is why we believe that the
REL-Weld approach will generate a better query plan.

3.3 Research questions

MonetDB solves the problem of high interpretation overhead through its column-at-a-time approach by
increasing the ratio of effective data computations over the interpretation cost. By doing so, MonetDB
materializes intermediate results between operators and thus the performance becomes limited by the
memory bandwidth. The research questions we are trying to answer in our work are:

• Can the query compilation into native machine code reduce the amount of intermediate material-
ization by removing the boundaries between operators and fusing them together?

• Is Weld able to perform loop fusion given the data flow generated by the MAL program? If not,
can we add new optimization rules to Weld?

• Can we express all relevant operations using Weld’s IR and parallel builders?

• Is the data-centric compilation approach in REL-Weld superior to MAL-Weld?

16

Chapter 4

Implementation

We will now discuss the technical aspects of our Weld integration into MonetDB.

4.1 MAL-Weld

The first approach to integrate Weld into MonetDB happens at the MAL level. A MAL program consists
of multiple MAL instructions that together express the data flow. Given Weld’s ability to optimize the
data flow we see the MAL instructions at the core of our translation to Weld. Throughout this section
we are going to discuss the implementation of some of the most common operators and their MAL
instructions.

The MAL program is generated from the optimized relational algebra and then it passes through another
series of (MAL) optimizers. To identify the instructions that can be translated to Weld we implemented
a new optimizer that modifies and reorganizes the MAL program. Our component is part of a new
optimizer pipeline in which we disabled the dataflow and mitosis modules that enable parallelism in
MonetDB.

The first step in the Weld optimizer is to build an instruction dependency graph. Then, while maintaining
a list of Weld translatable instructions, we identify subgraphs that contain only such instructions. The end
result is a MAL program where the Weld instructions belonging to the same subgraph are grouped to-
gether and surrounded by standard GDK backed MAL instructions that connect those subgraphs. Listing
4.1 shows how our Weld optimizer identifies two subgraphs that are connected by an instruction which
does not have a Weld implementation (algebra.likeselect). A MAL instruction that can be implemented
in Weld is replaced with another MAL instruction from the weld module so that at run time, instead of
calling a GDK function, the new instruction will generate Weld code. We kept the new instruction’s
name and signature unchanged so that it is easy to understand a MAL-Weld program.For example, bat-
calc.add becomes weld.batcalcadd. As the MAL program is executed, we want each Weld instruction
to append its part of the program to a shared buffer. For that, we initialize a buffer called wstate and we
pass a pointer to it to every Weld instruction belonging to the same subgraph. When all the MAL instruc-
tion from the subgraph have been executed, meaning that the Weld program is complete, the weld.run
instruction compiles the program, runs it on the input that and sets the results in the corresponding MAL
variables.

Listing 4.1: Part of an original MAL program and the one produced by the Weld optimizer
/* Original MAL program */
X_2:bat[:int] := sql.bind(X_1:int, "sys":str, "part":str, "p_partkey":str, 0:int);
X_3:bat[:str] := sql.bind(X_1:int, "sys":str, "part":str, "p_mfgr":str, 0:int);
C_4:bat[:oid] := sql.tid(X_1:int, "sys":str, "part":str);

17

X_5:bat[:oid] := algebra.thetaselect(X_2:bat[:int], C_4:bat[:oid], 15:int, "==":str);
X_6:bat[:oid] := algebra.likeselect(X_3:bat[:str], X_5:bat[:oid], "%BRASS":str, "":str

, false:bit);
X_7:bat[:int] := algebra.projection(X_6:bat[:oid], X_2:bat[:int]);
X_8:bat[:int] := batcalc.add(X_7:bat[:int], 100:int);

/* The MAL program after the Weld optimizer */
X_2:bat[:int] := sql.bind(X_1:int, "sys":str, "part":str, "p_partkey":str, 0:int);
X_3:bat[:str] := sql.bind(X_1:int, "sys":str, "part":str, "p_mfgr":str, 0:int);
C_4:bat[:oid] := sql.tid(X_1:int, "sys":str, "part":str);
wstate:ptr := weld.initstate();
X_5:bat[:oid] := weld.algebrathetaselect(X_2:bat[:int], C_4:bat[:oid], 15:int, "==":

str, wstate:ptr);
X_5:bat[:oid] := weld.run(wstate:ptr, X_2:bat[:int], C_4:bat[:oid], 15:int, "==":str);
X_6:bat[:oid] := algebra.likeselect(X_3:bat[:str], X_5:bat[:oid], "%BRASS":str, "":str

, false:bit);
wstate:ptr := weld.initstate();
X_7:bat[:int] := weld.algebraprojection(X_6:bat[:oid], X_2:bat[:int], wstate:ptr);
X_8:bat[:int] := weld.batcalc.add(X_7:bat[:int], 100:int, wstate:ptr);
X_8:bat[:int] := weld.run(wstate:ptr, X_6:bat[:oid], X_2:bat[:int], X_7:bat[:int],

100:int);

In the remainder of this section we will show the Weld translation of several MAL instructions that
belong to one of the canonical algebraic operators.

4.1.1 Select

There are two types of MAL Select instructions, algebra.select in which the data is fitted inside or outside
a range of values as dictated by the combination of li and hi parameter flags, and algebra.thetaselect
which selects the data values that satisfy a relation dataValue OP VAL. The implementation of these
operation is a simple for-loop statement , as shown in Listing 4.2, and we expect that Weld’s loop fusion
optimization pass will pick up these instructions and coalesce them into a single loop.

Listing 4.2: algebra.select and algebra.thetaselect MAL instructions and the Weld code
algebra.select(col:bat[:any_1], low:any_1, high:any_1, li:bit, hi:bit, anti:bit):bat[:

oid]
algebra.select(col:bat[:any_1], candid:bat[:oid], low:any_1, high:any_1, li:bit, hi:

bit, anti:bit):bat[:oid]

/* Example Weld code for algebra.select with a candidate list */
let v1 = result(

for(candid, appender[i64], |b, i, oid|
if (low < lookup(b, oid) && high >= lookup(b, oid),

merge(b, oid),
b

)
)

);

algebra.thetaselect(col:bat[:any_1], val:any_1, op:str):bat[:oid]
algebra.thetaselect(col:bat[:any_1], candid:bat[:oid], val:any_1, op:str):bat[:oid]
/* Example Weld code for algebra.thetaselect without a candidate list */
let v1 = result(

for(col, appender[i64], |b, i, n|
if (n == val,

merge(b, i),

18

b
)

)
);

4.1.2 Project

Project operations usually produce a column that is the result of applying an operation on several in-
put columns. Most projections are unary or binary operations and can take a column, two columns or
a column and a constant value as arguments. There are also more complex projections such as bat-
calc.ifthenelse which is the equivalent to the conditional ternary operator cond ? then : else. Besides
these operations, MAL also has an instruction called algebra.projection that, using a candidate list, ex-
tracts data values from a column. This is usually the last operation in a series of other instructions that
work on candidate lists. Again, we expect that the for-loops generated by projections to be successfully
picked up by the Weld optimizer. Two examples of project operations can be seen in Listing 4.3.

Listing 4.3: algebra.projection and algebra.+ MAL instructions and the Weld code
batcalc.+(colA:bat[:lng], colB:bat[:lng]):bat[:dbl]
/* Example Weld code for algebra.+ without a candidate list */
let v1 = result(

for(zip(colA, colB), appender[i64], |b, i, n|
merge(b, n.$0 + n.$1)

)
);

algebra.projection(candid:bat[:oid], col:bat[:any_1]):bat[:any_1]
/* Weld code for algebra.projection */
let v1 = result(

for(candid, appender[?], |b, i, oid|
merge(b, lookup(col, oid))

)
);

4.1.3 Aggregation

In MonetDB complex relational algebra operators are split into multiple simple instructions and the
Aggregation is one of those operations. MAL instructions can take a variable number of arguments and
also return a variable number of results, but as MonetDB aims to process columns in a tight for-loop,
such instructions have to be split into smaller instructions with a fixed number of parameters for which
there exists an optimized implementation in GDK. The Aggregation is split into two phases: MonetDB’s
approach is to first determine the unique groups in the input, assign a groupID to each row and then
compute the aggregates based on the groupIDs. For example, let’s look at the query SELECT SUM(d)
, SUM(e)FROM table GROUP BY a, b, c. The core generated MAL program is shown in listing 4.4
(the instructions’ signature will be explained below). The Aggregation operation can have N key and
M aggregation columns. The query has N = 3 grouping instructions and M = 2 aggregations. We
can observe that the groupIDs (groupIDsC and groupIDsCD) are "artificial" intermediate results, these
BATs are produced only to be used during the aggregations’ computation and are not part of the final
result.

Listing 4.4: MAL code generated for SELECT SUM(d), SUM(e)FROM table GROUP BY a, b, c

(groupIDsA, extentsA, histoA) = group.group(colA);

19

(groupIDsAB, extentsAB, histoAB) = group.subgroup(colB, groupIDsA);
(groupIDsABC, extentsABC, histoABC) = group.subgroup(colC, groupIDsAB);
colDSums = aggr.subsum(colD, groupIDsABC, extentsABC, true, true);
colESums = aggr.subsum(colE, groupIDsABC, extentsABC, true, true);

Ideally we would want Weld to transform the instructions from Listing 4.4 into a single for-loop which
has no intermediate results. In the Weld syntax it should look looks like for(zip(a, b, c, d, e), dict-
merger[?, ?, ?, ?, +] Unfortunately at the time of writing Weld does not have an optimizer which
can detect that the groupIDs produced by the group.*group instructions represent unique identifiers for
each group, and that grouping by the groupIDs would be equivalent to grouping by the data tuples. The
groupIDs are a functional dependency of the aggregation columns, each tuple from the input columns
is associated with exactly one groupID. In other words, Weld does not track functional dependencies.
The problem is best described in Figure 4.1 where we look at a more simple query: SELECT SUM(B)FROM
R GROUP BY A. In this aggregation we have two MAL instructions group.group which determines the

groupIDs based on column A and aggr.subsum which computes the aggregated sum of B by summing
each value in the bucket indicated by the groupID. By translating individual MAL instructions to Weld,
we need to reproduce the output of the MAL instructions in the Weld code. In the right side of the Figure
4.1 we have the equivalent Weld code for the two instructions, and there is no Weld optimizer that can
fuse the three for-loops.

SELECT SUM(B) FROM R GROUP BY A

A

1
2
1
3

B

4
5
6
7

R =

Determine groupIDs in A
A

1
2
1
3

groupIDsA

0
1
0
2

group.group(A)

Aggregate B based
on A’s groupIDs

aggr.subsum(B, groupIDsA)

SUM(B)

4 + 6 = 10
5
7

groupIDA

0
1
2

MAL

Determine groupIDs in A

let dict = result(for(A, dictmerger[?, ?, min], |b, i, n|)
 merge(b, {n, i})
));

let groupIDsA = result(for(A, appender[?], |b, i, n|
 merge(b, lookup(dict, n))
));

groupIDsA

0
1
0
2

Aggregate B based on A’s groupIDs

let aggr = a 0-initialized vector
let SUMB = result(for(zip(groupIDs, B), vecmerger[?, +](aggr), |b, i, n|
 merge(b, {n.$0, n.$1})
))

B

4
5
6
7

groupIDsA

0
1
0
2

aggr

4 + 6 5 7

0 1 2

SUMB

10
5
7

Weld

Figure 4.1: Two MAL instructions which are using during an Aggregation in MonetDB and their Weld
implementations. The generated Weld code cannot be optimized by the runtime.

In order to bypass this limitation of the optimizer, we attempt to implement the operation in a way that
slightly breaks the one-instruction-at-a-time MAL-Weld translation. We notice that each group.subgroup
MAL instruction builds on top of a previous grouping instruction: group.subgroup(col, oldGroupdIDs).
Therefore when generating the new set of groupIDs, instead of using the current column and the old-
GroupIDs, we can use the current column and all the other columns that have been used to generate
oldGroupIDs. The second and third grouping operations from the example above now become become
group.subgroup(colB, colA) and group.subgroup(colC, colB, colA). The advantage of this approach is
that we construct a single hash table and we reduce the number of intermediate materializations. Fur-
thermore, Weld is now able to tell that only the final groupIDs (groupIDsABC and extentsABC) are used
in the aggregation which means that the first two grouping operations are now redundant and can be
removed from the optimized program. A further optimization in this direction, which we did not im-
plement, would be to also keep track of the aggregation MAL instructions which use the result of the

20

grouping phase and manually generate the optimally fused code.

The groupIDs in our GroupBy Weld implementation are consecutive values ranging from 0 to the total
number of groups. In Weld it is not possible to access an incomplete data structure, which means that
while building the groupIDs dictionary, we cannot probe it to check whether the key already exists or
whether we have encountered a new key for which we need to generate a new unique groupID. As a
consequence, we first generate a set of unique group identifiers using a dictmereger and the min operator
to create a mapping between a key (a group) and a groupID (the smallest row number at which we
encounter this key). We then use the row indexes to create a new set of groupIDs that are consecutive
and start from 0. The final step is then to produce the three result columns containing the groupID
for each row, indexes for data representatives (an index in the input columns to show what the value
looks like) and counts for each group. The aggregation operations use the groupIDs to determine the
aggregation bucket. Because the groupIDs are 0 indexed consecutive values we can now use Weld’s
vecmerger instead of the hash map backed dictmeger.

The Aggregation MAL instructions and the complete generated Weld code for them can be seen in
Listing 4.5.

Aggregations not optimized by Weld

The GroupBy MAL instructions explicitly create a functional dependency towards the groupIDs column.
Weld is currently lacking an optimizer that detects the fact that an aggregation by a column which is a
functional dependency could be rewritten into an aggregation by the original columns. This optimization
pass in combination with the horizontal loop-fusing one could rewrite the aggregation operation using a
single for-loop and a single dictionary.

Listing 4.5: group.group, group.subgroup and aggr.subsum MAL instructions and the Weld code
group.group(col:bat[:any_1]) (groups:bat[:oid], extents:bat[:oid], histo:bat[:lng])
group.subgroup(col:bat[:any_1], g:bat[:oid]) (groups:bat[:oid], extents:bat[:oid],

histo:bat[:lng])

/* Example Weld code for group.subgroup with three columns */
/* Dictionary key -> min row index
let idxMap = result(

for(zip(colA, colB, colC), dictmerger[{?, ?, ?}, i64, min], |b, i, n|
merge(b, {n, i})

)
);
let idxVec = tovec(idxMap);
/* Dictionary key -> groupID
let groupIDMap = result(

for(idxVec, dictmerger[{?, ?, ?}, i64, min], |b, i, n|
merge(b, {n.$0, i})

)
);
/* Vector to be used with vecmerger */
let zeros = result(

for(rangeiter(0L, len(idxVec), 1L), appender[i64], |b, i, n|
merge(b, 0L)

)
);
let groups = result(

for(zip(colA, colB, colC), appender[i64], |b, i, n|
let groupID = lookup(groupIDMap, n);
merge(b, groupID)

21

)
);
/* We compute the counts in a separate loop because the counts are actually rarely
* used, so Weld will remove this computation */
let histo = result(

for(zip(colA, colB, colC), vecmerger[i64, +](zeros), |b, i, n|
let groupID = lookup(groupIDMap, n);
merge(b, {groupID, 1L})

)
);
let extents = result(

for(idxVec, vecmerger[i64, +](empty), |b, i, n|
merge(b, {i, lookup(idxMap, n.$0)})

)
);

aggr.subsum(col:bat[:lng], groups:bat[:oid], extents:bat[:any_1], skip_nils:bit,
abort_on_error:bit):bat[:lng]

aggr.subsum(col:bat[:lng], groups:bat[:oid], extents:bat[:any_1], candid:bat[oid],
skip_nils:bit, abort_on_error:bit):bat[:lng]

/* Example Weld code for aggr.subsum without candidate list */
let zeros = result(

for(rangeiter(0L, len(col), 1L), appender[?], |b, i, n|
merge(b, 0?)

)
);
let v1 = result(

for(zip(groups, col), vecmerger[?, +](zeros), |b, i, n|
merge(b, {n.$0, n.$1})

)
);

4.1.4 Join

The join MAL instruction in Listing 4.6 takes as parameters two column, two optional candidate lists and
two other optional arguments and returns two columns X_0 and X_1 which contain the join matches. The
hash join algorithm can be implemented in Weld using the groupmerger builder, which is a dictionary
that holds of list of values for any given key, or the more lightweight dictmerger if we know that one of
the columns only contains unique values. Unfortunately during the implementation we ran into a Weld
bug 1 which forced us to delegate the join operation to the default implementation in GKD.

Listing 4.6: MAL join instruction
algebra.join(left:bat[:any_1], right:bat[:any_1], leftcand:bat[:oid], rightcand:bat[:

oid], nil_matches:bit, estimate:lng) (X_0:bat[:oid], X_1:bat[:oid])

4.1.5 Summary

In this section we presented the one-instruction-at-a-time translation from MAL to Weld. In order to beat
MonetDB’s performance we rely on the Weld optimization passes to perform loop fusion and eliminate

1https://github.com/weld-project/weld/issues/363

22

as much intermediate materialization as possible. We have seen how the Selection and Projection oper-
ators can be successfully picked up the Weld’s optimizers, while the Aggregations can only be partially
improved and the Joins cannot yet be implemented.

4.2 REL-Weld

The second approach to adding just-in-time compilation in MonetDB is to construct a Weld program
based on the relational algebra, using the produce-consume model described by Neumann in [12]. The
idea behind this technique is to identify pipelines (chains of operators that do not materialize the result)
and push tuples through them. In this way a tuple can remain in the CPU registers while several operators
are applied on it, which leads to an optimal execution plan.

Weld’s IR is quite expressive and allows us to generate code that is both efficient and easy to read and
understand. The query in Figure 2.2 is the one used by Neumann in [12]. Similar to the referenced paper,
we show its representation in the relational algebra in Figure 4.2, but adapted to MonetDB’s translation.
The Figure shows how the plan is also split into 4 pipeline. The pipeline breakers in our example are the
Group By operation and the two materializations from the Joins.

πa, x, b, c, z, L3

⋈c = z

⋈a = b

σx = 7

R1

R3

πz, L3

Γz; count(*)

σy = 3

R2

πa, x, b, c, z, L3

⋈c = z

⋈a = b

σx = 7

R1

R3

πz, L3

Γz; count(*)

σy = 3

R2

Original With pipeline boundaries

Figure 4.2: Query plan for Figure 2.2

Listing 4.7 shows the generated Weld code for the query in Figure 2.2. The program contains 6 for-loops;
the first loop constructs the Group By hash table, the next two materialize the tuples in the Joins’ hash
tables while the last 3 loops iterate over the R1 column and probe the join hash tables.

In MonetDB, expressions (the sql_exp structure) are at the core of the relational algebraic operators
and encode the information needed to process the operator. As expressions are the base type for all
algebraic operators, they do not necessarily operate on columns, but on literals as well. In order to
handle operations involving complex literals without rewriting the code already available in GDK, we

23

Table 4.1: The produce-consume implementation of the most common algebraic operators

Scan produce start the for-loop: for(zip(...

Select
produce call input.produce
consume add the filters: if(condition, ...,

Project
produce

if sort:
new_builder = {appender[?], ...}

call input.produce

consume

if need sorting:
materialize arrays: {merge(vec1, x), merge(vec2, y), ...
sort the arrays: sort(vecs, fn)
start a new for-loop: for(zip(...

apply projection operations or rename: let x = y + z;

Group By
produce

new_builder = dictmerger[...,, op]
call input.produce

consume
materialize: merge(key, value)
start a new for-loop: for(tovec(dict), ...

Join
produce

new_builder = groupmerger[..., ...]
call right.produce

consume right
materialize hashtable: merge(key, value)
call left.produce

consume left start a new for-loop: for(lookup(hashtable, key), ...

offload the handling of the column-less expressions to MonetDB and pass the result as a parameter to our
Weld program, for example, a date will be translated into an integer by MonetDB. An expression in the
relational algebra provides us with data types and column names. In our Weld translation we make use
of the types to generate builders typed correctly and we name the variables using a pattern known by all
operators such that a block of Weld code generated by multiple translation nodes remains semantically
correct. For example, we see how in Listing 4.7 the Scan operator generates a for-loop and then a Select
operator can apply a filtering predicate on the variables created by the scan.

In MonetDB string columns are backed by two arrays, one containing the actual strings and the other
indexes in the strings array. If there are any string columns in the output column set, we need our Weld
program to also return pointers to both arrays in order to reconstruct a BAT. Therefore extra care is
needed to rename and reference the string columns in the Weld program correctly.

The algorithm that builds the Weld program works on the relational algebra tree. It starts at the root node,
it visits every node in the tree and then it traces back to the root operator. A node will usually generate
code or initialize state in the produce phase, will call child.produce, and when the function call ends,
the consume phase begins and more Weld statements are produced. The code is appended to a shared
buffer and every operator expects that the ancestors and the descendant nodes will leave the program in
a coherent state. In the following subsections we will discuss the implementation of the main relational
algebra operators and show which parts they contributed with to the final Weld code in listing 4.7.

Listing 4.7: Generated Weld for query 2.2
1 let v0 = (
2 let v1 = result(
3 let v2 = result(
4 for(zip(r2y, r2z), dictmerger[i32, i64, +], |b1, i_1, n1|
5 let r2_y = n1.$0;
6 let r2_z = n1.$1;
7 if((r2_y == 3) == false,
8 b1,

24

9 merge(b1, {r2_z, 1L})
10)
11)
12);
13 for(tovec(v2), groupmerger[i32, {i32, i64}], |b1, i_1, n1|
14 let r2_z = n1.$0;
15 let L3_L3 = n1.$1;
16 let r2_L3 = L3_L3;
17 merge(b1, {r2_z, {r2_z, r2_L3}})
18)
19);
20 let v3 = result(
21 for(zip(R3b, R3c), groupmerger[i32, {i32, i32}], |b1, i_1, n1|
22 let r3_b = n1.$0;
23 let r3_c = n1.$1;
24 merge(b1, {r3_b, {r3_b, r3_c}})
25)
26);
27 for(zip(R1a, R1x), {appender[i32], appender[i32], appender[i32], appender[i32],

appender[i32], appender[i64]}, |b1, i_1, n1|
28 let r1_a = n1.$0;
29 let r1_x = n1.$1;
30 if((r1_x == 7) == false,
31 b1,
32 for(lookup(v3, r1_a), b1, |b2, i_2, n2|
33 let r3_b = n2.$0;
34 let r3_c = n2.$1;
35 for(lookup(v1, r3_c), b2, |b3, i_3, n3|
36 let r2_z = n3.$0;
37 let r2_L3 = n3.$1;
38 {merge(b3.$0, r1_a), merge(b3.$1, r1_x), merge(b3.$2, r3_b), merge(

b3.$3, r3_c),
39 merge(b3.$4, r2_z), merge(b3.$5, r2_L3)}
40)
41)
42)
43)
44);
45 {result(v0.$0), result(v0.$1), result(v0.$2), result(v0.$3), result(v0.$4), result(v0.

$5)}

4.2.1 Scan

The Scan, or Table, as named in the MonetDB algebra, operator is not a canonical algebraic operator,
but is nonetheless part of the relational algebra produced by MonetDB. It can only be a leaf in the query
plan, and every leaf of the plan must be a scan. Scans used to generate MAL instructions for reading
BATs into memory. In our Weld translation we keep the BAT-reading MAL instructions as they are,
and use their result as input to our Weld translation of the Scan, where we generate a for-loop to iterate
over the data fetched with GDK. This for-loop uses a builder received from an ancestor node and also
creates loop variables which are named by a pattern known to all the nodes such that these variables can
be directly referenced. As the for-loop statement is produced, control is returned to the parent, which
continues to build its own statements. Lines 4-6, 21-23 and 27-29 from Listing 4.7 are produced by the
Scan operator.

25

4.2.2 Select

In relational algebra the Select operator filters the incoming tuples based on a series of predicates. At this
step it is decided which tuples are pushed forward in the pipeline. The output consists of an if statement
with several chained conditions. The Weld syntax for the if statement is if(cond, then, else) and the
else block usually only contains the unmodified builder. Therefore in order to allow other operators to
continue to build the program, we reverse the condition so that the then block is at the end, and the rest
of the program can be appended to the share buffer: if(cond == false, unmodifiedBuilder, Lines 7 and
30 from Listing 4.7 are produced by Select.

4.2.3 Project

The Project operator is used to apply an operation on a column or to rename it in the consume phase.
Weld supports basic arithmetic operations which are enough for the most common queries. Other more
complex operations can be applied through UDFs, which have to be declared beforehand in our imple-
mentation. Line 16 from Listing 4.7 is produced by Select.

In MonetDB Project can also function as an Order By operator. So while usually the Project operation
is not a pipeline breaker, if the Order By functionality is activated then the data has to be materialized,
sorted and the pipeline is resumed by generating a new for-loop over the sorted columns. The Order By
operation is performed in the root node of the relational algebra, therefore materializing at this point does
not incur any overhead as it is also the final step in the pipeline.

4.2.4 Aggregation

Aggregation (Group By) is a pipeline breaking operation which requires the materialization of input
tuples in order to produce its output. The operation involves aggregating a set of columns while grouping
by a key determined by another set of columns. Fortunately, Weld provides us with the dictmerger builder
which can handle grouping and the aggregations at the same time. The first step in the operator’s produce
phase is to generate a new builder which is passed to the child operator. Then, the consume phase means
actually aggregating the tuples in the dictionary (merge(dict, key, value)) and then resuming the pipeline
by using the old builder to emit a new for-loop over the finalized dictionary. The dictmerger generated
in the produce phase can be seen on line 4 in Listing 4.7, while the consume phase generated lines
9-15.

4.2.5 Join

This subsection covers the Join, Semijoin and Antijoin operations as their implementations are almost
identical. The join algorithm that we implemented in Weld is the hash join and it is backed by Weld’s
groupmerger builder. The algorithm consists of building a dictionary on the right hand side relation and
then using the left one to probe the dictionary and emit new tuples when there is a match.

In the produce phase we generate a groupmerger builder where the key is the join attribute and the value
is a list of matches that belong to the same group. Lines 13 and 21 show such a builder. The builder is
passed to the right.produce function and is used to begin a new pipeline that ends with the materialization
of the tuples in the hash table. In the consume phase associated with the right relation we add the tuples
in the dictionary and we materialize it, as seen on lines 17 and 24. After we call the produce function on
the left operator, the second consume phase begins and we probe the hash table using tuples from the left
relation. The code produced will result in a nested for-loop over the matches in the dictionary, as shown
on lines 32-37. Semijoin and Anti join work in a similar way, except that the former can produce 0 or

26

1 matches and the latter will emit tuples when there are actually no matches. To speedup the execution
of Semijoins and Anti joins we use a dictmerger instead of a groupmerger as we are not interested in the
match itself, but in whether there is one or not.

In practice we observed that the performance of the groupmerger builder is far worse than that of the
dictmerger. A difference in performance is expected as the dictmerger dictionary holds a single value
for a given key whereas groupmerger maintains a list of values associated to a key. Therefore, if we
know that during a join operation one of the join key columns contains unique values we might swap
the left and the right join side and always build the hashtable on that column. This process will thereby
transform the Left-deep join into a Bushy join and introduce more materialization. Figure 4.3 shows
the difference between the Left-deep Join that would result from the pipeline model and the Bushy
Join in which the result of a Join is materialized into a hashtable. In the TPC-H benchmark, on which
we test our implementation, the foreign key constraints are part of the specification, which makes this
optimization an important aspect of our Weld translation. In this new join process we also need to
separately materialize the other columns from the side on which the hash table is built on, which can
result in slightly improved memory utilization as consecutive values of the same type can be packed
more densely in memory. Using the dictmerger builder for the joins in Query 3 from TPC-H resulted in
a speedup of over 100.

Probe Build hashtable

⨝

⨝

A B

C

Left-deep join

⨝

C

A B

⨝

Bushy join

Figure 4.3: Left-deep join vs Bushy join

4.2.6 TopN

The TopN operator limits the number of rows that are returned by the query. If present, it is always at the
root of the tree where we can just return a slice of the resulting vectors.

4.2.7 Summary

In this section we presented our implementation of the produce-consume query evaluation model us-
ing Weld. Weld’s IR is very expressive and has allowed us to easily implement the query evaluation
logic.

27

Chapter 5

Evaluation

In this chapter we evaluate the two implementations of our Weld integration into MonetDB: relational
algebra to Weld (REL-Weld) and MAL to Weld (MAL-Weld). We will compare the performance of the
two approaches against MonetDB and show where Weld can outperform MonetDB and where Weld lags
behind. We ran our experiments on a Intel Xeon E5-2650 CPU with 256 GB RAM, 32 cores running at
2.8 GHz and a shared L3 cache of 20MB. We used MonetDB 11.29 and Weld 0.2.

To showcase the performance of the Weld translation we use the TPC-H benchmark. TPC-H contains
a set of 22 ad-hoc SQL queries that are considered to be a good workload representation of a business
oriented application. We ran the queries on different scale factors between 1 and 100, where a scale
factor of 1 corresponds to a overall database size of 1GB. Our Weld translations does not yet work for
all the 22 queries, and at the time of writing Weld does not support sorting by composite keys (structs)
and as a consequence we removed the ORDER BY clause from all the queries. We ran each query three
times and we recorded the best (smallest) run time.

40000

60000

80000

100000

1 3 4 5 6 8 9 10 12
TPC-H Query no.

0

5000

10000

15000

20000

25000

Ru
n

tim
e

(m
s)

MonetDB MAL-Weld REL-Weld Vectorwise

Figure 5.1: MonetDB vs MAL-Weld vs REL-Weld vs Vectorwise on SF-100 and 32 threads.

Figure 5.1 shows the runtime of 10 of the 22 TPC-H queries. We compare the execution times recorded
from MonetDB, MAL-Weld, REL-Weld and Vectorwise. Vectorwise held the TPC-H benchmarking
record [19] and acts here as a reference for our Weld integrations. We can observe that for most of the

28

queries the Weld translations are slower than MonetDB. Query 6 is an exception where both MAL-Weld
and REL-Weld beat MonetDB and Vectorwise. In the following sections we focus on evaluating two
queries that exhibit the best speedup (Query 1 and Query 6) and two other queries with no or small
performance gains (Query 3 and Query 4).

5.1 MonetDB + Weld vs MonetDB

The main goal of our work is to improve MonetDB’s response time for a given query which means
that the most important metric of our benchmarks is the run time. To compare the performance of
our implementations against MonetDB we plot the speedup in Figure 5.2, which is determined by the
formula: speedup = TMonetDB

TWeld
. The Figure consists of 16 plots arranged in a gird where the row represents

the query and the column the scale factor. The plots show the speedup of the the MAL-Weld and the
REL-Weld translation, and a horizontal line (y = 1) showing MonetDB’s reference performance. The
run time recorded for the Weld versions do not include the compilation time.

TPC-H Query 1

In Query 1 The REL-Weld translation shows an impressive performance gain with the speedup ranging
between 4 and 10. In this query we are able to generate a Weld program that optimally groups and
aggregates the data in a single for-loop. The best relative performance is achieved on larger inputs,
where the materialization cost in MonetDB is higher and the REL-Weld implementation can gain ground
through its pipelined execution model.

In MonetDB, however, grouping and the aggregations are done in two phases. The MAL-Weld trans-
lation therefore also generates code that is separated into these two phases: determining the groupIds
and then aggregating the other columns based on the groupId which was assigned to each tuple. In the
second phase we generate a hash grouping for each aggregate, which Weld is unable to fuse into a single
one. For Query 1, the MAL-Weld translation performs roughly the same operations on the data and also
suffers from the same amount of intermediate materialization as MonetDB due to the lack of loop fusion
(as also shown in Table 5.1). However, it is expected that given the same execution plan Weld’s generic
data structures perform worse than MonetDB’s highly optimized ones.

TPC-H Query 3

Query 3 contains two inner joins and in both of the joins one of the columns is a foreign key to the
other. This means that in REL-Weld a dictmerger can be used to build the hash table on the column
with unique values. For this query in particular it happens that by building the hash table on unique
column we break the operator pipeline identified by the produce-consume model and we introduce an
additional intermediate materialization. However, this materialization choice resulted in an improved
run time by a factor of 100 over the pipelined execution as we were able to use the faster and more
lightweight dictionary. In this case Weld appears to scale better than MonetDB and REL-Weld shows a
small improvement over MonetDB when running on multiple threads.

MAL-Weld yields a degraded performance for the same reasons as with Query 1 and the fact that the two
joins are now performed by MonetDB sequentially.

29

1 2 8 16 32
No. threads

0.0

2.0

4.0

6.0

8.0

10.0

Sp
ee

du
p

1 2 8 16 32
No. threads

0.0

2.0

4.0

6.0

8.0

10.0
Sp

ee
du

p

1 2 8 16 32
No. threads

0.0

2.0

4.0

6.0

8.0

10.0

Sp
ee

du
p

1 2 8 16 32
No. threads

0.0

2.0

4.0

6.0

8.0

10.0

Sp
ee

du
p

1 2 8 16 32
No. threads

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sp
ee

du
p

1 2 8 16 32
No. threads

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sp
ee

du
p

1 2 8 16 32
No. threads

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Sp

ee
du

p

1 2 8 16 32
No. threads

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sp
ee

du
p

1 2 8 16 32
No. threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

1 2 8 16 32
No. threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

1 2 8 16 32
No. threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

1 2 8 16 32
No. threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Sp

ee
du

p

1 2 8 16 32
No. threads

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Sp
ee

du
p

1 2 8 16 32
No. threads

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Sp
ee

du
p

1 2 8 16 32
No. threads

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Sp
ee

du
p

1 2 8 16 32
No. threads

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Sp
ee

du
p

Qu
er

y
 1

Qu
er

y
 3

Qu
er

y
 4

Qu
er

y
 6

SF-1 SF-10 SF-30 SF-100

MAL-Weld REL-Weld MonetDB

Figure 5.2: Speedup of the REL-Weld and MAL-Weld implementations over MonetDB. More means
better.

30

TPC-H Query 4

The main operations in Query 4 are a semi-join and an aggregation. In REL-Weld the semi-join is
implemented using the better dictionary (dictmerger) and the generated Weld code perfectly captures the
data flow imposed by the produce-consume model. It is therefore disappointing to see that REL-Weld’s
performance is at best 5 times worse than MonetDB’s.

MAL-Weld shows a small speedup over MonetDB when running on a single thread, but the performance
degrades abruptly when increasing the level of parallelism. We attribute this behavior to the fact that the
semi-join is still performed by MonetDB, and while we can enable parallelism for the rest of the Weld
program, we cannot do so for a single MAL instruction. Therefore, in MAL-Weld the join operation will
always execute sequentially while in MonetDB it will be parallelized.

TPC-H Query 6

Both of our solutions perform better than MonetDB. Query 6 consists of a Selection followed by an Ag-
gregation of the whole filtered data, without grouping. The Weld code generated by the two approaches
is almost identical, the only difference lies in how data is traversed. In MAL-Weld we iterate over one
of the columns and then use the iteration index i to lookup values in the other columns, whereas in REL-
Weld we iterate over the columns at the same time using the zip function. The if statements used for
filtering, which make up the rest of the program, are applied in the same order. It is therefore surprising
that MAL-Weld is about 20% faster than REL-Weld.

In Table 5.1 we show how for Query 6 REL-Weld generates about 2 times as many instruction references
and 4 times data references as MAL-Weld. In a small experiment we replaced the 5 variables from the two
Weld programs (the variables used to filter the data in Query 6) with literals and both programs generated
about 50 mil IR and around 7.5 mil DR - which is what MAL-Weld generates by default. This shows that
in the REL-Weld translation the 5 variables are needlessly reread multiple times and that a small change
in the Weld program caused the LLVM compiler to miss an optimization opportunity.

5.2 Multicore performance

Figure 5.3 shows the speedup gained by the three programs when we increase the number of threads.
The speedup is determined by the formula speedup = T1

Tp
, where the reference value T1 is the evaluation

time for the query running with only one thread, and Tp is the evaluation time for the query running on p
threads. T1 and Tp are computed on the same program flavor for each curve in the plot. This experiment
is an indicator of how the system scales on a machine with multiple execution units.

The one clear observation is that, the performance of Query 4 degrades when increasing the scale factor,
while for Query 1, 3 and 6 REL-Weld and respectively both REL-Weld and MAL-Weld beat MonetDB.
The best speedup is achieved for Query 1 and 6 which are more computationally intensive as the aggre-
gations make up for most of the tasks.

5.3 Performance issues

As we saw in the previous chapter, there is a huge discrepancy between the performance gains in Query
1 and 6 and the slowdown in Query 3 and 4. In order to investigate the underlying issue we take a look
at one of Weld’s core data structures: the dictionary. The dictmerger builder is Weld’s implementation
of a hash map which we use to handle the Aggregation operator. To compare it against MonetDB, we

31

1 2 8 16 32
No. threads

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

Sp
ee

du
p

1 2 8 16 32
No. threads

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

Sp
ee

du
p

1 2 8 16 32
No. threads

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

Sp
ee

du
p

1 2 8 16 32
No. threads

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

Sp
ee

du
p

1 2 8 16 32
No. threads

1.0

2.0

3.0

4.0

5.0

Sp
ee

du
p

1 2 8 16 32
No. threads

1.0

2.0

3.0

4.0

5.0

Sp
ee

du
p

1 2 8 16 32
No. threads

1.0

2.0

3.0

4.0

5.0

Sp
ee

du
p

1 2 8 16 32
No. threads

1.0

2.0

3.0

4.0

5.0

Sp
ee

du
p

1 2 8 16 32
No. threads

0.0

2.0

4.0

6.0

8.0

Sp
ee

du
p

1 2 8 16 32
No. threads

0.0

2.0

4.0

6.0

8.0

Sp
ee

du
p

1 2 8 16 32
No. threads

0.0

2.0

4.0

6.0

8.0

Sp
ee

du
p

1 2 8 16 32
No. threads

0.0

2.0

4.0

6.0

8.0

Sp
ee

du
p

1 2 8 16 32
No. threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sp
ee

du
p

1 2 8 16 32
No. threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sp
ee

du
p

1 2 8 16 32
No. threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sp
ee

du
p

1 2 8 16 32
No. threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sp
ee

du
p

Qu
er

y
 1

Qu
er

y
 3

Qu
er

y
 4

Qu
er

y
 6

SF-1 SF-10 SF-30 SF-100

MAL-Weld REL-Weld MonetDB

Figure 5.3: Multicore speedup of REL-Weld, MAL-Weld and MonetDB. More means better.

32

issue a simple query that counts the number of unique keys in column: SELECT x, COUNT(x)FROM table
GROUP BY x. We varied the number of uniformly distributed unique keys from 1 to 10 million and we

plot the results in figure 5.4. In this experiment we also include the vecmerger builder which acts as a
dictionary with a fixed and known number of keys. We use the vecmerger for the aggregations in the
MAL-Weld translation as the groupings, and implicitly the total number of groups, have been previously
determined.

We can observe that for a small number of keys Weld’s dictionary scales well and running under 32
threads the performance is equal to MonetDB’s. This is exactly the case of Query 1 and 6, regardless of
scale factor there are always 4 and respectively 1 groupings. On the other hand, for Query 3 and 4 we
have more expensive Join operations which require the creation of dictionaries with multiple keys. As
Figure 5.4 shows, when dealing with 10 million keys Weld’s dictionaries can be almost up to 8 times
slower than MonetDB’s.

101 103 105 107

No. groups

0

500

1000

1500

2000

2500

3000

3500

Ru
nt

im
e

(m
s)

1 Threads

101 103 105 107

No. groups

0

500

1000

1500

2000

2500

3000

3500

Ru
nt

im
e

(m
s)

2 Threads

101 103 105 107

No. groups

0

500

1000

1500

2000

2500

3000

3500

Ru
nt

im
e

(m
s)

16 Threads

101 103 105 107

No. groups

0

500

1000

1500

2000

2500

3000

3500

Ru
nt

im
e

(m
s)

32 Threads

Dictmerger Vecmerger MonetDB

Figure 5.4: GROUP BY performance comparison between Weld and MonetDB.

The Weld dictionary is implemented in C++ and has multi-threading support. Each thread has a thread
local dictionary and a local buffer to which entries, that no longer fit in the local dictionary, are appended.
By default, the local dictionaries can hold up to 100 MB of data and the local buffers are drained to a
global dictionary every 128 items.

Part of the differences in performance can be attributed to the fact that in Weld the dictionary is backed
by a linear hashtable whereas MonetDB uses a bucket chained hashtable. Moreover, the Weld dictionary
is generic, it maps bytes to bytes. Given the fact that Weld specializes in JIT compilation, a dictionary
that takes advantage of the data type could be generated. For every key-value pair that is inserted into
the dictionary there are two expensive calls to pthread_getspecific just to get the threadID and then
there is a backward call to LLVM to actually perform a merging operation on the key. This shows that
the dictionary does not integrate well with the rest of the generated LLVM code and that a significant
overhead is generated through potentially avoidable function calls.

Weld allows users to pass hints to builders through annotations. In the case of the dictmerger we can
specify the initial capacity of the hashtables. This is useful, for example, when constructing the hashtable
used for probing in a join operation, when the materialized column has unique values, and we thus know
the total number of keys. In Figure 5.5 we plot the runtimes of the same query as in the previous
experiment: SELECT x, COUNT(x)FROM table GROUP BY x while we vary the initial dictionary capacity.
In this experiment we used 32 threads and the data consisted of 1 million uniformly distributed keys,
which can fit in a thread local dictionary. The vertical lines show the default initial dictionary size
and the final size of the global dictionary. When setting the initial size to the final dictionary size we
actually observe a considerable slowdown. This happens because of the way Weld splits the work among
threads, for our data distribution a thread will not encounter all the keys and will thus have a smaller
local dictionary. The size hint affects both the local and the global dictionaries and therefore it causes the
local dictionaries to be unnecessarily large in our experiment, which leads to a slowdown in execution

33

time. We did not observe any runtime improvements for any of the possible initial sizes and we therefore
conclude that resizing the hashtable does not add significant overhead to the Weld dictionary.

22 25 28 211 214 217 220 223

Initial capacity (bytes)

1000

1500

2000

2500

3000

3500
Ru

nt
im

e
(m

s)

De
fa

ul
t i

ni
tia

l s
ize

Fi
na

l d
ict

io
na

ry
 si

ze

Runtime variations with the inital dictionary capacity

Figure 5.5: GROUP BY runtime variation with the initial dictionary capacity.

5.4 Code quality and maintainability

In order to better understand the performance differences between our Weld integrations and MonetDB
it useful to look at the executed code in more detail. We profiled the execution of the three versions of
MonetDB with callgrind and we limited the data collection through callgrind’s client requests API to
only include the actual query execution. In table 5.1 we recorded the number of executed instructions (Ir),
memory reads (Dr), level 1 cache misses (D1mr), last level cache misses (DLmr), number of branches
executed (Bc) and the number of missed branch predictions (Bcm). We ran the experiment with one
thread on scale factor 1.

We can see that MAL-Weld recorded worse stats than MonetDB for Query 1 and 3: there are a higher
number of executed instructions and more memory references, but performs better than MonetDB for
Query 4 and 6, where for the latter there are by a factor of 10 fewer memory accesses. For the REL-Weld
translation we observe the same pattern as in the previous experiments: good results for Query 1 and
6 but otherwise poor performance for Query 3 and 4. Although in theory the produce-consume model
should produce a data flow where tuples kept in the CPU cache as long as possible, we can see from the
Query 4’s recorded stats that this is not the case for Weld’s data structures. The main drive behind the
Weld translation was to reduce the intermediate materialization and improve the memory bandwidth, but
we have instead increased the memory references by up to 5 times.

5.4.1 Compilation time

JIT compilation comes with the cost of the code compilation on the fly. Although JIT compilation
can produce a more optimized code, the incurred overhead can actually nullify the benefits. We have
recorded the compilation times for the four queries in table 5.2, and as we can see, they are in the order
of hundreds of milliseconds. To put the compilation time into perspective, MonetDB can execute each

34

Table 5.1: Number of instructions, data references, cache locality and branching

Ir (mil) Dr (mil) D1mr (mil) DLmr (mil) Bc (mil) Bcm (mil)

Q1
MonetDB 6,000 1,379 27 27 1,227 7.63
MAL-Weld 6,991 2,097 27 26 645 6.05
REL-Weld 2,125 752 3.59 3.57 136 0.11

Q3
MonetDB 440 157 5.24 2.68 77 1.94
MAL-Weld 795 280 9.77 6.37 91 3.39
REL-Weld 715 248 6.58 3.57 76 5.34

Q4
MonetDB 325 114 2.65 2.04 69 3.01
MAL-Weld 275 93 2.67 1.66 44 3.30
REL-Weld 1,391 453 5.01 3.18 145 9.52

Q6
MonetDB 190 86 1.25 1.16 32 1.59
MAL-Weld 50 7.42 0.96 0.94 18 2.09
REL-Weld 114 36 1.99 1.97 15 3.09

Table 5.2: Weld code compilation time

Q1 (ms) Q3 (ms) Q4 (ms) Q6 (ms)
MAL-Weld 977 810 405 127
REL-Weld 240 327 227 109

of the four queries on scale factor 3 and 32 threads faster than Weld can compile the code for them. Of
course, for long running queries the compilation time becomes negligible and the JITing technique can
be successfully applied.

To restore the responsiveness of the databases for short running queries a query cache can be imple-
mented. The Weld programs that we are generating are parametrized, the code reflects the data flow and
the input columns and the literals are passed as runtime arguments to the program. Therefore we have
implemented a simple query cache where a Weld program is linked to a Weld module (the compiled and
dynamically linked library) which is available to be rerun.

5.4.2 Maintainability

A MAL program in MonetDB has a distinctive data flow that results from the proposed BAT algebraic
operators. The MAL-Weld translation has the advantage that the Weld integration can operate seamlessly
within the already existing pipeline. By allowing the execution of both Weld implemented operators and
GDK backed ones we can choose the best from two worlds and combine them efficiently. For example,
to handle joins in MAL-Weld we rely on GDK join functions which we can call through and UDF in
Weld, or we can generate two Weld programs that are connected by a join MAL instruction. As each
MAL instruction usually performs a simple operation on several columns, the equivalent Weld code is
also quite simple and concise. In our implementation, we have the Weld code fragment corresponding
to the translated operation in a single string with variable names placeholders which we replace with
sprintf. In other words, the Weld IR pieces are both easy to write and understand. The downside is that
in GDK there is an extensive number of implementations for an also large number of BAT algebraic
operators. A MAL instruction can have several variations where the number of arguments can vary, the
instruction might or might not operate on a candidate list, and the candidate list might or might not be
dense. Therefore achieving full compatibility through the MAL-Weld translation is not trivial.

In the REL-Weld translation we implemented the produce-consume model where each algebraic operator
can generate a part of the pipeline in both of its produce and consume phases. An unfortunate early

35

design choice was to actually emit pieces of Weld code at each step and append them to a buffer shared
between the operators. The consequence of this approach is that it is almost impossible for a new reader
to understand what code is generated by an operator. Furthermore, developing the translation was quite
error prone as the Weld fragments were scattered throughout the code, for example a pair of matching
parentheses might be separated by a hundred lines of C code. On the other hand, as the data flow
is dictated by the relational algebra, the generated Weld code in its final form is surprisingly easy to
understand and to have its correctness verified. The Weld translation itself is also concise as we only
had to deal with a small number of algebraic operators, and even though there might be several physical
operator implementations to choose from, the number of variations still falls short of the large number
of MAL instructions.

Overall, we believe that the REL-Weld translation is easier to maintain and develop. An alternative to
producing bits of Weld code on the fly would be to construct an intermediate representation of the Weld
program, which at end could be transformed into the string form of the program which is expected by
the current Weld API.

36

Chapter 6

Related Work

The tuple-at-a-time Volcano [8] iterator model was popular during the time when the query execution
performance was bounded by the IO capabilities of the system. However, as hardware evolved and the
data access time was reduced, the interpretation overhead became non-negligible. Padmanabhan et al.
propose in [13] a block oriented processing model for row-based databases, where blocks of tuples are
passed from one operator to another. In his way, modern CPU features such as pipelining, prefetching
and larger memories are better utilized.

Building on the idea of processing data tuples in blocks, a new query engine called X100 [6] (which
later spun off into a new project called VectorWise) was developed for MonetDB. X100 combines the
columnar data layout of MonetDB with the incremental materialization of the Volcano style pipeline.
X100’s performance derives from moving small chunks of columns (vectors) through the relational op-
erator tree while the vector size is chosen such that the data slices fit into the CPU cache. X100 benefits
from low interpretation overhead by maintaining the vector in the fast CPU cache and performing several
different operations over a data subset. To improve the data processing time even further and to close
the gap between the newly obtained data processing bandwidth and the I/O bandwidth, a new storage
layer named ColumnBM [20] was developed for X100. ColumnBM relies on light compression and
cooperative scanning to speedup the data scanning process.

An execution model based on query interpretation will always incur overhead. Some execution engines,
such as MonetDB’s for example, also suffer from unnecessary data materialization during the interpre-
tation process. Just-in-time (JIT) compilation emerges as a possible solution for the two problems. The
idea behind JIT execution is to generate and compile code on the fly for incoming queries. This is based
on the assumption that a compiled program will always be faster/more efficient than its interpreted ver-
sion. The code generation and the compilation does incur its own overhead, but in the case of DBMSs
this cost can be amortized by the large scale of the data which the query will be executed on.

System R [7] was an early implementation of a relational database created with the purpose of demon-
strating that such a system is feasible in a production environment. In System R a SQL query is decom-
posed into small machine language code fragments (assembly snippets) that are then put together and
compiled into a single executable program. The authors observed an improved execution time for short
and repetitive transactional queries, but also acknowledged that for ad-hoc it is less trivial to compensate
for the compilation time.

Sompolski et al. show in [17] that indeed JIT compilation can improve the performance of the X100
engine when used in combination with the already existing vectorized execution. The research shows
that there is no simple rule for deciding between the vector-at-a-time and the tuple-at-a-time model
introduced by JIT compilation, but rather a dynamic analysis is required to determine which operator
performs best in which situation.

37

The traditional algebraic operator model is focused on the operators themselves, rather than on the data,
thus drawing a clear boundary between the execution phases of the query. Neumann [12] proposes a new
evaluation technique called producer-consumer model which aims to remove the boundaries between
the operators. The resulting execution model is again tuple-at-a-time, but unlike in the Volcano model,
where data is pulled upwards in the query plan, data is now pushed from one operator to another and the
execution becomes data centric. Conceptually, once an operator produces its data in the produce phase,
it pushes the data to the next operator by invoking its consume procedure. This execution model has
been integrated into HyPer [9], an in-memory database system, and its query performance has become
mostly CPU bound. The first approach of JIT compilation in HyPer was to generate C++ code. The
C++ code files were easy to produce and could seamlessly interact with the rest of the code and data
structures from the database system. However the compilation times were too high (several seconds) and
the performance proved to be suboptimal. HyPer now moved to generating LLVM code for the incoming
queries and the compilation time is surprisingly small, in the order for tens of milliseconds for certain
TPC-H queries. The complex parts of the system are still written in C++ and pre-complied, but the code
paths that would take most of the execution time are JITed. As a result, the overall query response time,
which also includes the compilation time, can beat MonetDB’s by even a factor of ten.

The data centric model has been successfully implemented in other query engines such as SparkSQL [3],
LegoBase [10] and DBLAB [16]. LegoBase and DBLAB are written in Scala and emit specialized C
code, with the mention that DBLAB uses multiple intermediate Domain Specific Languages (DSL) and
compiler passes in order to produce optimized code.

Another JIT code compilation technique that involves code templates is implemented in HIQUE [11].
The authors name their approach a holistic query evaluation, as during the code generation process the
system looks both at the evaluated query and the underlying hardware. HIQUE parses the SQL query
into an intermediate representation and then uses a catalog of templates to dynamically generate code for
the operators in the query plan. The system generates a new C file which is compiled and dynamically
loaded into the main process.Benchmarks of the system on the TPC-H with a scale factor of 1 shows that
the performance is comparable to MonetDB’s, but as the system uses the gcc compiler, the compilation
time can go up to hundreds of milliseconds with the -O3 optimization level.

DBToaster [1] is a query compilation framework that specializes in generating query evaluators for main-
taining long standing aggregation views under a high number of updates per second. Traditionally data
increments are expressed and evaluated as queries, whereas DBToaster recursively considers multiple
deltas for a given query and generates code that optimally applies them. The authors show that at each
recursion the generated code becomes simpler, by generating C++ code they can avoid the interpretation
overhead and then allow the compiler to further optimize the code through function inlining. DBToaster
was shown to run faster than other responsive analytics systems by multiple orders of magnitude .

Impala [4] is a massively parallel SQL engine that runs on top of the Hadoop 1 environment. Impala takes
a more localized approach to JIT compilation and focuses on optimizing function calls inside for-loops
that get executed for every data record that is processed. The execution model is vectorized (as in X100)
and the and the operators are individually optimized by substituting data-manipulation methods with JIT
compiled snippets. A significant part of the interpretation overhead is generated by virtual functions,
which are regularly used in the code to ease the development. However, the exact function implemen-
tation can be determined at runtime and be replaced in the function call through code generation. Other
optimizations include partially evaluating expression trees, loop unrolling and reducing the branching
factor. Impala uses LLVM to instrument JIT compilation and has achieved a speedup of up to 5 over
some TPC-H queries.

In [18] Tahboub et al. argue that the current query compilation techniques are quite complex and dif-
ficult to develop. The authors propose a simplified technique based on the concept known as Futamura

1http://hadoop.apache.org/

38

projection, which links interpreters to compilers. The idea behind the Futamura projection is that a com-
piler can be seen a specialization of an interpreter. In this context, specialisation refers to adapting the
execution of a generic function for a particular use-case, based on a parameter. Another step forward in
this direction takes us to programmatic specialization which allows a function to self specialize for any
input. Using this insight the authors show that they can obtain similar results to the produce-consume
model in a more intuitive way, denoted data centric evaluation with callbacks. The produce and consume
interface is refactored into a single method that takes as argument a callback. Each operator generates its
result and then applies the callback function on every tuple. The authors implemented this new approach
in the LB2 [18] query engine and they show that its performance is comparable to other state of the art
JIT compiled query engines such as HyPer [9].

A project that shares some design goals with Weld is Voodoo [15]. While Weld can, at the moment, only
generate code for the CPU through LLVM IR, Voodoo specializes in producing portable OpenCL code
which can run both on CPUs and GPUs. The data model behind Voodoo is called Structured Vectors,
which map to arrays of structures in C and are addressable on most hardware platforms. The intermediate
vector algebra in Voodoo consists of several operators which allow parallelism at runtime without the use
of hardware specific abstractions. [15] shows how Voodoo can be integrated into MonetDB, replacing
the existing query engine, and how the resulting performance is comparable to HyPer.

39

Chapter 7

Conclusion

7.1 Contributions

In this thesis we presented two approaches of integrating JIT compilation into MonetDB through Weld.
The first Weld integration is at MAL level, where individual MAL instructions are translated into frag-
ments of Weld code which can operate on the same input and produce an identical result. We showed how
Weld’s program optimizers can combine the code fragments associated with Selection and Projection op-
erations through loop fusion, but fails to improve the data flow and reduce the materializations encoun-
tered in Aggregations and Joins - which results in an overall poor query execution performance.

In the second approach we generate a data-centric Weld program from the relational algebra using the
produce-consume execution model. We have shown that Weld’s data structures are expressive and have
allowed us to perfectly implement the conceptual operator pipelines. Benchmarking the REL-Weld trans-
lation showed that Weld can outperform MonetDB on several simpler TPC-H queries, but it is otherwise
slower on queries involving Joins.

7.2 Answers to research questions

Our research questions were:

• Can the query compilation into native machine code reduce the amount of intermediate material-
ization by removing the boundaries between operators and fusing them together?

Both Weld translations are able to reduce the amount of materialization. Weld’s loop fusion optimization
passes and the effects of the data flow resulting from the produce-consume model are best seen in TPC-H
Query 6. Both MAL-Weld and REL-Weld generate a single for-loop for the query evaluation, whereas
MonetDB executes 7 for-loops.

• Is Weld able to perform loop fusion given the data flow generated by the MAL program? If not,
can we add new optimization rules to Weld?

Weld was not able to optimize the data flow that results from MonetDB’s aggregation operations. As
we showed in Section 4.1.3, this loop fusion opportunity would require tracking functional dependencies
in order to eliminate the groupIDs from the aggregation process and resort to the usage of a single
dictmerger.

40

• Can we express all relevant operations using Weld’s IR and parallel builders?

Weld’s for-loops and generic data structures have been sufficient for our use-case and have allowed us to
express the data flows and the main operations encountered in a query plan. Weld also allows the usage
of UDFs which were useful when dealing with more complicated transformations such as extracting a
year from a date or performing string manipulations. However, in our work we focused on translating
TPC-H queries where the aggregation operations only consisted of sum (avg was expressed as sum as
well), min and max. When we started the project, Weld only supported the sum and prod operations
so we implemented ourselves min and max. Moreover, Weld currently only allows a single merging
operation per builder (or per aggregation), which was luckily the case in the TPC-H queries and we have,
therefore, not run into this limitation.

• Is the data-centric compilation approach in REL-Weld superior to MAL-Weld?

Yes, in the REL-Weld translation we no longer rely on Weld to combine the operators, but we instead
generate the Weld code such that the tuples are processed by several operators pipelines uninterrupted
by materialization. As Weld was not able to detect all the optimization opportunities in MAL-Weld, the
REL-Weld approach yields better performance.

7.3 Future work

We believe that REL-Weld is the best approach to integrate Weld into MonetDB given the benchmarking
results and implementation experience. We therefore discuss the future work from REL-Weld’s per-
spective. One of our goals in the Weld translation was to fully support the 22 queries from the TPC-H
benchmark. Unfortunately we did not succeed in running all the queries, so further steps are needed in
order to ensure better query support:

(FW1) All the necessary data manipulation functions are already implemented in MonetDB and can be
made easily accessible to the Weld runtime through UDFs. Some of the functions, such as those
that process the string like operator, are only chosen at runtime inside GDK. More work is needed
on the relational algebra parsing so that the correct UDF is chosen before running the Weld pro-
gram.

(FW2) The relational algebra itself can be tuned for the produce-consume model and the Weld library.
Certain operators are designed with the MAL interface in mind, for example the GroupBy oper-
ator can contain projections or the result of an Aggregation can have a different type from the
aggregated data.

Beside the translation issues we described above, the performance of the Weld runtime also has to be
improved in order for it to compete with MonetDB’s:

(FW3) We argue that the main cause of slowdown in our Weld translation are the dictionaries. The dictio-
naries are used in some of the most common and significant operations such as Aggregations and
Joins.

(FW4) Weld can apply a merging operation (e.g. sum) on a struct by applying the operator on every mem-
ber for the struct. An improvement in this direction would be the support of different operations
for each struct member, possibly even a user defined function.

(FW5) Weld is still in its development phase, therefore more work is required towards a final product.
During our work with Weld we have encountered several bugs and unimplemented features for
which we opened issue tickets on Weld’s Github page 1.

1https://github.com/weld-project/weld/issues?q=is%3Aissue+author%3Amihai-varga+

41

Bibliography

[1] Y. Ahmad and C. Koch. Dbtoaster: A sql compiler for high-performance delta processing in main-
memory databases. Proceedings of the VLDB Endowment, 2(2):1566–1569, 2009.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. Dbmss on a modern processor: Where
does time go? In Proceedings of the 25th International Conference on Very Large Data Bases,
VLDB ’99, pages 266–277, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[3] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, et al. Spark sql: Relational data processing in spark. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, pages 1383–1394. ACM, 2015.

[4] M. Bittorf, T. Bobrovytsky, C. Erickson, M. G. D. Hecht, M. Kuff, D. K. A. Leblang, N. Robinson,
D. R. S. Rus, J. R. D. T. S. Wanderman, and M. M. Yoder. Impala: A modern, open-source sql
engine for hadoop. In Proceedings of the 7th Biennial Conference on Innovative Data Systems
Research, 2015.

[5] P. Boncz. Monet; a next-generation dbms kernel for query-intensive applications. 01 2002.

[6] P. Boncz, M. Zukowski, and N. Nes. Monetdb/x100: Hyper-pipelining query execution. In In
CIDR, 2005.

[7] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. N. Gray, W. F. King, B. G. Lindsay, R. Lorie,
J. W. Mehl, T. G. Price, F. Putzolu, et al. A history and evaluation of system r. Communications of
the ACM, 24(10):632–646, 1981.

[8] G. Graefe and W. J. McKenna. The volcano optimizer generator: Extensibility and efficient search.
In Proceedings of the Ninth International Conference on Data Engineering, pages 209–218, Wash-
ington, DC, USA, 1993. IEEE Computer Society.

[9] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main memory database system based on
virtual memory snapshots. In Proceedings of the 2011 IEEE 27th International Conference on Data
Engineering, ICDE ’11, pages 195–206, Washington, DC, USA, 2011. IEEE Computer Society.

[10] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building efficient query engines in a high-level
language. Proceedings of the VLDB Endowment, 7(10):853–864, 2014.

[11] K. Krikellas, S. D. Viglas, and M. Cintra. Generating code for holistic query evaluation. In Data
Engineering (ICDE), 2010 IEEE 26th International Conference on, pages 613–624. IEEE, 2010.

[12] T. Neumann. Efficiently compiling efficient query plans for modern hardware. Proc. VLDB Endow.,
4(9):539–550, June 2011.

[13] S. Padmanabhan, T. Malkemus, R. C. Agarwal, and A. Jhingran. Block oriented processing of
relational database operations in modern computer architectures. In Proceedings of the 17th In-
ternational Conference on Data Engineering, pages 567–574, Washington, DC, USA, 2001. IEEE
Computer Society.

42

[14] S. Palkar, J. J. Thomas, D. Narayanan, A. Shanbhag, R. Palamuttam, H. Pirk, M. Schwarzkopf, S. P.
Amarasinghe, S. Madden, and M. Zaharia. Weld: Rethinking the interface between data-intensive
applications. CoRR, abs/1709.06416, 2017.

[15] H. Pirk, O. Moll, M. Zaharia, and S. Madden. Voodoo-a vector algebra for portable database
performance on modern hardware. Proceedings of the VLDB Endowment, 9(14):1707–1718, 2016.

[16] A. Shaikhha, Y. Klonatos, L. Parreaux, L. Brown, M. Dashti, and C. Koch. How to architect a
query compiler. In Proceedings of the 2016 International Conference on Management of Data,
pages 1907–1922. ACM, 2016.

[17] J. Sompolski, M. Zukowski, and P. Boncz. Vectorization vs. compilation in query execution. In
Proceedings of the Seventh International Workshop on Data Management on New Hardware, pages
33–40. ACM, 2011.

[18] R. Y. Tahboub, G. M. Essertel, and T. Rompf. How to architect a query compiler, revisited. In
Proceedings of the 2018 International Conference on Management of Data, pages 307–322. ACM,
2018.

[19] M. Zukowski, P. A. Boncz, et al. Vectorwise: Beyond column stores. 2012.

[20] M. Zukowski, P. A. Boncz, N. Nes, and S. Héman. Monetdb/x100-a dbms in the cpu cache. IEEE
Data Eng. Bull., 28(2):17–22, 2005.

43

