
Vrije Universiteit Amsterdam Centrum Wiskunde & Informatica

Master Thesis

Self-learning Whitebox Compression

Author: Bogdan Ghit,ă (2639139)

1st supervisor: Peter Boncz
daily supervisor: Peter Boncz
2nd supervisor: Diego Tomé
2nd reader: Hannes Mühleisen

August 13, 2019

Abstract

Existing columnar database systems rely on a small set of lightweight compres-

sion techniques to achieve smaller data size and fast query execution: RLE,

DICT, FOR, DELTA and their improved versions. These are hardcoded black-

box approaches with limited capacity of exploiting all compression opportuni-

ties present in real data. We propose whitebox compression: a new compression

model which represents data through elementary operator expressions auto-

matically generated at bulk load. This is done by learning patterns from the

data and associating them with operators to form expression trees, which are

stored together with the compressed data and lazily evaluated during query

execution. Whitebox compression automatically finds and exploits compression

opportunities, leading to transparent, recursive and more compact representa-

tions of the data. Combined with vectorized execution or JIT code generation,

it has the potential to generate powerful compression schemes in terms of both

compression ratio and query execution time. Our focus is on real data rather

than synthetic datasets, thus we develop and evaluate the whitebox compres-

sion model using the Public BI benchmark—a comprehensive human generated

benchmark for database systems.

Acknowledgements

I would like to thank my supervisors Peter Boncz and Diego Tomé for their

guidance and support in the past seven months. Special appreciation goes to

Peter for his constructive feedback and active involvement in my work and for

his vast knowledge and strive for perfection which greatly contributed to the

improvement of this thesis. I further thank Stefan Manegold for his help with

the creation of the Public BI benchmark and Tim Gubner for providing me

with insights into VectorWise. I thank my colleagues and friends Per Fuchs

and Matheus Nerone for the interesting brainstorming sessions and Richard

Gankema for his advice on various aspects related to my thesis. Finally, I wish

to thank Hannes Mühleisen for his feedback on my work.

ii

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Whitebox compression . 2

1.2 Research questions . 3

2 Related work 7

2.1 Contributions . 9

3 Public BI benchmark 11

3.1 Benchmark analysis . 13

3.1.1 General characterisation . 13

3.1.2 Manual analysis . 15

3.1.3 Conclusion . 16

4 Compression model 17

4.1 Expression language . 17

4.2 Expression tree . 20

4.3 Exception handling . 22

4.4 Compression and decompression . 24

5 Automatic compression learning 27

5.1 Pattern detection . 27

5.1.1 Generic pattern detector . 27

5.1.2 Constant . 29

5.1.3 Numeric strings . 31

5.1.4 Character set split . 34

iii

CONTENTS

5.1.5 Column correlation . 37

5.1.6 Dictionary . 42

5.2 Compression learning process . 44

5.2.1 Optimization problem . 44

5.2.2 Cost model: compression estimators 45

5.2.2.1 Generic compression estimator 46

5.2.2.2 No compression estimator 47

5.2.2.3 Dictionary estimator . 48

5.2.2.4 Run Length Encoding estimator 49

5.2.2.5 Frame of Reference estimator 50

5.2.3 Recursive exhaustive learning . 51

5.2.4 Pattern selectors . 54

5.2.4.1 Generic pattern selector . 54

5.2.4.2 Coverage pattern selector 55

5.2.4.3 Priority pattern selector . 56

5.2.4.4 Correlation pattern selector 57

5.2.5 Iterative greedy learning . 60

5.2.6 Multi-stage learning . 62

6 Evaluation and results 65

6.1 Methodology . 65

6.1.1 Sampling . 65

6.1.2 VectorWise baseline . 66

6.1.3 Estimator baseline . 68

6.2 Experimental setup . 69

6.3 Results and discussion . 70

6.3.1 VectorWise baseline results . 70

6.3.2 Estimator model baseline results . 73

6.3.3 Results analysis . 76

6.3.4 Recursive exhaustive learning results 80

7 Conclusion and future work 83

7.1 Conclusion . 83

7.2 Future work . 85

References 87

iv

CONTENTS

Appendices 91

A n-gram frequency analysis 93

B Column correlation graphs 97

v

CONTENTS

vi

List of Figures

1.1 Whitebox representation example . 2

3.1 Row, column and size distribution . 13

3.2 Column statistics (percentage of columns) 13

3.3 Data characterisation . 14

4.1 Expression tree representation . 21

4.2 Representation options & exception handling 23

5.1 Constant expression nodes . 30

5.2 Numeric strings expression nodes . 33

5.3 Character set split expression nodes . 36

5.4 Mapping function . 38

5.5 Column correlation mapping . 39

5.6 Correlation coefficients comparison (YaleLanguages_1) 40

5.7 Column correlation expression nodes . 41

5.8 Dictionary expression nodes . 43

5.9 Correlation graph . 58

6.1 VectorWise evaluation methodology . 67

6.2 Estimator evaluation methodology . 68

6.3 Full table comparison (VectorWise baseline) 71

6.4 Used columns comparison (VectorWise baseline) 72

6.5 Used columns comparison (Estimator model baseline) 74

6.6 Baseline comparison (full table): Estimator model vs. Vectorwise 75

6.7 Column datatype distribution . 77

6.8 Physical size distribution . 78

6.9 Expression node types distribution . 78

vii

LIST OF FIGURES

6.10 Column datatype distribution (recursive exhaustive learning) 81

6.11 Physical size distribution (recursive exhaustive learning) 82

6.12 Expression node types distribution (recursive exhaustive learning) 82

A.1 ds_email 3-gram frequencies . 94

A.2 ds_tipo_beneficiario 3-gram frequencies . 95

B.1 YaleLanguages_1 correlation graph . 98

B.2 Generico_1 correlation graph . 99

viii

List of Tables

1.1 Blackbox vs. whitebox comparison . 3

3.1 Public BI benchmark workbooks . 12

4.1 Elementary column representation types . 18

4.2 Whitebox representation example: data . 18

4.3 Whitebox representation example: metadata 19

4.4 Compression operator types . 20

5.1 Numeric string format preserving examples 32

5.2 Character set split examples . 34

5.3 Charset structure examples . 35

5.4 CommonGovernment_1 nominal correlation 38

5.5 Priority set example . 56

6.1 Full table vs. used columns (VectorWise baseline) 73

6.2 VectorWise baseline vs. estimator model baseline (used columns) 74

6.3 Logical vs. physical columns . 77

6.4 Expression tree statistics . 79

6.5 Iterative greedy vs. Recursive exhaustive (VectorWise baseline) 80

6.6 Logical vs. physical columns (recursive exhaustive learning) 80

6.7 Expression tree statistics (recursive exhaustive learning) 81

A.1 Eixo_1 data samples . 93

ix

LIST OF TABLES

x

1

Introduction

This thesis presents a new compression model for columnar database systems: whitebox

compression. Existing DBMSs use compression to make data smaller in terms of disk

space, respectively to make queries faster by reducing I/O and memory usage and oper-

ating on the compressed data directly, without decompression. State-of-the-art columnar

compression methods may not exploit all opportunities offered by the data, e.g. because

these methods (RLE, FOR, DICT, DELTA) work on only one column at a time and hence

cannot exploit correlations between multiple columns. Another reason is that users of-

ten use "sub-optimal" datatypes to represent their data, e.g. storing dates or numbers in

strings, which are harder to compress and more expensive to operate on. Achieving high

compression ratios is an important factor that influences the ability of DBMSs to scale up

in terms of storage space. Compressed data leads to reducing the I/O bottleneck between

disk and main memory and even between main memory and CPU if done at a granular

level (1). Moreover, higher computation efficiency can be achieved through compression,

since operating over thinner data optimizes the use of SIMD instructions.

Actual data found in real datasets tends to exhibit phenomena not found in synthetic

database benchmarks like TPC-H (2) and TPC-DS (3). Not only is data often skewed in

terms of value and frequency distribution, but it is also correlated across columns. Our

recent efforts led to the first fully user-generated benchmark for database systems: the

Public BI benchmark (4). Its many human-generated datasets and real data distributions

open new grounds for research in the direction of columnar data compression and com-

pressed execution. Our goal is to leverage the characteristics of these datasets for finding

new methods of compression which perform well on real data rather than synthetic bench-

marks. We believe the best way to achieve this is through whitebox compression: using

basic operators to create expression trees that enable efficient processing of the data.

1

1. INTRODUCTION

1.1 Whitebox compression

Whitebox compression is a compression model for database systems that represents data

through an expression language composed of elementary operators. Multiple operators are

chained together to form an expression tree where inner nodes are operators and leaves are

physical columns. A physical column is the partial representation of a logical column used

for storage on disk. A logical column is the data as seen by the user. The evaluation of an

expression tree on the physical columns generates the original logical columns.

Take for example, a logical column A which stores email addresses. It can be split by the

’@’ character into 2 new columns A1 and A2. The first one will contain the local/username

part of the email address and the second one its domain (e.g. for "john.smith@gmail.com"

A1 will store "john.smith" and A2 will store "@gmail.com"). The second column will

then be compressed with dictionary encoding to exploit the small number of unique email

address domains. Stored together, email addresses are not compressible because of the

uniqueness of the usernames. Through whitebox representation, subparts of the data can

be compressed independently.

format

C1_1
SMALLINT

C1_2
TINYINT

C2_ex
VARCHAR

format

const map map

C1_ex
VARCHAR

C2
VARCHAR

concat

C1
VARCHAR

physical
columns

logical
columns

expression tree

Figure 1.1: Whitebox representation example

Figure 1.1 illustrates the general concept of whitebox compression. C1 and C2 are 2

logical columns represented through elementary operator expressions as functions of the

physical columns C1_1 and C1_2. The operators are, in this example: concat, format, map

and const. Chained together, they form expression trees that transparently describe the

columnar transformations applied to the data. Values that do not match the expressions

are stored in the exception columns C1_ex and C2_ex.

2

1.2 Research questions

The whitebox representation creates compression opportunities. While in the original for-

mat, columns cannot be compressed through existing lightweight techniques, the physical

columns resulting after applying the operator expressions are storing data more compactly.

E.g. string columns are decomposed into subcolumns based on the different distributions

of substring components and redundancy is eliminated by representing correlated columns

as functions of the same physical columns. This process leads to efficient representation of

the data in columns with appropriate datatypes and sparse exception columns.

The difference between blackbox compression and whitebox compression is best perceived

from the system’s perspective. Table 1.1 shows a comparison between the 2 models.

Blackbox Whitebox
Nature hardcoded, opaque generic, flexible, transparent
Header info identifier (e.g. PFOR) operator expression, self-descriptive
Output block of data columns (allows recursion)
Exceptions included in the data block separate columns

Table 1.1: Blackbox vs. whitebox comparison

A blackbox compression system takes as input a column and outputs a block of data, con-

taining both the compressed values and the exceptions, stored in a format only known by

the system. In contrast, a whitebox compression system takes as input a set of columns and

outputs an expression tree and other columns. The representation of the columns is trans-

parent and self-descriptive, which enables partial decompression of the data by pushing

operators down the compression tree at query execution time. The whitebox compression

model is generic and flexible, allowing recursive compression of columns—including excep-

tions. It can be easily extended with new operators and adapted according to the system’s

needs and data characteristics.

1.2 Research questions

The goal of our project is to explore the concept of whitebox compression with the purpose

of finding a better way to compress human-generated data. To this end, we defined a list

of scientific questions that we answer during our research.

1) What does real, user-generated data look like—specifically in the case of the Public

BI benchmark?

a) What patterns can we find in the columns of each dataset?

b) Inefficient ways of representing data?

3

1. INTRODUCTION

c) "Wrong" type used to define data (e.g. number stored as string, etc.)?

2) How good are existing compression schemes at compressing real data?

a) Do they make the most out of the properties of the data?

b) Is there room for improvement?

3) Can we represent the logical columns more compactly through an expression tree

composed of elementary operators?

a) What kind of operators are suitable for expressing the data and transforming it

to physical columns?

b) What will the compression ratio be?

c) Can we exploit correlations between multiple logical columns by sharing the

physical columns in their expressions?

4) Can we create an automatic learning process that will generate suitable compression

trees for each column?

a) Will it provide a high compression ratio?

b) How will it compare to existing solutions?

The focus of this thesis is on learning patterns from the data and automatically gen-

erating expression trees for more compact data representation—everything optimized for

size. An additional, but equally important aspect of this topic is query execution time

and whether it can be improved through whitebox compression. We leave this subject for

future work. We defined the corresponding research question below for completeness, but

we do not answer it in this thesis.

5) Can we achieve compressed execution with the whitebox compression model?

a) Can we exploit SIMD in the scan?

b) Will there be lazy decompression opportunities?

c) Can we push query predicates down the compression tree?

We carried out our research and structured this thesis according to these questions.

We present related work in Chapter 2. We performed a characterisation of the Public BI

benchmark and then manually analyzed its datasets in search for patterns and compression

opportunities not exploited by the existing systems (Chapter 3). Based on our findings, we

defined the whitebox compression model, the expression language and all its characteristics

in Chapter 4. Furthermore, we defined algorithms that automatically detect compression

4

1.2 Research questions

opportunities and generate compression trees that represent data more compactly (Chap-

ter 5). Finally, we evaluate our proof-of-concept implementation of whitebox compression

against an existing database system and an estimator model baseline (Chapter 6).

5

1. INTRODUCTION

6

2

Related work

The topic of data compression has received significant attention from the database re-

search community over the past 25 years (1, 5, 6, 7, 8). Existing work covers a wide

range of approaches to this problem: compression algorithms, efficient hardware-conscious

implementations, compressed execution, all integrated into real database systems (9, 10).

The goal of reducing I/O bandwidth has directed the focus towards lightweight com-

pression schemes: dictionary compression, run-length encoding, frame-of-reference, delta

coding, null suppression (1, 5, 11, 12, 13). Zukowski et al. (1) proposed improved versions

of these techniques that efficiently handle exceptions—making the compression methods

less vulnerable to outliers—and achieve fast vectorized execution. Various storage formats

that facilitate compression and compressed execution have been proposed. Data Blocks (6)

is a compressed columnar storage format that reduces the memory footprint through hot-

cold data classification. Raman et al. (14) optimized query execution time for analytics use

cases through in memory query processing on the dictionary compressed column-organized

format of IBM DB2 BLU.

All this work focuses on low level optimizations to either speed up query execution or im-

prove the compression rates. These solutions revolve around the same compression schemes

and rely on fine-tuned hardware-conscious implementations leveraging SIMD instructions

and vectorized execution to save CPU cycles and increase CPU efficiency. In contrast, we

approach the problem of compression from a different angle. Our focus is on expressing

the data in a completely different way, through simple operators chained together to form

data-aware compression trees. Automatic generation of these compression expressions is

based on finding patterns in the data and correlations amongst different columns. Lee

et al. (15) mention the possibility of exploiting the correlations among columns at query

time with the purpose of performing join operations on columns with different encodings.

7

2. RELATED WORK

In contrast, we want to exploit these correlations during compression, to obtain better

compression ratios.

The closest work to our research is (16), where Raman et al. exploit data properties

(skewed distributions and correlations) to achieve high compression ratios. They concate-

nate correlated columns and encode them together using a variation of Huffman trees

which preserve partial ordering. Additionally, a sequence of type specific transformations,

sorting and delta coding is also applied. We see this approach as heavy-weight black-box

compression as it is hard-coded and relies on multiple rounds of Huffman encoding. More-

over, all the patterns in the data need to be manually supplied by the user (correlations

and domain specific transformations). Our work differs in multiple ways: 1) we exploit

correlated columns by sharing the same physical columns between related logical columns;

2) we apply a wide range of domain specific operators tailored to the data, including split-

ting columns and then recursively applying the same procedure; 3) our process is fully

automated, from determining patterns and correlations between columns, to generating

custom expressions trees.

Damme et al. (17) performed an exhaustive evaluation of existing compression algo-

rithms and concluded that compression rates are highly dependent on the properties of the

data and that combinations of multiple techniques lead to the best results. These results

support our reasons for better understanding the data and chaining elementary operators

into complex compression trees and encourage us to see how our whitebox approach affects

both compression rates and query execution time.

Additionally, while most compression solutions proposed so far were mainly evaluated

and compared to each other on synthetic benchmarks (1, 5, 6, 14, 15), we are the first

to use such a comprehensive human-generated benchmark as the Public BI benchmark

(4)—which we defined as an early stage of this research project and will be described

in more depth in the next chapter. Two examples of benchmarks used for evaluating

database compression and compressed execution are TPC-H (2) and its successor TPC-DS

(3). Both are synthetic, using uniform or stepwise uniform column value distributions, with

fully independent columns in and between tables. This absence of skew, data dirtiness and

correlation does not reflect the nature of real data. In contrast, the Public BI benchmark

contains 386 GB of real data and 646 analytics queries available on Tableau Public (18, 19).

The large volume of data, it’s diversity in content and the extended character set make

it suitable for evaluating compression solutions. It is an open-source benchmark and we

hope it will be useful to the database community in many ways.

8

2.1 Contributions

2.1 Contributions

This thesis brings the following contributions:

1) Public BI benchmark analysis—an analysis of real, user-generated data from the

perspective of compression

2) whitebox compression—a new generic, extensible, recursive and transparent com-

pression model for columnar databases, which achieves higher compression ratios

by representing data more compactly through elementary operator expressions and

creates opportunities for faster query execution

3) learned compression—automatic identification of patterns in the data and genera-

tion of compression trees: multiple pattern detectors, a cost model and compression

learning algorithms

9

2. RELATED WORK

10

3

Public BI benchmark

The Public BI benchmark (4) is a user-generated benchmark for database systems derived

from the DBTest’18 paper by Tableau (18). It contains 386GB of real data and 646

analytics queries, available at https://github.com/cwida/public_bi_benchmark under

the MIT License. The data distributions, diversity in content and the extended character

set make it suitable for evaluating compression solutions.

The benchmark was created by downloading 46 of the biggest workbooks from Tableau

Public (19) and converting the data to CSV files. The SQL queries were collected from the

Tableau logs that appear when visualizing the workbooks (SQL queries to the integrated

HyPer (9) engine). We processed the CSV files with the purpose of making them load into

different database systems. The queries contained Tableau-specific functions and syntax.

We processed and adapted them in order to run on MonetDB (20) and VectorWise (10).

Table 3.1 shows a summary of the benchmark.

This chapter presents a characterisation of the Public BI benchmark that we performed

with the purpose of understanding what real data looks like and finding opportunities for

more compact data representation. This analysis was performed solely from the perspective

of compression. We did not analyze entities, relationships or the queries.

11

https://github.com/cwida/public_bi_benchmark

3. PUBLIC BI BENCHMARK

Workbook Tables Columns Rows Queries CSV size

Arade 1 11 9.9M 1 811.4MiB
Bimbo 1 12 74.2M 2 3.0GiB
CMSprovider 2 52 18.6M 3 3.9GiB
CityMaxCapita 1 31 912.7K 10 333.0MiB
CommonGovernment 13 728 141.1M 38 102.5GiB
Corporations 1 27 741.7K 1 202.2MiB
Eixo 1 80 7.6M 24 6.4GiB
Euro2016 1 11 2.1M 1 390.6MiB
Food 1 6 5.2M 1 205.9MiB
Generico 5 215 114.1M 38 64.5GiB
HashTags 1 101 511.5K 12 640.2MiB
Hatred 1 31 873.2K 26 309.4MiB
IGlocations1 1 18 81.6K 3 6.6MiB
IGlocations2 2 40 4.3M 13 1.8GiB
IUBLibrary 1 27 1.8K 3 443.3KiB
MLB 68 3733 32.5M 95 8.2GiB
MedPayment1 1 28 9.2M 1 1.7GiB
MedPayment2 1 29 9.2M 1 1.8GiB
Medicare1 2 52 17.3M 10 3.3GiB
Medicare2 2 56 18.3M 9 3.4GiB
Medicare3 1 29 9.3M 1 2.1GiB
Motos 2 88 28.4M 24 16.1GiB
MulheresMil 1 81 7.6M 35 6.4GiB
NYC 2 108 19.2M 5 12.6GiB
PanCreactomy1 1 29 9.2M 2 2.0GiB
PanCreactomy2 2 58 18.3M 11 4.1GiB
Physicians 1 28 9.2M 1 1.7GiB
Provider 8 224 73.2M 46 13.6GiB
RealEstate1 2 56 39.1M 9 10.6GiB
RealEstate2 7 189 66.4M 23 17.1GiB
Redfin1 4 176 12.1M 5 5.3GiB
Redfin2 3 132 9.1M 4 4.0GiB
Redfin3 2 94 6.5M 3 3.0GiB
Redfin4 1 48 3.3M 2 1.5GiB
Rentabilidad 9 1266 3.6M 35 3.3GiB
Romance 2 24 3.2M 3 1.0GiB
SalariesFrance 13 695 16.2M 32 12.6GiB
TableroSistemaPenal 8 174 25.3M 23 5.3GiB
Taxpayer 10 280 91.5M 22 17.1GiB
Telco 1 181 2.9M 1 2.3GiB
TrainsUK1 4 87 12.9M 8 3.9GiB
TrainsUK2 2 74 31.1M 1 12.2GiB
USCensus 3 1557 9.4M 8 13.6GiB
Uberlandia 1 81 7.6M 24 6.4GiB
Wins 4 2198 2.1M 13 3.9GiB
YaleLanguages 5 150 5.8M 13 1.5GiB

Total 206 13395 988.9M 646 386.5GiB

Table 3.1: Public BI benchmark workbooks

12

3.1 Benchmark analysis

3.1 Benchmark analysis

3.1.1 General characterisation

We started by analyzing the tables in terms of number or rows, columns and size. Figure 3.1

shows the distribution of these metrics over the tables. 40% of the tables have less than 1

million rows and 50% of the tables have between 1 and 10 million rows. 90% of the tables

have less than 80 columns. In terms of size, the majority of the tables have less than 3GB

(uncompressed), but there are also larger tables, up to 14GB.

0 25 50 75
number of rows (millions)

0

25

50

75

100

125

co
un

t (
ta

bl
es

)

(a) Row distribution

0 200 400 600
number of columns

0

20

40

60

80

100

co
un

t (
ta

bl
es

)

(b) Column distribution

0 5 10
size (GiB)

0

20

40

60

80

co
un

t (
ta

bl
es

)

(c) Data size distribution

Figure 3.1: Row, column and size distribution

other1.6%
integer3.8%

float8
11.0%

decimal

17.1%

varchar 25.8%

smallint

40.7%

(a) Datatypes distribution

No compression

14.8%

DICT 23.7%

FOR

24.7%

RLE
36.8%

(b) Compression potential

Figure 3.2: Column statistics (percentage of columns)

Figure 3.2a shows the distribution of datatypes across columns. The majority of the

columns are numeric (73%), followed by strings (25%). The remaining columns are: DATE

(0.86%), TIMESTAMP (0.41%), BIGINT (0.17%), BOOLEAN (0.1%), TIME (0.05%).

13

3. PUBLIC BI BENCHMARK

Given the focus of this thesis, we are interested in how suitable is the data for compres-

sion. We evaluated the potential of each column for compression with existing lightweight

schemes: Run Length Encoding (RLE), Frame of Reference (FOR), Dictionary encod-

ing (DICT). The evaluation was performed using the compression estimators defined in

5.2.2 Cost model: compression estimators, following the methodology presented in 6.2 Es-

timator evaluation methodology. In short, we estimated the size of each column as com-

pressed with RLE, FOR, DICT and uncompressed—based on a sample—and marked the

column as a candidate for the method that gave the smallest size. The results are presented

in Figure 3.2b. 85% of the columns are good candidates for compression with lightweight

schemes, while only 15% of the columns are better left uncompressed. We applied DICT for

VARCHAR columns and RLE and FOR for numeric columns. Most of the numeric columns

are good candidates for RLE and FOR and the vast majority of VARCHAR columns are

dictionary compressible. The purpose of this analysis was to estimate the compression po-

tential of the datasets in the benchmark. A more thorough analysis showing compression

ratios and sizes is performed in 6.3 Results and discussion.

0.0 0.5 1.0
null ratio

0

2000

4000

6000

8000

10000

co
un

t (
co

lu
m

ns
)

(a) Null ratio

0 200 400 600
unique characters (count)

0

1000

2000

3000

co
un

t (
co

lu
m

ns
)

(b) Unique characters

0.0 0.5 1.0
uniqueness ratio

0

2500

5000

7500

10000

co
un

t (
co

lu
m

ns
)

(c) Uniqueness ratio

Figure 3.3: Data characterisation

Figure 3.3 shows metrics extracted with the statdump command after loading the data

into VectorWise (10). The percentage of null values is low for most of the columns. Fig-

ure 3.3b shows the number of unique characters per column—for VARCHAR columns: almost

all of them have less than 100 unique characters. Only 8 columns have more than 255 unique

characters and they contain social media content: posts or comments with hashtags and

emoticons. Figure 3.3c shows the uniqueness ratio of all the columns, irrespective of their

datatype. The uniqueness of a column is computed as the number of unique values divided

by the total number of values: uniquecount

totalcount
. Note that these metrics were computed based

on the entire data and not based on a sample, therefore they are accurate. We notice how

14

3.1 Benchmark analysis

almost all of the columns have a very low uniqueness, indicating a high degree of repeti-

tion. This property makes the data suitable for compression and confirms the compression

estimation results.

3.1.2 Manual analysis

So far we showed a general characterisation of the benchmark, mostly from a statistical

point of view. In order to better understand the properties of real data and to gain more

insight about it, we manually searched for patterns—common ways that users represent the

data—with the purpose of finding opportunities for more compact representations. Below

is a list of our findings:

• empty/missing values that are not nulls—e.g. empty quotes, whitespace characters;

examples: Eixo_11: comunidade_quilombola, unidade_demandante

• leading/trailing whitespace, some with the purpose of ensuring a common length of

the values on VARCHAR columns;

examples: CommonGovernment_12: contract_num, primary_contract_piid

• numbers and dates stored as strings in VARCHAR columns;

examples: CommonGovernment_12: contract_signeddate, agency_code

• strings with fixed structure composed of substrings from different distributions—e.g.

emails, urls, strings starting with a constant and ending in a number;

examples: CommonGovernment_12: co_name, contract_num

• correlations between columns—mostly as categorical variables, but also numeric cor-

relations; special cases: identical columns;

examples: CommonGovernment_12: short_name, ag_name, description

All of these patterns are inefficient representations of the information, in terms of data

storage. Some of them could have been avoided by the user (e.g. choosing the proper

datatype for numeric values), while others are determined by the nature of the data it-

self. These patterns represent compression opportunities that cannot be exploited through

existing compression schemes.

1https://github.com/cwida/public_bi_benchmark/blob/master/benchmark/Eixo/samples/Eixo_
1.sample.csv

2https://github.com/cwida/public_bi_benchmark/blob/master/benchmark/CommonGovernment/
samples/CommonGovernment_1.sample.csv

15

https://github.com/cwida/public_bi_benchmark/blob/master/benchmark/Eixo/samples/Eixo_1.sample.csv
https://github.com/cwida/public_bi_benchmark/blob/master/benchmark/Eixo/samples/Eixo_1.sample.csv
https://github.com/cwida/public_bi_benchmark/blob/master/benchmark/CommonGovernment/samples/CommonGovernment_1.sample.csv
https://github.com/cwida/public_bi_benchmark/blob/master/benchmark/CommonGovernment/samples/CommonGovernment_1.sample.csv

3. PUBLIC BI BENCHMARK

3.1.3 Conclusion

The conclusion that we can draw from the analysis we performed on the Public BI bench-

mark is that real data is redundant and represented in inefficient ways. It is already suit-

able for compression with existing lightweight methods, but it has a considerable untapped

compression potential that could be exploited if the data had a different representation.

16

4

Compression model

Whitebox compression is a compression model for columnar database systems. Its purpose

is to represent data more compactly through elementary operator expressions. These

operators—chained together into expression trees—form the expression language used for

data representation. This chapter describes the whitebox compression model, its expression

language and operators, the structure of expression trees and their evaluation.

4.1 Expression language

The whitebox compression model represents logical columns as composite functions of phys-

ical columns. We refer to these functions as operators. With respect to databases, logical

columns are columns as seen by the database user, containing the data in its original for-

mat. Physical columns contain the physical representation of the data as it is stored on

disk, in a different format.

Formally, we define an operator as a function o that takes as input zero or more columns

and optional metadata information and outputs a column:

o : [C × C × ...]× [M]→ C (4.1)

The domain of o is composed of columns and metadata and the codomain is columns.

A column is defined by its datatype d and the values that it contains V . The metadata is

structured information of any type.

We defined our expression language based on a set of elementary column representation

types, each having an associated operator. They are listed in Table 4.1.

The concatenation of two string columns ca and cb is the concatenation of each pair of val-

ues va and vb. E.g. "123abc" = concat("123", "abc"), where va = "123" and vb = "abc".

17

4. COMPRESSION MODEL

Representation Operator
Concatenation of 2 or more columns concat : C × C × [...]→ C c = concat(ca, cb, [...])

Formatting of another column format : C ×M → C c = format(ca,mformat)

Direct mapping of another column map : C ×M → C c = map(ca,mmap)

Constant representation const : M → C c = const(mconst)

Table 4.1: Elementary column representation types

The representation of a string column ca as a formatted non-string column cb consists of

the individual values vb formatted as strings based on the format string metadata mformat .

This can be seen as datatype change. E.g. "-12000" = format(-12000, "%d"), where

vb = -12000 and mformat = "%d" . The direct mapping representation of a column ca as

a column cb through the mapping mmap is a key-value lookup in a dictionary-like data

structure. E.g. "valueoncolumnA" = dict["valueoncolumnB"], where valueoncolumnB is

the key and "valueoncolumnA" is the value in the dictionary dict. The constant repre-

sentation of a column indicates that all its values are equal to the constant value mconst .

The const operator just returns mconst .

These operators and transformations can be composed, resulting in operator expressions.

For example, the logical columns A and B in Table 4.2, can be represented as composite

functions of the physical columns in Table 4.2, through the following expressions:

A = concat(map(P, dictAP), const("_"), format(Q, "%d"))
B = map(P, dictBP)

(4.2)

A B

"GSA_8350" "GENERAL SERVICES ADMINISTRATION"
"GSA_8351" "GENERAL SERVICES ADMINISTRATION"
"HHS_2072" "HEALTH AND HUMAN SERVICES"
"TREAS_4791" "TREASURY"
"TREAS_4792" "TREASURY"
"HHS_2073" "HEALTH AND HUMAN SERVICES"
"GSA_8352" "GENERAL SERVICES ADMINISTRATION"

Logical columns

P Q

0 8350
0 8351
1 2072
2 4791
2 4792
1 2073
0 8352

Physical columns

Table 4.2: Whitebox representation example: data

We observe that column A has the following structure: a dictionary compressible pre-

fix and a numeric suffix, separated by a the ’_’ character. If we store these logical parts

separated into 3 columns Cprefix , Cdelim , Csuffix , we can represent column A as their con-

catenation. Since Cprefix has repeated values, we can represent it more compactly as the

18

4.1 Expression language

key value

0 "GSA"
1 "HHS"
2 "TREAS"

dictAP

key value

0 "GENERAL SERVICES ADMINISTRATION"
1 "HEALTH AND HUMAN SERVICES"
2 "TREASURY"

dictBP

Table 4.3: Whitebox representation example: metadata

mapping of column P—containing dictionary keys—and the dictionary dictAP—presented

in Table 4.3. We can represent Cdelim through the const operator since all its values

are equal to ’_’. Csuffix contains numbers stored in strings. We can store these values

more compactly as numbers, by changing the column datatype. Therefore, we represent

C(suffix) based on the numeric column Q, through the format operator, with the format

string "%d". We move our attention to column B and observe that it is correlated with

column Cprefix—and implicitly also to column P . We can therefore represent B as the

mapping of column P and the dictionary dictBP—presented in Table 4.3. In the end, we

store only the physical columns P and Q and the metadata: dictAP , dictBP and the con-

stant string "_". The original values on the logical columns A and B can be reconstructed

by evaluating the expressions in Equation 4.2.

So far, we described 4 column representation types and their associated operators:

concat, format, map and const. The whitebox compression model does not limit itself to

these representation types. It is a generic model and supports any type of column operators

(e.g. mathematical operators like addition or multiplication). A practical example is the

whitebox version of the Frame of Reference compression method: const(reference) +Cdiff ,

where + is the numeric addition/sum operator, reference is the reference value and Cdiff is

the physical column containing the differences between the original values and reference.

The purpose of whitebox compression is to represent data more compactly through el-

ementary operator expressions similar to the ones presented above. However, there are

a multitude of different possible representations of the same logical columns, each one

giving a different result. We will describe the optimization problem of finding the best

representation for a set of columns in 5.2.1 Optimization problem.

These operator expressions create more compact representations of logical columns, ex-

ploiting the underlying compression opportunities in the data. We showed how we can re-

move redundancy from data by representing columns as functions of other columns through

the map operator and how we can store numeric values in more suitable datatypes through

19

4. COMPRESSION MODEL

the format operator. We are able to decompose string columns into subcolumns with val-

ues from different distributions, thus enabling independent representations. Finally, the

key factor of the whitebox model is that it allows recursive representation of columns,

ultimately leading to improved compression ratios.

4.2 Expression tree

The operators presented so far are useful for describing the data representation and for

transforming the physical data into its original logical format. We call this process decom-

pression. In practice, we need to transform the logical data into its physical format first—

compression. The compression process requires a different expression, one that represents

the physical columns as functions of the logical columns, through the inverse operators of

the ones presented until now. Table 4.4 presents the compression operators types.

Transformation Operator

Split a column into multiple columns split : C → C × C × [...] split(c) = ca, cb, [...]
Change datatype of a column cast : C ×M → C cast(c,mdatatype) = ca
Direct mapping of another column map : C ×M → C map(c,mmap) = ca
Consume a column (constant/correlation) consume : C ×M → ∅ consume(c,m) = ∅

Table 4.4: Compression operator types

All these operator types and their practical implementations will be discussed in detail

in 5.1 Pattern detection. For now, we are interested in their definition. We notice how the

formal definition of the compression operator is different from the one of the compression

operators:

o : C × [M]→ [C × C × ...] (4.3)

The compression operators take as input a single column and compression metadata

information and output 0 or more columns. Because of the multiple column output, repre-

senting physical columns as composite functions of logical columns is not straightforward.

Therefore, we introduce the concept of expression trees, as an alternative representation

instead of the nested operator expressions.

Expression trees are tree-like structures with 2 types of nodes: column nodes and opera-

tor nodes. We also use the term expression node to refer to the operator nodes—they are

interchangeable. An expression tree is composed of alternating levels of column and oper-

ator nodes. Root nodes are always column nodes. Leaf nodes can be either column nodes

or operator nodes—in the case of operators that do not output any column. An operator

20

4.2 Expression tree

node in an expression tree is the equivalent of and operator in an operator expression: it

has input columns—connected through incoming edges—and output columns—connected

through outgoing edges. Expression trees are used in the compression and decompres-

sion processes as more practical alternatives to the operator expressions. To better un-

derstand the similarities between the two, we created the equivalent expression tree of

the operator expressions for columns A and B in Equation 4.2. Recall the expressions:

A = concat(map(P, dictAP), const("_"), format(Q, "%d")) and B = map(P, dictBP). The

equivalent expression tree is presented in Figure 4.1.

dictAP

const

"%d""_"

concat

map format

AsuffixAdelimAprefix

A

P Q

map

B

dictBP

logical
columns

physical
columns

operator nodes
&

internal columns

Figure 4.1: Expression tree representation

The first thing to notice is that the expression tree is not actually a tree, but a directed

acyclic graph (DAG) with 2 root nodes. However, we chose to stick to the term expression

tree instead of graph, since it is more intuitive. In this case the graph is connected, but

in other cases it can have multiple connected components. For example, imagine that in

our example we had an additional logical column C that is represented as a function of a

physical column S, without any connection with the columns or operators used to represent

columns A and B. Then, our graph will have 2 connected components.

Besides the graph-like structure, the expression tree is an equivalent representation of

the operator expressions. We notice the similarities between the operator nodes and the

operators in the nested expressions and the alternating levels of columns and operators. A

noticeable difference is the additional columns Aprefix , Adelim and Asuffix . These are non-

materialized internal columns that make the recursive representation possible. In terms

21

4. COMPRESSION MODEL

of representation type, this is a decompression tree, since the root nodes are the physical

columns P and Q and the expression nodes are decompression operators. The compression

tree will have the same structure, only that the root nodes will be the logical columns A

and B and the expression nodes will be compression operators—the inverse functions of

the decompression operators. The metadata will also differ. The compression tree can be

derived from the decompression tree and vice versa, by using the inverse operators and

transforming the metadata where it is necessary.

There is the case that different subsets of the values on a column come from different

distributions and cannot be represented through the same expression. E.g. a string column

where odd rows contain the same constant value and even rows are numbers. These situ-

ations are common in real data, as we have seen in the Public BI benchmark, where there

are not many columns for which a single representation perfectly fits all the values. One

option to accommodate these cases is to allow a single column to have multiple representa-

tions. The representation of the column is then the union of its multiple representations. In

terms of decompression trees, the column will have multiple incoming edges, each one from

a different operator. These multi-representation structures need to be explicitly handled in

the expression tree evaluation process (described in 4.4 Compression and decompression).

The second option of handling these cases is through recursive representation of exception

columns, which is discussed in 4.3 Exception handling.

4.3 Exception handling

While analyzing the Public BI benchmark in search for patterns and whitebox compression

opportunities we noticed that columns where all values perfectly fit the same pattern/rep-

resentation are not very common. Instead there is a smaller or larger subset of values

that do not fit the dominant pattern of the column. Let us take for example the data in

Table 4.2. Image that a few values on column A did not have the prefix-delim-suffix

structure and instead they were just arbitrary strings. Then, the representation in Fig-

ure 4.1 could not be applied on the entire column. We call these values that do not match

the representation: exceptions. In the whitebox compression model exceptions are stored

on separate exception columns. These are nullable columns that contain null on positions

where the value was not an exception and the original values otherwise. Conversely, the

non-exception columns are also nullable and contain null on the positions of exceptions.

We defined 2 ways of handling exceptions: 1) through the multi-representation approach

mentioned in 4.1 Expression language; 2) through recursive representation of exception

22

4.3 Exception handling

columns. The first option implies having an operator expression for each subset of values

that requires a separate representation. The second option implies choosing a single repre-

sentation, storing exceptions on a separate exception column and then recursively applying

the same process on the exceptions. The two options are equivalent from the physical data

perspective. Only the shape of the tree differs: flat and wide trees in the first case and

deeper trees in the second case. An additional difference between the two options is the

number of exception columns: the first option requires at most one exception column for

every logical column (to store values that do not fit any pattern), while the second option

implies having a separate exception column for each operator node in the expression tree.

The two approaches are illustrated in Figure 4.2.

A

const

Aexception

format

"%d"

Anumeric

vconst

(a) Multi-representation

A

Xformat

format

"%d"

Anumeric

Xconst

constvconst

(b) Recursive exception repre-
sentation

Figure 4.2: Representation options & exception handling

Figure 4.2 shows the 2 equivalent representations of a string column A, which has 2

major subsets of values: one containing numeric values and the other one a constant

value. The figure on the left shows the multi-representation approach: the 2 operators

are on the same level of the tree and the exceptions—i.e. the values that do not fit any

of the 2 representations—are stored separately in the Aexception column. Anumeric and

Aexception are both physical columns. The figure on the right shows the recursive exception

representation: the subset of numeric values are represented through the format operator

and the rest are rejected to the exception column Xformat . Xformat now contains the subset

23

4. COMPRESSION MODEL

of constant values, and is represented through the const operator. The remaining values

which are not constant are stored in the Xconst exception column. The physical columns

in this case are Anumeric and Xconst , while Aformat is just an intermediate non-materialized

exception column. The 2 representations are equivalent in terms of the physical data

structure: the numeric values are stored in Anumeric and the exceptions—values that are

neither numeric nor constant—are stored in the Aexception respectively Xconst column.

In our implementation we used a combination of the 2 approaches: select the dominant

patterns in the data and represent each column through multi-representation expressions

and then store the rest of the values—which do not fit the representations—in exception

columns. If there are more opportunities left in the exceptions, recursive representation of

the exception columns is implicitly performed by the compression learning algorithm, since

they are treated as normal columns.

4.4 Compression and decompression

The evaluation of a compression tree on a set of logical columns—i.e. compression—means

applying the operators on the logical values in order to generate the physical values that

will be stored in the physical columns. Conversely, the evaluation of a decompression tree

on a set of physical columns—i.e. decompression—is the process of applying the operators

on the physical values to obtain the original data. The 2 process are similar and we will

further discuss only decompression.

Given a table with multiple logical columns, its expression tree (graph) will have 1 or

more connected components. Each component can be evaluated independently from the

other components. The decompression process starts from the root nodes and evaluates

the operators on the path to the target logical/physical column, in topological order. In the

case of decompression, exceptions are handled by checking for null values on the exception

column. If the value at a given position on the exception column is not null then it was

an exception, otherwise the operator needs to be evaluated. A special case is when a

logical data value is null and also an exception. For this case we use a bitmap indicating

which values were null in the first place. In the case of compression, the operators are

responsible for deciding which values are exceptions and which are not: if an operator

throws an exception then the value is stored on the exception column. The compression

and decompression processes are similar for the multi-representation structures defined in

the previous sections. For compression, the decision upon which representation fits a given

value is determined by the (first) operator that does not raise an exception. If all operators

24

4.4 Compression and decompression

raise an exception then the value is stored on the exception column. For decompression,

the physical columns that do not contain null values indicate the representation of each

value. This process is similar to the SQL COALESCE function (21), which returns the first

non-null value in a list of expressions.

The process of evaluating expression trees in topological order is suitable for vectorized

execution (22) and SIMD instructions since the elementary operators can be evaluated

in the same order for blocks of data, generating intermediate results which fit in the

cache. Alternatively, JIT compilation (22) can be used to generate compiled code for each

component of the expression tree during compression time, which is then executed for each

query. However, the scope of this thesis does not cover fast evaluation of expression trees.

We leave this topic for future work.

25

4. COMPRESSION MODEL

26

5

Automatic compression learning

This chapter presents our approach for automatically learning the best representation of

a set of columns. We divided this problem in two parts: 1) automatically identifying

whitebox representation opportunities in data; 2) automatically building a compression

tree that minimizes the physical size of the data. They are described in the following

sections.

5.1 Pattern detection

We use the term pattern detection to refer to the process of identifying patterns in the data

and evaluating its whitebox representation potential. We introduce the concept of pattern

detector—a modular component in a generic compression learning architecture. This sec-

tion presents the generic interface of a pattern detector and 5 specialized implementations

of it.

5.1.1 Generic pattern detector

The purpose of a generic pattern detector is to serve as an interface in the pattern detection

and compression learning processes. Given a sample of data and its schema, an instance

of a generic pattern detector searches for the presence of the pattern it is specialized in.

For each column that matches the pattern, it outputs metrics and metadata that will be

further used in the learning phase and during compression. This generic design allows new

pattern detectors to be easily tested and integrated into the system without modifying

other parts of it (e.g. the learning or compression processes). This section presents the

characteristics of the generic pattern detector interface, while specialized implementations

of it are described in the next sections.

27

5. AUTOMATIC COMPRESSION LEARNING

The pattern detection process works in 3 phases: Phase-1: initialization—initializes the

pattern detector and creates the data structures that will be used in the next phases;

Phase-2: scanning—scans the sample of data and gathers information and metrics about

values in the sample. Phase-3: evaluation—aggregates the information gathered in the

scanning phase and produces an evaluation result.

Parameters. A pattern detector takes as input the following parameters:

a) columns: id, name and datatype for each column

b) compression tree: the compression tree built so far. Used in the select_column method

c) detection log : history of the pattern detection process. Contains information about

which pattern detectors were evaluated on each column and what was the result. Used in

the select_column method.

Although most pattern detectors work on individual columns, some may work on multi-

ple columns (e.g. Column correlation). For this reason we designed the generic pattern

detector to search for patterns at the table level instead of individual columns.

Methods. A pattern detector must implement the following methods:

a) select_column: called in the initialization phase—determines whether a given column

will be processed by the pattern detector. The decision process is based on: 1) data type

(e.g. string-specific patterns do not apply to numeric columns); 2) path in the compression

tree that led to the creation of the column (e.g. Column correlation only applies to columns

that are output of a Dictionary compression node); 3) history of the pattern detection

process (e.g. do not evaluate a pattern detector on a column if it was already evaluated in

a previous step). Column selection rules are listed in the section of each pattern detector.

b) feed_tuple: repeatedly called in the scanning phase—processes a tuple. Data is fed to

the pattern detector one tuple at a time. This method extracts information from the tuple

that will be later used in the evaluate method.

c) evaluate: called in the evaluation phase—aggregates the information extracted from the

tuples fed so far and outputs the outcome of applying the pattern to the columns. See

output details below.

Output. The result of evaluating a pattern detector on a sample of data is a list of

(expression node, evaluation result) tuples.

a) expression node: describes how one or more input columns are transformed into one or

more output columns by applying an operator (see detailed description in 4 Compression

model). An important part here is the operator metadata that will be used to evaluate

the expression node in the (de)compression process (e.g. the operator metadata for the

Dictionary pattern detector is the dictionary/map object).

28

5.1 Pattern detection

b) evaluation result : contains information used in the learning process and describes how

well the input columns of the expression node match the pattern. It contains the fol-

lowing information: 1) coverage (percentage of rows that the pattern applies to; i.e.

1 − exception_ratio); 2) row_mask (bitmap indicating the rows that the pattern ap-

plies to); 3) other pattern-specific evaluation results (e.g. correlation coefficient for column

correlation).

Each (expression node, evaluation result) tuple represents a possibility of applying the

pattern on a subset of the columns. The same column may be present in multiple tuples

since there may be more than one option of applying the pattern to it (e.g. the Character

set split pattern detector can split a column in 2 ways, because there are 2 dominant

character set patterns on the column; see 5.1.4 Character set split for more details). The

row_masks for such a column may either be mutually exclusive or partially overlap. A

pattern detector only outputs results for columns that match the pattern and are likely to

produce good results in the compression process according to a pattern-specific estimator

(e.g. Dictionary pattern detector only outputs tuples for columns that are dictionary

compressible; see 5.1.6 Dictionary for more details).

Operators. Each pattern detector provides a compression operator and a decompres-

sion operator. They are used in the compression and respectively decompression phase to

evaluate the nodes in the expression trees. The generic operator is described in 4 Compres-

sion model while the pattern-specific implementations can be found in the corresponding

section of each pattern detector.

5.1.2 Constant

The Constant pattern detector identifies columns that have (mostly) a single value. We

refer to these columns as being constant. An additional parameter is provided in the

initialization: constant_ratiomin which indicates the minimum ratio of the constant value,

based on which a column is considered constant or not. This pattern detector works on

all data types, therefore the select_column method always returns True. This is a single-

column pattern detector and columns are evaluated independently. The next paragraphs

describe the pattern detection process for a single column.

The scanning phase is responsible for building the histogram of values on the column.

The evaluation phase selects the most common value C as the constant candidate—the

value with the highest number of occurrences. The constant_ratio of the column repre-

29

5. AUTOMATIC COMPRESSION LEARNING

sents the evaluation metric and is computed as follows:

constant_ratio =
countC

countnotnull
(5.1)

where:

countC = number of occurrences of the constant candidate C

countnotnull = number of non-null values in the column

The column is considered to fit the Constant pattern if the constant_ratio is greater

or equal to constant_ratiomin. All values that are not equal to C are considered excep-

tions. The evaluation result is composed of the coverage and row_mask—as defined in

5.1.1 Generic pattern detector—and the constant_ratio as an additional pattern-specific

result. The metadata needed for compression and decompression is the constant C.

The expression nodes for the Constant pattern are illustrated in Figure 5.1.

constc

column

C (constant)

(a) compression

constd

column

C (constant)

(b) decompression

Figure 5.1: Constant expression nodes

The compression node takes as input the constant column and does not generate any

output column. Similarly, the decompression node does not require any column to produce

the constant column.

The compression and decompression operators are constc and constd. The metadata

they require is the constant C. constc takes as input a value v and checks whether it is

equal to C. If True, then it returns nothing. Else, it raises an OperatorException indicating

that v is an exception and should be added to the exception column. constd does not take

any input value and returns the constant C.

The benefit of the Constant representation scheme is clear: we avoid storing a column

on disk. Dictionary encoding could also be used to compress constant columns, however it

still stores a column with dictionary ids as opposed to no column at all. A more generic

alternative representation for constant columns would be a whitebox version of RLE that

supports any data types.

30

5.1 Pattern detection

5.1.3 Numeric strings

This pattern detector searches for numbers stored in string columns. Once found, it changes

the column data type to a numeric one, while also preserving the string format of the num-

bers in additional columns. The purpose is to optimize the data type and create opportu-

nities for numeric compression schemes. An additional purpose is to enable the push-down

of numeric range predicates in data scans during query evaluation (the implementation

and evaluation of all execution-related matters was kept out of scope for this thesis). The

select_column method only returns True for VARCHAR columns. This is a single-column

pattern detector and columns are evaluated independently. The next paragraphs describe

the pattern detection process for a single column.

The scanning phase checks for each value (vstring) whether it can be parsed as a number

(vnumeric). If True, it extracts the format information and checks whether the original

string value can be reconstructed. The evaluation phase chooses an appropriate numeric

data type (e.g. DECIMAL(p,s)) based on the type and range of the values selected in

the scanning phase. More details about the format preserving and data type inference

processes are presented in the following paragraphs.

Format preserving. While analyzing the Public BI benchmark we noticed that the

majority of string values vstring with a different format than their numeric representation

vnumeric contain leading or trailing characters (e.g. zeros, whitespace). Therefore, we based

our format preserving technique on 3 components—prefix, vnumeric, suffix—as follows:

Step-1: cast vstring to number to obtain vnumeric

Step-2: check whether abs(vnumeric) is a substring of vstring. If False, the format cannot

be preserved. Otherwise, vstring has the following format: ${prefix}abs(vnumeric)${suffix},

where prefix and suffix can be any strings, including the empty string.

Step-3: extract the prefix and suffix and store them as format information together with

vnumeric.

vstring can be now reconstructed by concatenating the prefix, vnumeric and suffix values.

Table 5.1 illustrates a few examples that the format preserving technique covers ("_"

characters represent spaces).

We currently do not yet support—and consider exceptions—the following: 1) numbers in

scientific notation; 2) other notations or abbreviations (e.g. .12 instead of 0.12, 1_000_000

instead of 1000000, etc.).

Data type inference. The purpose of this pattern detector is to store the numeric

string values in a numeric column, which requires a numeric data type. We chose two data

31

5. AUTOMATIC COMPRESSION LEARNING

vstring vnumeric prefix abs(vnumeric) suffix description

"1.23" 1.23 "" 1.23 "" no format information
"1.2300" 1.23 "" 1.23 "00" trailing zeros
"000.1" 0.1 "00" 0.1 "" leading zeros
"+10" 10 "+" 10 "" + sign
"-10" -10 "-" 10 "" negative number
"-000.5" -0.5 "-00" 0.5 "" negative number with leading zeros
"__54\t\t" 54 "__" 54 "\t\t" leading and trailing whitespace

Table 5.1: Numeric string format preserving examples

types that can be used to represent all numbers: DECIMAL(p,s) and DOUBLE. During the

scanning phase all vnumeric values are interpreted as decimals. The maximum number of

digits before and after the decimal point—integerdmax and fractionaldmax—are determined.

In the evaluation phase, the parameters p (precision) and s (scale) of the DECIMAL(p,s)

data type are computed as follows:

p = integerdmax + fractionaldmax

s = fractionaldmax
(5.2)

The final datatype of the numeric column is determined as follows:

datatype =

{
DECIMAL(p,s) if p ≤ pmax

DOUBLE else (5.3)

where:

pmax = maximum decimal precision supported by the system

The maximum precision value is configurable and necessary as database systems enforce

it—MonetDB: pmax = 38 (23), VectorWise: pmax = 39 (24).

A string value vstring is considered an exception if any of the following conditions is not

satisfied:

1) vstring cannot be parsed as a numeric value vnumeric

2) vstring cannot be reconstructed from its numeric value vnumeric and format information

3) vnumeric exceeds the numeric data type selected in the evaluation phase

There is no strict filtering condition that determines whether a column fits this pattern

or not. The pattern detector outputs a result for all columns with coverage grater than

0, leaving the responsibility of choosing which columns to compress with this scheme to

the compression learning algorithm. The evaluation result is composed of the coverage

32

5.1 Pattern detection

and row_mask—as defined in 5.1.1 Generic pattern detector. No additional metadata is

necessary for the compression and decompression processes.

The expression nodes for the Numeric strings pattern are illustrated in the Figure 5.2.

castnumeric

C1_number
NUMBER

C1
VARCHAR

C1_suffix
VARCHAR

C1_prefix
VARCHAR

(a) compression

format

C1
VARCHAR

C1_number
NUMBER

C1_suffix
VARCHAR

C1_prefix
VARCHAR

(b) decompression

Figure 5.2: Numeric strings expression nodes

The compression node takes as input the string column and generates three output

columns: one for storing the numeric values and the other two for storing the format

information as prefix and suffix. The decompression node takes as input the numeric,

prefix and suffix columns and reconstructs the original string column.

The compression operator castnumeric takes as input vstring and tries to represent it as

the 3 components—prefix, vnumeric and suffix—as described above. It then checks whether

vnumeric fits in the inferred data type of the numeric column. If everything succeeds it

returns the 3 values, else it raises an OperatorException indicating that vstring should be

added to the exception column. The decompression operator concat reconstructs vstring

by concatenating prefix, abs(vnumeric) and suffix. The two operators do not require any

metadata, except for the numeric column data type.

There are three main benefits brought by this representation scheme: 1) using an op-

timal numeric data type instead of VARCHAR, leading to smaller size on disk; 2) creating

opportunities to further compress the numeric column with numeric compression schemes;

3) creating push-down opportunities for numeric predicates (e.g. for the query SELECT *

FROM t WHERE (CAST c AS INT) < 42 it allows push-down on the physical numeric col-

umn, even if c is VARCHAR; this example may look contrived, but in the case of dates stored

as strings it is very common). Moreover, we noticed that in practice the prefix and suffix

columns get further compressed as Constant or with Dictionary encoding.

33

5. AUTOMATIC COMPRESSION LEARNING

5.1.4 Character set split

The Character set split pattern detector searches for string columns where all values have

the same structure in terms of character set sequences. A few examples are listed in

Table 5.2 ("_" characters represent spaces).

customer account transaction

customer0001 HHSI2452____ {9AE2B97B-69D0-4A5E}
customer0002 TIRNO1017___ {891F7B57-80C4-4BAA}
customer0003 TIRNO168823_ {7C652BE6-947F-4AFF}
...
customer4735 HHSI3391____ {41AA2723-BA9D-465C}
customer4736 TIRNO41163__ {88635130-6292-4C04}

Table 5.2: Character set split examples

The customer column contains values that start with the constant customer (charset:

letters) and end with a number (charset: digits). All values on the account column have

the following structure: letters+digits+whitespace. The transaction column contains 3

hex numbers (charset: hex digits) separated by dashes and enclosed in brackets (charset:

delimiters).

The purpose of the Character set split pattern detector is to split these columns into

multiple columns based on the structure given by the character sets. For example, the

customer column is split into 2 columns: one containing the "customer" constant value

and one containing the numbers at the end. The transaction column is split into 7 columns:

1 for the open bracket, 1 for the closed bracket, 2 for the dashes and 3 columns for the hex

numbers.

The pattern detector receives two additional parameters: 1) coveragemin—used in the

evaluation phase to filter results; 2) a list of character sets (e.g. [a-zA-Z], [0-9a-fA-F],

[_-{}()], etc.). The character sets can contain any characters, but they must be disjoint

sets. An additional character set—the default charset—is implicitly defined to represent

all the other characters that are not in the sets provided as parameter. Multiple instances

of this pattern detector can be used at the same time with different lists of character sets,

leaving the learning algorithm to choose the one that provided the best results. This pattern

detector works only with VARCHAR columns. It is a single-column pattern detector and

columns are evaluated independently. The next paragraphs describe the pattern detection

process for a single column.

34

5.1 Pattern detection

We define the get_charset_pattern function as follows: input : a string value (vs) and a

list of character sets (charsetlist); output : the charsetpattern of vs. The charsetpattern

is a string that encodes the structure of vs based on the provided charsetlist. The

get_charset_pattern function creates the charsetpattern by replacing groups of consecu-

tive characters from the same charset with a placeholder. For example, a group of 3 digits

will be replaced by the placeholder D. The result of applying the get_charset_pattern

function on the columns in Table 5.2 is shown in Table 5.3 ("?" is the default placeholder).

column customer account transaction
charsetlist [a-zA-Z], [0-9] [a-zA-Z],[0-9] [0-9a-fA-F]
placeholders L, D, ? L, D, ? H, ?
vs customer0001 HHSI2452____ {9AE2B97B-69D0-4A5E}
charsetpattern LD LD? ?H?H?H?

Table 5.3: Charset structure examples

In the examples in Table 5.2 the values on each column give the same charsetpattern

because they have the same structure. However, in practice this is not often the case.

While analyzing the Public BI benchmark we distinguished the following cases, which

depend both on the data values and the charsetlist:

1) no structure: many different charsetpattern values, with uniform distribution

2) fixed structure: a single charsetpattern

3) fixed structure with some exceptions: a single dominant charsetpattern
4) more than 1 fixed structure: a few (1-3) dominant charsetpattern values

Among these cases, we are interested in the last 3, the first one being filtered in the

evaluation phase.

The scanning phase applies the get_charset_pattern function to all values and builds

the histogram of the resulting charsetpattern values. The evaluation phase treats each

charsetpattern as an independent result as follows: 1) computes the coverage as the num-

ber of occurrences over the total number of non-null values; 2) computes the row_mask by

marking the rows where the charsetpattern is present; 3) computes an additional evaluation

metric: average percentage of chars that fit in one of the charsets (100% - percentage of

chars in the default charset). It then filters and returns the results that have a coverage

greater than coveragemin, leaving the learning algorithm to decide which result or combi-

nation of multiple results is the best. The metadata necessary for compression is composed

of the charsetlist and the charsetpattern. The latter is different for each result. Decom-

pression does not require any metadata.

35

5. AUTOMATIC COMPRESSION LEARNING

splitcharset

C1
VARCHAR

C1_1
VARCHAR

C1_n
VARCHAR

C1_2
VARCHAR ...

charset list
charset pattern

(a) compression

concat

C1
VARCHAR

C1_1
VARCHAR

C1_n
VARCHAR

C1_2
VARCHAR ...

(b) decompression

Figure 5.3: Character set split expression nodes

The expression nodes for the Character set split pattern are illustrated in Figure 5.3.

The compression node takes as input the string column and the compression metadata

and outputs n VARCHAR columns, where n = len(charsetpattern)—one column for each

character group. The decompression node takes as input the n columns and concatenates

them to reconstruct the original input column.

The compression operator splitcharset takes as input the string value vs and the compres-

sion metadata: charsetlist and charsetpattern. It applies the get_charset_pattern function

on vs to obtain charsetpattern_v. It then compares charsetpattern_v with charsetpattern

to see if vs has the correct structure. If they are not equal, it raises an OperatorException,

indicating that vs is an exception. Otherwise, it splits vs into n substrings—each one

corresponding to a charset group—and returns them. The decompression operator concat

receives as input n substrings and concatenates them to reconstruct the original value vs.

This representation scheme does not bring any compression benefit by itself. Instead,

it creates compression opportunities by splitting columns into sub-columns that can be

recursively compressed with other techniques. E.g. the columns in Table 5.2 can be com-

pressed as follows:

1) the customer column is first split into 2 columns: letters and digits. Then the letter col-

umn is represented as a Constant and the digits column is represented through a Numeric

strings node and further compressed with numeric compression schemes (e.g. DELTA).

2) the account column is split into 3 columns: letters, digits, spaces. The letters column

gets compressed with Dictionary encoding. The digits column is compressed similarly to

the one in the customer column. The spaces column may be compressed through a cus-

tom representation scheme that identifies values with a single repeated character and only

stores their number, or, alternatively, through Dictionary encoding, since the number of

different space padding sequences is most likely small.

36

5.1 Pattern detection

3) the transaction column is split into 4 delimiter columns and 3 hex columns. All de-

limiter columns have only 1 constant character and are compressed as Constant. The hex

columns can be represented through an implementation of Numeric strings that supports

hexadecimal numbers, leading to 3 numeric columns that can benefit from numeric com-

pression schemes.

In all three cases the Character set split representation transforms an uncompressible

VARCHAR column into multiple compressed physical columns, significantly reducing the

disk space required to store the data.

5.1.5 Column correlation

The purpose of the Column correlation pattern detector is to find correlations between

columns and create mappings that can be used to represent a column as a function of

another. The technique we describe is generic and can be applied to any data type.

This pattern detector receives an additional parameter corr_coef min, which indicates the

minimum degree of correlation between two columns and is used to filter results in the

evaluation step. This is a multi-column pattern detector—it needs to analyze multiple

columns at the same time.

Correlation types. From a statistical point of view, we can distinguish 3 types of

correlations: between continuous, discrete and categorical variables. The first 2 apply

to numeric values and can measure numerical similarities (e.g. sales increased as the

marketing budget increased). The latter is less restrictive and works with any type of

values. Categorical variables contain a finite number of values (e.g. payment method or

customer satisfaction levels: low, high, very high, etc.) These can be further categorized

into ordinal and nominal variables. Ordinal values have a natural ordering (e.g. tiny, small,

large, huge) while nominal values have no ordering (e.g. names or colors).

While analyzing the Public BI benchmark we noticed that most correlations are be-

tween nominal values. Table 5.4 shows a representative example from the CommonGovern-

ment_1 dataset.

The table contains a name and its abbreviation repeated over multiple rows. The 2

columns are perfectly correlated because any value on one of the columns always has the

same corresponding value on the other column (e.g. TREAS on the short_name column

always determines DEPARTMENT OF TREASURY on the ag_name column).

Base on this observation, we decided to limit the scope of the Column correlation pattern

detector to nominal categorical variables and interpret the values on all columns as nominal

values. We leave the other correlation types as future work.

37

5. AUTOMATIC COMPRESSION LEARNING

short_name ag_name

GSA GENERAL SERVICES ADMINISTRATION
GSA GENERAL SERVICES ADMINISTRATION
HHS DEPARTMENT OF HEALTH AND HUMAN SERVICES
TREAS DEPARTMENT OF TREASURY
TREAS DEPARTMENT OF TREASURY
HHS DEPARTMENT OF HEALTH AND HUMAN SERVICES
GSA GENERAL SERVICES ADMINISTRATION

Table 5.4: CommonGovernment_1 nominal correlation

Correlation coefficient & mapping. The Column correlation pattern detection pro-

cess works in 3 phases: 1) compute the correlation coefficient (corr_coef) for all pairs of

2 columns (csource, ctarget); 2) select the pairs with corr_coef higher than corr_coef min;

3) create the correlation mapping (mapobj) that can be used to determine ctarget based on

csource.

The measure of association between 2 nominal categorical variables can be determined

through existing statistical methods like Cramer’s V (25) or the Uncertainty coefficient

Theil’s U (26). Both methods are suitable for finding correlations between columns, but

they only provide the measure of how well the columns are correlated as a number between

0 and 1—the correlation coefficient corr_coef . We still need the correlation mapping to

be able to represent one column as a function of another.

We define the correlation mapping mapobj between 2 columns csource and ctarget as a

dictionary with (vsource, vtarget) key-value pairs, where vsource are values from csource and

vtarget are values from ctarget. Formally, the mapping is a total function f : S → T , where an

element from T can be mapped to 0, 1 or multiple elements in S, as depicted in Figure 5.4.

S
T

s1

s2

s3

t1

t2

t3

t4

Figure 5.4: Mapping function

The process of creating the mapping between 2 columns csource and ctarget is depicted in

Figure 5.5.

38

5.1 Pattern detection

csource ctarget
A R
A R
A X
B Y
B T
B T
A R
C S
B T
B Z
C S
B T

(a) Data values

S

T

A

B

C

R

X

Y

T

Z

S

3
1

1
4
1

2

(b) Step-1

S

T

A

B

C

R

X

Y

T

Z

S

3

4

2

(c) Step-2

Figure 5.5: Column correlation mapping

The correlation mapping is built in 2 steps. Step-1: for every unique value in csource

build the histogram of values in ctarget it is associated with. In the example in Figure 5.5,

B is associated with T 4 times and with Y and Z one time. Step-2: for every unique value

in csource select the value in ctarget it is associated with the most (i.e. the one with the

highest number of occurrences). In the example, R is the most common value for A, T is the

most common value for B and S is the only value associated with C. These selected pairs

of values form the correlation mapping mapobj .

We consider exceptions all the values from ctarget that are not present in mapobj . The

exception_ratio is given by the total number of values on ctarget that do not respect the

correlation mapping.

We observe that two columns that have exception_ratio = 0 are perfectly correlated

(i.e. all values in ctarget can be determined from csource). Conversely, two columns with

exception_ratio = 1 are completely uncorrelated. We can define, then, an alternative

correlation coefficient: corr_coef = 1− exception_ratio. We compared it with Cramer’s

V and Theil’s U by computing the correlation coefficient for tables in the Public BI bench-

mark. Figure 5.6 shows the coefficients resulted from the compression learning process

on the YaleLanguages_1 table. Each image shows the correlation coefficients between

every pair of columns (note that these are not logical columns, but intermediate columns

resulted from the learning process—more details will follow in chapters 5 and 6). Bright

colors indicate high coefficients and dark colors low coefficients. We notice how all three

images have a similar shape/pattern: the white rectangles from the first image are also

39

5. AUTOMATIC COMPRESSION LEARNING

Figure 5.6: Correlation coefficients comparison (YaleLanguages_1)

visible in the other two and their internal shape is almost identical in the last two im-

ages. Our approach gives higher overall coefficients, but it is consistent with the other

two approaches when it comes to identifying near-perfect correlations: all pairs of columns

with correlation coefficient ≈ 1.0 are also identified by Cramer’s V and Theil’s U. Based

on these results, we decided to use our own version of computing the correlation coeffi-

cient (1 − exception_ratio) instead of the other approaches for the following reason: for

our purpose, correlation is only useful if we can represent columns as functions of other

columns through correlation mappings. These mappings will determine the exceptions,

which will, in turn, determine the size of the physical data and implicitly the compression

ratio. Therefore, the correlation coefficient, as we defined it above, gives the most accurate

estimation of how suitable two columns are for correlation representation. In this context,

Cramer’s V and Theil’s U do not bring any advantage over our approach and even if we

were to use them instead, we would still need to compute the correlation mapping. More-

over, we are only interested in highly correlated columns which are similarly identified by

all approaches (more details about the selection of column pairs based on their correla-

tion coefficient are discussed in 5.2.4.4 Correlation pattern selector and 6.2 Experimental

setup).

Coming back to the pattern detection process, the histograms—necessary for creating

the correlation mappings—are built in the scanning phase and the correlation coefficients

and mappings are computed in the evaluation phase. The compression and decompression

metadata resulted from this process is the correlation map mapobj . The pattern detector

40

5.1 Pattern detection

outputs all (csource, ctarget) pairs with corr_coef > corr_coef min, leaving the task of

choosing between the results to the learning algorithm. The evaluation result is composed

of the coverage and row_mask—as defined in 5.1.1 Generic pattern detector—and the

correlation coefficient.

The expression nodes for the Column correlation pattern are illustrated in Figure 5.7.

C_target C_source

map_obj mapc

(a) compression

mapd map_obj

C_source

C_target

(b) decompression

Figure 5.7: Column correlation expression nodes

The compression node takes as input the target column (ctarget), the source column

(csource) and the metadata (mapobj). It does not generate any output column. The de-

compression node takes as input csource and mapobj and reconstructs ctarget based on the

mapping.

The compression operator mapc takes as input a target value (vtarget), a source value

(vsource) and the metadata (mapobj) and checks whether the key-value pair (vsource, vtarget)

is present in mapobj . If true, then it does nothing—vtarget can be reconstructed based

on vsource. Otherwise, it raises an OperatorException indicating that vtarget cannot be

retrieved from the mapping and needs to be stored in the exception column. The de-

compression operator mapd takes as input vsource and mapobj and returns the value from

mapobj associated to vsource: mapobj [vsource] = vtarget.

The benefit of the Column correlation compression scheme is clear: we avoid storing a

column by representing it as a function of another column. However, this comes at the cost

of storing the mapping between the 2 columns. Thus, it is only worth using this method

when the mapping is small. The mapping size is dependent on the cardinality of the sets

of values in the 2 columns. This is similar to Dictionary encoding and therefore we can

state that Column correlation is effective only when both source and target columns are

dictionary compressible. With this new constraint, we can limit the scope of the Column

correlation pattern detector to output columns of whitebox Dictionary nodes, leading to the

41

5. AUTOMATIC COMPRESSION LEARNING

following benefits: 1) reduced detection time—less column pairs that need to be checked;

2) reduced mapping size—dictionary ids instead of string values. Due to the generic nature

of whitebox compression, this constraint can be implicitly satisfied by just adding a rule

to the select_column method of the Column correlation pattern detector and letting the

learning algorithm perform the recursive compression.

5.1.6 Dictionary

We implemented a whitebox version of Dictionary encoding to serve as a prior compression

step before Column correlation. The pattern detector receives an additional parameter

sizemax—maximum size of the dictionary. We restricted its scope to VARCHAR columns.

This is a single-column pattern detector and columns are evaluated independently. The

next paragraphs describe the pattern detection process for a single column.

Dictionary encoding only produces good results on columns that have a small number of

unique values. However, it is hard to reliably quantify this property when analyzing only a

sample of the data. Moreover, the distribution of unique values may be skewed, with only

a few values with high frequency and a long tail of low frequency values. For the purpose

of our pattern detector, we addressed this issue by enforcing a maximum dictionary size

(in bytes) and only keeping the most common values in the dictionary. This approach is

also suitable if blocks of data are compressed independently: dictionaries need to be small

as they are assigned per block. There are other (possibly better) ways of optimizing the

dictionary values and size (e.g. choosing which—and how many—values to keep in the

dictionary based on the resulting physical size of the sample: dictionary + compressed

values + exceptions). However, this is not a core aspect for our pattern detector, since we

only use it as an intermediate step required for Column correlation.

The dictionary is built as follows. The scanning phase creates the histogram of all

the values in the sample. In the evaluation step we select as many values (vs) from the

histogram—in decreasing order of their number of occurrences—such that their total size

is smaller or equal to the maximum size of the dictionary (sizemax). The dictionary is

represented as an array containing the selected values. The indices in the array represent

the dictionary ids (vid) used to encode the values (vs). The dictionary represents the

compression and decompression metadata. All the values that are not present in the

dictionary are considered exceptions.

The pattern detector only outputs results for columns that are dictionary compressible.

This decision is taken based on the estimated size of the input column, output columns

42

5.1 Pattern detection

and metadata:

sizein > sizeout + sizeex + sizemetadata (5.4)

where:

sizein = estimated size of the input column

sizeout = estimated size of the dictionary ids column

sizeex = estimated size of the exceptions column

sizemetadata = size of the dictionary

If the above condition is True, the input column is considered dictionary compressible

and the pattern detector outputs a result for it. More details about how these sizes are

computed are given in 5.2.2.3 Dictionary estimator. The evaluation result is composed of

the coverage and row_mask—as defined in 5.1.1 Generic pattern detector.

The expression nodes for the Dictionary pattern are illustrated in Figure 5.8.

mapc

C1_1
DICT IDs

C1
VARCHAR

map_obj

(a) compression

mapd

C1
VARCHAR

C1_1
DICT IDs

map_obj

(b) decompression

Figure 5.8: Dictionary expression nodes

The compression node takes as input the string column and the dictionary map_obj. It

outputs a column containing dictionary ids. The decompression node takes as input the

dictionary ids column and the dictionary and reconstructs the original input column.

The compression operator mapc takes as input the string value vs and the dictionary

map_obj and outputs a dictionary id: the index of vs in the array map_obj. As an

optimization for the compression phase, map_obj is represented as an actual dictionary

with (vs, index_of (vs)) key-value pairs instead of an array. If vs is not found in map_obj

an OperatorException is raised, indicating that vs is an exception and should be stored in

the exception column. The decompression operator mapd takes as input a dictionary id

vid (i.e. an index in the map_obj array) and returns the original value vs (map_obj[vid]).

43

5. AUTOMATIC COMPRESSION LEARNING

5.2 Compression learning process

We define compression learning as the process of learning the best representation of a

dataset in terms of storage size. This section describes: 1) the general optimization problem

of learning the best compression tree based on a sample of data; 2) an exhaustive learning

algorithm and its cost model; 3) a greedy algorithm and the heuristics it uses for decision

making; 4) an architecture for combining multiple learning algorithms.

5.2.1 Optimization problem

We can define the learning process as follows: given a sample from a dataset, its schema

and a set of pattern detectors as input, output a compression tree that, when applied to

the dataset, produces a compressed representation of it of minimum disk size.

The schema is a list of columns and their data types. The pattern detectors are im-

plementations of the Generic pattern detector—receives the columns as input, evaluates

the sample and returns a list of (expression node, evaluation result) tuples. Adding an

expression node to the compression tree means: 1) altering the schema by deleting exist-

ing columns and creating new ones; 2) altering the sample by applying the compression

operator to the input columns and generating new data. The learning process can go on

by recursively feeding the new schema and sample data to the pattern detectors, resulting

in new (expression node, evaluation result) tuples. This recursive process stops when no

pattern detector outputs any result anymore—no pattern matches on the current schema

and data.

Each decision of adding or not adding an expression node to the compression tree gen-

erates a new solution. This leads to a total number of 2n possible solutions (different

compression trees), where n is the total number of expression nodes generated by the re-

cursive process (n binary decisions: 1 means adding a node and 0 not adding it). The total

number of expression nodes (n) depends on how well pattern detectors match on the initial

columns and the newly generated ones. This is entirely dependent on the characteristics

of the data and the patterns that were evaluated on it. In the worst case, all pattern

detectors will match on any column, leading to the following expression for n:

n = cin × (p× avg(np)× b)h (5.5)

b = avg(cout) (5.6)

44

5.2 Compression learning process

where:

n = total number of expression nodes

cin = number of input columns

p = number of pattern detectors

np = number of expression nodes returned by a pattern detector

b = branching factor of the compression tree

h = height of the compression tree

cout = number of output columns of an expression node

The score of each solution is given by the size of the compressed data that resulted after

applying the compression tree to the dataset. The goal of the learning process is to choose

the one that gives the smallest size.

The computational effort needed for each individual expression node consists of: 1)

applying the compression operator on its input columns to generate the new data (feeding

each tuple in the sample data to the operator); 2) evaluating the pattern detectors on

all the new columns (feeding each tuple in the sample data to each pattern detector).

Moreover, some pattern detectors may need to evaluate combinations of columns instead

of individual columns, which requires all the existing columns to be reevaluated for every

newly generated column (e.g. Column correlation evaluates all pairs of 2 columns to

determine the correlation coefficient between them).

5.2.2 Cost model: compression estimators

The compression learning process is an optimization problem (5.2.1) for finding the best

compression tree in terms of disk size of the resulting physical columns. Solving the

optimization problem requires a way to compare its solutions, i.e. estimating the final size

of the compressed data. For this purpose we created a cost model which relies on leaf

compression schemes size estimators (DICT, RLE, FOR, no compression) to predict the

size of a column if compressed with these methods.

Methodology. The score of a solution (compression tree) is computed through the

following methodology: 1) represent the sample data according to the compression nodes;

2) for each column of the new representation, estimate its size if it were compressed with:

DICT, RLE, FOR or not compressed at all; 3) choose the smallest size among those. The

result of this process is the smallest size of the new data representation if it were compressed

with leaf compression schemes.

45

5. AUTOMATIC COMPRESSION LEARNING

System assumptions. The size on disk of a compressed column depends on: 1) imple-

mentation of the compression method; 2) characteristics of the underlying database system.

The former is described in the next sections as part of the estimator implementations. For

the latter we defined some assumptions of the underlying system as follows:

a) data types: strings are stored with null terminator, therefore their size is given by the

number of characters + 1. For all other data types we consider the sizes used by Ingres

Vectorwise (10, 27).

b) null handling : we consider the same approach used by Vectorwise (10): do not store null

values, instead, keep track of their positions using a bitmap. This results in 1 additional

bit for every attribute (for nullable columns).

c) exception handling : we consider a whitebox approach: for each logical column store

exceptions on a separate physical nullable column. The exception column has the same

datatype as the logical column.

An additional assumption that we make about the underlying system is that it supports

block-level compression, i.e. every block of data is compressed independently. This allows

different compression schemes to be used on the same column, enabling the possibility to

exploit local data characteristics.

5.2.2.1 Generic compression estimator

A compression estimator takes as input a column and two samples of data (train and test

sample) and outputs the estimated size of the compressed column. The result can be either

the size of the compressed sample or the size extrapolated to the total size of the block or

column. The latter requires an additional parameter specifying the total number of rows

in the full data.

The estimated size has 4 components (exemplified for Dictionary encoding):

1) sizemetadata: size of the metadata (the dictionary itself)

2) sizedata: size of the compressed data (the dictionary ids)

3) sizeex: size of the exceptions (the values that are not in the dictionary)

4) sizenull: size required to keep track of the null values. Since exceptions are stored on a

separate nullable column, the nulls size is implicitly increased.

The final estimated size of the test sample is the sum of the 4 components:

sizesample = sizemetadata + sizedata + sizeex + sizenull (5.7)

46

5.2 Compression learning process

This result gives the size of the test sample only. It can be extrapolated to the full size

of the block or entire column as follows:

sizefull = sizesample ×
countfull

countsample
(5.8)

where:

countsample = total number of values in the test sample

countfull = total number of values in the full block or column

The size estimation process works in two phases:

1) training : the estimator analyzes the train sample and generates the metadata needed

for compression (e.g. Dictionary estimator generates the dictionary, Frame of Reference

estimator determines the reference value and the number of bits needed to store the dif-

ferences).

2) testing : the estimator simulates the compression of the test sample using the metadata

resulted from the training phase and outputs an estimated size.

The two-phase estimation process is used to avoid overly-optimistic results: metadata

generated based on the train sample is perfectly optimized for that sample (e.g. in FOR

all differences will fit in the number of bits chosen to represent them). Depending on the

implementation of each compression estimator, this would lead to a reduced number of

exceptions or even no exceptions at all. Therefore, the test sample is used to provide new

data for size estimation. It produces exceptions and more realistic results. This approach

simulates the compression process of real database systems, where the compression meta-

data is created based on a sample and then applied on a full block of data or even on the

entire column.

The next sections describes 4 compression estimators used in the learning process. All

computed sizes will be in bytes.

5.2.2.2 No compression estimator

The No compression estimator predicts the size of the input column stored without com-

pression. The training phase is not relevant since it does not generate any compression

metadata. The estimation is performed in the testing phase, based on the size on disk of

the column data type. The size components are computed as follows:

sizemetadata is 0, since there is no compression metadata

sizeex is 0, since there are no exceptions

47

5. AUTOMATIC COMPRESSION LEARNING

sizenull is 1 bit for every value in the sample:

sizenull =
countsample

8
(5.9)

where:

countsample = total number of values in the test sample

sizedata is given by the total size of the non-null values in the sample. It depends on the

data type of the column as follows:

sizedata =

{ ∑
v 6=null len(v) + 1 if datatype = VARCHAR

countnotnull × sizedatatype else
(5.10)

where:

countnotnull = total number of non-null values in the test sample

sizedatatype = size on disk of the column data type

5.2.2.3 Dictionary estimator

The Dictionary estimator predicts the size of the input column as compressed with Dic-

tionary encoding. Besides the two samples, it receives an additional parameter: sizemax—

maximum size of the dictionary (in bytes). It only applies to VARCHAR columns and therefore

the exception column will also be VARCHAR.

The Dictionary estimator is similar to the Dictionary pattern detector defined in 5.1.6.

It builds the dictionary and handles exceptions in the same way. Optimizing the dictionary

based on a maximum size (in bytes) also works for the estimator, since we use it to compare

different ways of compressing a column and the dominant factor here is the nature of the

data, not the optimization of the compression scheme.

Training phase. The dictionary (metadata) is built during the training in same way it

is done for the Dictionary pattern detector (5.1.6): Step-1: create the histogram of all the

values in the train sample. Step-2: select as many values from the histogram in decreasing

order of their number of occurrences such that their total size is lower or equal to the

maximum size of the dictionary (sizemax). The dictionary is stored as an array containing

the selected values. The indices in the array represent the dictionary ids used to encode

the values.

48

5.2 Compression learning process

sizemetadata is given by the total size of the values in the dictionary. Additionally, the

number of bits required to store a dictionary id is computed as follows:

bitsid = dlog2(countentries)e (5.11)

where:

countentries = number of values in the dictionary

Testing phase. The testing phase estimates the size of the compressed column by going

through each value in the test sample and checking if it is present in the dictionary. The

following variables are updated in this process: 1) countvalid: number of values that are

found in the dictionary; 2) sizeex: size of the exceptions (values that are not found in the

dictionary).

sizedata is computed as follows:

sizedata =
countvalid × bitsid

8
(5.12)

sizeex is computed by summing the size of all exceptions.

sizenull is determined by the number of resulting physical columns: one for compressed

data (dictionary ids) and one for exceptions:

sizenull =
2× countsample

8
(5.13)

where:

countsample = total number of values in the test sample

5.2.2.4 Run Length Encoding estimator

The Run Length Encoding estimator predicts the size of the input column as compressed

with RLE. The samples are constructed with consecutive ranges of values such that RLE

is triggered (see 6.1.1 Sampling for more details). Even though RLE can be applied to

any data type, we limited the scope of our estimator to numeric columns. The other data

types are either compressed with Dictionary encoding (VARCHAR) or are very rare in the

Public BI benchmark and do not present compression opportunities. We use the following

terminology:

1) run value = a data value that is repeated on consecutive rows.

2) length value = the number of consecutive occurrences of a run value

49

5. AUTOMATIC COMPRESSION LEARNING

Training phase. RLE metadata is composed of: 1) the number of bits needed to

represent the run values (bitsrun) and 2) the number of bits needed to represent the

length values (bitslength). These values are determined by scanning the train sample and

computing all the runs and lengths. bitsrun is given by the run value of maximum size and

bitslength is given by the maximum length. bitsrun also depends on the column data type

representation.

sizemetadata is between 8 and 24 bytes—the size of 2 numbers: bitsrun and bitslength—

depending on the data types used to store them.

Testing phase. The testing phase scans all the values in the test sample and creates

(run, length) pairs as follows: 1) if a run value cannot be represented on bitsrun bits:

mark it as exception and skip it; 2) if a length exceeds the maximum value that can be

represented on bitslength bits: end the current run at this length and start a new run. The

following variables are updated in this process: 1) countvalid: the number of (run, length)

pairs resulted from the scanning process; 2) countex: the number of exceptions as defined

above.

sizedata and sizeex are computed as follows:

sizedata =
countvalid × (bitsrun + bitslength)

8
(5.14)

sizeex = countex × sizedatatype (5.15)

where:

sizedatatype = size on disk of the column data type

sizenull depends on the number of physical columns—one compressed data column (run

and length are stored together) and one exception column—the same as in the case of

Dictionary estimator (Equation 5.13).

5.2.2.5 Frame of Reference estimator

The Frame of Reference estimator predicts the size of the input column as compressed with

FOR. It only applies to numeric columns.

Training phase. FOR metadata is composed of: 1) the reference value and 2) the

number of bits needed to store the differences (bitsdiff). In our implementation we chose

the reference to be the smallest value in the train sample. bitsdiff is given by the maximum

difference size, which depends on the data type representation.

50

5.2 Compression learning process

sizemetadata is between 8 and 24 bytes—the size of the reference and the size of bitsdiff —

depending on the data types used to store them.

Testing phase. The testing phase computes all the differences between the values in the

test sample and the reference and filters the ones that can be represented on bitsdiff bits.

The following variables are updated in this process: 1) countvalid: the number of differences

that fit in bitsdiff ; 2) countex: the number of exceptions (values that give differences larger

than bitsdiff).

sizedata is computed as follows:

sizedata =
countvalid × bitsdiff

8
(5.16)

sizeex is the same as in the case of Run Length Encoding estimator (Equation 5.15).

sizenull depends on the number of physical columns—one compressed data column (dif-

ferences) and one exception column—the same as in the case of Run Length Encoding

estimator and Dictionary estimator (Equation 5.13).

5.2.3 Recursive exhaustive learning

This section presents an exhaustive recursive algorithm for compression learning. It uses

the compression estimators (E) as a cost model (5.2.2 Cost model: compression estimators)

and the pattern detectors (P) defined in 5.1 Pattern detection. The algorithm takes as

input a column (cin) and outputs the best compression tree (Tout) with respect to the

compression estimators: the one that produces the smallest representation of the column

when used to compress it. The algorithm is recursive and takes a depth-first approach. For

this reason, it is not suitable for pattern detectors that work with more than one column

(e.g. Column correlation).

In addition to the input column cin, the recursive function receives a compression tree

Tin (initially empty) and an optional max height parameter hmax (the maximum height

of the compression tree). The compression tree Tin is the partial solution built in the

recursive process so far. The role of the hmax parameter is to limit the dimension of the

problem and avoid scenarios where the algorithm does not finish .

The algorithm tries all possibilities to compress the input column cin: 1) with leaf

compression nodes (Nleaf , e.g. RLE, FOR, DICT); 2) with internal (non-leaf) expression

nodes (Ninternal, e.g. Numeric strings, Character set split, etc.); 3) without compression.

For each possibility it estimates the size of the resulting columns (cout) in the following way:

1) for leaf expression nodes (Nleaf) and no compression, the estimators E directly provide

51

5. AUTOMATIC COMPRESSION LEARNING

the size; 2) for non-leaf expression nodes (Ninternal), the size is computed by recursively

applying the same algorithm on the output columns cout of the expression node Ninternal

and adding the resulted sizes together. The recursive call returns a new compression tree

Tc for each output column of Ninternal. A special case is the DICT expression node, which

will have 2 estimated sizes: 1) direct estimation from the Dictionary estimator Edict as

a leaf node; 2) recursive call estimation (other pattern detectors P can be applied on its

output column, e.g. Column correlation).

Out of all the possibilities to compress cin, the one which gives the smallest size is

chosen and Tin is updated with either the leaf compression node Nleaf or with the set of

compression trees Tc resulted from the recursive call. The algorithm returns the updated

compression tree Tout.

The termination conditions of the recursive algorithm are: 1) all possibilities to compress

cin are leaf compression nodes (i.e. there is no Ninternal to generate new output columns

cout); 2) the max height of the compression tree hmax is reached. Termination condition

1) occurs when no pattern detector P outputs any compression nodes Ninternal. A pattern

detector P does not output any compression node Ninternal when: 1) cin is not compatible

with the pattern (e.g. Numeric strings pattern detector only applies to VARCHAR columns;

see select_column in 5.1 Pattern detection); 2) the data in cin does not match the pattern

(e.g. a column with multiple values does not match the Constant pattern).

The algorithm is described in listings 5.2 and 5.3.

Listing 5.1: Naming conventions

c = column
T = compress ion t r e e
E = compress ion es t imator
P = pattern de t e c t o r
N = compress ion node

Listing 5.2: build_T (recursive exhaustive)

def build_T (c_in , T_in , P_list , E_l ist) :
s o l_ l i s t = l i s t ()
es t imator e va l ua t i on
for E in E_list :

s i z e = E. eva luate (c_in)
s o l_ l i s t . append ((s i z e , T_in))

pat t e rn d e t e c t i on
N_list = l i s t ()
for P in P_list :

52

5.2 Compression learning process

N_p_list = P. eva luate (c_in)
N_list . extend (N_p_list)

recu r s i v e e va l ua t i on
for N in N_list :

(s i z e , T_out) = apply_N(c_in , N, T_in , P_list , E_l i st)
s o l_ l i s t . append ((s i z e , T_out))

return b e s t s o l u t i o n
return min(s o l_ l i s t , key=s i z e)

Listing 5.3: apply_N (recursive exhaustive)

def apply_N(c_in , N, T_in , P_list , E_l i st) :
T_out = copy (T_in)
T_out . update (N)
recu r s i v e c a l l f o r a l l output columns
s o l_ l i s t = l i s t ()
for c_out in N. c_out_l ist :

(s ize_c , T_c) = build_T (c_out , T_out , P_list , E_l i st)
s o l_ l i s t . append ((size_c , T_c))

merge r e s u l t s
s ize_out = 0
for (s ize_c , T_c) in s o l_ l i s t :

s ize_out += size_c
T_out = merge (T_out , T_c)

return merged r e s u l t
return (s ize_out , T_out)

The complexity of the algorithm can be described as:

O((p× avg(np)× b)hmax) (5.17)

where:

p = number of pattern detectors

np = number of expression nodes returned by a pattern detector

b = branching factor of the compression tree (as defined in Equation 5.6)

hmax = maximum height of the compression tree

The height is bounded by the hmax parameter. Despite the high complexity, the size of

the problem remains relatively small due to the high selectivity of the pattern detectors

P (see select_column in 5.1 Pattern detection). This is the complexity of learning the

53

5. AUTOMATIC COMPRESSION LEARNING

compression tree for a single column, while for multiple columns the complexity becomes:

O(cin × (p× avg(np)× b)hmax) (5.18)

where:

cin = number of input columns

This complexity is significantly better than the complexity of the general optimization

problem described in 5.2.1 (O(2n), where n is the total number of expression nodes gener-

ated in the learning process, as described in Equation 5.5). The reason for this improvement

is the single-column approach—not considering pattern detectors P that combine multiple

columns. The solutions of a column ci do not depend on the solutions of other columns

cj that are not on the path from ci to its root input column cr. This is because a choice

made for cj does not influence the choices that can be made for ci. This property allows

a depth-first exploration of the solutions, significantly reducing the complexity.

However, there is a cost for not considering multi-column pattern detectors: the al-

gorithm misses compression opportunities (e.g. one column represented as a function of

another through Column correlation). It is exhaustive and yet cannot produce the best

result. Section 5.2.5 Iterative greedy learning presents a greedy approach that consid-

ers multi-column patter detectors. Moreover, the Multi-stage learning in section 5.2.6

addresses this issue by chaining together multiple learning algorithms.

5.2.4 Pattern selectors

Section 5.2.3 described an exhaustive learning algorithm based on compression estimators

(5.2.2). A greedy learning algorithm based on pattern selectors will be described in section

5.2.5. Pattern selectors are decision algorithms used to make greedy choices in the com-

pression learning process. This section describes the general characteristics of a pattern

selector and specialized instances of it.

5.2.4.1 Generic pattern selector

A generic pattern selector is an abstraction used in the learning process for selecting the

expression nodes that will be added to the compression tree. Given a list of (expression

node, evaluation result) tuples resulted in the pattern detection phase, it outputs a subset

of the expression trees provided as input. This selection process is necessary as there are

multiple ways of representing the same column. The generic pattern selector chooses the

54

5.2 Compression learning process

best expression nodes according to a set of criteria. Different implementations of pattern

selectors are described below.

5.2.4.2 Coverage pattern selector

The coverage pattern selector tries to maximize the coverage of each column (i.e. minimize

the exception ratio). It has 2 operation modes: 1) single-pattern: selects the expression

node with the highest coverage; 2) multi-pattern: selects the best combination of expression

nodes that give the largest coverage when used together on the same column.

The values on a column usually fall in different, possibly overlapping, pattern types. It

is rarely the case that one pattern perfectly fits to all the values in a column. In most cases

there is either one dominant pattern and the rest of the values are just noise, or multiple

patterns that together cover all the values on the column. An example could be a VARCHAR

column where half of the values are numbers and the other half are concatenations of a

constant with numbers.

The single-pattern operation mode will select only one expression node—the one with the

highest coverage. The multi-pattern operation mode will select multiple expression nodes,

such that their combined coverage of the column is maximal. We defined 2 approaches for

the multi-pattern mode: 1) a Greedy algorithm that selects one expression node at a time—

the one with the highest coverage—until the column is fully covered or there are no more

expression nodes to choose from; 2) an exhaustive algorithm that tries every combination

of expression nodes and outputs the one with the highest cumulative coverage. Both

approaches can further take into account the following parameter: coveragemin—minimum

coverage that determines whether a pattern is considered or not.

The combined coverage of 2 patterns pa and pb can be computed based on their row_masks

rma, rmb—defined in 5.1.1—through a bitwise OR operation: rmcombined = rma|rmb. The

number of bits of a row_mask is equal to the number of rows in the table: r. The combined

coverage is then computed as the number of 1 bits in rmcombined divided by r.

The complexity of these algorithms depends on the number of patterns found on the

column: p. The single-pattern operation mode and the Greedy algorithm for the multi-

pattern mode both have a linear complexity. The exhaustive algorithm has an exponential

complexity, as it tries all combinations of patterns: for p = 10 there are 103 bitwise OR

operations on r-bit numbers, while for p = 27 this number grows to 109. Equation 5.19

55

5. AUTOMATIC COMPRESSION LEARNING

shows the complexity of the exhaustive algorithm.

O(

p∑
k=1

(
p

k

)
) (5.19)

We implemented a basic version of the exhaustive approach for the multi-pattern mode.

To avoid the exponential running time, we default to the single-pattern mode if the number

of patterns p is larger than 20. In practice, we never encountered more than 20 different

patterns on the same column, therefore, the exhaustive approach is a suitable choice.

Both operation modes give similar results in terms of physical representation of the data,

but the resulting expression trees have different shapes. The single-pattern mode selects

only one expression node, moving the other values on an exception column. If the learning

algorithm supports recursive expression of exception columns, then the most dominant

pattern in the exception column is further selected, resulting in a new expression node on

a new level of the tree. This process creates deep expression trees. In contrast, the multi-

pattern mode adds all expression nodes on the same level of the tree, resulting in wider

but shorter expression trees. The evaluation of expression trees resulted from multi-pattern

selection is described in 4.4 Compression and decompression.

5.2.4.3 Priority pattern selector

The purpose of this pattern selector is to choose the best expression node based on pattern

priorities. In addition to the expression node list, it also receives a set of priority classes for

pattern detector types. Each priority class contains a list of pattern types (e.g. Numeric

strings, Character set split, etc.) and a pattern selector that will be used to select the

patterns in the same class. The selection process works in the following way:

1) for each column, select only the expression nodes with the highest priority—their asso-

ciated pattern type has the highest priority according to the provided list;

2) further select these expression nodes using the pattern selector provided for their priority

class and output the result.

An example of an input priority set is shown in Table 5.5.

Priority Pattern type Pattern selector

1 Constant N/A
2 Dictionary, Numeric string Coverage selector
3 Character set split Coverage selector

Table 5.5: Priority set example

56

5.2 Compression learning process

Given a column c and the priority set in Table 5.5, the Priority pattern selector will

proceed as follows. It will first search for a Constant expression node that has c as input. If

found, c will be represented as a constant. Since the Constant pattern detector outputs only

one result per column, there is no need for a pattern selector on the constant priority class—

the only constant expression node will be chosen. If there is no constant expression node,

the pattern selector will search for expression nodes in the next priority class: Dictionary

and Numeric strings. Both pattern detectors output a single result per column, thus

there is a maximum of 2 expression nodes to choose from. The Coverage pattern selector

will be used to choose between them. Finally, if no expression node was found yet, the

selector moves to the last priority class. It searches for Character set split expression nodes.

There can be multiple instances of the Character set split pattern detector initialized with

different parameters and each instance can output multiple results for the same column.

The Coverage pattern selector is used to choose the best combination of results such that

the total coverage of the column is maximized.

5.2.4.4 Correlation pattern selector

This pattern selector is specialized in Column correlation expression nodes. The Column

correlation pattern detector outputs all the correlations between the columns in the dataset,

resulting in multiple possibilities of representing the same column as a function of other

columns—multiple (source, target) pairs with the same target column. The Correlation

pattern selector selects the expression nodes such that every target column is represented

by a single source column, while also trying to maximize the average correlation coefficient

and avoid circular dependencies.

We can make the following observation: the column correlation as defined in 5.1.5 is a

transitive relation. We formalized this observation in Theorem 1.

Theorem 1. Let ca, cb, cc be three columns and let ca
mab−−→ cb be the correlation relation

meaning: ca determines cb through a mapping mab. If ca
mab−−→ cb and cb

mbc−−→ cc then
ca

mac−−→ cc.

Proof. Let (va, vb) be an entry in mab—meaning: value va on column ca always corresponds
to value vb on column cb—and let (vb, vc) be an entry in mbc. Then, value va on column
ca always corresponds to value vc on column cc. Therefore, ∃ mac—a mapping containing
the entry (va, vc)—and ca

mac−−→ cc.

We define the correlation graph as follows: a directed graph with one or more connected

components; nodes represent columns; (src, dst) edges represent correlations: column dst

57

5. AUTOMATIC COMPRESSION LEARNING

is determined by column src. The weight of an edge is the correlation coefficient between

src and dst. An example of a correlation graph is shown in Figure 5.9. The red edges

represent an optimal selection in terms of the metrics and conditions described in the

following paragraphs. This figure shows a simple correlation graph, but in practice we

also encountered more complex graphs resulting from the learning process for tables with

highly correlated data (see Appendix B).

2__1_0_0

12__1_0_0

1.00

13__1_0_0

1.00

1.00

5__1_0_0

3__1_0_0

0.93

20__1_0_0

0.96

7__1_0_0

8__1_0_0

0.920.98

9__1_0_0

0.99

0.99

Figure 5.9: Correlation graph

The main goal of the Correlation pattern selector is to select a subset of the edges in

the graph. We can define this process as the optimization problem of selecting a subset of

edges in the correlation graph G such that the resulting subgraph Gs satisfies the following

properties (in this order):

P1 : the indegree of any node is at most 1—a column should be determined by no more

than 1 other column

P2: any path in Gs is of length 1—because of the transitivity property, for every path

between nodes ca and cb, there will also be a direct edge from ca to cb

P3 : the number of nodes in Gs with indegree > 0 is maximal—the number of columns

that are represented as functions of other columns is maximal

P4 : the average weight of the edges is maximal—the edges with the highest correlation

coefficient should be selected

We defined a Greedy algorithm for solving the correlation selection optimization problem.

It builds the Gs graph by greedily selecting one edge at a time from G. The edge is added

to Gs, G is updated and the process goes on until there are no more edges in G. The

algorithm is described in listings 5.4, 5.5, 5.6.

58

5.2 Compression learning process

Listing 5.4: select_correlations

G = co r r e l a t i o n graph r e s u l t e d from the c o r r e l a t i o n d e t e c t i on proces s
def s e l e c t_ c o r r e l a t i o n s (G) :

G_s = <empty c o r r e l a t i o n graph>
while G. edges i s not empty :

s e l e c t d e s t i n a t i on node
dst = min(G. nodes , key=get_node_score)
s e l e c t (_, d s t) edge
(src , dst , corr_coe f) = min(dst . incoming_edges , key=get_edge_score)
update G_s
G_s. add ((src , dst , corr_coe f))
update G
G. remove (dst . incoming_edges)
G. remove (dst . outgoing_edges)
G. remove (dst)
G. remove (s r c . incoming_edges)

return G_s

Listing 5.5: get_node_score

def get_node_score (node) :
indegree_src = min ([s r c . i ndeg ree

for (src , dst) in node . incoming_edges])
return (node . outdegree , indegree_src , node . indeg ree)

Listing 5.6: get_edge_score

def get_edge_score ((src , dst , corr_coe f)) :
return (s r c . indegree , −corr_coef , −s r c . out_degree)

Every iteration of the while loop first selects the destination node of the candidate edge

based on its score. The get_node_score function prioritizes nodes with the minimum

outdegree—ideally 0—such that the number of discarded edges as an effect of constraint

P2 is minimized. The difference between nodes with the same outdegree is made by the

minimum indegree of its parent nodes (source nodes of incoming edges)—for the same

reason. Finally the difference is further made by the smallest indegree of the node itself,

prioritizing columns with fewer options of being represented as functions of other columns.

With the destination node fixed, the best edge is selected from its incoming edges. The

get_edge_score function prioritizes edges that have a minimum indegree—ideally 0—such

that nodes at the start of correlation paths are selected. The difference between these

nodes is further made based on the highest correlation coefficient and then by the highest

outdegree.

59

5. AUTOMATIC COMPRESSION LEARNING

The selected edge is added to Gs and G is updated such that constraints P1 and P2 are

satisfied: the destination node, its incoming and outgoing edges and the incoming edges

of the source node are removed. This process changes the degree of the nodes in G and

impacts their scores.

The complexity of the algorithm, as described above, is given by the number of nodes in

G and their average indegree: O(N2 × avg(indegree)), where N is the number of nodes.

Every iteration of the while loop selects one node from G by computing the score of all

nodes. The get_node_score function loops through all incoming edges of the node. If

the selection of the dst node is done with a priority queue the complexity is improved:

O(N × log(N)× avg(indegree)).

An alternative approach would be to relax constraint P2 and allow paths of length higher

than 1. Then apply a variation of the Dijkstra’s shortest paths algorithm to shorten these

paths with the goal of minimizing the complexity of the graph without affecting its average

correlation coefficient. However, relaxing P2 imposes a new constraint on Gs: it should

not contain any cycles. We leave this approach for future work.

5.2.5 Iterative greedy learning

This section presents a greedy iterative algorithm for compression learning. It uses a

pattern selector (S) to greedily choose how to compress columns (5.2.4 Pattern selectors)

and the pattern detectors (P) defined in 5.1 Pattern detection. The algorithm takes a

breadth-first approach, thus supporting pattern detectors P that work on multiple columns

(e.g. Column correlation). It takes as input the list of input columns (cin) and builds the

compression tree one level at a time.

The algorithm builds the compression tree T in an iterative process. Let add_level(T)

be an iterated function which adds 0 or more expression nodes (N) on a new level in T .

This function is repeatedly applied to T in an iterative process. Each call of the function

uses the updated version of T that it produced in the previous iteration. The iterative

process converges to the final compression tree Tout once no more changes are made to T

in an iteration.

The learning algorithm starts with Plist (a list of pattern detector instances), S (a pattern

selector) and T (an empty compression tree, initialized with the list of input columns cin).

Recall that the compression tree is actually a graph with multiple connected components

where each component is a directed acyclic graph (DAG) with one or more root nodes

(see 4 Compression model). An additional parameter is itmax, representing the maximum

60

5.2 Compression learning process

number of iterations. itmax also determines the maximum height of the compression tree

(hmax), since every iteration adds a new level to T .

The add_level function adds new compression nodes (N) to T by trying to further

compress its leaf (output) columns cleaf . It does this in 2 steps. Step-1 pattern detection:

use the pattern detectors Plist to generate all possibilities to compress the leaf columns,

resulting in a list of expression nodes Nlist. Step-2 pattern selection: use the pattern

selector S to select a subset of Nlist (Nslist), representing the best way to compress each

cleaf . Finally, the expression nodes in Nslist are added to as a new level. If no expression

nodes (N) are selected (i.e. Nslist is empty), then the iterative learning algorithm converged

to the final compression tree T .

The algorithm is described in listings 5.8 and 5.9.

Listing 5.7: Naming conventions

c = column
P = pattern de t e c t o r
S = pattern s e l e c t o r
T = compress ion t r e e
N = compress ion node

Listing 5.8: build_T (iterative greedy)

def build_T (c_in_l ist , P_list , S)
i n i t i a l i z e T with the input columns
T = CompressionTree (c_in_l i s t)
i t e r a t i v e proces s
for i t in range (0 , it_max) :

add_level (T, P_list , S)
i f <no changes made to T>:

break
return f i n a l compression t r e e
return T

Listing 5.9: add_level (iterative greedy)

def add_level (T, P_list , S) :
c_ l e a f_ l i s t = T. c_ l e a f_ l i s t
pat t e rn d e t e c t i on
N_list = l i s t ()
for P in P_list :

N_p_list = P. eva luate (c_ l e a f_ l i s t)
N_list . extend (N_p_list)

s e l e c t e xp re s s i on nodes

61

5. AUTOMATIC COMPRESSION LEARNING

N_s_list = S . s e l e c t (N_list)
stop i f no expre s s i on nodes were s e l e c t e d
i f len (N_s_list) == 0 :

return
add s e l e c t e d expre s s i on nodes to T
T. update (N_s_list)

The complexity of the algorithm is given by the total number of columns in the final

compression tree multiplied by the effort spent on evaluating the pattern detectors on it

and choosing the expression node that it will be compressed with:

O(cin × (b)hmax × (p+ p× avg(np))) (5.20)

where:

cin = number of input columns

b = branching factor of the compression tree (as defined in Equation 5.6)

hmax = maximum height of the compression tree

p = number of pattern detectors

np = number of expression nodes returned by a pattern detector

In the worst case when the maximum number of iterations is reached, hmax becomes itmax,

thus the complexity is bounded by itmax.

Regardless of the nature of the pattern selector S, the algorithm is greedy, as it makes ir-

reversible locally best choices which only depend on previously made choices. The breadth-

first approach allows the use of multi-column pattern detectors, representing an advantage

compared to the Recursive exhaustive learning algorithm, which misses compression op-

portunities by handling each column separately. The greedy model significantly reduces

the number of solutions explored, leading only to a local best solution. At the same time,

the reduced dimension of the explored solution set ensures faster termination of the algo-

rithm. The advantages of both algorithms can be combined with the Multi-stage learning

approach described in section 5.2.6.

5.2.6 Multi-stage learning

We observed that each learning algorithm has advantages and disadvantages and works

better with different types of pattern detectors. E.g. the Recursive exhaustive learning

algorithm has a wide coverage of the solution space of the problem, but does not support

62

5.2 Compression learning process

multi-column pattern detectors. In contrast, the Iterative greedy learning algorithm does

not miss multi-column compression opportunities and converges faster, but has a poor

coverage of the solution space. Moreover, in the case of Iterative greedy learning, each

pattern selector (S) is suitable for certain pattern detectors.

These observations lead to the conclusion that there is no one size fits all learning

algorithm and call for a combined approach that leverages the advantages of each of them.

Therefore, we defined the Multi-stage learning approach, which improves the learning

process by chaining different algorithm instances together, each running in a separate

stage.

An algorithm instance A(args) is an application of algorithm A on the input parameters

args. E.g. IG(P1) and IG(P2) will produce different compression trees T1 and T2 even

though they are both instances of the Recursive exhaustive learning algorithm, because

the pattern detector lists that they use P1 and P2 differ. This abstraction allows us to

run the same learning algorithm with different pattern detectors or selectors and combine

their results.

Chaining compression learning algorithm instances A1 and A2 means executing A1 to

get the compression tree T1, then executing A2 to build T2 based on T1. Chaining A1 and

A2 requires that the output of A1 can be converted to the input of A2. This condition

can be satisfied as all compression learning algorithms we proposed have compatible input

and output parameters. The input of a learning algorithm is either one or more input

columns or a compression tree. The output of all the algorithms is a compression tree. If

A2 requires a compression tree as input, then T1 can be passed directly to it. If A2 requires

a list of columns, then the leaf columns of T1 are passed to A2. In the second case, the

output of A2 (T2) needs to be merged with T1 to form the final compression tree Tout.

Additional input parameters (pattern detectors (P), pattern selectors (S), estimators (E))

are independent of the result of the previous algorithm.

This generic multi-stage design allows easy experimentation with any combination of

compression learning algorithm instances. One example of chaining 2 learning algorithms

is the following: first execute an instance of Recursive exhaustive learning with the single-

column pattern detectors. Then execute an instance of Iterative greedy learning with the

multi-column pattern detector Column correlation and the Correlation pattern selector.

This will result in building the best compression tree using single-column pattern detec-

tors and then identifying and exploiting correlations between the leaf columns of the tree,

irrespective of their type (exceptions or not). While this setup misses correlation oppor-

tunities between intermediate/internal columns, it led to complex correlation graphs that

63

5. AUTOMATIC COMPRESSION LEARNING

considerably reduce the number of physical columns—we present these results in 6.3.4 and

Appendix B.

64

6

Evaluation and results

6.1 Methodology

The focus of this thesis is reducing the size of the data through whitebox compression as a

data representation model. Therefore, our main evaluation metric will be the compression

ratio. In terms of benchmarks, we evaluate our system on the Public BI benchmark

(Chapter 3), as we target real, user-generated data rather than synthetic data. The datasets

in the benchmark are available as CSV files.

We compare our implementation against two baselines: 1) a real system with enhanced

compression capabilities: VectorWise (10); 2) a compression estimator model (defined

in 6.1.3). We aim at showing the improvement brought by whitebox compression as an

enhancement of existing systems: an intermediate data representation layer that remodels

the data to create better compression opportunities for existing lightweight methods. For

this reason we evaluate whitebox compression as an intermediate layer preceding these

methods, instead of a stand-alone system. The following sections present the sampling

method that we used for the automatic learning process and the methodology for the two

baselines.

6.1.1 Sampling

The automatic learning process is based on samples. Various characteristics of the data are

extracted by analyzing a small subset of rows. Real data may exhibit clustering properties

(28), not only when it comes to sequences of numbers but also in terms of pattern locality.

Moreover, there are compression techniques that apply to sequences of consecutive numbers

(e.g. RLE). To capture these patterns and correctly evaluate the potential for different

compression methods, basic single-point sampling is not enough.

65

6. EVALUATION AND RESULTS

To satisfy these requirements we defined a sampling technique that selects blocks of

consecutive rows from random uniform points in the dataset. The input parameters are

counttotal—number of rows in the dataset, countsample—number of rows in the sample,

countblock—number of consecutive rows in a block. We select countsample

countblock
random uniform

positions in the dataset. From each position we select countblock consecutive rows and

add them to the sample. The uniform random selection and the blocks of consecutive

rows ensure that we cover the full dataset and capture different local patterns, including

sequences of values.

An additional requirement imposed by some pattern detectors is that the sample data

fits in memory. To ensure this, our sampling tool can also receive a maximum size in bytes,

from which it derives the countsample and countblock parameters. This calculation is based

on estimating the average size of a row.

6.1.2 VectorWise baseline

We chose VectorWise as a baseline for its enhanced compression capabilities. It uses patched

versions of well known lightweight compression methods: PDICT, PFOR, PFOR-DELTA

(1). Patching is an efficient way of implementing compression for skewed distributions,

by storing outliers in uncompressed format in order to keep the size of the compressed

non-outliers small. VectorWise’s compression engine is similar to ours to some extent: the

decision upon which compression method to use is based on analyzing a sample of the

data. VectorWise handles each column separately and has the capability of independently

compressing blocks of data with different methods instead of the full column.

Our evaluation methodology is based on comparing the size on disk of: 1) uncompressed

data (sizeuncompressed), 2) blackbox-compressed data with VectorWise (sizeblackbox) and 3)

whitebox-compressed data further compressed with VectorWise (sizewhitebox). From these

sizes we can derive the compression ratios:

ratioblackbox =
sizeuncompressed

sizeblackbox
ratiowhitebox =

sizeuncompressed

sizewhitebox
(6.1)

The evaluation architecture is depicted in Figure 6.1. sizeuncompressed is computed by

loading the input data into VectorWise with compression disabled. sizeblackbox is the size of

the data loaded into VectorWise with default compression options (lightweight compression

only, LZ4 disabled). sizewhitebox is computed by: 1) feeding the input data to the whitebox

compression engine, resulting in a new representation of it, then 2) loading the new data

into VectorWise with the same default compression options. The whitebox compression

66

6.1 Methodology

Whitebox
compression sizewhitebox

sizeblackbox

whitebox
compressed
data (.csv)

VectorWise
compression

disabled

sizeuncompressed

VectorWise
compression

enabled

VectorWise
compression

enabled

input data
(.csv)

Figure 6.1: VectorWise evaluation methodology

engine learns a compression tree based on a sample and then evaluates it on the input data

to materialize the new representation. The additional compression step with VectorWise

applies existing blackbox compression schemes on the new representation of the data. The

purpose of this 2-step compression process is to isolate and measure the capacity of whitebox

compression to create better opportunities for existing lightweight compression schemes.

We determine the size of each table by inspecting the raw data files resulted after the

bulk loading process. When computing sizeuncompressed and sizeblackbox we consider the

total size of the data files associated with each table, which include the compressed values,

exceptions and metadata. For sizewhitebox we get the size of all physical columns (including

the exception columns) from VectorWise’s data files and estimate the size of the metadata

in the same way we do in 5.2.2 Cost model: compression estimators.

In most of the cases VectorWise stores each column in a separate file, allowing us to

perform fine grained analysis on the size of individual columns. We noticed, however,

that in some cases VectorWise stores multiple columns in the same file. Matching the

column names with the data files is not a straight-forward process. The file name has

a fixed format which includes the table and column names. However, some characters

(mostly non-alphanumeric) tend to be replaced with other (combinations) of characters.

We empirically determined some rules for this replacement (e.g. hexadecimal ASCII codes

as replacements), but there are also exceptions. Therefore, we implemented a column-to-file

approximate string matching algorithm based on the Levenshtein distance (29) and fuzzy

regex matching (30)—which is out of the scope of this thesis and will not be discussed

here.

67

6. EVALUATION AND RESULTS

Individual tables from the benchmark are loaded into VectorWise using the bulk loading

utility vwload (31). We use the trace point qe82 option to enable/disable compression

as indicated in the performance guide (32). The size of each data file is retrieved from the

Linux stat structure (33).

We found 2 additional information sources that might be useful for data analysis: 1) the

statdump command (34)—general stats about tables (e.g. histogram) and 2) the compres-

sion logs—information from the compression process (e.g. which compression schemes were

used). Even though the latter can be useful to understand how VectorWise compresses the

data, the logs do not contain any information about which column and which block they

refer to, resulting in a mix of information with missing context. A possible workaround

would be to load each column as a separate table, reducing the unknown variables to

the block number. This approach is feasible and might lead to interesting comparisons,

however we did not proceed with it and we leave it for future work.

6.1.3 Estimator baseline

We created an alternative evaluation baseline in addition to the VectorWise one: a model

which estimates the size of data based on the compression estimators defined in 5.2.2 Cost

model: compression estimators. Its purpose is to simulate a stand-alone whitebox compres-

sion system, with whitebox versions of existing lightweight compression schemes as leaf

nodes in the expression tree. The workflow is similar to the previous one: we compute

the 3 sizes from which we derive the compression ratios. The only difference is that Vec-

torWise is replaced by the estimator model, which estimates the size of each column as

if it were compressed with whitebox implementations of existing lightweight compression

schemes. The final size is the smallest size amongst the ones given by the 4 estimators.

The methodology is depicted in Figure 6.2.

Whitebox
compression sizewhitebox

sizelightweight

whitebox
compressed
data (.csv)

sizeuncompressed

input data
(.csv)

Estimator model
no

compression

Estimator model
lightweight

compression

Estimator model
lightweight

compression

Figure 6.2: Estimator evaluation methodology

68

6.2 Experimental setup

sizeuncompressed is computed by estimating the uncompressed size of the input data with

the No compression estimator. sizelightweight is the smallest size given by the compression

estimators: Dictionary estimator, Run Length Encoding estimator, Frame of Reference

estimator, No compression estimator. sizewhitebox is computed by first representing the

input data through whitebox compression and then feeding it to the estimator model.

6.2 Experimental setup

We ran our experiments on a selection of 53 tables from the Public BI benchmark (4).

The selection is made based on the observation that tables with the same schema have

very similar data and sometimes are almost identical. Therefore, we only kept one table

for each unique schema. We further removed a few more tables containing columns that

could not be matched with the VectorWise data files because multiple columns are stored

in the same file.

We configured our sampling tool to take samples of maximum 10MB with sequences of

64 consecutive rows. This resulted in samples of 20K rows on average and not less than

4K rows.

In terms of the learning algorithm, we experimented with both Iterative greedy learning

(5.2.5) and Recursive exhaustive learning (5.2.3). We used different configurations and we

present two of them—the ones that gave the best results:

Configuration A (iterative greedy): Multi-stage learning (5.2.6) with 2 stages:

Stage-1 Iterative greedy learning (5.2.5) with itmax = 16, 4 pattern detector instances—

Numeric strings (5.1.3), Character set split (5.1.4), Constant (5.1.2) and Dictionary

(5.1.6) —and the Priority pattern selector (5.2.4.3).

Stage-2 One iteration of Iterative greedy learning (5.2.5) with only one pattern detector—

Column correlation (5.1.5)—and the Correlation pattern selector (5.2.4.4)

Configuration B (recursive exhaustive): Multi-stage learning (5.2.6) with 2 stages:

Stage-1 Recursive exhaustive learning (5.2.3) with hmax = 5, 4 pattern detector instances—

Numeric strings (5.1.3), Character set split (5.1.4), Constant (5.1.2) and Dictionary

(5.1.6) —and the compression estimators (5.2.2) as a cost model.

Stage-2 One iteration of Iterative greedy learning (5.2.5) with only one pattern detector—

Column correlation (5.1.5)—and the Correlation pattern selector (5.2.4.4)

The parameters for the pattern detectors are the following:

Character set split: 2 charsets: digits and non-digits—isolates numbers in strings

69

6. EVALUATION AND RESULTS

Column correlation: corr_coefmin = 0.9

Constant: constant_ratiomin = 0.9—columns that are below are handled with Dictionary

Dictionary: sizemax = 64K

The Priority pattern selector is configured with the following priorities: 1–Constant, 2–

Dictionary, 3–Numeric strings, 4–Character set split. It selects between expression nodes

in the same priority class with the Coverage pattern selector—configured in multi-pattern

mode with coveragemin = 0.2. The Constant pattern detector has the highest priority since

it is the most optimal way of compressing a constant column. The Dictionary expression

nodes create opportunities for the Column correlation step in Stage-2. The Numeric strings

pattern detector catches all string columns that contain numbers and the resulting format

columns are handled in the next iteration with Constant and Dictionary. The remaining

columns are left for the Character set split pattern detector which creates new compression

opportunities for the other pattern detectors in the next iteration.

The compression estimators do not require additional parameters, excepting the Dictio-

nary estimator, which uses the same maximum dictionary size as the Dictionary pattern

detector: sizemax = 64K.

6.3 Results and discussion

This section is structured as follows: we present and analyse the results obtained with

Configuration A (iterative greedy) in 6.3.1, 6.3.2 and 6.3.3 and the results obtained with

Configuration B (recursive exhaustive)—plus comparison between the two—in 6.3.4.

6.3.1 VectorWise baseline results

We evaluated the whitebox compression model against the VectorWise baseline according

to the methodology (6.1.2). This section presents the results obtained with Configuration

A (iterative greedy). Figure 6.3 shows the compression ratios—ratioblackbox, ratiowhitebox—

and the 3 sizes they were derived from—sizeuncompressed, sizeblackbox, sizewhitebox—for each

table. The tables are sorted in descending order by ratiowhitebox. In this figure we made

the comparison for the full tables, including all logical columns, even though only a part

of them are in the scope of whitebox compression.

The total size of the uncompressed tables is 131GB. The overall compression ratios are:

ratioblackbox = 2.58 and ratiowhitebox = 3.58. Whitebox compression has an overall ra-

tio of 1.38 against blackbox compression. In the first chart we can observe that for one

third of the tables ratiowhitebox is significantly higher than ratioblackbox. The rest of the

70

6.3 Results and discussion

0

5

10

15

co
m

pr
es

sio
n

ra
tio

Full table (VectorWise baseline)
blackbox compression
whitebox compression

YaleLanguages_1
YaleLanguages_3
M

otos_1
Generico_1
Generico_2
NYC_1
Com

m
onGovernm

ent_1
SalariesFrance_2
Eixo_1
M

ulheresM
il_1

Uberlandia_1
TrainsUK1_2
TrainsUK2_1
SalariesFrance_1
Food_1
M

LB_7
CM

Sprovider_1
M

LB_1
PanCreactom

y1_1
PanCreactom

y2_1
M

edicare3_1
USCensus_1
Rentabilidad_1
W

ins_1
Bim

bo_1
Rentabilidad_2
M

edicare2_1
Provider_1
Taxpayer_1
Physicians_1
M

edPaym
ent1_1

M
edPaym

ent2_1
M

edicare1_1
W

ins_2
Arade_1
RealEstate1_1
M

LB_5
IGlocations1_1
M

LB_2
RealEstate2_1
CityM

axCapita_1
IGlocations2_1
HashTags_1
Redfin1_1
Redfin2_1
Redfin3_1
Hatred_1
Redfin4_1
Corporations_1
Telco_1
Euro2016_1
Rom

ance_1
IUBLibrary_1

table

0

5

10

15

ta
bl

e
siz

e
(G

iB
) no compression

blackbox compression
whitebox compression

Figure 6.3: Full table comparison (VectorWise baseline)

tables have similar compression ratios. An important observation is that, even though

whitebox compression only brings a significant improvement to a small part of the tables,

it is never worse than blackbox compression. The only exception is the last table, where

ratioblackbox = 1.38 and ratiowhitebox = 1.11. However, this table is extremely small in

uncompressed format: 508KB. Such small data already fits in the CPU cache and does

not require compression at all. We can further notice that most of the tables with high

ratioblackbox have even higher ratiowhitebox and those with the lowest ratioblackbox have the

lowest ratiowhitebox. A possible explanation for this phenomenon is that whitebox compres-

sion compresses the same columns as VectorWise—those with high repetition factors and

redundancy—but manages to exploit these opportunities more efficiently and respectively,

has a small improvement when there are no opportunities. From the second chart we can

make the observation that the majority of the large tables tend to have higher compression

ratios than most of the small tables, with some exceptions. This is particularly true for

71

6. EVALUATION AND RESULTS

whitebox compression, but also for blackbox, since the two are also somewhat correlated.

These results include all the logical columns, even tough some of them were not repre-

sented through whitebox compression. Our compression model does not incur any overhead

on these columns and therefore we can exclude them from the evaluation with the pur-

pose of measuring the improvement more accurately. Figure 6.4 shows the same charts

but only includes the columns represented through whitebox compression. Measuring these

results required column-level analysis. For this reason, we excluded the tables for which

we couldn’t match the columns with VectorWise’s data files (because of multiple columns

stored in the same file). Tables are sorted by the new ratiowhitebox.

0

5

10

15

20

25

co
m

pr
es

sio
n

ra
tio

Used columns (VectorWise baseline)
blackbox compression
whitebox compression

Bim
bo_1

Euro2016_1
Food_1
Corporations_1
M

LB_7
Arade_1
M

LB_1
Telco_1
TrainsUK1_2
NYC_1
CM

Sprovider_1
M

otos_1
Generico_2
M

edicare1_1
PanCreactom

y1_1
M

edicare3_1
PanCreactom

y2_1
Rentabilidad_1
Redfin2_1
Redfin1_1
Redfin3_1
Redfin4_1
Uberlandia_1
Eixo_1
M

ulheresM
il_1

SalariesFrance_2
M

edPaym
ent1_1

Physicians_1
M

edPaym
ent2_1

Rentabilidad_2
Provider_1
M

edicare2_1
Taxpayer_1
W

ins_1
Hatred_1
IGlocations1_1
IGlocations2_1
M

LB_5
RealEstate1_1
M

LB_2
CityM

axCapita_1
RealEstate2_1
HashTags_1
Rom

ance_1

table

0.0

2.5

5.0

7.5

10.0

12.5

ta
bl

e
siz

e
(G

iB
)

no compression
blackbox compression
whitebox compression

Figure 6.4: Used columns comparison (VectorWise baseline)

The results are as expected: the average compression ratio increased and whitebox com-

pression brings a significant improvement for the majority of the tables. Table 6.1 shows

an overall comparison between the full table results and the used columns results.

Only 68% of the total size of the data was represented through whitebox compression.

72

6.3 Results and discussion

sizeuncompressed

(GB) ratioblackbox ratiowhitebox
ratioblackbox
ratiowhitebox

Full table 131 2.58 3.58 1.38
Used columns 77 3.16 5.16 1.63

Table 6.1: Full table vs. used columns (VectorWise baseline)

The increase of ratioblackbox shows that columns used by whitebox compression are also

good candidates for blackbox compression. However, ratiowhitebox increased more than

ratioblackbox, indicating that whitebox compression created opportunities for more compact

representation.

The difference between the used columns evaluation and the full table evaluation is

determined by the lack of opportunities for whitebox compression in part of the data. For

a better understanding, imagine that we want to compress two columns ca and cb of equal

size s. ca presents no compression opportunities (ratioa = 1) and cb has ratiob = 10. Even

though half of the data is highly compressible, the total ratio of the two columns is much

lower: ratiototal = 2×s
s+0.1×s = 1.81.

The conclusion that we can draw so far is that whitebox compression achieves high

compression ratios on the columns that it represents through the expression trees and

is never worse than blackbox compression alone. Additionally, the columns that do not

present compression opportunities are not affected and the underlying database system

operates normally on them.

6.3.2 Estimator model baseline results

We conducted an additional evaluation of the whitebox compression model, this time

against the Estimator baseline, with the purpose of measuring the compression capabil-

ities of a stand-alone whitebox system. The VectorWise blackbox compression schemes

are replaced by the lightweight compression estimators defined in 5.2.2. We followed the

methodology described in 6.1.3. This section presents the results obtained with Config-

uration A (iterative greedy). Figure 6.5 shows the compression ratios and table sizes,

considering only the columns represented through whitebox compression.

The overall results are similar to the VectorWise baseline: whitebox compression is ef-

fective for part of the tables (around 40% of them in this case) and for the rest of them it

gives similar compression ratios with the basic lightweight schemes. Similarly, the compres-

sion ratios are correlated: ratiowhitebox is higher respectively lower where ratiolightweight

is higher respectively lower. The same observation, that whitebox compression is never

73

6. EVALUATION AND RESULTS

0

10

20

30

40

co
m

pr
es

sio
n

ra
tio

Used columns (Estimator model baseline)
basic lightweight compression
whitebox compression

SalariesFrance_1
YaleLanguages_1
YaleLanguages_3
Bim

bo_1
Euro2016_1
Food_1
M

LB_7
Corporations_1
USCensus_1
M

LB_1
Telco_1
TrainsUK1_2
TrainsUK2_1
SalariesFrance_2
NYC_1
Redfin3_1
M

edicare1_1
Redfin2_1
Arade_1
CM

Sprovider_1
Redfin4_1
Redfin1_1
Com

m
onGovernm

ent_1
PanCreactom

y2_1
M

edicare3_1
PanCreactom

y1_1
Rentabilidad_1
Rentabilidad_2
M

otos_1
Generico_1
M

edPaym
ent1_1

Physicians_1
M

edPaym
ent2_1

M
edicare2_1

Taxpayer_1
Provider_1
W

ins_1
Uberlandia_1
Generico_2
M

ulheresM
il_1

Eixo_1
Hatred_1
IGlocations1_1
IGlocations2_1
W

ins_2
RealEstate1_1
CityM

axCapita_1
M

LB_5
RealEstate2_1
M

LB_2
HashTags_1
Rom

ance_1
IUBLibrary_1

table

0.0

2.5

5.0

7.5

10.0

ta
bl

e
siz

e
(G

iB
) no compression

basic lightweight compression
whitebox compression

Figure 6.5: Used columns comparison (Estimator model baseline)

worse than the basic lightweight compression schemes alone, is also true for the estimator

baseline, with the same exception: the last table. Table 6.2 shows an overall comparison

between the 2 baselines.

sizeuncompressed

(GB) ratioblackbox ratiowhitebox
ratioblackbox
ratiowhitebox

VectorWise 77 3.16 5.16 1.63
Estimator model 83 2.87 4.04 1.40

Table 6.2: VectorWise baseline vs. estimator model baseline (used columns)

The total size of the used columns is 7% higher and the compression ratios decreased

with 9% for the lightweight schemes and 21% for whitebox compression. The improvement

of whitebox compression is also a bit lower (14% decrease). The Estimator baseline seems

to reduce the impact of both compression systems and in particular the effect of our model.

However, the objective of whitebox compression—to create compression opportunities for

74

6.3 Results and discussion

more compact data representation—is still met, since it brings an increase in compression

ratio from 2.87 to 4.04.

Figure 6.6 creates a better picture of the differences between the 2 baselines—a com-

parison of the table sizes for the three metrics in the methodology: sizeuncompressed,

sizelightweight/sizeblackbox and sizewhitebox.

0
5

10
15

ta
bl

e
siz

e
(G

iB
) No compression

estimator model
vectorwise

0

2

4

ta
bl

e
siz

e
(G

iB
) Basic lightweight/Blackbox compression

estimator model
vectorwise

Generico_2
Generico_1
Com

m
onGovernm

ent_1
M

otos_1
M

ulheresM
il_1

Eixo_1
Uberlandia_1
NYC_1
RealEstate1_1
TrainsUK2_1
USCensus_1
Bim

bo_1
Telco_1
RealEstate2_1
M

edicare3_1
PanCreactom

y1_1
PanCreactom

y2_1
CM

Sprovider_1
M

edPaym
ent2_1

M
edPaym

ent1_1
Physicians_1
M

edicare2_1
Provider_1
Taxpayer_1
M

edicare1_1
TrainsUK1_2
W

ins_2
Redfin4_1
Redfin3_1
IGlocations2_1
SalariesFrance_1
Redfin1_1
Redfin2_1
M

LB_5
M

LB_2
HashTags_1
Rom

ance_1
W

ins_1
Arade_1
YaleLanguages_3
Rentabilidad_1
Rentabilidad_2
CityM

axCapita_1
Euro2016_1
Hatred_1
YaleLanguages_1
Food_1
Corporations_1
SalariesFrance_2
M

LB_7
M

LB_1
IGlocations1_1
IUBLibrary_1

table

0

2

4

ta
bl

e
siz

e
(G

iB
) Whitebox compression

estimator model
vectorwise

Figure 6.6: Baseline comparison (full table): Estimator model vs. Vectorwise

In the first chart we can see that the estimated uncompressed size of the data is a bit

smaller than the VectorWise size for most tables. This result is not unexpected, since the

storage layer of a real system is more complex and might add additional overhead com-

pared to the theoretical estimation that we made. Moreover, the exact representation of

each data type might differ from the one that we used. The second chart shows how Vec-

torWise’s blackbox compression schemes perform better than the (estimated) lightweight

compression methods for some tables. This is not a surprising result, since our lightweight

compression schemes are not optimized and the exception handling mechanism is different.

75

6. EVALUATION AND RESULTS

A somewhat unexpected result can be observed in the third chart: VectorWise is even

better at compressing the whitebox representation of the data than the estimator model

for some tables. A possible explanation might be that the number, type and size of the

physical columns differ, as whitebox compression creates many nullable columns because

of the exception handling mechanism, while VectorWise stores exceptions together with

the compressed data, in blocks with custom format. Moreover, the compression metadata

differs and its size is computed in a different way. An additional notable observation is

that the difference between VectorWise and the estimator model is usually higher where

the size of the data is larger, while for smaller tables the two models give closer results.

The overall conclusion that we can draw from this experiment is that, even though the

two models give somewhat different results, whitebox compression still brings a significant

improvement over the existing lightweight compression methods. The main reason for the

lower compression ratios of the Estimator baseline is the different—and unoptimized—

compression schemes. A more thorough experiment and analysis needs to be performed in

order to properly evaluate the performance of a stand-alone whitebox system in practice—

we leave this for future work. Even so, we showed that whitebox compression can be used to

enhance existing systems—like VectorWise—as an intermediate layer before the optimized

compression methods.

6.3.3 Results analysis

To better understand the impact of whitebox compression and how it represents the data,

we performed an analysis of the physical data size components and the expression trees. We

conducted this analysis on the results obtained with the VectorWise methodology (6.1.2).

This section presents the results obtained with Configuration A (iterative greedy).

Figure 6.7a shows the distribution of datatypes across the logical columns represented

through whitebox compression. The majority of columns are VARCHAR, since our system

leverages the opportunities present in strings. The rest of the columns are numeric and

boolean and are all constant columns, since the Constant pattern detector is the only one

that works on other datatypes than strings. Figure 6.7b shows the distribution of datatypes

across the physical columns resulted after the whitebox representation (excluding exception

columns). With the exception of 1% VARCHAR columns, all the other are numeric. They

resulted from Numeric strings and Dictionary representations (observation: dictionary

ids are stored in SQL numeric datatypes so that they can be loaded into VectorWise;

however, the main purpose of Dictionary expression nodes is to serve as an intermediate

representation layer before Column correlation). The only pattern detector that outputs

76

6.3 Results and discussion

varchar
78.8%

smallint

14.7%

integer
1.1% double2.2% boolean0.9% decimal2.4%

(a) Logical columns (used)

tinyint

28.2%

smallint
67.1%

decimal3.5%
varchar0.9% double0.2%

(b) Physical columns

Figure 6.7: Column datatype distribution

VARCHAR columns is Character set split. The other 2 pattern detectors—Constant and

Column correlation—do not output any physical columns. Instead, they reduce the number

of columns by consuming them and only storing metadata.

Table 6.4 shows the impact of whitebox compression through an analysis of the logical

and physical columns in terms of numbers and sizes.

Logical columns Physical columns
Used columns Data columns Exception columns

Average Count 26 8 46
Size (MB) 1.45GB 85MB 262MB

Total Count 1406 462 2479
Size 77.2GB 3.7GB 11.3GB

Table 6.3: Logical vs. physical columns

On the average table, there are 26—out of 67 (38%)—logical columns used in the white-

box representation. They are represented through only 8 physical columns containing

compressed data and an additional 46 exception columns. The number of data columns

is reduced because of the expression nodes that consume columns: Constant and Column

correlation. The number of exception columns is very high due to our option to keep an

exception column for each expression node in the tree and to allow recursive compression

of exception columns. However, these columns are very sparse and contain mostly null

values—which are effectively stored by the underlying database system through a bitmap.

In terms of size, the average of 1.45GB of input data is represented through only 85MB of

77

6. EVALUATION AND RESULTS

compressed data and 262MB of exceptions. Therefore, 1.19GB of the data (non-exceptions:

1.45GB - 262MB) is represented through 85MB of compressed data—plus the size of the

metadata, which is insignificant (see Figure 6.8). These results show the high degree of

redundancy present in real data—and that we can squeeze this redundancy out of the data

if we have a proper exception handling mechanism. Table 6.3 also shows the same analysis

for the overall results—total of all tables—instead of the average.

metadata0.1%

data

24.5%

exceptions

75.3%

Figure 6.8: Physical size distribution

dictionary

47.2%

constant
24.5%

split

2.8% correlation

24.6%

numeric
strings0.9%

Figure 6.9: Expression node types distribution

Figure 6.8 shows a better picture of the physical data size distribution and the com-

ponents that make it up. The exceptions sum up to 75.3% while the compressed data

represents 24.5% of the total physical data size. The compression metadata (e.g. dictio-

naries, correlation maps, etc.) is insignificant, since we used a single compression tree for

the entire table. The alternative—handling blocks of data separately—would allow a more

fined grained representation with possibly simpler compression trees, at the expense of

increasing the total metadata size.

We also computed the exception ratio in terms of numbers instead of size (i.e. how many

exceptions there are) as follows: countexception
countinput

, where countexception is the total number of

values on all leaf exception columns (i.e. physical columns, not further represented through

other operators) and countinput is the total number of values on the corresponding parent

columns from which the exceptions originated, which can be either inner or logical columns.

We obtained an overall exception ratio of 0.16. Given the fact that exceptions make most of

the physical size, reducing the exception ratio may be a way of achieving higher compression

ratios. A more thorough analysis of these results, with a focus on exceptions, should be

performed in order investigate ways of reducing the exception ratio—we leave it for future

work.

78

6.3 Results and discussion

For the rest of our analysis we focused our attention on the expression trees. Recall that

the so called expression tree is actually a directed acyclic graph (DAG) with multiple root

nodes and connected components (4 Compression model). Each connected component

represents a subset of the logical columns as a function of physical columns. Table 6.4

shows the characteristics of the average expression tree.

Connected components Expression nodes Depth Logical columns Physical columns
(on average per table) (on average per connected component)

12.5 3.3 1.4 1.7 0.8

Table 6.4: Expression tree statistics

There are 12.5 connected components, with an average of 3.3 expression nodes and a

depth of 1.4 levels. This shows that expression trees are not very complex and relatively

fast to evaluate. A connected component represents on average 1.7 logical columns as a

function of 0.8 physical columns (excluding exception columns)—the 0.8 value is due to

the expression nodes that do not output any physical columns: Constant and Column

correlation. Here we see again the capacity of whitebox compression to reduce the number

of columns by storing metadata instead.

Finally, Figure 6.9 shows the distribution of the expression node types in the average

expression tree. In this analysis we considered both internal and leaf nodes. We notice

that the majority is composed of Constant, Dictionary and Column correlation, while

only a small percentage are Character set split and Numeric strings. This is due to the

high Dictionary compression potential of the data and to the high correlation between

columns—high redundancy in other words. The split operators create opportunities for

compressing subcolumns and thus, for every Character set split node there are many Con-

stant, Dictionary and Column correlation nodes. Also note that all Column correlation

nodes take as input—and consume—Dictionary expression nodes. Therefore, the majority

of the Dictionary nodes are internal nodes of the expression tree. An additional reason

for this distribution of expression nodes is the priority configuration that we used for this

experiment—recall that Constant and Dictionary have the highest priority (6.2 Exper-

imental setup). We also experimented with other configurations of the Priority pattern

selector which resulted in more even distributions of the expression node types, but decided

to show the results of this configuration because they were better. Moreover, we will see

in the next section that this choice of expression node types is also optimal with respect

to our cost model (5.2.2), since the Recursive exhaustive learning algorithm produced a

similar distribution, while trying to minimize the physical data size.

79

6. EVALUATION AND RESULTS

The take-away message from this analysis is that we can represent many logical columns—

mostly VARCHAR—as functions of fewer physical columns—mostly numeric—at the expense

of many exception columns—mostly nulls—and achieve high compression ratios—all of

this automatically learned.

6.3.4 Recursive exhaustive learning results

We repeated the same experiments presented so far, this time with Configuration B (re-

cursive exhaustive). This section presents an analysis of the results in comparison to the

ones obtained with Configuration A (iterative greedy). As expected, the non-greedy, cost

model-based approach brought an improvement in terms of compression ratio.

sizeuncompressed

(GB) ratioblackbox ratiowhitebox
ratioblackbox
ratiowhitebox

Full
table

Iterative greedy 131 2.58 3.58 1.38
Recursive exhaustive 3.69 1.43

Used
columns

Iterative greedy 77 3.16 5.16 1.63
Recursive exhaustive 98 3.35 6.45 1.92

Table 6.5: Iterative greedy vs. Recursive exhaustive (VectorWise baseline)

Table 6.5 shows the sizes and compression ratios obtained with the two configurations.

For the full data, Configuration B gave a slightly higher compression ratio, leading to an

overall improvement of 1.43 over VectorWise. The two algorithms resulted in different

compression trees and thus the columns represented through whitebox compression are not

the same. Because of this, sizeuncompressed and ratioblackbox differ for the used columns: the

recursive exhaustive algorithm selected a larger subset of the data (74% of the total size),

which is also compressed slightly better by VectorWise. Whitebox compression achieves

a significantly higher compression ratio of 6.45 on the used columns—an improvement of

1.92× over the existing blackbox methods.

Logical columns Physical columns
Used columns Data columns Exception columns

Average Count 22 7 41
Size (MB) 1.96GB 56MB 256MB

Total Count 1072 373 2046
Size 98.1GB 2.7GB 12.5GB

Table 6.6: Logical vs. physical columns (recursive exhaustive learning)

Table 6.6 and Figure 6.10 show a analysis of the logical and physical columns. Configu-

ration B used less logical columns than Configuration A, but with a larger overall size. The

80

6.3 Results and discussion

smallint
13.9%

varchar 79.9%
integer

0.9% double2.3% decimal2.1% boolean0.7%

(a) Logical columns (used)

tinyint

33.5%

smallint

61.7%

decimal4.0%
varchar0.5% double0.3%

(b) Physical columns

Figure 6.10: Column datatype distribution (recursive exhaustive learning)

distribution of datatypes across these columns is similar in both cases: ≈ 80% VARCHAR and

≈ 20% other datatypes. In terms of physical columns, the compressed data columns are

both fewer in numbers and smaller in size. The total number of exception columns is 17%

smaller but their total size is 9% higher—in a similar trend with the logical columns. The

datatype distribution across the physical columns is also similar: >99% numeric, with an

increase of the TINYINT percentage at the expense of SMALLINT. Figure 6.11 shows how the

total physical size is split between compressed data, exceptions and metadata. Similarly to

Configuration A, metadata is insignificant and exceptions make up most of the size. The

exception ratio (in terms of numbers) is slightly smaller: 0.15 instead of 0.16.

Connected components Expression nodes Depth Logical columns Physical columns
(on average per table) (on average per connected component)

11.5 3.6 1.3 1.9 0.7

Table 6.7: Expression tree statistics (recursive exhaustive learning)

Figure 6.12 and Table 6.7 present the results of the expression tree analysis. The dis-

tribution of expression nodes is similar to the one given by Configuration A, with a slight

increase of the Column correlation percentage and decrease of Dictionary and Constant

percentages. Moreover, the expression trees are comparable in terms of structure (number

of connected components, nodes, depth, logical and physical columns). These results con-

firm that the rules and heuristics used in the Iterative greedy learning algorithm and the

configuration of the Priority pattern selector are suitable choices, since the greedy algo-

81

6. EVALUATION AND RESULTS

metadata0.2%

data
17.8%

exceptions
82.0%

Figure 6.11: Physical size distribution (recur-
sive exhaustive learning)

constant
23.6%

dictionary 44.8%

split

2.7%
correlation

28.0%

numeric
strings0.8%

Figure 6.12: Expression node types distribution
(recursive exhaustive learning)

rithm is capable of exploiting compression opportunities in similar ways as the exhaustive

algorithm does.

We have seen how Configuration B (recursive exhaustive) achieves higher compression

ratios than Configuration A (iterative greedy) by using an exhaustive search based on

the compression estimation cost model (5.2.2) instead of making greedy choices based on

pattern selection heuristics (5.2.4). This improvement comes at the cost of compression

learning time. Our Python implementation of the learning engine takes around 1 minute

with Configuration A and around 5 minutes with Configuration B to learn the compression

tree for a table, depending on the sample size, number and type of columns. Most of this

time is spent by analysing the sample for each (sub)column with the pattern detectors

and, in the case of Configuration B, by estimating the size of each (sub)column with the

compression estimators. The execution time of the recursive exhaustive algorithm is limited

by the maximum height threshold that we imposed on the expression tree. Adjusting this

threshold might result in better compression ratios at the cost of longer learning times.

All in all, we defined and evaluated two different whitebox compression learning algo-

rithms which create compact representations of the data. Their execution times can be

improved through more efficient implementations in lower level programming languages,

but even so, they are practical, as compression learning happens during bulk loading of

the data.

82

7

Conclusion and future work

7.1 Conclusion

In this thesis we explored the concept of whitebox compression. We defined and analysed

the Public BI benchmark in search for compression opportunities, by studying real, user-

generated datasets. Based on our findings we defined a new compression model which uses

elementary operators to represent data more compactly. We further defined an automatic

compression learning process and created a proof-of-concept implementation to measure

its feasibility and compression potential. Let us recall the research questions together with

their answers.

What does real user generated data look like—specifically in the case of the

Public BI benchmark? From our analysis we concluded that real data is redundant and

represented in inefficient ways, from "suboptimal" datatypes, to highly correlated or even

duplicate columns. Most of the string columns in the Public BI benchmark have a high

repetition factor, making them suitable for dictionary-like encoding techniques.

How good are existing compression schemes at compressing real data? Due

to the high number of numeric columns and the low number of unique values in string

columns—present in the Public BI benchmark—the data is already suitable for compression

with existing lightweight methods. VectorWise achieves an overall compression ratio of 2.58

on the benchmark. However, real data has a considerable compression potential that is

not exploited by these systems.

Can we represent the logical columns more compactly through an expression

tree composed of elementary operators? Based on the compression opportunities

found in the datasets we defined an expression language that enables more efficient repre-

sentation of the data. The whitebox compression model achieves high compression ratios

83

7. CONCLUSION AND FUTURE WORK

by splitting columns into subcolumns, storing data in the appropriate format, and rep-

resenting columns as functions of other columns. This complex compression schemes are

actually the result of simple recursive representation of columns through elementary oper-

ators. Combined with a transparent mechanism of handling (and recursively compressing)

exceptions, we manage to store data more compactly.

Can we create an automatic learning process that will generate suitable com-

pression trees for each column? We defined and implemented a set of pattern detectors

which identify compression opportunities present in the data and evaluate its potential for

whitebox representation. We further defined the optimization problem of finding the best

representation for a set of columns and proposed algorithms that solve it using an estimator

cost model and greedy heuristics. We validated our compression model with a proof-of-

concept implementation, achieving an overall compression ratio of 3.69 on the full data

and 6.45 on the columns represented through whitebox compression—an almost factor 2×
(1.92) improvement of VectorWise.

Besides improved compression ratios, whitebox compression in itself is an important con-

tribution to the database research field as a new compression model. The transparent

representation of logical columns as functions of physical columns through operator ex-

pressions simplifies the compression layer of database systems. It allows implicit recursive

compression through an unlimited number of methods, while handling exceptions in a

generic way. On top of this, whitebox compression has the potential of improving query

processing times by exposing the data representation to the query execution engine, al-

lowing predicate push-down and lazy evaluation of the compression tree. This model can

be implemented either as a stand-alone system with whitebox versions of the existing com-

pression methods or as an intermediate representation layer which creates compression

opportunities for the optimized blackbox schemes.

On a more general level, whitebox compression and the learning of representation models

can be seen as part of a trend to adapt database storage and query processing methods to

the data, similarly to learned indexes (35) or learned systems (36, 37). This idea does have

important system-wide consequences as well: a system that reads whitebox compressed

data will read compression expressions from the block header and will have to quickly

instantiate some query evaluation infrastructure to parse it, performing decompression

and/or predicate push-down. We can think of methds that employ JIT code generation for

this, as well as vectorized execution methods leveraging SIMD. Keeping the latency and

overhead of this process low is a research question that we leave for future work.

84

7.2 Future work

7.2 Future work

For this thesis we explored and demonstrated the potential of whitebox compression through

a basic implementation. There is room for improvement and further development in all the

components: pattern detectors, pattern selectors, learning algorithms, estimators. How-

ever, even with this initial exploratory approach we obtained good results, which only

encourages future work in this direction, towards a highly optimized whitebox compression

model implemented in real systems.

Firstly, the Public BI benchmark deserves a more thorough characterisation, as it is a

representative benchmark for database systems. In terms of data, an interesting result

would be the distribution types of the numeric columns: skweness and kurtosis coefficients

plotted on a Cullen and Frey graph. Moreover, outlier characterisation and the range and

domain of values might also prove useful. Special attention should be directed towards the

queries, to understand real use-cases in analytical systems.

There are compression opportunities in some datasets that are not yet covered by the

current compression learning process, but could be easily exploited with a few improve-

ments: 1) support for hexadecimal numbers in the Numeric strings pattern detector (hex-

formatted columns in RealEstate* datasets); 2) a dedicated pattern selector for Character

set split which takes into account the number of characters that are not in the default

charset; 3) padding whitespace detection and isolation on separate columns through a split

instance to enable future compression with Dictionary; 4) column correlation support for

continuous and discrete variables to leverage mathematical dependencies between numeric

columns; 5) a different column split pattern detector based on frequencies of n-grams in

string columns—approach and preliminary results are presented in Appendix A.

Whitebox compression has potential for achieving fast query execution. However, this

potential needs to be properly evaluated. Most importantly, we need efficient compres-

sion and decompression implementations. So far we implemented unoptimized versions of

these procedures to evaluate the compression ratios and validate the correctness of our

implementation by reconstructing the original data. An important step towards improved

execution time is to use a different cost model for the learning algorithms—one that also

takes into account the complexity of the compression tree (e.g. in terms of depth and

branching factor). Going further, we can design a compression tree optimization process

with the purpose of reducing its complexity (similar to query plan optimization). Further-

more, we should answer our 5th research question mentioned in the introduction: Can we

achieve compressed execution with the whitebox compression model? We need to study

85

7. CONCLUSION AND FUTURE WORK

predicate push-down opportunities from the perspective of both data and queries, with the

hope that we can (partially) skip decompression and operate directly on compressed data.

Finally, a machine learning approach for pattern detection and solving the compression

learning optimization problem might lead to interesting results, provided that we can

extract relevant features from the datasets and properly define our problem so that it fits

the machine learning models.

86

References

[1] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-

scalar RAM-CPU cache compression. IEEE, 2006. 1, 7, 8, 66

[2] Peter Boncz, Thomas Neumann, and Orri Erling. TPC-H analyzed: Hid-

den messages and lessons learned from an influential benchmark. In Technol-

ogy Conference on Performance Evaluation and Benchmarking, pages 61–76. Springer,

2013. 1, 8

[3] Raghunath Othayoth Nambiar and Meikel Poess. The making of TPC-

DS. In Proceedings of the 32nd international conference on Very large data bases,

pages 1049–1058. VLDB Endowment, 2006. 1, 8

[4] Public BI Benchmark. https://github.com/cwida/public_bi_benchmark. Ac-

cessed: 2019-03-13. 1, 8, 11, 69

[5] Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating com-

pression and execution in column-oriented database systems. In Proceedings

of the 2006 ACM SIGMOD international conference on Management of data, pages

671–682. ACM, 2006. 7, 8

[6] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A Boncz,

Thomas Neumann, and Alfons Kemper. Data blocks: hybrid OLTP and

OLAP on compressed storage using both vectorization and compilation.

In Proceedings of the 2016 International Conference on Management of Data, pages

311–326. ACM, 2016. 7, 8

[7] Orestis Polychroniou and Kenneth A Ross. Efficient lightweight com-

pression alongside fast scans. In Proceedings of the 11th International Workshop

on Data Management on New Hardware, page 9. ACM, 2015. 7

87

https://github.com/cwida/public_bi_benchmark

REFERENCES

[8] Goetz Graefe and Leonard D Shapiro. Data compression and database

performance. In [Proceedings] 1991 Symposium on Applied Computing, pages 22–27.

IEEE, 1991. 7

[9] Alfons Kemper and Thomas Neumann. HyPer: A hybrid OLTP&OLAP

main memory database system based on virtual memory snapshots. In 2011

IEEE 27th International Conference on Data Engineering, pages 195–206. IEEE, 2011.

7, 11

[10] Marcin Zukowski, Mark Van de Wiel, and Peter Boncz. Vectorwise: A

vectorized analytical DBMS. In 2012 IEEE 28th International Conference on

Data Engineering, pages 1349–1350. IEEE, 2012. 7, 11, 14, 46, 65

[11] Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. Compress-

ing relations and indexes. In Proceedings 14th International Conference on Data

Engineering, pages 370–379. IEEE, 1998. 7

[12] Daniel Lemire and Leonid Boytsov. Decoding billions of integers per sec-

ond through vectorization. Software: Practice and Experience, 45(1):1–29, 2015.

7

[13] Mark A Roth and Scott J Van Horn. Database compression. ACM Sigmod

Record, 22(3):31–39, 1993. 7

[14] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani,

David Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone,

Shaorong Liu, Guy M Lohman, et al. DB2 with BLU acceleration: So

much more than just a column store. Proceedings of the VLDB Endowment,

6(11):1080–1091, 2013. 7, 8

[15] Jae-Gil Lee, Gopi Attaluri, Ronald Barber, Naresh Chainani, Oliver

Draese, Frederick Ho, Stratos Idreos, Min-Soo Kim, Sam Lightstone,

Guy Lohman, et al. Joins on encoded and partitioned data. Proceedings of

the VLDB Endowment, 7(13):1355–1366, 2014. 7, 8

[16] Vijayshankar Raman and Garret Swart. How to wring a table dry: En-

tropy compression of relations and querying of compressed relations. In

Proceedings of the 32nd international conference on Very large data bases, pages 858–

869. VLDB Endowment, 2006. 8

88

REFERENCES

[17] Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang

Lehner. Lightweight Data Compression Algorithms: An Experimental Sur-

vey (Experiments and Analyses). In EDBT, pages 72–83, 2017. 8

[18] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper,

Viktor Leis, Tobias Muehlbauer, Thomas Neumann, and Manuel Then.

Get real: How benchmarks fail to represent the real world. In Proceedings of

the Workshop on Testing Database Systems, page 1. ACM, 2018. 8, 11

[19] Tableau Public. https://public.tableau.com. Accessed: 2019-03-14. 8, 11

[20] Peter A Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100:

Hyper-Pipelining Query Execution. In Cidr, 5, pages 225–237, 2005. 11

[21] Database SQL Language Reference. COALESCE. https://docs.oracle.com/

cd/B28359_01/server.111/b28286/functions023.htm. Accessed: 2019-07-29. 25

[22] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew

Pavlo, and Peter Boncz. Everything you always wanted to know about

compiled and vectorized queries but were afraid to ask. Proceedings of the

VLDB Endowment, 11(13):2209–2222, 2018. 25

[23] MonetDB data types. https://www.monetdb.org/book/export/html/187. Ac-

cessed: 2019-07-05. 32

[24] VectorWise decimal data type. https://docs.actian.com/ingres/10s/index.

html#page/SQLRef/Decimal_Data_Type.htm. Accessed: 2019-07-05. 32

[25] Harald Cramir. Mathematical methods of statistics. Princeton U. Press,

Princeton, page 282, 1946. 38

[26] William Press, Brian Flannery, Saul Teukolsky, and William Vetter-

ling. Numerical Recipes: the Art of Scientific Computing (3rd ed.). Cam-

bridge U. Press, Cambridge, page 761, 1992. 38

[27] Ingres 10.2. OpenAPI User Guide. https://supportactian.secure.force.

com/help/servlet/fileField?id=0BEf3000000PLPU. Accessed: 2019-07-02. 46

[28] Lefteris Sidirourgos and Martin Kersten. Column imprints: a secondary

index structure. In Proceedings of the 2013 ACM SIGMOD International Conference

on Management of Data, pages 893–904. ACM, 2013. 65

89

https://public.tableau.com
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions023.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28286/functions023.htm
https://www.monetdb.org/book/export/html/187
https://docs.actian.com/ingres/10s/index.html#page/SQLRef/Decimal_Data_Type.htm
https://docs.actian.com/ingres/10s/index.html#page/SQLRef/Decimal_Data_Type.htm
https://supportactian.secure.force.com/help/servlet/fileField?id=0BEf3000000PLPU
https://supportactian.secure.force.com/help/servlet/fileField?id=0BEf3000000PLPU

REFERENCES

[29] Vladimir I Levenshtein. Binary codes capable of correcting deletions, in-

sertions, and reversals. In Soviet physics doklady, 10, pages 707–710, 1966. 67

[30] regex 2019.06.08. https://pypi.org/project/regex. Accessed: 2019-07-18. 67

[31] vwload Command–Load Data into a Table. https://docs.actian.com/

ingres/11.0/index.html#page/CommandRef%2Fvwload_Command--Load_Data_

into_a_Table.htm. Accessed: 2019-07-18. 68

[32] Performance Tips. https://docs.actian.com/vector/4.2/index.html#page/

User/Performance_Tips.htm. Accessed: 2019-07-18. 68

[33] Linux Programmer’s Manual. STAT(2). http://man7.org/linux/man-pages/

man2/stat.2.html. Accessed: 2019-07-18. 68

[34] statdump Command–Print Statistics in iistats and iihistogram Cata-

logs. https://docs.actian.com/vector/5.0/index.html#page/User/statdump_

Command--Print_Statistics_in_iistats_an.htm. Accessed: 2019-07-18. 68

[35] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Poly-

zotis. The case for learned index structures. In Proceedings of the 2018 Inter-

national Conference on Management of Data, pages 489–504. ACM, 2018. 84

[36] Stratos Idreos and Tim Kraska. From auto-tuning one size fits all to

self-designed and learned data-intensive systems. In ACM SIGMOD, 2019. 84

[37] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H Chi, Jialin Ding,

Ani Kristo, Guillaume Leclerc, Samuel Madden, Hongzi Mao, and

Vikram Nathan. Sagedb: A learned database system. 2019. 84

90

https://pypi.org/project/regex
https://docs.actian.com/ingres/11.0/index.html#page/CommandRef%2Fvwload_Command--Load_Data_into_a_Table.htm
https://docs.actian.com/ingres/11.0/index.html#page/CommandRef%2Fvwload_Command--Load_Data_into_a_Table.htm
https://docs.actian.com/ingres/11.0/index.html#page/CommandRef%2Fvwload_Command--Load_Data_into_a_Table.htm
https://docs.actian.com/vector/4.2/index.html#page/User/Performance_Tips.htm
https://docs.actian.com/vector/4.2/index.html#page/User/Performance_Tips.htm
http://man7.org/linux/man-pages/man2/stat.2.html
http://man7.org/linux/man-pages/man2/stat.2.html
https://docs.actian.com/vector/5.0/index.html#page/User/statdump_Command--Print_Statistics_in_iistats_an.htm
https://docs.actian.com/vector/5.0/index.html#page/User/statdump_Command--Print_Statistics_in_iistats_an.htm

Appendices

91

Appendix A

n-gram frequency analysis

During our analysis of the Public BI benchmark we noticed several VARCHAR columns con-

taining strings that are concatenations of data from different distributions. These columns

can be stored more efficiently in separate subcolumns, in order to allow independent com-

pression of their constituent parts. We approached this problem with the Character set

split pattern detector (5.1.4) and obtained good results, but we did not cover all the vari-

ations of such columns. Table A.1 shows two samples of data from columns that have this

property but we did not cover.

ds_email

ic.caetano@hotmail.com
arnaldo2moraes@yahoo.com.br
s_heique266@yahoo.com.br
silasvkj@hotmail.com
leonel_noga@hotmail.com
alexelidi@yahoo.com.br
jdcn488@hotmail.com
elton.t.santos@gmail.com
kassiosgoda@hotmail.com
valdireneandrade1@hotmail.com
diego.shynomory@gmail.com
fer-ars@hotmail.com
rosilda_limactba@hotmail.com
utfpraasma@hotmail.com

ds_tipo_beneficiario

Outro: especificar - bolsa formação estudante
Outro: especificar - Programa Nacional de [...]
Outro: especificar - cadastro unico
Outro: especificar - aluno ensino Médio
Beneficiário de [...] - Beneficiário de [...]
Outro: especificar - aluno da rede publica
Outro: especificar - aluno escola publica
Atendimento prioritário - Atendimento prioritário
Outro: especificar - Outro: especificar
Outro: especificar - Outro: especificar
Outro: especificar - ESTUDANTE REDE PUBLICA
Outro: especificar - nao é perfil cadunico
Outro: especificar - CADÚNICO
Outro: especificar - possui renda inferior [...]

Table A.1: Eixo_1 data samples

Both columns are composed of two parts: one with high repetition factor—which can

benefit from compression—and one rather unique—which cannot. They are separated by a

delimiter character: ’@’, respectively ’-’. While the Character set split could cover these

columns with a delimiter character set (e.g. [@-]), there are also cases with no explicit

93

A. N-GRAM FREQUENCY ANALYSIS

separator character but other structures instead (e.g. fixed number of characters from the

start of each string).

To cover all cases in a more generic way, we tried to develop a different approach based

on n-gram frequencies. We represented each string in a different way, such that we can

identify its constituent substrings more easily, as follows: 1) we computed the frequencies

of all 3-grams based on their number of occurrences on the entire column; 2) we replaced

each character in each string with the frequency of the 3-gram starting at the position of

the character. The results are presented in Figures A.1 and A.2.

Figure A.1: ds_email 3-gram frequencies

The figures show the frequency of the 3-grams in the strings in the two columns presented

above (larger samples than in the example). The Y axis represents each string on the

94

Figure A.2: ds_tipo_beneficiario 3-gram frequencies

column and the X axis contains the positions of the characters in the strings. The colors

represent the frequencies: white = high frequency, red = low frequency. Black is used

as padding for shorter strings. Figure A.1 shows the results for the ds_email column.

We notice how all the emails start with low frequencies (the local/username part) and

end with high frequencies (the domain part). Moreover, we can also observe the different

components of the domain: we have the top level domains with the highest frequencies

(e.g. .com, .br, etc.), followed by the subdomains (e.g. gmail, hotmail, etc.). Even

more, the word "mail" is also representative in itself, since it is common for most email

subdomains. Figure A.2 shows the results for the ds_tipo_beneficiario column. It is clear

how the majority of the strings start with the frequent substring "Outro: especificar"

95

A. N-GRAM FREQUENCY ANALYSIS

and end in a low frequency substring.

The 3-gram frequency representation emphasizes the constituent subparts in which a

column should be split in order to enable independent compression. The goal is to auto-

matically find the split points, which is not a trivial task. The approach that we propose

relies on the fact that we can view each string as a series of numbers (3-gram frequencies).

The series contain edges and plateaus. An edge is a significant increase or decrease in

frequency. After identifying the edges in each string, we need to find the common edges

amongst the majority of the strings. A common edge is an edge that can be identified

either by the same character (e.g. the ’@’ delimiter) or by the same absolute position

in all the strings. Once we found the common edges, we define the split points based

on the character or position. During compression, we split each string according to these

identifiers and mark as exception the values that cannot be split.

Due to time constraints, we decided not to proceed with the implementation and evalu-

ation of this approach and leave it for future work.

96

Appendix B

Column correlation graphs

The figures below show two examples of Column correlation graphs as defined in 5.2.4.4.

Figure B.1 shows a common correlation graph resulted from Configuration B (6.2) af-

ter applying the Column correlation pattern detector (5.1.5) on the leaf columns of the

tree produced by the Recursive exhaustive learning algorithm (5.2.3) in Stage-1 (table:

YaleLanguages_1). Figure B.2 shows a highly complex correlation graph, resulted from

Configuration A (6.2) (table: Generico_1). Both configurations resulted in graphs of sim-

ilar complexities for the same tables. An important note is that these correlations are not

directly between the logical columns, but between subcolumns resulted after decomposing

them and separating the values into different subsets and exceptions as well. As we see in

the figures, this process creates many correlation opportunities—and most of them could

not be exploited on the original representation of the data.

Columns with high indegree can be determined by many other columns. This happens to

columns that are (almost) constant and—in our case in particular—to exception columns

with very high null ratios. The explanation is that, if a column has the same constant

value (e.g. null), any other column can determine it since all its values will map to the

constant value. Columns with high outdegree can determine many other columns. This

happens to columns with very low repetition factor (i.e. rather unique), since there is

a perfect mapping between a unique column and any other column. However, this does

not happen in our case, since we only use Column correlation on Dictionary compressible

columns. Besides these special cases of nearly constant or unique columns, high degrees

result from actual correlations between (sub)columns created by the learning algorithms.

97

B. COLUMN CORRELATION GRAPHS

20__1_0_0

24__1_0_0

1.00

21__1_0_0

1.00

25__1_0_0

1.00

27__1_0_0

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.99

9__1_0_0

10__1_0_0

1.00

11__1_0_0

1.00
0__1_0_0

1.00

1.00

1.001.00

1.00

16__1_0_0

6__1_0_0

1.00

5__1_0_0

1.00

29__1_0_0

1.00 1.00

1.00

1.00

1.001.00

1.00

17__1_0_0

1.00

1.00

1.00

1.00

8__1_0_0

1.00

7__1_0_0

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

F
igu

re
B

.1:
Y
aleLanguages_

1
correlation

graph

98

0
__
1
_0
_0

1
__
1
_0
_0

0
.9
3

3
3
__
1
_0
_0

0
.9
3

3
5
__
1
_0
_0

0
.9
2 1
.0
0

4
__
1
_0
_0

1
.0
0

1
.0
0

8
__
1
_0
_0

0
.9
4

9
__
1
_0
_0

1
.0
0

3
0
__
1
_0
_0

0
.9
6

3
7
__
1
_0
_0

1
.0
0

3
9
__
1
_0
_0

0
.9
1

4
0
__
1
_0
_00
.9
3

8
__
e
x_
_3
_0
_8
__
1
_0
_0

0
.9
2

8
__
e
x_
_3
_0
_1
2
__
1
_0
_0

0
.9
4 9
__
e
x_
_3
_0
_1
6
__
1
_0
_0

0
.9
2

9
__
e
x_
_3
_0
_2
0
__
1
_0
_0

0
.9
4

3
7
__
e
x_
_3
_0
_8
__
1
_0
_0

0
.9
2

3
7
__
e
x_
_3
_0
_1
2
__
1
_0
_0

0
.9
4

0
.9
4

0
.9
5

0
.9
5

0
.9
5

0
.9
0

0
.9
1

0
.9
2

0
.9
4

0
.9
2

0
.9
4

0
.9
2

0
.9
4

0
.9
5

0
.9
2

0
.9
7

0
.9
2

0
.9
1

0
.9
4

0
.9
5

0
.9
3

0
.9
50
.9
4

0
.9
5

0
.9
4

1
.0
0

1
.0
0

0
.9
6

0
.9
1

0
.9
3

0
.9
2

0
.9
4

0
.9
2

0
.9
40
.9
2

0
.9
4

1
.0
0

2
4
__
1
_0
_0

0
.9
9

4
2
__
1
_0
_0

1
.0
0

1
.0
0

0
.9
6

0
.9
6

1
.0
0

1
.0
0

0
.9
9

0
.9
4

0
.9
6

0
.9
9

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.9
9

1
.0
0

0
.9
8

0
.9
9

1
.0
0

1
.0
0

1
.0
0

0
.9
6

0
.9
6

1
.0
0

0
.9
9

1
.0
0

0
.9
4

0
.9
6

0
.9
9

1
8
__
1
_0
_0

0
.9
5

2
3
__
1
_0
_0

0
.9
1

0
.9
30
.9
1

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

3
1
__
1
_0
_0

0
.9
7

0
.9
7

0
.9
9

0
.9
8

0
.9
7

0
.9
6

0
.9
5

0
.9
5

0
.9
5

0
.9
6

0
.9
6

0
.9
5

0
.9
5

0
.9
6

0
.9
4 0
.9
4

8
__
e
x_
_3
_0
_9
__
1
_0
_0

0
.9
3

9
__
e
x_
_3
_0
_1
7
__
1
_0
_0

0
.9
2

3
7
__
e
x_
_3
_0
_9
__
1
_0
_0

0
.9
3

0
.9
9

0
.9
9

0
.9
5

0
.9
5

0
.9
9

0
.9
9

0
.9
6

1
.0
0

0
.9
8

0
.9
8

0
.9
9

0
.9
9

0
.9
8

0
.9
8

1
.0
0

1
.0
0

0
.9
9

0
.9
9

0
.9
5

0
.9
5

0
.9
9

0
.9
9

1
.0
0

0
.9
6

3
4
__
1
_0
_0

0
.9
2

0
.9
8

0
.9
7

0
.9
0

0
.9
0

1
.0
0

0
.9
7

0
.9
7

1
7
__
1
_0
_0

0
.9
6

3
8
__
1
_0
_0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

8
__
e
x_
_3
_0
_1
1
__
1
_0
_0

1
.0
0

1
.0
0

0
.9
6

0
.9
6

1
.0
0

1
.0
0

1
.0
0

0
.9
6

1
.0
0

9
__
e
x_
_3
_0
_1
9
__
1
_0
_0

0
.9
6

3
7
__
e
x_
_3
_0
_1
1
__
1
_0
_0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.9
6

0
.9
6

1
.0
0

1
.0
0

1
.0
0

0
.9
6

1
.0
0

1
.0
0

0
.9
6

F
ig

u
re

B
.2

:
G
en
er
ic
o_

1
co
rr
el
at
io
n
gr
ap

h

99

	List of Figures
	List of Tables
	1 Introduction
	1.1 Whitebox compression
	1.2 Research questions

	2 Related work
	2.1 Contributions

	3 Public BI benchmark
	3.1 Benchmark analysis
	3.1.1 General characterisation
	3.1.2 Manual analysis
	3.1.3 Conclusion

	4 Compression model
	4.1 Expression language
	4.2 Expression tree
	4.3 Exception handling
	4.4 Compression and decompression

	5 Automatic compression learning
	5.1 Pattern detection
	5.1.1 Generic pattern detector
	5.1.2 Constant
	5.1.3 Numeric strings
	5.1.4 Character set split
	5.1.5 Column correlation
	5.1.6 Dictionary

	5.2 Compression learning process
	5.2.1 Optimization problem
	5.2.2 Cost model: compression estimators
	5.2.2.1 Generic compression estimator
	5.2.2.2 No compression estimator
	5.2.2.3 Dictionary estimator
	5.2.2.4 Run Length Encoding estimator
	5.2.2.5 Frame of Reference estimator

	5.2.3 Recursive exhaustive learning
	5.2.4 Pattern selectors
	5.2.4.1 Generic pattern selector
	5.2.4.2 Coverage pattern selector
	5.2.4.3 Priority pattern selector
	5.2.4.4 Correlation pattern selector

	5.2.5 Iterative greedy learning
	5.2.6 Multi-stage learning

	6 Evaluation and results
	6.1 Methodology
	6.1.1 Sampling
	6.1.2 VectorWise baseline
	6.1.3 Estimator baseline

	6.2 Experimental setup
	6.3 Results and discussion
	6.3.1 VectorWise baseline results
	6.3.2 Estimator model baseline results
	6.3.3 Results analysis
	6.3.4 Recursive exhaustive learning results

	7 Conclusion and future work
	7.1 Conclusion
	7.2 Future work

	References
	Appendices
	A n-gram frequency analysis
	B Column correlation graphs

