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Abstract

In this thesis, we review the state-of-the-art big data file formats such as Par-
quet and ORC and justify the need for designing a new file format. We ar-
gue that light-weight compression schemes such as RLE, PFOR, PDelta and
PDICT are better candidates than general-purpose compression schemes to be
used in a big data file format. However, these compression schemes are not
designed to leverage SIMD instructions. Considering the fact that there are
SIMD instructions available that can operate on 64 integers in one cycle, and
the availability of wider SIMD registers in the future, it is necessary to redesign
these compression schemes to be SIMD-friendly. Moreover, these compression
schemes are not flexible to provide the choice of outlier handling mechanism
and be recursively combined.

To solve these problems, we propose the SIMD-friendly composable compres-
sion model, which can be considered as the foundation of a new file format
for big data. To be SIMD-friendly, we propose several new layouts that make
these compression schemes capable of exploiting the widest SIMD register sup-
ported by a CPU (even future CPUs). Moreover, the decompression function
is decomposed into several efficient functions, which can be combined later to
provide the desired flexibility, and the ability to be recursively combined. The
results show that the overhead of having light-weight compression schemes such
as PFOR, PDelta, PDICT, and RLE in the composable model is negligible,
and SIMD instructions can accelerate the decompression phase to 50 tuples
per cycle. This is a performance improvement of two orders of magnitude
compared to the predecessor techniques.
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1

Introduction

1.1 Big Data File Formats

Several relational data processing systems such as Apache Spark (6), Apache Hive (7),

and Apache Impala (8) have been emerged to analyze so-called big data. These systems

manage their data in a variety of open data file formats such as Parquet (9) and ORC

(10). Parquet is the most popular file format to store data in the Cloud (11).

Over the last decade, several factors of the big data landscape have changed, which

might affect the suitability of the state-of-the-art big data file formats. First, as software

ecosystem becomes more mature, better metadata is required. In database systems, meta-

data such as zone maps, table samples and Hyperloglog (12) is required for cardinality

estimation (a critical piece in query optimization) as well as to enable targeted data access

(skipping whole files or part of a file). Second, continuous progress in hardware, such as

wider Single Instruction Multiple Data (SIMD) registers and more advanced instructions

offer new opportunities for fast data access (13). Third, it has been realized that data or

the structure of data (schema) continuously changes (14). Therefore, the ability to effi-

ciently handle all types of changes, such as schema evolution and updates has increasingly

become a requirement for big data file formats. Lastly, the shift from the Hadoop ecosys-

tem to the Cloud introduces new challenges for big data file formats from both technical

and privacy perspectives (15). The mentioned trends raise the question if there is a need

to design a new big data file format, which is the topic of this thesis.
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1.2 Shortcomings of the State-of-the-art Big Data File For-
mats

Traditionally, data has been stored in databases row by row, which is called the N-ary
Storage Model (NSM). While being a good fit for random-access algorithms, the NSM
model’s performance degrades for sequential scenarios (16). A model proposed to solve this
issue is the Decomposition Storage Model (DSM) (17), in which data is stored column by
column. DSM provides column pruning opportunities to skip reading unwanted columns
and it also favors compression since similar data are put together (18). Another alternative
is the Partition Attributes Across (PAX) model (19), which is the combination of the two
mentioned models. PAX stores chunks of rows in a columnar fashion.
Parquet is a compressed, columnar data storage that is based on the PAX data model.

A Parquet file consists of one or more row-groups. A row-group is a logical horizontal
partitioning of the data into rows that precisely contains one column chunk per column.
A column chunk contains a chunk of the data for a particular column. Column chunks are
divided into pages that are conceptually an indivisible unit in terms of compression and
encoding. Note that the metadata in a Parquet file is stored as a footer.
While the state-of-the-art big data file formats such as Parquet provide a relatively good

data compression ratio and efficient scan, they suffer from several shortcomings that we
elaborate on in this section.

Efficient Implementation The design of Parquet has been influenced by the Java
Virtual Machine (JVM), which in contrast to lower level programming languages such as
C and C++, does not allow precise control of system behavior, such as memory allocation,
and also does not provide an intrinsics interface that exposes SIMD instructions (20).
Moreover, Parquet V1, the first version of Parquet, in terms of encoding scheme only offers
dictionary encoding (9), where the codes are subsequently stored in a compact format using
either run-length encoding or bit packing. The combination of these particular techniques
may work well in some data distribution, but can be a mismatch or overkill in other
situations. It is worth mentioning that Parquet V2, the second version of Parquet, adds
more diverse encoding schemes. However, we should note that by far most data in the
Cloud use Parquet V1.
In addition, dynamically switching between bit-packing and run-length encoding in Par-

quet can cause branchy decoding that prevents compiler optimizations and may lead to
branch miss-prediction penalties. Lastly, bit-packing used in Parquet could be improved



to be more SIMD-friendly using interleaving. Based on these reasons, there is a need to
design a new file format that enables us to exploit SIMD opportunities whenever possible,
to be able to provide more encoding schemes with better implementations which can select
the most appropriate scheme based on the characteristics of the data.

Page Compression Parquet and ORC use general-purpose compression techniques to
compress pages. We argue that domain-specific compression methods such as PFOR,
PDELTA, and PDICT are a better choice for non-string data (21). In addition, the new
string compression scheme FSST (22) allows predicate pushdown on compressed string
data, while offering competitive compression ratios and (de)compression speed. Therefore,
domain-specific and string compression techniques such as FSST can have a significant
impact on compression ratios and (de)compression speed. This justifies the need for
designing a new file format that uses such compression techniques.

Wide and Sparse Data Parquet treats wide and sparse data similar to other kinds
of data, which leads to several problems. In Parquet, the page size is fixed causing the
page to be nearly empty in case of wide and sparse data, which is not efficient from both
the space and computation speed perspectives. Moreover, if at least one page needs to be
reserved during the append operation, a fixed-sized page implies a large RAM buffering
requirement while calling the writer API.

Design Some of the design decisions made by Parquet could be improved. First, a
field containing the size of the row-group header could be added to the row-group header.
Currently, the Parquet metadata parser needs to guess the right size of the row group
header, which might take several tries to guess correctly (23). Second, the number of
values in a page could be added as metadata. This improvement enables us to skip pages
in cases where specific rows needs to be fetched by row id. In addition, in Parquet, row-
group statistics are embedded in the row-group header, which is problematic because of
the row-group header size, as already discussed.

Whitebox Compression The new proprietary Artus (24) data format by Google di-
rectly exposes dictionary-compressed columns as an integer column of codes and a dic-
tionary object. This allows consumers to delay decompression which results in perfor-
mance gains in multiple cases such as predicate pushdown. Besides dictionary-compressed
columns, Artus also exposes RLE compressed data as a two-column stream of count and



value pairs which results in a better performance. Taking this further in the recent work on
white-box compression (25) by CWI’s Database group, we argue that the new file format
for big data should store a table as a number of optimized physical columns. In addition,
a mapping of physical to logical columns, which the user expects in the table, should be
provided in the header. In fact, white-box compression can be applied in a broader context
than the two discussed features of Artus, which can allow for better compression ratios
and faster processing.

Cloud Storage The metadata in Parquet and ORC is located in row-group headers or
global footers. In Cloud storage, in contrast to HDFS (26), this leads to buckets where
data is split across many files, one per append. Also, random access into many files for
small pieces of metadata is not favorable in the Cloud. We argue that a new design is
needed to overcome this problem by separating the metadata from the actual data. All
metadata should be put together in one file to achieve a more efficient access pattern,
particularly in the workloads with pruning possibilities.

1.3 Background

At CWI’s Database Architectures group, we have started to design a new big data format.
As the first step, we designed a new page layout to support the white-box compression
model. The white-box compression model represents logical columns, what the user ex-
pects to see, as composite functions of physical columns, what is stored on the disk. These
functions are standard column expressions that are fast and expressive enough to handle
different patterns (3).
To store a table in this page layout, the table is horizontally partitioned into multiple

extents. An extent is similar to a row-group in Parquet as it contains all the attributes of
a row. Each extent consists of multiple consecutive pages, similar to a page in Parquet.
We propose the default fixed size of 256 KB for a page. During bulk loading, 8 consecutive
pages are filled per column. This results in having 2 MB of consecutive data that favors
big scans. Figure 1.1 shows an example of our new page layout.
In this page layout, each page consists of one or more frames. A frame is the base

representation for any tabular data and stores a table slice with all its data that reside
inside one page. In case where a frame holds multiple columns, it resembles the PAX
layout. Moreover, each page consists of one page footer located at the end of the page.
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Figure 1.1: An example of the whitebox page layout.

The page footer denotes the number of frames and their end-offset in a page, all encoded
as a 4-byte integer. Note that all these offsets are relative to the start of the page.
A frame has one or more segments, which is the primary storage unit that stores data

of a single physical column. Besides segments, each frame has one frame footer located
at the end of the frame. A frame footer indicates the number of segments, their size, and
their start offset in a frame, all encoded as a 4-byte integer. It is worth mentioning that
all these offsets are relative to the beginning of the current frame. Lastly, a special form
of a frame, called mini-frame, is defined to store in-page metadata which contains one row
per 1024 rows in the current frame. The mini-frame is appended to the frame and can be
considered as a mini table that makes our page format flexible enough to store any kind
of metadata for a column. For example, a mini-frame allows us to store the bit-width and
the base value for each 1024-row vector necessary to optimize PFOR.
A segment comes in two flavors: compressed and uncompressed. A compressed segment

stores bit-packed data using the 1024-bits interleaved layout (see Section 3). In our 1024-
bits interleaved layout, 1024 B-bit tuples are interleaved in L lanes in B 1024-bits wide
words. Each lane is W = 1024/L bits wide, where W is 8, 16, 32 or 64. A tuple is
bit-packed and appended to the lane X mod L. An uncompressed segment stores fixed-
sized physical type values in an array. An example of an uncompressed segment is an
entry-frame, which resembles a page-entry. Note that a frame might consist of a mix of
compressed and uncompressed segments.
Variable-sized data cannot be stored in one segment. Instead, it should be stored in two

segments: one segment with an unsigned integer byte-offset, and another segment with
the actual data represented in bytes. Moreover, if a segment contains FSST compressed
strings, a 2KB FSST lookup table needs to be stored in a separate segment.



1 0 E O2 S S O

Mini-FramePage Footer Frame Footer

Frame End Segment Size Offset

Figure 1.2: An example of the whitebox page layout where an integer column is compressed
by the enhanced FOR.

To better illustrate how our page layout works, consider an integer column that is
compressed using the Frame of Reference (FOR) compression scheme. In FOR, a single
base value is determined for the whole page and is subtracted from integers in order
to store them with fewer bits. The FOR scheme in this example is enhanced by having
different base values for every 1024 tuples, which increases the flexibility of FOR. This page
layout enables us to have this enhancement by storing the base values in the mini-frame.
Figure 1.2 shows an integer column that is stored in our new page layout. In Figure 1.2, the
green boxes show the content of the frame footer. A box with the letter S denotes the size
of a segment, while the box with the letter O denotes the offset pointing to the beginning
of a segment. This frame originally consists of a single compressed segment denoted by the
color gray. As data needs in-page metadata, a mini-frame containing metadata is created
and appended to the frame. The mini-frame consists of an uncompressed segment which
stores bases for every 1024 tuples. Therefore the number of segments inside the frame is
increased to 2 and denoted by the first green box in the frame footer. The red boxes show
the content of the page footer, in which the first box shows the number of frames inside
this page. The last box inside the page footer points to the end of the frame, where the
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Figure 1.3: An example of the whitebox page layout where 4096 integers are compressed by
the enhanced FOR.

API reader could find the number of segments. Note that each box represents a 32-bit
integer.

To exactly show how the previous example works, consider a column filled with 4096
32-bit integers with values 0 to 4095, as shown in Figure 1.3. To compress the integers
in this column via enhanced FOR and store them in our new page layout, the following
step needs to be taken. First, for every 1024 tuples, a base value needs to be determined,
which is the tuple with the smallest value in 1024 tuples. Therefore, base values for our
example are 0, 1024, 2048, and 3072, respectively. Second, the integers need to bit-packed
after the base value is subtracted from them. Note that the base is different for every 1024
tuples. As we store only one column in the page layout, only one frame is needed. Third,
the compressed data needs to be stored in a segment, and subsequently, the offset and size
of the segment need to be added to the frame footer. The offset of the current segment
is 0, while the size of the segment is 1280 as it stores 1280 32-bit integers (only 10 bits is
needed to represent each tuple, therefore 4096 ∗ 10 bits or 40960/32 integers are needed).
Finally, the base values, which can be considered as in-page metadata, need to be stored
inside a segment stored inside a mini-frame. Then, this mini frame needs to be appended
to the first frame, which contains the actual data, and the offset and size of the segment
inside the mini-frame need to be added to the frame footer. The offset of this segment is
1280, with the size of 4 as it stores 4 32-bit integers.



Figure 1.4: An example of the whitebox file format where 8 pages with same layout are
stored consecutively.

To achieve better sequential bandwidth, both on magnetic drives as well as in cloud
storage, 8 consecutive pages are filled with this layout, as illustrated in Figure 1.4. In
cases when the integer column in our example contains only a few tuples, the data from
other columns need to be filled in the page layout to avoid increasing the unused space
inside a page. An example of this case is illustrated in Figure 1.5. As can be seen, there
are 3 frames and 4 segments inside the page.

3 0

OS1

OSOS2

O1 S

Figure 1.5: An example of the whitebox page layout where data size is small.

Finally, in Figure 1.6, the layout of the previous example is illustrated in the PAX
format. As can be seen, all frames are combined into one frame, which has a piece of data
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Figure 1.6: An example of the whitebox page layout in the PAX format.

from all columns.

1.4 A New File Format

To design a new big data file format that overcomes the shortcomings of the state-of-
the-art big data file formats and is compatible with new emerging trends in the software
ecosystem, many different components need to be designed and implemented. Figure 1.7
shows various component that are required to design a new file format. The bottom layer,
the SIMD-friendly compression and combosable compression form the foundation of a new
file format on which the other components can be built. The scope of this thesis is the
base layer, namely the SIMD-friendly compression and the composable compression. The
other components will be investigated in future work.
We argue that light-weight compression schemes such as RLE, PFOR, PDelta and

PDICT are good candidates to be used in a big data file format. However, these compres-
sion schemes are not designed to leverage SIMD instructions. Currently, there are SIMD
intrinsics available that can operate on 64 32-bit registers in a single instruction (27).
This leads to 64 times more parallelism and performance improvement. Considering that
even wider SIMD registers will be released in the future, it is necessary to redesign these
compression schemes to be SIMD-friendly. We call a compression scheme SIMD-friendly,
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Figure 1.7: The components of a new big data file format. Note that The scope of this thesis
is the base layer, namely the SIMD-friendly compression and the composable compression and
the other components will be investigated in future work.

if during the decompression, it can exploits the instructions for the widest register that a
CPU supports, both for the currently available CPUs and CPUs with wider SIMD registers
in the future.

For example, bit-unpacking is the main component of the mentioned light-weight com-
pression schemes. However, the lack of SIMD-friendly bit-unpacking methods forced
database designers to completely avoid bit-packing in their data formats (5). In this
thesis, we design a completely SIMD-friendly bit-unpacking and, on top of that, SIMDize
other parts of light-weight compression schemes.

To implement SIMD-friendly compression schemes, explicit SIMD intrinsics can be used.
However, the usage of explicit SIMD intrinsics makes the process of maintaining the code
harder. One possible solution is to implement the SIMD-friendly compression without any
explicit SIMD instructions and be dependent on the compiler to automatically detect and
replace parts of the code with SIMD instructions, when there is an opportunity. However,
whether the compilers are able to completely detect these opportunities is research question
that is investigated in this thesis.

Most of the light-weight compression schemes use the patching technique to handle
outliers, which in some cases, e.g., for data that can be represented by using few bits, has
limitations and needs to be replaced by another outlier handling mechanism. This can be
solved by having two different implementations for every compression scheme, one with
the patching technique and one with an alternative. However, this solution increases the
complexity of the system. Moreover, in some cases, e.g., where string data is represented
by an array of bytes and offsets, we know for sure that there is no outlier in offsets,
even if the data changes. In such cases, the patching phase in the patched leads to both
computation and space overhead and needs to be removed.



Furthermore, to achieve the best possible compression ratio, in some cases, compression
schemes need to be recursively combined. For example, in case of patched encodings, the
exceptions are stored without being compressed, while they can be compressed. Besides
exceptions, in case of RLE, if the value and the length of each run are separated, both of
them are a good candidate to be further compressed.

Having a flexible choice of patching, and supporting recursive compression are two rea-
sons that the light-weight compression schemes, which are usually implemented as one
function which does multiple different tasks at the same time, need to be decomposed into
several composable components.

In the whitebox compression model, the decompression is decomposed to simple, trans-
parent functions that perform only one task (3). Now the question arises if it is possible
to apply the whitebox compression principles to blackbox compression schemes to achieve
the desired flexibility without performance penalty? In other words, to what extent we
should whitebox or decompose the compression functions to achieve the desired flexibility
without a performance penalty. This question is investigated in this thesis.

1.5 Research Questions

The goal of this thesis is to investigate the following research questions, which are catego-
rized into the following four broad categories:

1. How can compression functions be decomposed to multiple functions to be flexible
and efficient at the same time? Is it possible to apply the whitebox compression
principles to blackbox compression schemes to achieve the desired flexibility without
performance penalty?

2. The patching technique, which was proposed to mitigate the light-weight compression
vulnerability to outliers, leads to a worse compression ratio in cases where only a few
bits are required to represent data. What is a good alternative to the patching
technique to handle outliers in such cases?

3. How can we make compression schemes such as PFOR, PDelta, PDICT and RLE
SIMD-friendly so that the compression scheme can exploit the instructions for the
widest register that a CPU supports, both for the currently available CPUs and CPUs
with wider SIMD registers in the future?



4. Does our new SIMD-friendly compression schemes need to be implemented using
explicit SIMD intrinsics? Is auto vectorization offered by compilers, such as GCC,
able to obtain the performance of our explicit implementation?

1.6 Outline

The rest of this thesis is organized as follows. In Chapter 2 we give an overview of the
related work, with focus on compression algorithms in file formats. In Chapter 3 we discuss
our SIMD-friendly bit-(un)packing technique. To support the light-weight comression
schemes in the whitebox compression model, several functions need to be added. In
Chapter 4, we describe these function and investigate if these functions are capable of
delivering the same performance as they were combined with each other in the blackbox
compression model. In Chapter 5, we show how light-weight compression schemes could
be composed using these functions to to be flexible and efficient at the same time. Note
that instead of a separate evaluation chapter, we discuss the experiment and the result of
the experiment for each section in the section itself. Finally, in Chapter 6, we conclude
this thesis by revisiting the research questions and answering them.



2

Related Work

In this section, we discuss the related work necessary for understanding the contributions of
this thesis. This section is organized as follows. In Section 2.1, we discuss database storage
layouts. Bit-packing, the building block of most light-weight compression algorithms, is
discussed in Section 2.2. Then, we give an overview of light-weight compression algorithms,
which are popular in column-oriented databases, the frame of reference, delta coding,
dictionary coding, run-length encoding, and fast static symbol table. We discuss a general
approach to SIMDize all compression algorithms in Section 2.9, and conclude this section
by reviewing white-box compression, big data file formats and matrix transpose.

2.1 Storage Layouts

2.1.1 NSM

Traditionally, in database systems, tabular data has been stored in database systems row
by row from the beginning of a disk page. This storage layout is called the N-ary Storage
Model (NSM). As shown in Figure 2.1, NSM might uses an offset table at the end of the
page to locate the beginning of each tuple, if the tuple size is variable. Moreover, each
tuple starts with a tuple header (RH) containing information about the tuple. RH starts
with a null bitmap to support null values, offsets to the variable-length values to support
variable attributes, and other implementation-specific details to make the layout more
flexible.

2.1.2 DSM

While being a good fit for random-access algorithms, the NSM model suffers from two
performance issues (16). First, since there is no spatial locality between attributes, NSM
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Figure 2.1: An example of an NSM page (this figure is borrowed from the paper by Aila-
maki et al. (1))

incurs many data cache misses. A common example is when during the scan operation only
one attribute needs to be processed, but NSM fills the cache with non-referenced attributes,
resulting in poor cache performance. Second, if only a few attributes need to be loaded into
memory, NSM introduces I/O bandwidth bottlenecks as many non-required data needs to
read. To solve these problems, Copeland et al. propose the Decomposition Storage Model
(DSM), where data is stored column by column (28). In contrast to NSM, DSM provides
only those attributes that are needed. Also, DSM provides more efficient cache utilization
as attribute values are clustered together. Finally, compared to NSM, DSM provides more
compression opportunities because of similarity of adjacent tuples (29).

2.1.3 PAX

While DSM is a better model for Online Analytical Processing (OLAP) (30) workloads,
if the entire tuple needs to be reconstructed, DSM incurs performance overhead as tuple
reconstruction needs to be done explicitly at run-time. Ailamaki et al. propose Partition
Attributes Across (PAX) (1), a technique that combines the inter-tuple spatial locality
of DSM with low tuple reconstruction cost of NSM. PAX stores all attributes of a tuple
inside the same page. However, within a page, PAX stores all attributes column by column



Figure 2.2: An example of an Pax page (This Figure is borrowed from the paper by Aila-
maki et al. (1))

inside a mini-page. A mini-page is a partition of a page that stores all attributes inside
a column sequentially and has two layouts two layouts. A fixed-length (F-minipage) to
support fixed-length attributes, which also has a bit map located at the end denoting null
values and Variable-length (V-minipage) to support variable-length attributes. As shown
in Figure 2.2, each PAX page header contains the size and number of attributes, offsets to
the beginning of each mini-page, the total number of tuples and the total space available.

2.2 Bit-(Un)Packing

In a 32-bit system architecture, integers are typically stored using 32 bits, while it might
be possible to store them using fewer bits. For example, a 32-bit integer with value 70
(0b1000110) can be stored using 7 bits instead of 32 bits. In general, integers in the range
[0, 2b] can be encoded using b bits and concatenated together into a single bit string. This
process is called bit-packing. The reverse operation, i.e, the transformation of a bit string
back into an array of machine-addressable integers is called bit-unpacking. Bit-unpacking
can be implemented using five simple operations (load, shift, and, or, and store) to extract
each integer as shown in Figure 2.3. After loading a 32-bit data into the CPU register,
the desired bits are placed at the beginning of the register using the right-shift operation.
Furthermore, the bit-wise AND operation with the predefined bitmask register (filled with
0 for random bits and 1 for desired bits) changes the bits with arbitrary values to 0. This
implementation is efficient since it does not involve any branching. Zukowski et al. propose
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Figure 2.3: An example of Bit-Unpacking

implementing bit-unpacking for each bit-width as a loop-unrolled routine that bit-unpacks
32 integers in each iteration (31). This results in an always 32-bit aligned layout, as it
requires bit-packing of 32 consecutive integers.

2.2.1 Vectorized Bit-Unpacking

Typically, bit-packing compresses integers in a sequence according to their original order.
Schlegel et al. call the resulting compressed layout horizontal (2). Willhalm et al. propose
a novel SIMD approach to bit-unpack horizontal compressed data layouts (32). Their
approach consists of three sequential steps:

1. 16-Byte Alignment: 128-bit data is loaded from memory using one 128-bit SIMD
aligned load instruction. For some bit-width values, such as 9, the first integer
value might not be entirely loaded as it spans between two 128-bit registers. To
handle these cases, the authors prefer to use one 128-bit SIMD register-concatenate
instruction instead of 128-bit SIMD unaligned load instruction as SIMD unaligned
instruction was expensive in terms of computation on older processors.

2. 4-Byte Alignment: four compressed integer values are copied to four separate 32-bit
lanes in a new register using a SIMD shuffle mask instruction.

3. Bit Alignment: aligns all four integers in the last register at the first bit of their
corresponding lane by shifting each lane an arbitrary number of times. This step is
simulated via two instructions: a SIMD multiplication by four different integers and
a SIMD right shift.



Figure 2.4: 4-way Vertical layout (This figure is borrowed from the paper by Schlegel et
al. (2))

Willhalm et al.’s approach, however, only applies to SSE and cannot be extended to
AVX2 as the shuffle instruction cannot move bytes cross all lanes. Polychroniou et al. pro-
pose a change to tailor Willhalm et al.’s approach for AVX2 (33). To simulate a 256-bit
cross lane shuffle, we can copy each half (128 bits) of a register to both halves and use a
regular 256-bit shuffle. Also, Willhalm et al. translate their bit-unpacking implementation
to Intel AVX2 instructions (34). In Willhalm’s new implementation, the simulated shift
operation is replaced by an AVX2 vector-vector shift instructions. Furthermore, contrary
to their previous implementation, the new implementation uses the unaligned load instruc-
tion instead of aligned load, as they claim that for current architectures, this instruction
becomes even faster than aligned load. There is a performance penalty only for cases
where data loads are split across cache lines, which is amortized by the reduction in other
cases.
In addition to the horizontal layout, wherein tuples are stored successively, Schlegel et

al. propose an alternative layout called vertical (2). In a k−vertical layout, each of the
k consecutive bit-packed tuples is stored in a different memory word. Figure 2.4 shows
an example of a 4-way vertical layout where each number indicates an integer’s position
in a sequence. As can be seen, every 4 consecutive integers are distributed among 4
different words. The vertical layout enables us to load/store compressed data using a single
load/store SIMD instruction, without using the permutation instruction to distribute the
tuples into the SIMD lanes. Lemire et al. use a 4-way vertical layout to bit-pack 128 tuples
using the same bit-width to take advantage of SSE SIMD instructions (35).

2.2.2 BitWeaving

Willhalm et al.’s SIMD bit-unpacking approach has two limitations (32). First, for running
a scan on encoded data, data needs to be first bit-unpacked. Note that it is possible to
avoid the third step of bit-unpacking discussed in Section 2.2.1. Bit-unpacked data, in



contrast to bit-packed data, does not utilize all bits of a word. For example, if 9 bits are
used to compress data, three values can be loaded inside a 32-bit register and 5 bits are
wasted (32 − (3 ∗ 9) = 5), compared to only one for uncompressed data where 23 bits
are wasted (32 − 9 = 23). Therefore, bit-unpacking potentially increases the number of
instructions required to process data. Second, Willhalm et al.’s approach wastes multiple
cycles to align data, which could be avoided.
Li et al. propose BitWeaving, a technique to fully utilize the entire width of the processor

words (or SIMD register) to reduce the number of instructions required to scan data (36).
In Bitweaving, the scan operator compares a sequence of tuples with a given constant
based on a comparison condition that is already defined and outputs a bitmap in which
the corresponding bit is 1 if the tuple satisfies the comparison condition or 0 otherwise.
Bitweaving offers two storage layouts: Horizontal Bit-Parallel (HBP) and Vertical Bit-
Parallel (VBP). The combination of HBP and VBP is called BitWeaving, which comes
in two flavors: BitWeaving/H and BitWeaving/V. BitWeaving/H is based on the HBP
storage layout, while VBP is based on a combination of both.
In HBP, a column is divided into fixed-length segments that contain (k+1)·b w

k+1c tuples
where w is the width of a processor word and k is the maximum number of bits needed for
a tuple. In case of a CPU with SIMD capabilities, w can be as wide as the SIMD register.
Each tuple is packed using k+1 bits, k for the tuple and one extra bit as delimiter. Inside
the processor word, b w

k+1c tuples are concatenated together and padded with 0s up to the
word boundary. The scan operation for the HBP storage layout:

1. Generates a processor word Y by concatenating the constant provided by the scan
operator, b w

k+1c times.

2. Compares all Xis with Y and outputs a bit vector Zi indicating whether the tuples in
Xi satisfy the comparison condition. All comparison conditions are implemented as
a function using simple instructions such as logical AND, logical OR, exclusive OR,
binary addition, negation, and k-bit left or right shift. All SIMD extensions support
these operations.

3. Shifts i times the output bit vector Zi to the right, and combines it with the previous
result.

IN VBP, a column is divided into fixed-length segments that contain w tuples, where
w is the width of a processor word. In case of a CPU with SIMD capabilities, w can be
as wide as a SIMD register. Considering k as the maximum number of bits required to
represent any tuple in a column, a segment consists of k w-bit words, denoted as v1, v2,



..., vk, such that the j-th bit in vi is equal to the i-th bit in the original tuple ci. The scan
operation for the VBP storage:

1. Creates a list of words C1, ..., Ck to represent a constant C, such that all bits of Ci

are 1 if i-th bit of C is 1. Otherwise, all bits of Ci are 0.

2. Iterates over all the segments and for each comparison condition applies the corre-
sponding algorithm. For details of the algorithms please refer to the original paper
by Li et al. (36).

For comparing a tuple against a constant, we can start from the most significant bit to
the least significant bit until we find two different bits. After seeing the first pair, there
is no need to continue the comparison. VBP enables early pruning, which is based on
the idea of having direct access to the most significant bits of K words. Therefore, we
can continue scanning until we find different bits for all w bits instead of comparing all
the bits. Furthermore, the VBP format could be combined with HBP to avoid wasting
memory bandwidth during early pruning.
While offering a fast scan with early pruning possibilities, the BitWeaved layout puts

a considerable burden on any other operation than scan because of the high tuple re-
construction overhead. Polychroniou et al. propose a SIMD approach to mitigate this
problem (33). Polychroniou et al.’s approach uses multiple SIMD registers to hold the
unpacked words and continues distributing bits of Bitweaved layout among SIMD lanes of
these registers till all tuples are reconstructed. This approach could be optimized using 8-
bit lanes instead of 32-bit lanes. The performance of the optimized algorithm implemented
for AVX2 is 18b+ 30 SIMD instructions for 64 tuples.

2.3 Light-Weight Compression Algorithms

Compression algorithms are divided into two categories based on their decoding speed:
Heavy-weight methods and Light-weight methods. Heavy-weight compression algorithms
such as Huffman (37), arithmetic encoding (38), and variants of the Lempel-Ziv algo-
rithm (39) sacrifice the decoding speed for better compression speed. In contrast, light-
weight methods such as Frame-of-Reference, RLE, and Dictionary encoding are faster
schemes in decompression but have lower compression ratios. Abadi et al. show that light-
weight methods could achieve an even better comparison ratio in the column-oriented
databases as adjacent tuples are stored near each other (29).



2.4 Frame of Reference

Goldstein et al. propose Frame of Reference (FOR), a new compression algorithm tailored
for database applications (40). This approach is particularly effective for tuples with many
low to medium cardinality and numeric fields, and supports fast decompression. One of
the most important differences of Goldstein et al.’s work compared to previous algorithms,
such as Lempel-Ziv (41), is that the approach presented by Goldstein et al. can decompress
individual tuples rather than the full page or an entire relation. This algorithm is based on
the observation that the actual range of values that appear in a given column on a given
page is much smaller than the range of values in the underlying domain. For each page,
FOR finds the maximum M and the minimum m value of a numeric column, subtracts
m from all values and stores all using dlog2(M + 1 − m)e bits each. FOR only needs
dlog2(M + 1 −m)e bits to store values instead of log2(M) bits, which is typical in other
algorithms such as simple bit-packing. This results in compression ratios of 4 to 1 and 88
to 1 on real and low-cardinality datasets, respectively (40). Table 2.1 gives an overview of
all variants of FOR. In the following we discuss each variant in more detail.

2.4.1 PFOR

FOR, while providing fine-grained access and better decompression speed compared to pre-
vious work, still is vulnerable to outliers, which are very common in practice. Zukowski
et al. propose Patched Frame of Reference (PFOR) to alleviate the vulnerability of out-
liers (31) (42).
PFOR uses a single bit-width b for the entire page. The value b is chosen by gathering

samples and then selecting the one that yields the best compression ratio. PFOR com-
presses and decompresses each 128 input values together, which we refer to as chunk, and
classifies each value as either exception or coded. An input value is an exception if it is
higher than 2b (MAXCODE) and will be stored on the disk as an offset pointing to the next
exception in the chunk of 128 integers. The actual values for exceptions are stored in a
separate location called the exception section. If an integer is less than MAXCODE, it is a
coded value and is stored as a regular integer. All values, either coded or offset, are bit-
packed and stored in a section called the code section. In addition to these two sections,
there is another section designed to provide fine-grained access by storing a pointer to the
first exception value of each chunk and their corresponding value in the exception section.
Note that if the gap between two exceptions is higher than MAXCODE, a regular value in
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the middle needs to be treated as an exception (called a compulsory exception) to keep
the exception list connected.
To summarize, PFOR treats outliers as exceptions such that the minimum and maximum

range for an integer column is greatly reduced. Therefore, PFOR can achieve a better
compression ratio compared to FOR. Additionally, the PFOR implementation does not
use conditional branches, such as if-then-else constructs in performance critical parts of
its compression and decompression routines to achieve high Instructions Per Cycle (IPC)
efficiency for super-scalar CPUs. PFOR reports decompression speed in the range of
greater than 2GB/s which is an order of magnitude faster than conventional compression
algorithms such as LZRW1 (43), the fastest version of the Lempel-Zip compression.
Zhang et al. introduce two changes to the implementation of PFOR to improve the

compression ratio. The extended algorithm is known as PFOR2008. Firstly, the authors
use 8, 16 or 32 bits per exception instead of always using 32. Secondly, Zhang et al. allow
any value of b. We should note that the original PFOR method allows any value of b and
uses 8 just for a prototype. Therefore, the second change is not actually an improvement
over PFOR.

2.4.2 AFOR

Delbru et al. propose Adaptative Frame of Reference (AFOR), a scheme with the same goal
as PFOR but different storage layout (44) (45). Compared to PFOR, AFOR does not treat
outliers as exception. Instead, AFOR partitions a page into multiple frames containing
8, 16, or 32 tuples. Each frame has a separate Bit Frame Size (BFS) stored before the
frame using 8 bits. Choosing an optimal frame size and BFS can be solved using Dynamic
Programming algorithms (46) but this would incur a considerable computation overhead.
Delbru et al. instead use a local optimization algorithm to have a satisfactory compression,
which is also efficient to compute. Their local optimization algorithm reads the next 32
values, which can be one of these combinations: [32], [16; 16], [16; 8; 8], [8; 16; 8], [8; 8; 16] or
[8; 8; 8; 8]. For each combination, the bit frames for all frames and then the compressed
size is calculated. After that, the combination with the smallest size is chosen. Delbru
et al. report that compared to PFOR, AFOR provides a similar compression ratio on
frequency inverted files, but performs much better on document and position files. In
terms of decompression speed, the authors report that PFOR is slightly faster then AFOR.
It is also worth mentioning that there are three variants of AFOR, namely AFOR-1,

AFOR-2, and AFOR-3. In AFOR-1, the frame size is always 32, while in AFOR-2 it can
be 8, 16 or 32. AFOR-3 is similar to AFOR-2 but employs the frame stripping technique.



If all 32 values inside a frame are 1, the frame stripping technique stores a special BFS
and avoids storing 32 bits with value 1, which saves 32 bits.
Note that Anh et al. call techniques such as AFOR-1, where data is compressed by

applying bit-packing to a group of integers, PackedBinary (47), whereas Lemire et al. refer
to them as binary packing (48)(35). PackedBinary has only a small difference compared
to AFOR-1, that the frame size is arbitrary. Anh et al. have found 16 is the best frame
size.
Finally, To SIMDize AFOR-1, Lemire et al. propose S4-BP128, which an arbitrary bit-

width is chosen for every 128 values, and the data is bit-packed using a 4-way vertical
layout (48).

2.4.3 VSEncoding

Silvestri et al. propose Vector of Splits Encoding (VSEncoding), which in contrast to
AFOR, finds the optimal frame size using dynamic programming (49). As a result, VSEn-
coding provides 10% better compression ratio than other schemes. Also, to provide fast
decompression, all frames of integers with the same bit-width are stored together.

2.4.4 NewPFD and OptPFD

As mentioned in Section 2.4.1, if two consecutive exceptions have a distance of more
than 2b, PFOR is forced to use compulsory exceptions, which implies extra overhead to
save a regular value as an exception. To avoid compulsory exceptions, bit-width could be
increased. This results in even a worse compression ratio as it also increases the number of
bits used for all codes. Yan et al. propose two new versions of the PFOR, namely, NewPFD
and OptPFD, to overcome this problem (50). Yan et al. introduce a new structure for
PFOR, which

• Determines the b value for each chunk instead of the whole page.

• Stores the lower b bits of an exception instead of the offset to the next exception.

• Stores the higher bits of an exception in the exception section instead of the entire
value.

• Stores the offset values in a different section, which comes after each chunk. The
chosen b value for this chunk will be stored at the beginning of this section.

• Compresses both the offset section, and the exception section for each chunk.



This new approach is called NewPFD, which is similar to PFOR. NewPFD selects b in
a way that the number of exceptions does not exceed a threshold, e.g., 5% of exceptions.
The second proposed version of PFOR is OptPFD, which in contrast to NewPFD, models
the selection of b as an optimization problem. The smallest compressed size for each chunk
is originally assigned to b. Then the decoding speed is increased as desired by selecting a
block that gives us the most time savings for increase in size, which is then assigned to b.

2.4.5 ParaPFOR

As mentioned in Section 2.4.1, PFOR and all of its variants are designed and tailored
to perform best on CPUs. For example, in PFOR, decompression must be done serially
because an exception will be encoded as an offset to the next exception. Thus, PFOR
has poor performance on the Graphic Processing Units (GPUs). Ao et al., in an at-
tempt to improve the performance of PFOR on GPUs, propose a new version of PFOR
called Parallel PFor (ParaPFor) (51). ParaPFOR stores indices of exceptions instead of a
pointer to the next exception in the code section. This enables the GPU to concurrently
recover exceptions. This modification leads to a worse compression ratio, but much faster
decompression on the GPU.

2.4.6 SIMD-FASTPFOR, FASTPFOR and SIMPLEPFOR

NewPFD and OptPFD have two main differences compared to PFOR. PFOR stores ex-
ceptions on a per page basis, while NewPFD and OptPFD store exceptions on a per chunk
basis. In addition, PFOR uses a single bit width for the entire page, whereas NewPFD
and OptPFD choose a separate bit width for each chunk. The mentioned differences result
in a better compression ratio, while the decompression speed degrades significantly (35).

Lemire et al. propose two new versions of PFOR called FastPFOR and SimplePFOR to
combine the compression ratio of NewPFD and OptPFD and the decompression speed of
PFOR. These two new compression algorithms store exceptions on a per page basis, similar
to PFOR, while they choose a separate bit width for each chunk, similar to NewPFD
and OptPFD. In NewPFD, for each chunk, the bit width, which minimizes the expected
storage, is chosen. All the information needed for decompressing a chunk such as the bit
width and the maximum number of bits used for exceptions is stored in a separate section
which comes after the exception section. If the maximum bit width is greater than the
number of allocated bits, a counter c indicating the number of exceptions and c exception



locations are stored. In contrast to NewPFD and OptPFD, which use compression, one
byte is used to store each number in this section.
SimplePFOR and FastPFOR differ in how they compress high bits of exception values

in the exception section. In the SimplePFOR scheme, all high bits of the exception values
will be compressed using Simple-8b (47), while in the FastPFOR scheme, the exception
section is divided into 32 arrays, one for each possible bit1. All exceptions are stored in
one of the 32 arrays, from 1 to 32. The difference between the maximum bit width and
the number of allocated bits determines in which array the exceptions are stored. Each of
the 32 arrays is then bit packed using the corresponding bit width. Therefore each array
length needs to be a multiple of 32. these arrays are padded if an array length is not a
multiple of 32, which slightly diminishes the compression ratio.
SIMD-FastPFOR is identical to FastPFOR except that it uses vectorized bit-packing

(see Section 2.2.1). Because of using vectorized bit-packing, the 32 exception arrays length
should be multiples of 128, instead of 32, which degrades the compression ratio.

2.4.7 S4-FASTPFOR

Lemire et al. propose S4-FASTPFOR, which is the combination of SIMD-FastPFOR
and FASTPFOR (48). Similar to SIMD-FastPFOR, S4-FASTPFOR uses vectorized bit-
unpacking. In contrast to SIMD-FastPFOR, bit-packed exceptions are padded to multiples
of 32. The S4-FASTPFOR performance is the same as SIMD-FastPFOR, while the com-
pression ratio is improved by 5%.

2.5 Delta Coding (Differential Coding)

Ng et al. propose Delta Coding, also known as Differential Coding, a compression tech-
nique that compresses a sequence of integers by replacing each integer by its difference
with respect to its preceding integer (52). If the differences between successive integers
in a column are small, differential coding might be a better choice than other compression
schemes. Since differences between successive values are small, fewer bits can be used to
represent each integer, resulting in a better compression ratio. Also during the decompres-
sion phase, the original integer could be recovered from the deltas by one fast simple add
operation, which makes delta coding a good candidate for database systems. However,

1SimplePFOR and FastPFOR are designed for integer values, therefore the maximum number of bits
is 32



the downside of delta coding is that each integer value can only be calculated after the
value of the integer immediately preceding it is known.

2.5.1 D4, DM, D2, D1

Lemire et al. propose four different forms of differential coding, namely, D1, D2, DM and
D4. We explain these four methods with a simple example. If we consider 8 integers,
x1, x2, x3, x4, x5, x6, x7, x8, deltas calculated using original delta coding are as follows:
x1, δ1 = x2 − x1, δ2 = x3 − x2, δ3 = x4 − x3, δ4 = x5 − x4, δ5 = x6 − x5, δ6 = x7 − x6, δ7 =
x8 − x7.
To recover original values, 7 sequential add operations are needed as follows:
x1, δ1 + x1, δ2 + x2, δ3 + x3, δ4 + x4, δ5 + x5, δ6 + x6, δ7 + x7

In D4, deltas are calculated four-by-four as follows:
x1, x2, x3, x4, x5 − x1, x6 − x2, x7 − x3, x8 − x4

which enables us to use a single 1-cycle-latency SIMD instruction to recover them. Deltas
in DM are calculated as follows:
x1, x2, x3, x4, x5 − x4, x6 − x4, x7 − x4, x8 − x4

DM, compared to D4 requires one extra SIMD instruction, which is fast on Intel proces-
sors, to copy the last component. Delta calculation for D2 is as follows:
x1, x2, x3, x4, x5 − x3, x6 − x4, x7 − x5, x8 − x6

D2 can be implemented using 4 SIMD instructions (shift, add, select and add). D1 is
similar to the original Delta coding but with a SIMD implementation which uses 6 SIMD
instructions (shift, add, shift, add, copy and add). In terms of speed, D4 is the fastest and
D1 the slowest. In terms of compression ratio, D4 has the worst compression ratio while
D1 has the best one mainly because deltas are smaller (we assume that successive integers
are close to each other, therefore x4 − x1 is bigger than x2 − x1, which needs more bits to
be represented).
Furthermore, to handle outlier deltas, Lemire et al. combine D4, DM, D2, and D1 with
S4-BP128 resulting in S4-BP128-D4, S4-BP128-D3, S4-BP128-D2, S4-BP128-D1 (48), re-
spectively. Similar to S4-BP128, all these new schemes bit-pack every 128 deltas using an
arbitrary bit-width.

2.5.2 Vectorized Prefix Sum

As explained in Section 2.5.1, D1 could be implemented using 6 SSE SIMD instructions.
This implementation is dependent on the SIMD shift instruction that shifts all bits together



arbitrary times. However, this instruction does not exist for wider registers. Zhang et
al. propose extending this implementation to AVX-512 by simulating the 512-bit shift
instruction with two SET and ALIGNR instructions (53). The resulting implementation,
called horizontal, needs 12 instruction for every 16 integers. Moreover, Zhang et al. propose
two different SIMD prefix sum computation techniques, vertical and tree, which we do not
discuss in this related work as they are slower than horizontal.

2.5.3 PDelta and PFOR-Delta

In the D1 compression layout, the first integer is intact, which might have an adverse effect
on the compression ratio as this integer increases the minimum number of bits needed to
represent deltas. PDelta introduces a base parameter equal to the first integer, so that
the first integer can be encoded as 0. Furthermore, PDelta uses the patching technique
discussed in Section 2.4.1 to handle outliers. To further optimize the compression, PFOR
can be applied on deltas, called PFOR-Delta (31).

2.5.4 V-PFORDelta

Compression schemes such as PFOR, which use b bits to encode most of the data and store
exceptions separately are called patched encoding. In the patching phase, the exception
values are replaced by their original position. In case of PFOR, the offset to the next
exception is stored instead of an exception, while in FastPFOR, the first b low bits of an
exception. None of the related work discussed in this section are able to vectorize the
patching phase. Al Hasib et al., in an attempt to vectorize patched encoding, introduce
V-PFORDelta (54). V-PFORDelta, inspired by D4 delta coding, stores a bitmap for
each chunk to determine which integer in each chunk is an exception. All exceptions are
replaced with 0, while their values are stored continuously in a separate location. During
decompression, the exceptions are placed in their right position inside a SIMD register by
using a SIMD unpacklo instruction (We note that the shuffle instruction should have been
used instead of unpacklo). After that, with a simple SIMD add operation, the original
values can be recovered.

2.6 Dictionary Encodings

Dictionary Encoding is a lossless compression technique that encodes values as integer
codes that map to the values. It is useful when a column is composed of value distributions



that only use a subset of the full domain. Furthermore, integer codes could be compressed
using bit packing.

2.6.1 PDICT

Similar to FOR, discussed in Section 2.4, dictionary encoding is vulnerable to outliers. To
solve this problem, Zukowski et al. propose PDICT, which treats outliers as an exception
and handle them using the patched coding technique (31). Note that, each chunk poten-
tially has a separate dictionary list, but by combining multiple dictionary lists, we could
have a better compression ratio.

2.7 RLE

Run-length Encoding (RLE) is another type of compression scheme that is useful in
column-oriented databases (29). RLE is fundamentally different from FOR, differential
coding, and dictionary coding. While these compression techniques represent the original
data as a sequence of small integers, RLE reduces the number of values required to repre-
sent the original data. RLE compresses runs of the same value in a sequence of integers
into a pair of Run and Length. Run represents the value of the repeated integer and Length
represents how often the value is repeated. For example the string 1111223355555555 can
be compressed into 14223258, where each repeated run is replaced by the run and length
values. Note that there are different variations of RLE, for example, we can store the start
position of a run instead of its length.

2.7.1 Vectorized RLE

Damme et al., in an attempt to vectorize the decompression phase of RLE, propose a
new implementation which works as follows (55). The decompression module repeats the
following steps until the entire input data has been consumed.

• Load the next pair of run value and run length.

• Load one SIMD register with copies of the run value.

• Store the contents of that register as often as required to match or pass the run length
at offset (using the unaligned SIMD store instruction). Offset refers to the memory
address where the result should be stored.

• Increase offset by run length.



This algorithm is correct since the next SIMD store operation overrides extra elements
written by the previous SIMD store. Furthermore, this new algorithm could be adapted
to all SIMD extensions such as SSE, AVX, AVX2, and AVX-512 registers because this
algorithm is only dependent on SIMD unaligned store instruction, which is supported by
all SIMD extensions.

2.8 Fast Static Symbol Table

Database systems often use LZ4 to compress blocks of strings. Although LZ4 provides
a good decompression speed, it does not allow random access to compressed data as it
is block-based: the complete block needs to be uncompressed before being ready for any
further processing. To alleviate this problem, Boncz et al. propose FSST (56), a string
compression scheme that allows random-access to compressed data while providing similar
decompression speed to LZ4. FSST’s compression is based on the idea that the strings of
a column often have common substrings (called symbols, have a size of 1 to 8 bytes) that
could be replaced with short 1-byte codes. FSST also represents less frequent substrings
as exception, stored as a code with the value 255, followed by the original byte. During
compression, symbols are identified and used to create a symbol table that maps codes
to symbols. During decompression, each code is replaced by its corresponding symbol.
Decompression is fast as it requires few instructions, is branch-free and cache efficient as
both the symbol table and the length array easily fit into the level 1 CPU cache.

2.9 General SIMD-based Compression algorithms

Inspired by the 4-way vertical layout (see Section 2.2.1, Zhao et al. propose a general SIMD-
based approach to accelerate compression algorithms (57). Their approach is based on the
observation that often the storage layout of a compression algorithm consists of encoded
data and a separate part which holds information about the encoded data. Therefore,
data could be encoded in a 4-way vertical layout to enable the use of SIMD instructions.
To show their approach’s flexibility, the authors proposed new algorithms such as Group-
AFOR and Group-PFD, which are the SIMD-based version of compression algorithms such
as AFOR and PFD. Group-AFOR is very similar to SIMD-BP128, with one difference that
in SIMD-BP128, the frame size is always 128, while in Group-AFOR, it is 32, 64, or 128.
Group-PFD handles exceptions like Zhang et al.’s approach while encodes integers like
the SIMD-BP128 approach. Group-PFD and Group-AFOR are benchmarked against the



state of art algorithms and the result shows they are almost as fast as the state of art

algorithms.

2.10 Whitebox Compression

Ghita et al. call all existing compression techniques, including the ones we discussed so

far, black-box compression techniques, as their decompression logic is hard-coded and

query operators in databases cannot directly operate on compressed data (3). Ghita et

al. propose white-box compression to makes (de)compression transparent and optimizable.

The white-box compression model represents logical columns as composite functions of

physical columns. Logical columns are defined by the database schema containing the

tabular structure that the user expects to see, while physical columns are what is stored on

disk. The functions are standard column expressions that are fast and expressive enough to

handle different patterns. It is worth mentioning that white-box compression potentially

provides a better compression ratio as multiple logical columns could be stored as fewer

or more compresseable physical columns. For example, using white-box compression, the

logical columns shown on the left side of Figure 2.5 can be stored as physical columns

shown on the right side. In case of the logical column B, this is achieved by mapping each

string to an integer. Thus we store integers and a dictionary on disk, and during runtime,

the de-mapping function could recover original values. Column A could be represented

by a function that concatenates a string, the symbol ’-’, and an integer together. The

first string is generated by a function that abbreviates strings using a dictionary that is

used for column B. Therefore, only integers need to be stored in an independent physical

column. As can be seen, strings have been converted to low-cardinality integers, which

enables us to use FOR instead of LZ4, resulting in a better compression ratio. As can

be seen, strings have converted to low-cardinality integers, which enables us to use FOR

instead of LZ4, resulting in a better compression ratio.

2.11 Big Data File Formats

In this section, we discuss the storage layout and the compression techniques used in the

recent and state-of-the-art data file formats.



Figure 2.5: An example of Whitebox compression (This Figure is borrowed from the paper
by Ghita et al. (3))

2.11.1 Parquet

Traditionally, column stores have been optimized to store relational data, not nested data
models. To store nested data in columnar format, the structure of data also needs to be
stored in one or more columns such that records could be stored in flat columns and read
back to their original format efficiently. Melnik et al. propose a novel columnar storage
format for nested data (58). In their proposed format, the structure of a record is captured
for each value by two integers called repetition level and definition level. The repetition
levels show the structure of nested types, while the definition level denotes whether the
value is null.

In Melnik et al.’s format, each column is stored as a set of blocks containing the repetition
and definition levels and compressed field values. Note that Definition levels and repetition
levels are not stored if data is flat. Furthermore, NULLs are not stored explicitly as
definition levels already determine them.

Parquet is a compressed, columnar storage format that uses Melnik et al.’ approach to
store nested data. As shown Figure 2.6 (left), a Parquet file consists of one or more row

groups where a row group is a logical horizontal partitioning of data into rows. Moreover, a
row group ensures that attributes within the same record are stored near each other. Each
row group contains precisely one column chunk per column. A column chunk is a chunk
of data for a particular column, which is divided into pages that are stored sequentially.
As shown in Figure 2.6, a page consists of a page header serialized by Apache Thrift (59),
repetition levels, definition levels, and the actual encoded data. As shown in Figure 2.6
(left), in a Parquet file, metadata containing information about the location and types of



Figure 2.6: The Parquet file format

column chunks is serialized using Apache Thrift’s Thrift Compact Protocol and is stored
as a footer.
Moreover, Parquet is designed to be a flexible data format. For example, Parquet saves

space by not storing the repetition or definition levels if data is not nested or nullable.
Furthermore, row group and page size can be specified by the user before writing a Parquet
file. Larger row groups allow larger column chunks, making it possible to do larger sequen-
tial IO, while requiring more buffering space during writing. Besides, larger pages allow
avoiding the space and processing overhead of page headers, while making fine-grained
access harder as the entire page needs to be fetched.
In terms of compression, Parquet offers the following encodings schemes1:

• RLE/Bit-Packing Hybrid: a combination of RLE and simple bit-packing. Depending
on the characteristics of every 128 consecutive values (chunk) inside a page, Parquet
chooses one of these two methods. Note that all chunks compressed using bit-packing
have the same bit-width.

• Dictionary Encoding : Simple Dictionary encoding where integers codes are further
compressed using RLE/Bit-Packing Hybrid.

1https://github.com/apache/parquet-format/blob/master/Encodings.md

https://github.com/apache/parquet-format/blob/master/Encodings.md


• Delta Encoding: Similar to S4-BP128-D1, where deltas are calculated as the differ-
ences between consecutive elements and the smallest delta is substraced from them
to guarantee that all values are non-negative.

• Delta-length byte array: Parquet stores a byte array as a combination of 4-bytes
length and the actual bytes. To compress a stream of byte arrays, the length of
each element is extracted and compressed using Parquet delta encoding and further
concatenated to the end of the byte array stream.

• Plain: If none of the above schemes is detected suitable for given data, Parquet stores
data in the plain format.

2.11.2 ORC

Besides Parquet, another popular big data file format is Optimized Record Columnar
(ORC) which is proposed by Huia et al. (4). ORC is a columnar file format designed to
address the shortcomings of RC file format (60). As shown in Figure 2.7, an ORC file
consists of one or more stripes, file footer, and postscript.
stripes: ORC, first, horizontally partitions a table to multiple stripes. A stripe is

similar to a row group wherein data is stored column by column. A portion of a column,
stored inside a stripe, is called a stream. Together with each stream, the metadata of a
column is stored, called a metadata stream, which is useful to analyze which stripes are
needed to evaluate a query. Furthermore, data values inside each stream are divided into
fixed-sized groups called an index group (the default index group size is 10000). For each
index group, data statistics of those values are also recorded. Besides the actual data, a
stripe is consists of the index data and a stripe footer. The index data keeps the starting
points of every index group in metadata streams and data streams as a column in a stripe
might have multiple logical index groups that should be known to the reader of the ORC
file format. The stripe footer contains a directory of stream locations.
File footer: The file footer includes data statistics of each column which are useful for

query optimizations and aggregation queries. Also, the file footer keeps the starting point
of each stripe.
Postscript: postscript holds compression parameters and the size of the compressed

footer.
In terms of compression, ORC uses a two-level compression scheme. First, a stream is

encoded based on its characteristic using one of the four types of encoding: 1) a sequence
of bytes, 2) a sequence of RLE encoded bytes, 3) a sequence of integers encoded by RLE



Figure 2.7: The ORC file format (This Figure is borrowed from the paper by Huai et al. (4))



or delta encoding and 4) a bit vector. Then, the result is further compressed using an
optional general-purpose data compression scheme such as ZLIB, Snappy, or LZO.

2.11.3 Artus

Chattopadhyay et al. propose a new columnar file format called Artus, which is designed to
support both fast row lookups and range scans (61). To achieve fast lookups, Artus uses
encoding methods that allow random access to compressed data before decompression,
and for sorted columns, only uses encoding methods that allow binary search.
Furthermore, Artus proposes a novel representation for nested data types. Considering

the table’s schema as a tree of fields, Artus store a separate column on disk for each field,
unlike Parquet, that stores only leaf fields. This representation enables Artus to store
sparse data more efficiently then Parquet as it does not record any information about
fields whose parent does not exist. Moreover, as discussed in Section 1.2, Artus tries to
expose encoding information to the evaluation engine.

2.11.4 Data Blocks

Lang et al. propose a new compressed columnar storage format called Data Blocks, which
differs from other storage formats as it does not use bit-packing (5). Based on the assump-
tion that current bit-unpacking methods are not fast enough, even those with a SIMD
implementation, Data Blocks stores tuples in a byte-addressable compressed format (A
tuple is compressed into a 1-, 2-, or 4-byte integer).
Data Blocks stores one or more attributes of up to 216 tuples in a self-contained container,

called Data block. Note that in case of storing all attributes, the Data block resembles the
PAX storage layout (1). As shown in Figure 2.8, a Data Block contains a tuple counter,
and for each attribute contains the compression method, offsets to the attribute’s Small
Materialized Aggregates (SMA), dictionary, compressed data vector, string data, SMA,
PSMA, and the actual data.
Moreover, Data Blocks compress an attribute inside a Data Block using one of the

following techniques:

• Single value compression: a special case of run-length encoding when all values of an
attribute in a block are equal or NULL.

• Ordered dictionary compression: a special case of dictionary encoding where if for two
uncompressed values ki and kj , ki < kj holds, then for their dictionary-compressed
values dki and dkj , dki < dkj holds.



Figure 2.8: Layout of a Data Block for n attributes (This figure is borrowed from the paper
by Lang et al. (5))

• Truncation: a special case of FOR which avoid bit packing and the base is equal to
the attribute’s minimum value.

Note that the choice of the compression scheme depends on the attribute’s value domain
in the specific block. Thus, different ranges of an attribute might be compressed via various
schemes.

2.11.5 Albis

Trivedi et al. propose an entirely new big data file format called Albis (62). Based on
the assumption that CPU is the new bottleneck for big data processing, Albis tries to
reduce CPU pressure as much as possible. Albis achieves this by storing data in binary
format with no compression, avoiding unnecessary object materialization, and separating
the metadata from the actual data.

Albis split a table into multiple vertical groups called column-group (CG), where each
group can have one or many columns. If a CG contains only one column, the format
is similar to DSM, while in case of more than one column, it is similar to a row-store.
Besides vertical partitioning, Albis partitions a table horizontally to multiple row groups.



Figure 2.9: An example of a Row format in Albis

Figure 2.10: An Example of table partitioning in Albis

Figure 2.10 shows an example of a table partitioned by Albis. Inside a CG, data is stored
row by row, where each row consists of:

• A size counter showing the total spaced used by this row.

• A null bitmap denoting whether a value is null or not.

• A fixed-length section storing the actual data of columns. Columns with fixed-length
data are stored as the way they are while variable-length columns are encoded by an
8-byte integer consisting of the offset and the size of variable-length fields, which are
stored later in the variable-length section.

• A variable-length section storing columns with variable-length data.

Figure 2.9 shows an example of CG with five integer, double, byte array, char and float
array columns. As a result, Albis consumes eight times more space compared to Parquet,
while it speeds up the performance on TPC-DS queries three times.

2.12 Matrix Tranpose

Later in this thesis, we implement a Whitebox function that applies matrix transpose
on uncompressed data to correct their order in a column. In this section, we review the
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Figure 2.11: An example of the matrix transpose

recent studies that have been done to improve the matrix transpose performance. Matrix
transpose is an operator which interchanges the rows and columns of a matrix. Figure 2.11
shows an example of a 4 ∗ 4 transposed matrix. Zekri et al. propose an algorithm for
transposing a matrix of size n ∗ n using n-integer wide SIMD registers (63). For example,
using this algorithm, an 8∗8 matrix can be transposed using AVX registers. However, this
algorithm requires 3 ∗ n registers, which can lead to register pressure for wider registers
as for AVX-512, 48 registers are needed, but Intel AVX-512 has only 32 registers. Also,
the complexity of this algorithm is O(7n). Limonova et al. try to extend this algorithm to
support 128-bit ARM NEON, which is outside of the scope of this thesis as this algorithm
does not work on Intel CPUs (64).



3

SIMD-Friendly Bit-(Un)Packing

In this chapter we present our 1024-bit interleaved bit-(un)packing technique. As discussed
in Section 2.2.1, the most efficient Bit-(un)packing approach is proposed by Lemire et

al. (35), which uses a 4-way vertical layout. There are, however, three problems in using
Lemire et al.’s layout in a file format:

• It is designed for 32-bit integers and 128-bit SSE registers as four 32-bit integers fit
inside an SSE register. However, this layout cannot be extended to support 8-bit,
16-bit, and 64-bit integers as four of these integers need 32, 64, and 256 bits SIMD
registers.

• It is not future-proof as it is specifically designed for SSE registers and cannot exploit
new wider AVX-512 registers that are already available.

• The provided implementation of the 4-way layout is not suitable to be used in a file
format as it does not support scalar bit-unpacking for the interleaved layout. The
reader API implementation for a file format should support all CPU architectures.

Our 1024-bit interleaved Layout solves all these problems:

• Our 1024-bit interleaved layout uses 1024 bits to distribute integers among SIMD
lanes instead of a fixed number of lanes (4 in case of 4-way vertical layout). This
change makes the new layout capable of supporting all integers with different sizes.

• Using 1024 bits to interleave data makes our format capable of using 1024-bit in-
structions such as 1024-bit SHIFT, 1024-bit AND, and 1024-bit OR which will be
introduced in the future. Note that 1024 is chosen for prototyping, and given that
there are 2048-bit registers (27), and even wider register will be released in the near
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future, we are aiming for a 4096-bits (or 8192-bits) interleaved layout. 4096-bit In-
terleaved layout works exactly as our 1024-bit interleaved layout, except that we use
4096 bits, instead of 1024 bits, to interleave data.

• Our 1024-bit interleaved bit-unpacking is implemented for all SIMD register sizes and
also scalar CPUs. Our 1024-Bit interleaved bit-unpacking routines are provided as
a library that chooses the right implementation, based on the CPU architecture, at
compile time.

3.1 Storage Layout

In our 1024-bits interleaved storage layout, 1024 bits are divided into L W -bit words,
w1, w2, ..., wl, where W can be 8, 16, 32, or 64, the number of bits used to represent an
integer in the bit-unpacked format. L is equivalent to the number of SIMD lanes a 1024-bit
register can have for a given type of integer.
We now describe how our 1024-bit storage layout works. First, B bits (B is the maximum

number of bits required to represent an integer) of consecutive integers are extracted.
Then, the 1024-bit interleaved layout distributes the bit-packed integers among L words
of the 1024 bit layout in the following order: the ith bit-packed integer goes to the b i

Lcth
word, i.e., the 0th bit-packed integer goes to the 0th word, the 1st bit-packed integer goes
to 1st word and so on until the L − 1th word. The Lth bit-packed integer goes to 0th
word and is appended to last bit-packed data of the 0th word. Note that if we were not
using interleaving, the ith bit-packed integer would be appended to (i − 1)th bit-packed
integer inside the b i∗b

W cth word.
Figure 3.1 shows an example of 96 32-bits integers, represented by int0 to int95, bit-

packed using the 1024-bit interleaved layout. The first three rows represents the integers,
and the last row represents the 1024 bit storage layout after bit-packing these integers.
As can be seen, the first integer is placed in the first 32-bit word, while the second integer
is placed in the next 32-bit word.
Furthermore, if W is not divisible by B, the last bit-packed integer of a word does not

fit inside one word (called cross-case) and needs to be split across the current and next
word. In our layout, the next word to wi is wi in the next 1024 bit instead of wi+1, which
is the case for non-interleaving case. Figure 3.2 shows an example of this where W is not
divisible by B for W = 3 and B = 7. Each number inside the box shows the position
of the integer inside the 1024 integers list. The splited bit-packed integers needs an OR
instruction to be reconstructed.
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Figure 3.1: The 1024-bit interleaved data layout where W = 32 and B = 7.

8 0162432404856649921000100810161024

…
…

0326496

1601922240

OR 

128

Figure 3.2: The 1024-bit interleaved data layout where W = 32 and B = 7.

3.1.1 Intermediate Word

If B is smaller than W , we can use a shorter word WP to bit-pack data, which leads to
having more lanes and more parallelism during bit-unpacking. For example, if 3 bits are
used to bit-pack a 32-bit integer, instead of storing it inside a 32-bit word, storing it inside
an 8-bits word is possible. This change enables us to execute one SIMD instruction on
four times more data. However, the resulting bit-unpacked data is of size WP and needs
to be converted to W . To achieve this, a convert SIMD instruction is required, which is
relatively expensive. Moreover, due to the shorter word size, it is more likely that the
bit-packed data is stored in two words, which needs one additional OR instruction to be
reconstructed.

3.2 Bit-unpacking

The bit-unpacking process implemented for our 1024-bit interleaved layout is provided
as a library that consists of code for all variants of SIMD registers and scalar CPUs. At
compile time, the best possible implementation, which is the implementation for the widest
supported SIMD register on the targeted CPU, is auto-generated and compiled. For each
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Figure 3.3: An example of the multi cursors technique applied to scalar bit-(un)packing.

possible combination of W and B, the library contains a hard-coded routine generated
and stored in function tables indexed by B and W . Each routine processes 1024 values
per iteration to ensure that results are always aligned to an integer that is multiple of
1024. In the following sections, we discuss the details of the optimizations to the scalar
and vectorized implementations of our library.

3.2.1 Scalar Bit-Unpacking

Our storage layout is interleaved to exploit the SIMD capabilities in modern CPUs. How-
ever, this layout may introduce overhead for CPUs that lack SIMD registers. One possible
optimization is to unroll the loop inside each function. However, this causes high register
pressure (a measure for the availability of free registers) as for 8-bit, 16-bit, and 32-bit
integers 128, 64, and 32 registers are needed. When the register pressure is high, the
register contents must be spilled into memory and reloaded again, which negatively affects
the performance. To solve this problem, the multi cursor technique can be used, where
the input space is split into multiple distinct regions, and a single loop is used to iterate
those regions in parallel by maintaining multiple cursors. However, to find the optimal
number of distinct regions, all different cases need to be benchmarked. Figure 3.3 shows



an example of the multi cursor technique applied where W = 32 and the input space is
divided into 8 regions. Therefore, instead of 32 registers, only 8 registers are needed.
Algorithm 1 shows the 1024-bit interleaved bit-unpacking scalar algorithm for different

number of registers (R), W and B. In Line 9, the Unpack function is defined, which
gets a variable reg, an offset to the beginning of the current bit-packed integer inside the
variable, and B as input and returns the bit-unpacked integer as output. This function
is implemented as a bit-wise AND operator applied on the variable shifted offset times to
the right and a bit mask calculated by shifting the value 1, B times, and subtracting 1
from it. The algorithm’s main body starts from Line 11, which needs to be repeated N
times, where N is the number of regions defined for the multi cursor technique. Inside the
main loop, all if and for loop blocks are unrolled in the actual implementation, which
could not be shown in this algorithm due to space limitations. For each iteration, one
register for each region is loaded with data from the memory. Then, for each register, the
following steps are repeated W times.

• Based on the offset value, if the offset is equal toW , after calling the UNPACK function,
the next word inside the memory needs to be loaded into the register. If the offset is
bigger then W , it is a cross-case, and two values from different registers need to be
combined with an OR operation. Otherwise, the UNPACK function needs to be called.

• The offset value needs to be changed to (offset +B) % W .

An example of the generated implementation from this algorithm can be found in List-
ing 1, which shows a partial auto-generated unpacking routine that bit-unpacks 7-bit
integers into 32-bit integers.



Algorithm 1: The 1024-bit interleaved bit-unpacking scalar algorithm.
1 in; // pointer to the input
2 out; // pointer to the output
3 R; // Number of registers
4 W ; // Number of bits used to represent an integer in bit-unpacked

form
5 B; // Number of bits used to bit-pack an integer
6 L = 1024/W ;
7 N = L/R;
8 offset = 0;
9 Function UNPACK(reg, offset, B):

10 return (reg >> offset) & ((1 << B)− 1);

11 for k ← 0 to N by 1 do
12 for i← 0 to R by 1 do
13 regj ← ∗(in+ i ∗N + k);

14 for i← 0 to W by 1 do
15 if offset == W then
16 in← L+ in;
17 for j ← 0 to R by 1 do
18 regj ← ∗(in+ j ∗N + k);
19 tmp← UNPACK (regj , offset, B);
20 ∗(out+ k + j ∗N + L ∗ i)← tmp;

21 offset = offset+B ;
22 else if offset + B > W then
23 in← L+ in;
24 for j ← 0 to R by 1 do
25 tmp← UNPACK (regj ,offset, W−offset);
26 regj ← ∗(in+ j ∗N + k);
27 tmp← tmp | ( UNPACK (regj , 0, offset +B −W ) << (W− offset));
28 ∗(out+ k + j ∗N + L ∗ i)← tmp;

29 offset←offset+B −W ;
30 else
31 for j ← 0 to R by 1 do
32 tmp← UNPACK (regj , offset, B);
33 ∗(out+ k + j ∗N + L ∗ i)← tmp;

34 offset = offset+B ;



3.2.2 Auto Vectorization

Modern compilers such as CLang and GCC are capable of auto vectorizing scalar code.
Auto vectorization is the process of automatically transferring a scalar code to operate on
a vector of values at once via SIMD instructions instead of operating on a single value at
a time. If modern compilers are able to auto-vectorize the scalar implementation of our
new layout, there is no need to explicitly implement vectorized bit unpacking using SIMD
intrinsics. In the Section 3.3, we look into this question.

3.2.3 Vectorized Bit-Unpacking

Our 1024-bit interleaved layout makes it possible for all CPUs with SIMD capabilities
to benefit from our layout. Algorithm 2 shows the 1024-bit interleaved bit-unpacking
vectorized algorithm for different SIMD sizes. This algorithm works similarly to the scalar
algorithm with two differences: all instructions are converted to SIMD instructions, and
if W is not equal to WP during storing, the extract and convert instructions are used to
transform the bit-unpacked integers to the desired form before storing.



static void unpack_bit_7_W_32_Wprime_32_R_8
(uint32_t *__restrict in, uint32_t *__restrict out)

{
uint32_t reg0, reg1, reg2, reg3, reg4, reg5, reg6, reg7, temp_reg;
for (size_t i = 0; i < 4; ++i)
{

// Load 8 words into registers

reg0 = * (in + 0 * 4 + i);
reg1 = * (in + 1 * 4 + i);
// ...

// Extract and store first 7 bits of the loaded words as 32 bit integer

temp_reg = (reg0 >> 0) & ((1 << 7) - 1);
* (out + i + 0 * 4 + 32 * 0) = temp_reg;
// ...

// Extract and store second 7 bits of the loaded words as 32 bit integer

temp_reg = (src0 >> 7) & ((1 << 7) - 1);
* (out + i + 0 * 4 + 32 * 1) = temp_reg;
//..

// Extract and store third 7 bits of the loaded words as 32 bit integer

temp_reg = (reg0 >> 14) & ((1 << 7) - 1);
* (out + i + 0 * 4 + 32 * 2) = temp_reg;
// ...

// Extract and store third 7 bits of the loaded words as 32 bit integer

temp_reg = (reg0 >> 21) & ((1 << 7) - 1);
* (out + i + 0 * 4 + 32 * 3) = temp_reg;
/// ...

/// increase in by 32

in += 32;
// Extract and store forth 7 bits of the loaded words as 32 bit integer

/ /using or operation to concatenate the divided bit-packed int
temp_reg = (reg0 >> 28) & ((1 << 4) - 1);
reg0 = * (in + 0 * 4 + i);
temp_reg |= ((reg0 >> 0) & ((1 << 3) - 1)) << 4;
*(out + i + 0 * 4 + 32 * 4) = temp_reg;
// ...

// repeats the above code 7 times

}
}

Listing 1: An example of scalar bit-unpacking implemented for B=7 and W=32.



Algorithm 2: The 1024-bit interleaved bit-unpacking SIMD algorithm
1 in; // pointer to the input out;// pointer to the output
2 R; W ; WP ; X // number of register bits
3 B;
4 l = 1024/X;
5 N = 1024/(X ∗R);
6 offset = 0;
7 Function UNPACK(reg, offset, B):
8 return ANDSIMD(rshiftSIMD(reg,offset), set1SIMD((1UL << B)− 1)));
9 Function STORE(out, reg):

10 if WP == W then
11 storeSIMD(reg, out+ k + j ∗N + l ∗ i);
12 else
13 for m← 0 to W/WP by 1 do
14 tmp← convertSIMD(extractSIMD(reg,m));
15 storeSIMD(out+ k + j ∗N + l ∗ i+m, tmp);

16 for k ← 0 to N by 1 do
17 for i← 0 to R by 1 do
18 regi ← loadSIMD(in+ i ∗N + k);
19 for i← 0 to WP by 1 do
20 if offset == W then
21 in← l + in;
22 for j ← 0 to R by 1 do
23 regj ← LoadSIMD(in+ j ∗N + k);
24 tmp← UNPACK(regj, offset, B);
25 STORE(out+ k + j ∗N + l ∗ i, tmp);
26 offset = offset+B ;
27 else if offset + B > W then
28 in← l + in;
29 for j ← 0 to R by 1 do
30 tmp← UNPACK(regj, offset, W−offset);
31 regj ← loadSIMD(in+ j ∗N + k);
32 tmp← orSIMD(tmp, lshiftSIMD( UNPACK (regj , 0, offset+B −W )

, (W − offset));
33 STORE(out+ k + j ∗N + l ∗ i, tmp);
34 offset← offset+B −W ;
35 else
36 for j ← 0 to R by 1 do
37 tmp← UNPACK(regj, offset, B);
38 STORE(out+ k + j ∗N + l ∗ i, tmp);
39 offset = offset +B ;



3.3 Evaluation

In this section, we first evaluate the performance of the scalar implementation of our new
bit-(un)packing layout and applied optimizations in terms of the performance. Then, the
vectorized implementation of our new layout and the idea of using an intermediate word
is benchmarked. Finally, the compiler’s ability to automatically vectorize the scalar code
is investigated. Note that all benchmarking in this section is done on two machines with
different specifications shown in Table 3.1. Moreover, all results are show in plots where
the X-axis denotes the number of bits used to bit-pack data, while the Y-axis shows the
number of cycles spent per tuple.

M1 M2
Operting System macOS Catalina Fedora 28
Processor Name Quad-Core Intel Core i7 Intel(R) Core(TM) i9-7900X CPU
Processor Speed 2.9 GHz 3.30 GHz

Latest SIMD Support avx2 avx512vl
L2 Cache (per Core) 256 KB 1024 KB

Table 3.1: Specifications of the machines used for benchmarking.

3.3.1 Scalar Unpacking

In this experiment, we aim to benchmark the performance of the scalar implementation
of our new page layout to determine the optimal R value for each W . Note that our
code is compiled using the AppleClang 11.0.3 with the -O3, -fno-slp-vectorize and
-fno-vectorize flags. The -O3 flags instructs the compiler to optimize the code as much
as possible. However, this flag also enables auto-vectorization, which is disabled using the
-fno-slp-vectorize and -fno-vectorize flags.
Figure 3.4 shows the results of this experiment performed on M1. As can be seen, on

M1, our multi-cursor technique is effective and the scalar implementation with 8 cursors
for W = 8, 8 cursors for W = 16, 4 cursors for W = 32, and 2 cursors for W = 64 results
in the best performance.
Moreover, we compared the performance of the scalar implementation of our layout

to non-interleaved layout implementation for 32 bits integers. The result is shown in
Figure 3.5. As can be seen, our 1024-bits interleaving layout does not introduce any
overhead for scalar CPUs, and indeed with the help of the multi cursor technique, it can
even achieve better performance.
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Figure 3.4: Scalar bit-unpacking performance measured in terms of cycles per tuple for each
B and W

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30

B (Number of Bits)

C
y
c
le

 p
e

r 
T

u
p

le

interleaved

non-interleaved

Figure 3.5: The performance of the non-interleaved layout vs interleaved layout in terms of
cycles per tuple.
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Figure 3.6: The performance of vectorized bit-unpacking in terms of cycles per tuple for
each R (number of cursors).

3.3.2 Vectorized Unpacking and Intermediate Word

This experiment aims to 1) show how effective the multi cursor technique is on the vector-
ized implementation, 2) illustrate our vectorized implementation’s performance, and de-
termine whether using smaller intermediate word size (WP), as described in Section 3.1.1
is beneficial and 3) show the effect of using wider registers. Note that our code is compiled
and executed using Clang 4.2.1 with -O3 and -march=native flags on M2.
Figure 3.6 shows the result of the first part of the experiment. Note that this plot is

different from all other plots in this section, as X-axis shows all 216 possible functions
generated from the permutation of all variables, R, W , and WP. Since M2 supports AVX-
512 instructions, the R could have a value of 1 or 2. This plot shows the difference between
all functions implemented with only one cursor, R = 1, versus two cursors, R = 2. As can
be seen, on M2, our multi-cursor optimization technique is not effective and, indeed, for
functions with W = 64 and B > 32 (the last part of the plot), it introduces an overhead
of 0.1 cycles per tuple.
Figure 3.7 shows the results of the second part of this experiment performed on M2. As

can be seen, on M2, using smaller intermediate word size is not beneficial for all smaller
WPs. This is due to expensive SIMD convert instructions. However, it is possible that
for the next generation of CPUs, the SIMD convert instruction becomes less expensive.
Therefore, the idea of using smaller intermediate word size needs to be revisited in that
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Figure 3.7: The performance of vectorized bit-unpacking in terms of cycles per tuple for
each B and W.

case. Moreover, the results show that our new layout could be very efficient using SIMD
instructions.
Figure 3.8 shows the results of the final part of this experiment performed on M2. As

can be seen, on M2, the speed of bit-unpacking for our layout linearly increases with
respect to a to the size of a SIMD register. Therefore, our layout achieves the best result
for CPUs with different SIMD sizes. Moreover, we expect that our layout provides even
2x faster unpacking speed for the 1024 bit registers coming in the future (and 4x faster
for 2048 bit registers).

3.3.3 Auto Vectorization

This experiment aims to 1) show which configuration for scalar code leads to better auto-
vectorization and 2) illustrate to what extend the auto-vectorization by different compilers
can simulate the result of explicit vectorized code. Note that our code is compiled and
executed using Clang 4.2.1 and GCC 8 with -O3 and -march=native flags on M1 and
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Figure 3.8: The performance of vectorized bit-unpacking in terms of cycles per tuple for
each B and W.



M2.
Figure 3.9 shows the results of the first part of this experiment performed on M2. As

can be seen, on M2, our multi-cursor optimization technique is not effective with auto-
vectorizion, and scalar implementation with one cursor results in the best performance.
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Figure 3.9: The performance of auto-vectorized bit-unpacking in terms of cycles per tuple
for each possible B, W and R.

Figure 3.10 shows the results of second part of this experiment performed onM2. As can
be seen, in most cases, explicitly vectorized code is two times faster, which is considerable.
Figure 3.11 shows the results of second part of this experiment performed on M1. As can
be seen, in cases where W = 64 and B > 32, the Clang compiler completely fails to auto
vectorize the scalar code.



0.0

0.1

0.2

0.3

0.4

0.5

2 4 6 8

B (Number of Bits)

C
y
c
le

 p
e

r 
T

u
p

le

Clang auto-vectorized

explicitly vectorized

GCC auto-vectorized

(a) W = 8

0.0

0.1

0.2

0.3

0.4

0.5

4 8 12 16

B (Number of Bits)
C

y
c
le

 p
e

r 
T

u
p

le

Clang auto-vectorized

explicitly vectorized

GCC auto-vectorized

(b) W = 16

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30

B (Number of Bits)

C
y
c
le

 p
e

r 
T

u
p

le

Clang auto-vectorized

explicitly vectorized

GCC auto-vectorized

(c) W = 32

0.0

0.1

0.2

0.3

0.4

0.5

0 20 40 60

B (Number of Bits)

C
y
c
le

 p
e

r 
T

u
p

le

Clang auto-vectorized

explicitly vectorized

GCC auto-vectorized

(d) W = 64

Figure 3.10: The performance of auto-vectorized bit-unpacking vs explicitly vectorized bit-
unpacking in terms of cycles per tuple for each possible B, W.
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4

Composable Functions

In this section, we define new composable functions, which are required to simulate black-
box compression schemes. Furthermore, to optimize all these functions via SIMD in-
structions, we propose several novel algorithms. All these functions are implemented as a
function that processes and returns 1024 values at a time. Note that 1024 is chosen for
prototyping, and we are aiming to enlarge the vector size to 4096 (or even more).

4.1 Bit-Unpacking

The bit-unpack function takes a vector of 1024 bit-packed tuples and a bit-width value
b, as input and returns a vector containing the bit-unpacked version of these inputs. For
the bit-unpacking function, we use our new layout proposed in Section 3. To improve the
compression ratio, instead of having a single bit-width for the entire compressed segment,
we use a different bit-width for every 1024 tuples, which is stored in a mini-frame. However,
this change might introduce latency to the system as it might be required to call a new
bit-unpacking routine for every 1024 tuples.

4.1.1 Evaluation

To evaluate the latency issue described in the previous section, we designed an experiment
where a sample of 220 integers is extracted from all the 32-bits non-nullable integer columns
of all datasets in the Public BI benchmark (3). Then, these samples are bit-packed in two
scenarios, A and B. In scenario A, for each sample, the single best value b is determined,
while in scenario B, for every 1024 tuples, the best value for b is determined. Note that the
best b value is determined using the algorithm proposed by Heman (42), after subtracting

55
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Figure 4.1: Difference between scenario A and B in terms of cycles per tuple.

the base value from all integers to make the experiment more realistic. Then, the bit-
packed dataset is bit-unpacked once using a single determined b (Scenario A) and once a
different b for every 1024 values (Scenario B). The difference is shown in Figure 4.1, where
each point shows the difference between two scenarios for a given dataset. The detailed
version of this figure it represented in Table 2. As can be seen in Figure 4.1, the difference
is not significant, and indeed, in some cases, it is negative which shows the performance is
improved. This is because the value b for each chunk might be smaller in scenario B, and as
already shown, the smaller b results in faster bit-unpacking. To conclude, having different
bit-widths makes our bit-unpacking flexible without additional latency, and in some cases,
even leads to better performance. Note that the compression ratio will be benchmarked in
Chapter 5 (composable PFOR) as the effect of bit-width is usually entangled with another
variable and both needs to be benchmarked together.

4.2 Prefix Sum

The prefix-sum function takes an array of 1024 integers, int1, int2, ..., int1023 and a base
value, base, as input and computes the given input’s prefix-sum as (base+ int1), (base+



0 2 5 3 1 8

3 5 10 13 14 22

3

+ + + + + +

Figure 4.2: An example of a prefix-sum function.

int1+int2), ..., (base+int1+...+int1023). This layout is similar to D1. Figure 4.2 illustrates
an example of this function. As can be seen, for each integer’s prefix-sum computation,
the prefix-sum of preceding integers needs to be known beforehand. This property of
prefix-sum results in data dependency, and therefore, compilers fail to accelerate prefix
sum via the loop unrolling technique.
As discussed in Section 2.5.2, the most efficient way to SIMDize prefix-sum is proposed

by Zhang et al., an extension of SIMD approach proposed by Lemire et al. to AVX-512 (35).
However, in this approach, the data dependency still exists.
We propose a new transposed layout for tuples which minimizes the prefix-sum’s data

dependency. Our new layout changes the order of tuples, so there is no data dependency
between SIMD lanes. This change enables us to compute the prefix-sum using only one
SIMD ADD instruction instead of multiple ADD and SHIFT instructions in Zhang et
al.’s approach. Moreover, as long as all operators are aware of the new order of tuples,
there is no need to recover the original placement of tuples. However, if it is not the
case, the transpose operator needs to be applied to tuples. Furthermore, our new prefix-
sum operator could be combined with our transpose operator, resulting in a prefix-sum
operator that keeps the original order. Our new transposed layout and optimized transpose
algorithm are discussed in the following sections.

4.2.1 Transposed Layout

In our transposed storage layout, every 1024 W -bits integers are distributed among L

vertical groups of 1024/L integers, L1, L1, ..., LW , where L is the number of W -bit wide
SIMD lanes a 1024 bit register has, and W is 8, 16, 32, and 64, the number of bits used
to represent an integer. Our transposed layout distributes the integers among L groups
in the following order: the ith integer goes to the b i−32

32 cth vertical group, i.e., the 0th
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Figure 4.3: The transposed layout for the prefix-sum calculation.

integer goes to the 0th group, the 1st integer goes to 0th group and so on until L − 1.

After that, the Lth integer goes to the 1st group, and so on.

Our new transposed layout removes the data dependency for integers inside a SIMD lane.

However, instead of having one base per 1024 integers, each SIMD lane needs to have a

base value, which results in extra (L - 1) W -bit integers (1024 bit in total). Figure 4.3

shows an example of 32-bits integers which are transformed into our new layout.
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Figure 4.4: The 2-cursors layout for prefix-sum calculation



4.2.2 Evaluation

To evaluate the performance of our proposed layout, we implemented and benchmarked
the following variations of prefix-sum. Note that all these variations are implemented as
a function that calculates the prefix-sum of 1024 32-bit integers.

• Prefix-Sum: the implementation of prefix-sum for our layout using the AVX-512
instructions set shown in Listin 2. In this implementation, 65 SIMD LOAD, 64
SIMD ADD, and 64 STORE instructions are used.

1 void prefix_sum(uint32_t * __restrict__ in, uint32_t * __restrict__ out
2 , uint32_t *__restrict__ base) {
3 __m512i *_in = reinterpret_cast<__m512i *>(in);
4 __m512i *_out = reinterpret_cast<__m512i *>(out);
5 __m512i base1 = _mm512_loadu_si512(base + 0);
6 __m512i base2 = _mm512_loadu_si512(base + 16);
7 __m512i tmp1 = _mm512_loadu_si512(_in + 2 * 0);
8 __m512i tmp2 = _mm512_loadu_si512(_in + 2 * 0 + 1);
9 tmp1 = _mm512_add_epi32(base1, tmp1);

10 tmp2 = _mm512_add_epi32(base2, tmp1);
11 _mm512_storeu_si512(_out, tmp1);
12 _mm512_storeu_si512(_out + 1, tmp1);
13 for (int i = 0; i < 32; ++i) {
14 tmp1 = _mm512_add_epi32(_mm512_loadu_si512(_in + 2 * i), tmp1);
15 _mm512_storeu_si512(_out + 2 * i, tmp1);
16 tmp2 = _mm512_add_epi32(_mm512_loadu_si512(_in + 2 * i + 1), tmp2);
17 _mm512_storeu_si512(_out + 2 * i + 1, tmp2);
18 }
19 }

Listing 2: The implementation of prefix_sum function for 32-bit int.

• Prefix-Sum_and_New-Transposed: the implementation of prefix-sum for our layout
combined with the transposed operator to keep the order of tuples.

• D1-SSE: the implementation of D1 using SSE registers shown in Listing 3, proposed
by Lemire et al. (35).

• D1-AVX2: the implementation of D1 using AVX2 registers shown in Listing 4.

• D1-AVX-512: the implementation of D1 using AVX-512 registers proposed by Zhang
et al. (53) shown in Listing 5.

• Prefix-SUM_and_Scatter-Transposed: the implementation of prefix-sum for our lay-
out combined with the transposed operator implemented using the scatter instruction
(explained in Section 4.2.1) shown in Listing 6.



1 void d1_sse(uint32_t *__restrict__ in , uint32_t *__restrict__ out,
2 uint32_t base) {
3 __m128i tmp;
4 __m128i prev;
5 __m128i *_in = reinterpret_cast<__m128i *>(in);
6 __m128i *_out = reinterpret_cast<__m128i *>(out);
7 // i = 0;

8 tmp = _mm_loadu_si128(_in);
9 tmp = _mm_add_epi32(tmp, _mm_slli_si128(tmp, 8));

10 tmp = _mm_add_epi32(tmp, _mm_slli_si128(tmp, 4));
11 prev = _mm_add_epi32(tmp, _mm_set1_epi32(base));
12 _mm_storeu_si128(_out, prev);
13 for (int i = 1; i < 256; ++i) {
14 tmp = _mm_loadu_si128(_in + i);
15 tmp = _mm_add_epi32(tmp, _mm_slli_si128(tmp, 8));
16 tmp = _mm_add_epi32(tmp, _mm_slli_si128(tmp, 4));
17 prev = _mm_add_epi32(tmp, _mm_shuffle_epi32(prev, 0xff));
18 _mm_storeu_si128(_out + i, prev);
19 }
20 }

Listing 3: The implementation of d1_sse function for 32-bit int.

• 2-cursors_Scalar: the implementation of prefix-sum using multi-cursor techniques
with 2 cursors shown in Listing 7. The scalar implementation of prefix-sum could be
enhanced with multi-cursor techniques. However, multiple bases need to be added
to the layout instead of one. Figure 4.4 shows an example of multi cursor techniques
applied to the D1 layout.

• 4-cursor_Scalar: the implementation of prefix-sum using multi-cursor techniques
with 4 cursors shown in Listing 8.

• D1-Scalar-Clang: the implementation of prefix-sum using scalar code compiled by
the Clang compiler. The generated assembly code shows that the loop inside the
function is unrolled 3 times.

• D1-Scalar-GCC: the implementation of prefix-sum using scalar code compiled by
GCC, which does not use unrolling.

Figure 4.5 shows the result of the experiment. The Y-axis indicates the number of cycles
per tuple, while the X-axis shows its implementation. As can be seen, our layout is nearly
10x faster than the fastest possible implementation of the prefix sum, D1-AVX-512. If the
end user wants tuples in the right order, the combination of our transposed layout with
the transposed function is still 2x faster than D1-AVX-512. Moreover, the comparison



1 void d1_avx2(uint32_t *__restrict__ in, uint32_t *__restrict__ out,
2 uint32_t base) {
3 __m256i tmp;
4 __m256i prev;
5 __m256i mask;
6 __m256i *_in = reinterpret_cast<__m256i *>(in);
7 __m256i *_out = reinterpret_cast<__m256i *>(out);
8 // i = 0;

9 tmp = _mm256_loadu_si256(_in);
10 mask = _mm256_permute2x128_si256(tmp, tmp, _MM_SHUFFLE(0, 0, 3, 0));
11 tmp = _mm256_add_epi32(tmp, _mm256_alignr_epi8(tmp, mask, 16 - 16));
12 mask = _mm256_permute2x128_si256(tmp, tmp, _MM_SHUFFLE(0, 0, 3, 0));
13 tmp = _mm256_add_epi32(tmp, _mm256_alignr_epi8(tmp, mask, 16 - 8));
14 mask = _mm256_permute2x128_si256(tmp, tmp, _MM_SHUFFLE(0, 0, 3, 0));
15 tmp = _mm256_add_epi32(tmp, _mm256_alignr_epi8(tmp, mask, 16 - 4));
16 prev = _mm256_add_epi32(tmp, _mm256_set1_epi32(base));
17 _mm256_storeu_si256(_out, prev);
18 for (int i = 1; i < 128; ++i) {
19 tmp = _mm256_loadu_si256(_in + i);
20 mask = _mm256_permute2x128_si256(tmp, tmp, _MM_SHUFFLE(0, 0, 3, 0));
21 tmp = _mm256_add_epi32(tmp, _mm256_alignr_epi8(tmp, mask, 16 - 16));
22 mask = _mm256_permute2x128_si256(tmp, tmp, _MM_SHUFFLE(0, 0, 3, 0));
23 tmp = _mm256_add_epi32(tmp, _mm256_alignr_epi8(tmp, mask, 16 - 8));
24 mask = _mm256_permute2x128_si256(tmp, tmp, _MM_SHUFFLE(0, 0, 3, 0));
25 tmp = _mm256_add_epi32(tmp, _mm256_alignr_epi8(tmp, mask, 16 - 4));
26 prev = _mm256_add_epi32(tmp, _mm256_set1_epi32(_mm256_extract_epi32(prev, 7)));
27 _mm256_storeu_si256(_out + i, prev);
28 }
29 }

Listing 4: The implementation of d1avx2functionfor32-bit int.

of the performance of D1 implemented by SEE, AVX2, and AVX-512 shows that the
performance of the proposed algorithm by Lemire et al. and Zhang et al. are not linearly
increasing. This indicates that these algorithms cannot take complete advantage of new
wider registers. This is different in our proposed layout, where the number of instructions
does not increase for wider registers.
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1 __m512i _mm512_slli_si512(__m512i x, int k) {
2 __m512i ZERO = _mm512_setzero_si512();
3 }
4

5 __m512i PrefixSum(__m512i x) {
6 __m512i ZERO = _mm512_setzero_si512();
7 x = _mm512_add_epi32(x, _mm512_alignr_epi32(x, ZERO, 16 - 1));
8 x = _mm512_add_epi32(x, _mm512_alignr_epi32(x, ZERO, 16 - 2));
9 x = _mm512_add_epi32(x, _mm512_alignr_epi32(x, ZERO, 16 - 4));

10 x = _mm512_add_epi32(x, _mm512_alignr_epi32(x, ZERO, 16 - 8));
11 return x; // local prefix sums

12 }
13

14 void d1_avx_512(uint32_t * __restrict__ in, uint32_t * __restrict__ out,
15 uint32_t base) {
16 __m512i tmp;
17 __m512i prev;
18 __m512i *_in = reinterpret_cast<__m512i *>(in);
19 __m512i *_out = reinterpret_cast<__m512i *>(out);
20 // i = 0;

21 tmp = _mm512_loadu_si512(_in);
22 prev = _mm512_add_epi32(PrefixSum(tmp), _mm512_set1_epi32(base));
23 _mm512_storeu_si512(_out, prev);
24 for (int i = 1; i < 64; ++i) {
25 tmp = _mm512_loadu_si512(_in + i);
26 prev = _mm512_add_epi32(PrefixSum(tmp), _mm512_set1_epi32(*(out + i * 16 - 1)));
27 _mm512_storeu_si512(_out + i, prev);
28 }
29 }

Listing 5: The implementation of D1_AVX-512 function for 32-bit int.



1 void prefix_sum_and_scatter(uint32_t * __restrict__ in, uint32_t * __restrict__ out,
2 uint32_t * __restrict__ base) {
3 __m512i vindex1 = _mm512_set_epi32(480, 448, 416, 384, 352, 320, 288,
4 256, 224, 192, 160, 128, 96, 64, 32, 0);
5 __m512i *_in = reinterpret_cast<__m512i *>(in);
6 __m512i *base_ = reinterpret_cast<__m512i *>(base);
7 __m512i tmp1;
8 __m512i tmp2;
9 __m512i base1 = _mm512_loadu_si512(base_ + 0);

10 __m512i base2 = _mm512_loadu_si512(base_ + 1);
11 tmp1 = _mm512_loadu_si512(_in);
12 tmp1 = _mm512_add_epi32(tmp1, base1);
13 tmp2 = _mm512_loadu_si512(_in + 1);
14 tmp2 = _mm512_add_epi32(tmp2, base2);
15 _mm512_i32scatter_epi32(out, vindex1, tmp1, 4);
16 _mm512_i32scatter_epi32(out + 512, vindex1, tmp2, 4);
17 for (int i = 1; i < 32; ++i) {
18 tmp1 = _mm512_add_epi32(tmp1, _mm512_loadu_si512(_in + (2 * i) + 0));
19 tmp2 = _mm512_add_epi32(tmp2, _mm512_loadu_si512(_in + (2 * i) + 1));
20 _mm512_i32scatter_epi32(out + i, vindex1, tmp1, 4);
21 _mm512_i32scatter_epi32(out + i + 512, vindex1, tmp2, 4);
22 }
23 }

Listing 6: The implementation of Prefix-SUM_and_Scatter-Transposed function for 32-bit
int.

1 void scalar_2cursor(uint32_t * __restrict__ in, uint32_t * __restrict__ out,
2 uint32_t * __restrict__ base) {
3 out[0] = in[0] + base[0];
4 out[512] = in[512] + base[2];
5 for (int i = 1; i < 512; i++) {
6 out[i] = out[i - 1] + in[i];
7 out[i + 512] = out[i + 512 - 1] + in[i + 512];
8 }
9 }

Listing 7: The implementation of 2-cursors_Scalar function for 32-bit int.



1 void
2 scalar_4cursor(uint32_t *__restrict__ in, uint32_t *__restrict__ out,
3 uint32_t *__restrict__ base) {
4 out[0] = in[0] + base[0];
5 out[256] = in[256] + base[1];
6 out[512] = in[512] + base[2];
7 out[768] = in[768] + base[3];
8 for (int i = 1; i < 256; i++) {
9 out[i] = out[i - 1] + in[i];

10 out[i + 256] = out[i + 256 - 1] + in[i + 256];
11 out[i + 512] = out[i + 512 - 1] + in[i + 512];
12 out[i + 768] = out[i + 768 - 1] + in[i + 768];
13 }
14 }

Listing 8: The implementation of 4-cursor_Scalar function for 32-bit int.



4.3 Plus

The plus function takes a vector of 1024 integers, int1, int2, ..., int1023 and a base value,
base, as input and adds the base value to all integers. The base value is stored inside a mini-
frame, as explained in Section 1.3. The plus function is usually needed for the FOR-like
compression algorithms to add the reference to compressed integers. However, in whitebox
compression model, the plus function leads to executing additional instructions to load
data from memory and store them back, which could be avoided if the plus function was
combined with its previous function in the evaluation tree, which is always bit-unpacking.
Moreover, the combination of the bit-unpacking and plus functions guarantees that the
SIMD ADD instruction is used if there is a possibility.

4.3.1 Intermediate Base

As discussed in Section 3.1.1, the idea of using the intermediate word to bit-unpack data is
not beneficial as the SIMD CONVERT instruction is expensive. However, after combining
bit-unpacking with the plus function, this idea is worth being benchmarked again, as we
can potentially use more lanes, and therefore have more parallelism, to bit-unpack and add
the base value to inputs. Therefore, if the base value could be represented with a shorter
word of size WP (WP < W ) more parallelism can be used during the bit-unpacking and
plus operations.

4.3.2 Evaluation

In this experiment, we benchmarked the performance of the plus function in two cases:
when it is combined with bin-unpacking and when it is separate. Figure 4.6 shows the
results of this experiment performed on M2. As can be seen, the combined version results
in better performance. Moreover, the best possible performance of bit-unpacking using
an intermediate word shown in Figure 3.7 is even worse than the case where plus and
bit-unpacking are combined without using an intermediate word. This shows that using
smaller intermediate words is also not beneficial for the combination case. This is due
to expensive SIMD CONVERT instructions. However, it is possible that for the next
generation of CPUs, the SIMD CONVERT instruction becomes less costly. Therefore,
using smaller intermediate word size needs to be revisited again for this case. Finally, as
the performance of bit-unpacking is very close to bit-unpacking combined with plus, the
bit-unpacking library could be replaced with the library of the combination of plus and
bit-unpacking. If for other whitebox compression schemes, only bit-unpacking is needed,
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Figure 4.6: The performance of the plus function combined with bit-unpacking vs the sepa-
rate version in terms of cycles per tuple.

the base parameter could be set to 0. This change significantly reduces the compile time,
while the performance remains almost the same.

4.4 Transpose

The transpose function takes a vector of 1024 tuples with the transposed layout described
in Section 4.2.1 as input and restores the original layout. Listing 9 shows the imple-
mentation of a simple transpose function, called the scalar implementation, as no SIMD
instruction is used. As can be seen, inside the inner loop, each element in the input vector
is placed into its original position in the output vector.
However, this implementation might be accelerated using the new SCATTER instruc-

tions introduced for AVX-512. Listing 10 shows the implementation of the transpose
function using SCATTER instructions for 32-bit unsigned integers, called the SIMD im-
plementation. In this implementation, a temporary vector is generated, holding the po-



void scalar_transpose(const ANY *__restrict__ in, ANY *__restrict__ out) {
for (i = 0; i < 32; ++i) {

for (j = 0; j < 32; ++j) {
out[32 * j + i] = in[32 * i + j];

}
}

}

Listing 9: The scalar implementation of the transpose function.

void SIMD_transpose(uint32_t *__restrict__ in,
uint32_t *__restrict__ out) {

__m512i vindex1 = _mm512_set_epi32(480, 448, 416, 384, 352, 320, 288,
256, 224, 192, 160, 128, 96, 64, 32, 0);
__m512i *_in = reinterpret_cast<__m512i *>(in);
for (i = 0; i < 32; ++i) {

_mm512_i32scatter_epi32(out + i, vindex1,
_mm512_loadu_si512(_in + (2 * i) + 0), 4);
_mm512_i32scatter_epi32(out + i + 512, vindex1,
_mm512_loadu_si512(_in + (2 * i) + 1), 4);

}
}

Listing 10: The SIMD implementation of transpose function for uint32_t.

sitions where the input elements should be copied to. In each iteration, 32 elements are
copied into their correct position in the output vector using the SCATTER and LOAD
instructions.
However, the SCATTER instruction is costly and could have a delay of 12 cycles. To

solve this problem, we propose a new algorithm that uses less expensive SIMD instructions
such as UNPACKLO, UNPACKHI, SHUFFLE, and PERMUTE. This algorithm uses 17
SIMD registers, which is less than the total number of registers in a CPU. Thus, this
algorithm does not incur register pressure.
To explain our SIMD transpose algorithm, as an example, we consider a matrix of

32 × 32 elements and a CPU that supports AVX-512 instructions. 1024 elements of the
vector input can be represented as a matrix of 32 × 32 elements. We divide the matrix
into four matrices of 16× 16, where the same steps are applied to all four matrices. The
steps of the algorithm are as follows:

• Load all the tuples into 16 registers r0, r1, ..., r15, as shown in Figure 4.7.

• Repeat the following steps 5 times where s initially set to 1, shows the number of
tuples that are together during interleaving and i is initially set to 0.



– Starting from r0, group all the registers into 8 groups of rn and rm where n−m =
i. For example for i = 0, r14 is grouped with r15 , as shown in Figure 4.8;

– For each group, interleave the first half of two registers and store the result in a
temporary register. Then, interleave the second half of two registers and store
the result into rj where j > i. After that copy the temporary register into ri.
Note that the interleaving is done based on the value of s. For example, if s = 2,
every two tuples are paired with each other. Thus, after interleaving, every two
tuples of one register are followed by two tuples from the other register.

– Set i to 2 ∗ i+ 1

– Set s to s+ 1

• Store each register at the right position. Figure 4.12 shows the content of registers
before the store. As can be seen, each register needs to be stored in random order.

Note that Figures 4.9, 4.10, and 4.11 show the content of registers before steps 2, 3, and
4, respectively. Also, it is worth mentioning that our proposed algorithm can be extended
to a matrix with any size and a CPU with any SIMD register size. Considering a matrix
of size N ×M and a SIMD register of size K, all matrices of size K ×K inside the main
matrix could be transposed using the above-mentioned algorithm. Then, all remaining
areas should be transposed in a scalar way.

992 480 448 416 384 352 320 288 256 224 192 160 128 96 64 32 0

993 481 449 417 385 353 321 289 257 225 193 161 129 97 65 33 1

994 482 450 418 386 354 322 290 258 226 194 162 130 98 66 34 2

995 483 451 419 387 355 323 291 259 227 195 163 131 99 67 35 3

996 484 452 420 388 356 324 292 260 228 196 164 132 100 68 36 4

997 485 453 421 389 357 325 293 261 229 197 165 133 101 69 37 5

998 486 454 422 390 358 326 294 262 230 198 166 134 102 70 38 6

999 487 455 423 391 359 327 295 263 231 199 167 135 103 71 39 7

1000 488 456 424 392 360 328 296 264 232 200 168 136 104 72 40 8

1001 489 457 425 393 361 329 297 265 233 201 169 137 105 73 41 9

1002 490 458 426 394 362 330 298 266 234 202 170 138 106 74 42 10

1003 491 459 427 395 363 331 299 267 235 203 171 139 107 75 43 11

1004 492 460 428 396 364 332 300 268 236 204 172 140 108 76 44 12

1005 493 461 429 397 365 333 301 269 237 205 173 141 109 77 45 13

1006 494 462 430 398 366 334 302 270 238 206 174 142 110 78 46 14

1007 495 463 431 399 367 335 303 271 239 207 175 143 111 79 47 15

1023 511 479 447 415 383 351 319 287 255 223 191 159 127 95 63 31
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Figure 4.7: Our new transpose algorithm, the loading step.



Unpacklo 32 Unpackhi 32

480 448 416 384 352 320 288 256 224 192 160 128 96 64 32 0

481 449 417 385 353 321 289 257 225 193 161 129 97 65 33 1

482 450 418 386 354 322 290 258 226 194 162 130 98 66 34 2

483 451 419 387 355 323 291 259 227 195 163 131 99 67 35 3

484 452 420 388 356 324 292 260 228 196 164 132 100 68 36 4

485 453 421 389 357 325 293 261 229 197 165 133 101 69 37 5

486 454 422 390 358 326 294 262 230 198 166 134 102 70 38 6

487 455 423 391 359 327 295 263 231 199 167 135 103 71 39 7

488 456 424 392 360 328 296 264 232 200 168 136 104 72 40 8

489 457 425 393 361 329 297 265 233 201 169 137 105 73 41 9

490 458 426 394 362 330 298 266 234 202 170 138 106 74 42 10

491 459 427 395 363 331 299 267 235 203 171 139 107 75 43 11

492 460 428 396 364 332 300 268 236 204 172 140 108 76 44 12

493 461 429 397 365 333 301 269 237 205 173 141 109 77 45 13

494 462 430 398 366 334 302 270 238 206 174 142 110 78 46 14

495 463 431 399 367 335 303 271 239 207 175 143 111 79 47 15

Figure 4.8: Our new transpose algorithm where i = 0.

417 416 385 384 289 288 257 256 161 160 129 128 33 32 1 0

481 480 449 448 353 352 321 320 225 224 193 192 97 96 65 64

419 418 387 386 291 290 259 258 163 162 131 130 35 34 3 2

483 482 451 450 355 354 323 322 227 226 195 194 99 98 67 66

421 420 389 388 293 292 261 260 165 164 133 132 37 36 5 4

485 484 453 452 357 356 325 324 229 228 197 196 101 100 69 68

423 422 391 390 295 294 263 262 167 166 135 134 39 38 7 6

487 486 455 454 359 358 327 326 231 230 199 198 103 102 71 70

425 424 393 392 297 296 265 264 169 168 137 136 41 40 9 8

489 488 457 456 361 360 329 328 233 232 201 200 105 104 73 72

427 426 395 394 299 298 267 266 171 170 139 138 43 42 11 10

491 490 459 458 363 362 331 330 235 234 203 202 107 106 75 74

429 428 397 396 301 300 269 268 173 172 141 140 45 44 13 12

493 492 461 460 365 364 333 332 237 236 205 204 109 108 77 76

431 430 399 398 303 302 271 270 175 174 143 142 47 46 15 14

495 494 463 462 367 366 335 334 239 238 207 206 111 110 79 78

Permute 64Permute 64

Figure 4.9: Our new transpose algorithm where i = 1.
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Figure 4.10: Our new transpose algorithm where i = 3.
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Figure 4.11: Our new transpose algorithm where i = 7.
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79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
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207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192

175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160

239 238 237 236 235 234 233 232 231 230 229 228 227 226 225 224

399 398 397 396 395 394 393 392 391 390 389 388 387 386 385 384

463 462 461 460 459 458 457 456 455 454 453 452 451 450 449 448

431 430 429 428 427 426 425 424 423 422 421 420 419 418 417 416

495 494 493 492 491 490 489 488 487 486 485 484 483 482 481 480

Figure 4.12: Our new transpose algorithm, final result.

4.4.1 Evaluation

To evaluate the performance of our proposed algorithm for matrix transpose,we imple-
mented and benchmarked the following variations of the transpose function on M2. Note
that all these variations are implemented as a function that transposes 1024 32-bit integers.

• Our algorithm: the implementation of our algorithm.

• scalar_Clang: the implementation of the algorithm in Listing 9 compiled by the
Clang compiler. Our investigation shows that code inside the function is unrolled
three times.

• scalar_GCC: the implementation of the algorithm in Listing 9 compiled by the GCC
compiler.

• AVX-512: the implementation of the algorithm in Listing 10.

The result of this experiment is shown in Figure 4.13. As can be seen, our algorithm
is four times faster than all other implementation. Also note that Clang optimization to
unroll the loop three times leads to better performance.
Moreover, we combined our transpose algorithm with our new prefix sum function de-

scribed in Section 4.2.1. The performance of this combination is the same as the per-
formance of the transpose function without prefix sum. This result indicates that if a
transpose function is necessary to be used, the best possible way to use it is to explicitly



combine it with the transpose function with one of the operators of a whitebox compres-
sion, as the transpose function is the bottleneck. Note that to combine the transpose
function with an operator, the operator implementation must be completely unrolled.
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Figure 4.13: The result of different implementations of the transpose algorithm.

4.5 Load

The load function takes a vector of 1024 offsets and dictionary base as input and fetches
the actual values pointed by these offsets into the result vector. Also, the load function
can take a vector of 1024 absolute pointers as input and fetches the actual values pointed
by these pointers into the result vector. The load function leads to executing additional
instructions to load data from memory and store them back, which could be avoided if the
load function is combined with the bit-unpacking function. Moreover, the load function
could be implemented using GATHER instruction. As shown in the transpose function,
the GATHER and SCATTER instructions do not lead to better performance than scalar
code. However, the scale parameter in the GATHER instruction could be used to generate
64-bit pointers from offsets without additional computation.

4.6 Shift

The shift function takes a vector of 1024 tuples and a integer n as input and shifts every
tuple of vector, n bits to the left. The shift function leads to executing additional instruc-



tions to load data from memory and to store them back, which could be avoided if the

load function is combined with the bit-unpacking function.

4.6.1 Evaluation
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Figure 4.14: The performance of the bit-unpack function combined with shift and plus vs
the bit-unpack function combined with the plus vs the bit-unpack function in terms of cycles
per tuple.

In this experiment, we benchmarked the bit-unpack function’s performance in three

cases: when it is combined with plus and shift, when it is combined with plus, and when it

is separate. Figure 4.14 shows the results of this experiment performed on M2. As can be

seen, when the bit-unpacking is combined with shift and plus, the result is 2 times worse.

Therefore, unlike plus, we propose to not mix the shift function with bit-packing and plus.

If the shift function is needed, a separate library of a combination of bit-unpacking, plus,

and the shift is required.



4.7 Patch
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Figure 4.15: An example of the patch function.

The Patch function takes a vector of bit-unpacked integers (code vector), a vector of
exceptions (exception vector), a 16-bit integer (exc), and 16-bit (pos) as input and outputs
a 1024-tuple vector, where exceptions are put into their correct position inside the code
vector. Figure 4.15 illustrates an example of this function. As can be seen, the exc
parameter points to the first exception inside the code vector, while the pos parameter
points to the starting point of the exception vector corresponding to this code vector.
From the starting point, the exceptions are placed back into the code vector at the position
denoted by cursor = exc. Note that before each replacement, the cursor value is updated
with the code[cursor] which points to the next exception location in the code vector.
Moreover, since bit-unpacking is combined with plus, the base value must be subtracted
from the cursor value.

1 void patch(ANY *__restrict__ codes, ANY *__restrict__ exceptions,
2 uint16_t exc, uint16_t pos, ANY diff) {
3 int next, cur = exc;
4 exceptions += pos;
5 for (int i = 0; cur < 1024; i++, cur = next) {
6 next = cur + codes[cur] + 1 - diff;
7 codes[cur] = exceptions[i];
8 }
9 }

Listing 11: The implementation of the patch function.

The implementation of the patch function is shown in Listing 11. As can be seen, in
Line 6, the offset of the next exception is calculated, while in Line 7, the value of the
current exception is placed in the code vector.
Note that in the whitebox model, the patch function needs to neutralize the bit-unpacking

function’s effect if the bit-unpacking function is combined with other functions. For ex-



ample, if the bit-packing is combined with plus, the base parameter is added to all bit-
unpacked data, actual tuples, and offset. Therefore, the base value needs to be subtracted
from the offset to restore the original offset in the patch function.

4.7.1 Evaluation

To evaluate the performance of the patch function, we implemented and benchmarked the
patch function on M2. Note that all these variations are implemented as a function that
split 32-bit integers.
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Figure 4.16: The result of the patch function.

The result of this experiment is shown in Figure 4.16. The X-axis shows the ratio of
the number of exceptions in 1024 tuples. Note that the process of choosing exceptions is
done entirely randomly and the experiment is repeated 10 times. The Y-axis shows the
median of cycles used per tuple for 10 experiments. As can be seen, our implementation
has a reasonable performance for all cases.

4.8 Split

The split function takes two vectors of arbitrary size (in total 1024 tuples) and a 1024-
bits bitmap as input and outputs a 1024-tuple vector, which combines two given columns
based on given the bitmap. Figure 4.17 A illustrates an example of this function. As can
be seen, for each tuple in the output vector, the corresponding bit in the bitmap array
specifyes from which vector the tuple should be copied.
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Figure 4.17: An example of all variations of the split function.

Besides combining columns, the split function has several other use cases which are
described in the following sections.

4.8.1 Patch substitution

The patch function is not the right candidate for the PFOR scheme with bit-widths below
5, as it introduces too many compulsory exceptions and thus degrading the compression
ratio. To overcome this problem, the patch function could be replaced with the split
function that places exceptions into their position specified by the bitmap. This change
forces the PFOR scheme to have a bitmap of size 1024 for bit-widths below 5, while there is
no need to have any compulsory expectations. However, as the exceptions are not frequent
in the patching encoding, the split function could be optimized to handle a few exceptions.
Figure 4.17 B illustrates an example of this function.

4.8.2 Null support

Null tuples do not contain any specific information and could be removed from a column
to achieve better compression. Later, the original column could be reconstructed using
the split function, which inflates the vector of tuples by putting actual values in their
original position using the provided bitmap. Note that for this case of the split function,



only one column is needed as the second column contains only Null values. Figure 4.17 C
illustrates an example of this function.

4.8.3 Implementation and Evaluation

The split function is implemented using if-else conditions, as shown in Listing 12. For
each tuple, the corresponding bit is extracted. If the bit is set to 1, the tuple from the
first column is copied to the result vector, otherwise the tuple from the second column.
This implementation could be optimized further if there exists a pattern that shows how
data is distributed over two columns. However, in most cases, the distribution is random.

1 void split(ANY *__restrict col1, ANY *__restrict col2,
2 ANY *__restrict result,
3 uint64_t *__restrict bitmap) {
4 int counter1 = 0;
5 int counter2 = 0;
6 uint64_t tmp_bitmap;
7 uint64_t tmp;
8 for (size_t i = 0; i < 16; ++i) {
9 tmp = bitmap[i];

10 for (int j = 0; j < 64; ++j) {
11 tmp_bitmap = (tmp >> j) & (1);
12 if (tmp_bitmap == 1) {
13 result[i * 64 + j] = col1[counter1++];
14 } else {
15 result[i * 64 + j] = col2[counter2++];
16 }
17 }
18 }
19 }

Listing 12: The scalar implementation of the split function.

This implementation is expected to have a bad performance as it introduces many
branches that cannot be predicted by a CPU. To mitigate this problem, the EXPAND_LOAD
instructions can be used instead. Listing 13 shows an example of this implementation for
tuples of type unsigned 32-bit int. In Lines 9-10, a SIMD register is filled with tuples from
both columns. Note that the tuples from the second column are placed in their position
inside the register using the bit-flipped bitmask.
The result of performance of the different implementations of the split functions is shown

in Figure 4.18. The X-axis shows the ratio of the number of tuples from the first column to
1024 tuples. Note that the process of dividing tuples among two columns is done entirely



1 void split512(uint32_t *__restrict col1,
2 uint32_t *__restrict col2, uint32_t *__restrict result,
3 uint64_t *__restrict bitmap) {
4 __m512i tmp;
5 uint16_t *bitmap_ = reinterpret_cast<uint16_t *>(bitmap);
6 uint16_t tmp_bitmap;
7 int tmp_count;
8 for (int k = 0; k < 64; ++k) {
9 tmp_bitmap = bitmap_[k];

10 tmp = _mm512_maskz_expandloadu_epi32(tmp_bitmap, col1);
11 tmp = _mm512_mask_expandloadu_epi32(tmp, ~tmp_bitmap, col2);
12 tmp_count = __builtin_popcount(tmp_bitmap);
13 col1 += tmp_count;
14 col2 += 16 - tmp_count;
15 _mm512_storeu_si512(result + k * 16, tmp);
16 }
17 }

Listing 13: The SIMD implementation of the split function.
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Figure 4.18: The result of different implementations of the split function.

randomly. As can be seen, our SIMD implementation improves the performance 10 times.

Also it can be concluded that the ratio does not have any effect on both implementations.

To implement the split function, which simulates the patch function, it is crucial to

consider that only a few tuples inside the result vector are required to be replaced. To

leverage this property, a pruning technique can be used in which a block of tuples that

are not needed to be replaced are skipped. Listing 14 shows the implementation of this



function. In Line 6, the pruning technique is applied for a block of size 64. Note that the
block size could have a value of 64, 32, 16, or 8. If no tuple inside a block is an exception,
the bitmask corresponding to this block is 0 and could be skipped. If a bitmask is not 0,
the most significant bit with value 1 is extracted (Line 7). The position of this bit could
be easily found using the CTZLL instruction. This position could be used to place an
exception in its right place in the code vector. After the replacement, this bit is set to 0,
making it possible to find the next bit that is set to 1 in the next iteration.

1 void split_patch_with_pruning(ANY *codes, ANY *exception, uint64_t *bitmap) {
2 int counter = 0;
3 uint64_t bitset;
4 for (size_t k = 0; k < 16; ++k) {
5 bitset = bitmap[k];
6 while (bitset != 0) {
7 uint64_t t = bitset & -bitset;
8 int r = __builtin_ctzll(bitset);
9 codes[k * 64 + r] = exception[counter++];

10 bitset ^= t;
11 }
12 }
13 }

Listing 14: The scalar implementation of the split-patch function.

If the bitmap corresponding to a block is not 0, instead of finding the positions of bits
set to 1, the EXPLAND_LOAD instruction can be used to put the exceptions in their
positions, as shown in Listing 15. Moreover, the split-patch function could be implemented
without the pruning technique. This implementation is shown in Listing 16.
To evaluate the performance of the split-patch function, we implemented and bench-

marked the six mentioned variations of the split-patch function on M2. Note that all
these variations are implemented as a function that splits 32-bit integers.
The result of this experiment is shown in Figure 4.19. The X-axis shows the ratio of

the number of tuples from the first column to 1024 tuples. Note that the process of
dividing tuples among two columns is done entirely randomly. As can be seen, our scalar
implementation with the block size of 64 results in the best possible performance.
To implement the split function, which restores the original layout of null-compressed

data, the pruning technique and the EXPAND_LOAD instructions can be used. To evalu-
ate the performance of different implementations of the split-null function, we implemented
and benchmarked all possible variations of the split function on M2 listed as follows. Note
that all these variations are implemented as a function that split 32-bit integers.



1 void split_patch_with_pruning_avx512(uint32_t *codes,
2 uint32_t *exception, uint16_t *bitmap) {
3 __m512i codes_;
4 int count = 0;
5 uint16_t bitmap_ = 0;
6 for (int i = 0; i < 64; i++) {
7 bitmap_ = *(bitmap + i);
8 if (bitmap_ != 0) {
9 codes_ = _mm512_load_si512(codes + i * 16);

10 codes_ = _mm512_mask_expandloadu_epi32(codes_, bitmap_, exception + count);
11 _mm512_store_si512(codes + i * 16, codes_);
12 count += __builtin_popcount(bitmap_);
13 }
14 }
15 }

Listing 15: The SIMD implementation of the split-patch function using the pruning tech-
nique.

1 void split_patch_avx512(uint32_t *codes, uint32_t
2 *exception, uint16_t *bitmap) {
3 __m512i codes_;
4 int count = 0;
5 uint16_t bitmap_ = 0;
6 for (int i = 0; i < 64; i++) {
7 bitmap_ = *(bitmap + i);
8 codes_ = _mm512_load_si512(codes + i * 16);
9 codes_ = _mm512_mask_expandloadu_epi32(codes_, bitmap_, exception + count);

10 _mm512_store_si512(codes + i * 16, codes_);
11 count += __builtin_popcount(bitmap_);
12 }
13 }

Listing 16: The SIMD implementation of the split-patch function.

• The implementation of the split-null function without the pruning technique, shown
in Listing 17.

• The implementation of the split-null function with the pruning technique, shown in
Listing 18.

• The SIMD implementation without the pruning technique using AVX-512 instruc-
tions, shown in Listing 19.

• The SIMD implementation with the pruning technique using AVX-512 instructions,
shown in Listing 20.
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Figure 4.19: The result of different implementations of the split function for the patch case.

• The SIMD implementation without the pruning technique using SSE instructions,
shown in Listing 21. In this implementation, the EXPAND_LOAD instructions are
simulated by using 128-bit SHUFFLE instructions provided in SSE. The SHUFFLE
instruction needs another vector that defines where each byte of the register should
go. For this purpose, a table is already generated that can be accessed by an 8-bit
integer as index. For each possible 8-bit index, the table contains 128-bit data needed
for the SHUFFLE instruction. Note that this implementation also can be used for
implementing the regular split function.

1 void null(uint32_t *data, uint32_t *result, uint64_t *bitmap) {
2 int counter = 0;
3 uint64_t bitset;
4 for (size_t k = 0; k < 16; ++k) {
5 bitset = bitmap[k];
6 for (int i = 0; i < 64; i++) {
7 uint64_t t = bitset & -bitset;
8 int r = __builtin_ctzll(bitset);
9 result[k * 64 + r] = data[counter++];

10 bitset ^= t;
11 }
12 }
13 }

Listing 17: The scalar implementation of the split-null function.



1 void null_with_shortcut(uint32_t *data, uint32_t *result, uint64_t *bitmap) {
2 int counter = 0;
3 uint64_t bitset;
4 for (size_t k = 0; k < 16; ++k) {
5 bitset = bitmap[k];
6 while (bitset != 0) {
7 uint64_t t = bitset & -bitset;
8 int r = __builtin_ctzll(bitset);
9 result[k * 64 + r] = data[counter++];

10 bitset ^= t;
11 }
12 }
13 }

Listing 18: The scalar implementation of the split-null function using the pruning technique.

1 void split_null_avx512(uint32_t *data, uint32_t
2 *result, uint16_t *bitmap) {
3 __m512i result_;
4 int count = 0;
5 uint16_t bitmap_ = 0;
6 for (int i = 0; i < 64; i++) {
7 bitmap_ = *(bitmap + i);
8 result_ = _mm512_loadu_si512(result + i * 16);
9 result_ = _mm512_mask_expandloadu_epi32(result_, bitmap_, data + count);

10 _mm512_storeu_si512(result + i * 16, result_);
11 count += __builtin_popcount(bitmap_);
12 }
13 }

Listing 19: The SIMD implementation of the split-null function.

1 void split_null_with_shortcut_avx512(uint32_t *data, uint32_t *result, uint16_t *bitmap) {
2 __m512i result_;
3 int count = 0;
4 uint16_t bitmap_ = 0;
5 for (int i = 0; i < 64; i++) {
6 bitmap_ = *(bitmap + i);
7 if (bitmap_ != 0) {
8 result_ = _mm512_loadu_si512(result + i * 16);
9 result_ = _mm512_mask_expandloadu_epi32(result_, bitmap_, data + count);

10 _mm512_storeu_si512(result + i * 16, result_);
11 count += __builtin_popcount(bitmap_);
12 }
13 }
14 }

Listing 20: The SIMD implementation of the split-null function using the pruning technique.



1 void null_sse(uint32_t *data, uint32_t *result, uint64_t *bitmap) {
2 __m128i *result_ = reinterpret_cast<__m128i *>(result);
3 int counter = 0;
4 __m128i vecA;
5 __m128i vecB;
6 __m128i vecC;
7 __m128i vecD;
8 __m128i tmp;
9 for (int i = 0; i < 16; ++i) {

10 uint64_t w = bitmap[i];
11 for (int k = 0; k < 4; ++k) {
12 uint8_t byteA = (uint8_t) w;
13 uint8_t byteB = (uint8_t) (w >> 4);
14 w >>= 8;
15 uint8_t byteC = (uint8_t) w;
16 uint8_t byteD = (uint8_t) (w >> 4);
17 w >>= 8;
18 vecA = _mm_load_si128(reinterpret_cast<const __m128i *>(lu_table[byteA]));
19 vecB = _mm_load_si128(reinterpret_cast<__m128i *>(lu_table[byteB]));
20 vecC = _mm_load_si128(reinterpret_cast<const __m128i *>(lu_table[byteC]));
21 vecD = _mm_load_si128(reinterpret_cast<__m128i *>(lu_table[byteD]));
22 tmp = _mm_loadu_si128((const __m128i *) (data));
23 tmp = _mm_shuffle_epi8(tmp, vecA);
24 _mm_storeu_si128(result_++, tmp);
25 data += __builtin_popcount(byteA);
26 tmp = _mm_loadu_si128(reinterpret_cast<__m128i *>(data));
27 tmp = _mm_shuffle_epi8(tmp, vecB);
28 _mm_storeu_si128(result_++, tmp);
29 data += __builtin_popcount(byteB);
30 tmp = _mm_loadu_si128((const __m128i *) (data));
31 tmp = _mm_shuffle_epi8(tmp, vecC);
32 _mm_storeu_si128(result_++, tmp);
33 data += __builtin_popcount(byteA);
34 tmp = _mm_loadu_si128((const __m128i *) (data));
35 tmp = _mm_shuffle_epi8(tmp, vecD);
36 _mm_storeu_si128(result_++, tmp);
37 data += __builtin_popcount(byteA);
38 }
39 }
40 }

Listing 21: The SIMD implementation of the split-null function for SSE.
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Figure 4.20: The result of different implementations of the split function for the Null case.

The result of this experiment is shown in Figure 4.19. The X-axis shows the ratio
of the number of tuples from the first column to 1024 tuples. Note that the process
of dividing tuples among two columns is done entirely randomly. As can be seen, our
SIMD implementation with AVX-512 instructions results in the best possible performance.
Moreover, the SSE performance is better than the scalar version, which shows that the
SSE implementation can be used for CPUs supporting AVX2 or SSE instructions.

4.9 RLE

The RLE function takes an RLE-compressed column and restores the original representa-
tion of tuples. As described in Section 2.7, the layout of RLE is usually interleaved in a
way that for each run, the length and the actual value are adjacent. This leads to several
problems. Firstly, to further compress the already RLE-compressed data, a bit-packing
technique can be used. However, the interleaved layout makes it nearly impossible to
efficiently bit-pack length values as they are paired with the actual values, and the best
number of bits used to bit-pack length values are affected by the number of bits used to
bit-pack the actual values. For example, the value type could be of type string or a large
integer that does not let values with a small length to efficiently bit-packed. Secondly, the
interleaved layout makes it hard to expose the RLE layout to the higher-level operations
since the separation of length values from actual values needs to be done in that operator.
Finally, the implementation of the traditional RLE is block-based as the number of length
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Figure 4.21: An example of our RLE layout where the length and value columns are stored
separately.

and value pairs for each vector are not specified. This enforces the decompression of the
whole page instead of a vector during random access.
To solve these problems, we propose a new layout for RLE, in which the length and the

actual values are separated from each other and stored in two different columns: the Length
column and the Value column. An example of this layout could is shown in Figure 4.21.
Furthermore, to determine which length and value pair belongs to which vector, an integer
value, cnti, for every vector is added to this layout, which shows the number of length and
value pairs until the beginning of vector i. Note that all cnts are stored in a mini-frame.
Moreover, the actual number of length and value pairs for each vector could be calculated
as cnti+1 − cnti.

4.9.1 SIMD RLE Layout

Furthermore, to SIMDize the decompression of our new RLE layout, we propose a new
SIMD RLE layout that leverages our transposed layout discussed in Section 4.2.1. To
explain our new RLE layout, consider an example of 64 values instead of 1024 values,
shown in Figure 4.25. Note that each color indicates a unique value. In our new layout,
tuples inside each column are separately compressed to value and length pairs. After that,
all these pairs are sorted based on the row number of the first element of a run. If this
value is equal for two runs, they are sorted based on the first element’s column number.
This layout results in copying the first element of all columns into the value vector, as
shown in Figure 4.25. For simplicity, we name the first list, which contains the first tuples
of every column, fixed-list, and the list that comes after this list, variable-list.
However, in a non-tranposed layout, for a vector with high similarity, data is compressed

into few length and value pairs. In contrast, in our SIMD RLE layout, in addition to those
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Figure 4.22: An example of SIMDizing our new RLE layout.

pairs, the first elements of all columns also need to be copied into the value vector together
with their corresponding length into the length vector. To mitigate this problem, for these
cases, a simple interleaved RLE layout can be used to compress the N first elements of
both value and length columns, where N = 1024/W .

4.9.2 Intermediate Representation

The proposed SIMD RLE layout leads to a worse compression ratio compared to the
non-transposed layout when the number of runs is small. As mentioned in the previous
section, one solution is to compress the first elements of both value and length vectors
using the simple RLE. However, this solution only solves the overhead of the SIMD RLE
layout when the number of runs is very small. This is due to the fact that the value vector
needs to be compressed inside the value vector, which leads to using a value-size length
parameter.

To solve the overhead problem of the SIMD layout, we propose an intermediate RLE
layout for cases where the number of runs is smaller than 32 or 64, dependent on number
of bits used to represent the bit-packed value. This layout is illustrated in Figure 4.23.
The green rectangles represent tuples with the same value. As can be seen, the green
box is repeated 21 times. In the non-transposed RLE layout, this run is represented by a
length and value pair. In our layout, we represent this run as a pair of value and length,
where the length is divided into 4 parameters:



• Col: this parameter determines the number of columns that starts with the corre-
sponding value.

• L: this parameter determines the number of tuples in the last column with the cor-
responding value.

• R: this parameter determines the number of tuples in the right-side of the group of
columns starts with the corresponding value.

• Pos: this parameter determines the position of value and length pair which needs to
copied after the first N elements, where value is equal to the value and length is equal
to R.

Note that the pos parameters of all pairs which are not needed to be copied variable-size
list are assigned to the value of the pos parameter of last value in variable-size list.

3 3 52 4

Col Number

L R

Value {

Figure 4.23: The layout of intermediate RLE.

An example of this layout is given in Figure 4.24. As can be seen, 4 runs exist. For the
first run, the value is 5, while the length is 504. In the intermediate layout, the length of
this run is converted to 16, 24, 0, 3 which means:

• 16 columns are started with this value.

• this value is repeated 24 times in the last column that belongs to this run.

• 0 tuples are in the right side of columns that are started with this value.

• it needs to be placed in position N + 3.



Note that the first run does not need to be copied into the length value pairs that come
after the N pairs. However, to minimize the computation and repetition overhead, it needs
to be copied. To redo this copy, the pos value is assinged to 3. Later, this pair is replaced
by the last value length pair, which also has a pos of value 3.

5 A 1 2

16 24 50 3 0 0 56 1 1 2 52 4 15 32 530 3

5

504

A 1 2

6 4 510

Figure 4.24: An example of the intermediate RLE layout.

To convert this layout to the RLE SIMD layout, we propose the following implementation
that is shown in Listing 22. In this implementation, for each pair, first, we copy the value
and length of the pair into fix-list, Col times, starting from the offset. Note that the last
pair length needs to be set to parameter L. Then, we copy this value to the variable-list
at the position defined by the parameter Pos. The length of this pair is defined by the
R parameter. When the number of runs is higher than 8, this implementation leads to
branch miss predictions. For these cases, we propose the following implementation, which
is the unrolled version of the previous one. In this implementation, as shown in Listing 23,
we repeat coping the length and value pairs to the fixed-list and variable list 32 times.



1 void
2 convert_intermediate_representation_to_simd_layout(
3 uint32_t *value, uint32_t *length, int counter, uint32_t *r_value,
4 uint32_t *r_length) {
5 int length_tmp;
6 int offset = 0;
7 for (int i = 0; i < counter; ++i) {
8 length_tmp = length[i];
9 for (int j = 0; j < length_tmp; ++j) {

10 r_value[offset + j] = value[i];
11 r_length[offset + j] = length[4 * i];
12 }
13 offset += length_tmp;
14 r_value[32 + length[4 * i + 3]] = value[i];
15 r_length[32 + length[4 * i + 3]] = length[4 * i + 2];
16 }
17 }

Listing 22: The implementation of the convert function when number of runs are below 8.

1 void
2 convert_intermediate_representation_to_simd_layout_unrolled(
3 uint32_t *value, uint32_t *length, int counter, uint32_t *r_value,
4 uint32_t *r_length) {
5 uint32_t length_tmp = length[0];
6 int offset = 0;
7 int count = 0;
8 for (int i = 0; i < 32; ++i) {
9 r_length[i] = length[offset * 4 + 2];

10 r_value[i] = value[offset];
11 offset += (length_tmp & 0U);
12 count = (length_tmp == 0) ? 0 : count + 1;
13 length_tmp = length[offset] - count;
14 r_length[i] = 31;
15 }
16 for (int i = 0; i < counter; ++i) {
17 r_length[32 + length[i * 4 + 3]] = length[i * 4 + 2];
18 r_value[32 + length[i * 4 + 3]] = value[i];
19 }
20

21 }

Listing 23: The implementation of the convert function when number of runs are between 8
and 32.



4.9.3 Decompression Algorithm

Our SIMD decompression algorithm is dependant on the MASK_EXPANDLOAD instruc-
tions introduced for AVX-512 registers. Listing 25 shows an example of this algorithm
implemented for int values. As can be seen in Lines 4-8, first, all N elements of the value
and length columns are loaded into four registers. Moreover, two registers containing the
constant values 0 and 1 are generated in Lines 12-13. During each iteration, Lines 17-39,
first, the registers containing the actual values are stored at the output location. Then,
the length vectors containing the length values are compared against the SIMD register
containing the value 0, and then the value 1 is subtracted from length values. Note that
all length values li, are stored as li−1. The previous operation results is a bitmask, which
indicates lengths with value 0, by setting a bit to 1. If the bitmasks are not zero, all length
values are higher than 0, and in the next iteration, the value vectors need to be stored.
However, if the bitmask is not equal to 0, the corresponding value is replaced using the
new value with the MASK_EXPANDLOAD operation. Furthermore, the offset pointing
to the beginning of length and value columns are incremented by the number of bits set
to 1 in the bitmask. This number is calculated using the POPCOUNT instruction.

1 void simple_rle(int *__restrict value,
2 int * __restrict length,
3 int * __restrict output, uint8_t counter) {
4 int length_tmp, offset = 0;
5 for (int i = 0; i < counter; ++i) {
6 length_tmp = length[i] + 1;
7 for (int j = 0; j < length_tmp; ++j) {
8 output[offset + j] = value[i];
9 }

10 offset += length_tmp;
11 }
12 }

Listing 24: The implementation of the RLE function for 32-bit int.



1 void simd_rle(int *__restrict value, int *__restrict length,
2 int * __restrict output, uint8_t counter) {
3 // load from the value column

4 __m512i _value1 = _mm512_loadu_si512(value);
5 __m512i _value2 = _mm512_loadu_si512(value + 16);
6 // load from the length column

7 __m512i _length1 = _mm512_loadu_si512(length);
8 __m512i _length2 = _mm512_loadu_si512(length + 16);
9 // output

10 __m512i *_output = reinterpret_cast<__m512i *>(output);
11 // two 512-bit simd registers with all lanes set to 0 and 1

12 __m512i _zero = _mm512_set1_epi32(0);
13 __m512i _one = _mm512_set1_epi32(1);
14 // 64 bit mask

15 uint64_t mask1 = 0, mask2 = 0;
16 int offset = 32;
17 for (int i = 0; i < 31; i++) {
18 // store the value register

19 _mm512_storeu_si512(_output + (2 * i) + 0, _value1);
20 _mm512_storeu_si512(_output + (2 * i) + 1, _value2);
21 // if length = 1, set bit

22 mask1 = _mm512_cmp_epi32_mask(_length1, _zero, 0);
23 mask2 = _mm512_cmp_epi32_mask(_length2, _zero, 0);
24 // length = length - 1

25 _length1 = _mm512_sub_epi32(_length1, _one);
26 _length2 = _mm512_sub_epi32(_length2, _one);
27 if (mask1 != 0 || mask2 != 0) {
28 // update

29 _value1 = _mm512_mask_expandloadu_epi32(_value1, mask1, value + offset);
30 _length1 = _mm512_mask_expandloadu_epi32(_length1, mask1, length + offset);
31 offset += __builtin_popcount(mask1);
32 _value2 = _mm512_mask_expandloadu_epi32(_value2, mask2, value + offset);
33 _length2 = _mm512_mask_expandloadu_epi32(_length2, mask2, length + offset);
34 offset += __builtin_popcount(mask2);
35 }
36 }
37 _mm512_storeu_si512(_output + (31 * 2) + 0, _value1);// store the last one

38 _mm512_storeu_si512(_output + (31 * 2) + 1, _value2);// store the last one

39 }

Listing 25: The SIMD implementation of the RLE function for 32-bit int.



1 void naive_simd_rle(int *__restrict value,
2 int *__restrict length,
3 int * __restrict output, uint8_t counter) {
4 int length_tmp, offset = 0;
5 __m512i tmp;
6 for (int i = 0; i < counter; ++i) {
7 length_tmp = length[i] + 1;
8 for (int j = 0; j < length_tmp; j += 16) {
9 tmp = _mm512_set1_epi32(value[i]);

10 _mm512_storeu_si512(output + j + offset, tmp);
11 }
12 offset += length_tmp;
13 }
14 }

Listing 26: The naive SIMD implementation of RLE function for 32-bit int.



4.9.4 Evaluation

To evaluate the performance and compression ratio of our proposed layout, we imple-
mented the following variations of RLE. Note that all these variations are implemented as
a function that returns 1024 32-bit integers.

• simd: the implementation of the SIMD RLE layout shown in Listing 25.

• simd2: the implementation of the SIMD RLE layout, which uses another RLE com-
pression for the first N items.

• scalar: the scalar implementation of the RLE layout shown in Listing 24.

• simple_simd : the implementation of the RLE layout shown in Listing 26.

• intermediate : the implementation of the RLE layout. which uses intermediate layout.

To benchmark the RLE performance in terms of the number of cycles spent per tuple
and compression ratio, two factors need to be considered: the number of runs and each
run position. The first factor shows how many times two adjacent tuples in a vector are
different or how many runs exist, while the second one shows where this change occurs in
the vector.
To benchmark the compression ratio, in our experiment, we generated a vector with

random tuples such thatD adjacent values are different, while the position of this difference
is random. For D with values between 1 and 250, we calculated the number of bits used
by each RLE variation. Note that the assumption is that the tuples can be bit-packed to
16 bit tuples. Moreover, the scalar RLE has the same layout as the simple_simd; thus, it
is removed from the benchmark.
Figure 4.25 shows the result of the experiment. The Y-axis indicates the number of bits

used for compression, while the X-axis shows the number of runs. As can be seen, our
RLE SIMD layout compression ratio is worse than simple RLE where D < 120. However,
for cases with D < 50, this could be compensated with the intermediate RLE layout.
For D > 120, we can see that our layout provides better compression. It is also worth
mentioning that each run has a unique value in our experiment, which is the worst case
for SIMD RLE. This is due to the fact that if they are not unique, the first N elements
possible could be compressed better as there is more similarity between them.
Figure 4.26 shows the result of the previous experiment, where the Y-axis is replaced by

the compression ratio. The more detailed version of this result is shown in Figure 4.27.
The previous experiment was repeated 10 times to benchmark the decompression speed,

and for each variation, the medians of 10 cycles per tuple are calculated. Figure 4.28 shows
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Figure 4.25: The result of different layouts for RLE in terms of number of bits used to
compress data for different number of runs.
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Figure 4.26: The result of different layouts for RLE in terms of compression ratio for different
number of runs.

the result. The result shows that for D < 9, all layouts provide the same decompression
speed. For other values of D, the result is entirely different for each case. The scalar
implementation is not comparable to others, and the simple_simd is only comparable
to SIMD RLE, where D < 50. For D > 50, our SIMD layout provides nearly 3 times
faster decompression speed. Moreover, the decompression speed is constant for D > 60,
as the value and length registers need to be updated during each iteration. Note that the
computation cost of converting the intermediate layout to RLE is not considered as for
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Figure 4.27: The result of different layouts for RLE in terms of compression ratio for different
number of runs.
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Figure 4.28: The performance of different layouts for RLE in terms of number of cycle per
tuple for different number of runs.

cases below 8, it is between 0.01 and 0.06 cycles per tuple, and for cases above 8 it is 0.06
cycles per tuple.
Another possible option to improve the compression ratio for small values of D is to use

a none-transposed RLE layout. However, during decompression, the transpose function
should be added to simple_simd, which adds the latency of 0.18 cycle per tuple. This
idea results in the same compression ratio as a regular RLE layout while having nearly
two times slower decompression speed (nearly 0.3 cycles per tuple).



5

Composable Compression Schemes

The result from the previous chapter shows that complete whiteboxing of compression
function leads to performance overhead. For example, the plus function results in the best
possible performance when it is combined with the bit-unpacking function. In this chapter
we propose the composable compression model, a variation of the whitebox compression
model, that allows more complex functions favoring the decompression speed. In the
composable compression model, we follow two principles:

1. The patching phase needs to be separated from other parts of decomporession into a
single function.

2. If it is possible, the decomposed functions, except for patching, should be combined
with the bit-unpacking function. This results in avoiding extra load and store in-
structions (materialization) for each separated function.

In this chapter, we describe the composable version of the compression schemes such as
PFOR, PDelta, PFOR-Delta and PDICT. To simulate a blackbox compression scheme in
the composable compression model, decompression functions should be transformed into a
composition of one or many functions according to the composable model principles. This
change makes the decompression flexible and recursive. Note that all required functions
in this section are already explained in Section 4.

5.1 Composable PFOR

The composable version of PFOR (C-PFOR) can be defined as the composition of the bit-
unpack combined with the plus and patch functions, as shown in Figure 5.1. In Figure 5.1
the green boxes show data and metadata needed for C-PFOR, while the red boxes show
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the functions or operators use to simulate the blackbox PFOR. In the first step, data is bit-
unpacked, and the base value is added to the data. The next step is patching, which puts
exceptions in their right position inside the result vector. Note that the diff parameter
is subtracted from all offsets as they are increased by the previous function. Moreover,
based on the bit-width, the exc, pos, diff metadata could be replaced by a bitmap. In
that case, instead of the patch function, the split-patch function is called.

Bit-Unpack + Plus

Patch

Bit-width FOR-baseExceptions DataExceptions exc, pos, 
diff

Figure 5.1: The function composition for C-PFOR.

In contrast to all the PFOR variants, the C-PFOR uses a different base for every 1024
tuples. This change makes our scheme more flexible and leads to a better compression
ratio. This is due to the fact that the value of bit-width is dependent on the base value,
and the best possible base value could be different for each chunk, while in the previous
versions of PFOR, the base value is fixed for all chunks.

5.1.1 Evaluation

To evaluate the effect of having a different base and bit-width for each chunk in C-PFOR,
we designed an experiment where a sample of 220 integers is extracted from all the 32-
bits non-nullable integer columns of all datasets in the Public BI benchmark (3). Then,
these samples are compressed with C-PFOR in two scenarios, A and B. In scenario A,
for each sample, a single best value b and base is determined, while in scenario B, for
every 1024 tuples, the best value for b and base is determined. Note that the best value
for b and base is determined using the algorithm proposed by Heman (42). Then, the
compression ratio is calculated. The difference between the compression ratios is shown in
Figure 5.2. Each point shows the difference between the two scenarios for a given dataset.
The detailed version of this figure is represented in Table 2. As can be seen in Figure 4.1,
the difference is significant, and indeed, in some cases, the compression ratio is two times



higher, which shows having a different base and bid-width is effective. Moreover, the
average of compression ratio in scenario A is 2.895563, while in scenario B it is 3.498244,
which is another proof of the effectiveness of C-PFOR.
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Figure 5.2: Difference between scenario A and B in terms of compression ratio.

5.2 Composable PDelta

In this section, we discuss the composable variant of PDelta (C-PDelta), which can be
defined as the composition of the bit-unpack, patch and prefix sum functions, as shown in
Figure 5.3. In the first step, data is bit-unpacked. Note that the bit-unpack function can be
replaced by bit-unpack combined with the plus, where the value 0 is added to tuples. This
change results in less code as there is no need to have separate functions for bit-unpacking
and bit-unpacking combined with plus. Moreover, only having the combination of both
functions does not lead to a significant perforamnce penalty, as shown in Section 4.3. The
next step is the patching function, which is used in a different order compared to C-PFOR.
Finally, the prefix sum function, in which the prefix sum of all data is calculated with the
order defined in the Section 4.2.1. This step can be replaced with the combination of
prefix sum and transposed functions to keep the order of tuples



Prefix Sum

Bit-Unpack

Patch

Bit-width exc, pos, 
diffExceptions Data Delta-bases

Figure 5.3: The function composition for composable PDelta.

5.3 Composable PFOR-Delta

In this section we discuss the composable variant of PFOR-Dleta (C-PFOR-Delta), which
can be defined as the composition of the bit-unpack combined with plus, patch adn prefix
sum functions, as shown in Figure 5.4. The C-PFOR-Delta scheme works similarly to C-
PDelta, except that a base value is added to all bit-unpacked tuples in the first function.

Prefix Sum

Bit-Unpack + Plus

Patch

Bit-width FOR-baseExceptions Data Delta-basesexc, pos, 
diff

Figure 5.4: The function composition for composable PFOR-Delta.

5.4 Composable PDICT

In this section, we discuss the composable variant of PDICT (C-PDICT), which can be
defined as the composition of the bit-unpack, load, and patch functions. These functions
can be ordered in two different ways; we refer to them as variation 1 and 2. In variation



Bit-Unpack + Load

Split

Bit-width DictionaryExceptions DataBitMap

Figure 5.5: The function composition of C-PDICT, variation 1.

1, as shown in Figure 5.5, the first step is the combination of the bit-unpack function and
load functions. Note that each compressed tuple represents an offsets to the dictionary
list. After the first step, the data is fetched from the dictionary, which are the actual
tuples in case of numeric data types or an offset in case of strings. The next step is the
patch function, which is replaced by the split function. This is because, after loading, each
tuple presents data from the dictionary and the patching offsets are not valid anymore.
In variation 2, as shown in Figure 5.6, compared to variation 1, the patch function

is in the middle of decompression. First, a vector of absolute pointers (64-bit unsigned
integer) is calculated as a result of the bit-unpacking combined with shift. Second, the
patch function visits the exception positions and replaces the address with the exception
address. Third, the values are fetched into the result vector using the pointers in the load
function.
The variation 1 results in a faster scheme because, first, there is no need to have a

separate load function, leading to extra load and store instruction for each tuple, and
secondly, there is no need to do the shift operation. Moreover, in terms of compression
ratio, the variation 1 only has the overhead of 1 bit per tuple as a bitmap needs to be
used for the split function.



LOAD

Bit-Unpack + plus 
+ shift

Patch

Bit-width DictionaryExceptions Data
exc, pos, 

diff

Figure 5.6: The function composition of C-PDICT, variation 2.

5.4.1 Evaluation

Supporting black-box compression schemes in the composable compression model might
introduce overhead as instead of executing one function, the expression tree of smaller
functions needs to be evaluated and executed.
To evaluate the effect of this overhead, we implemented a simple expression tree. Leaves

of this tree represent required data and metadata, while non-leaf nodes express a function.
As an exmaple, the C-PFOR scheme is given to this tree. Besides that, the functions
used in C-PFOR are combined into one function to resemble blackbox compression. We
benchmarked the performance of both cases for the 0.05% and 0% exceptions ratios. The
result is shown in Figure 5.7 and 5.8. As can be seen, the difference is not significant,
and indeed, both are very similar, proving that converting a blackbox scheme to the
composable model does not lead to performance degradation.
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Figure 5.7: The performance of C-PFOR vs PFOR in terms of cycles per tuple for each
possible B and W. The exception ratio is 0.
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Figure 5.8: The performance of C-PFOR vs PFOR in terms of cycles per tuple for each
possible B and W. The exception ratio is 0.05.



6

Conclusions

In this thesis, we built the foundation of a new file format for big data, by focusing

on two key components, namely the SIMD-friendly and composable compression. We

first reviewed the state-of-the-art big data file formats and discussed their shortcomings.

Then, we briefly discussed how a new data file format could overcome the shortcomings of

state-of-the-art big data file formats and be compatible with new trends emerging in the

software ecosystem, such as shifting from HDFS to the Cloud environment, new metadata,

and CPU capabilities.

Our main contribution in this thesis is that we made compression schemes such as

PFOR, PDelta, PDICT, and RLE SIMD-friendly and composable. Being SIMD-friendly

allows these compression schemes to exploit the widest SIMD register supported by a CPU

(even future CPUs), and being composable allows them to be flexible and be recursively

combined. Moreover, we showed that the overhead of having these compression schemes

as a composable compression is negligible.

We also introduced an alternative mechanism to handle outliers in light-weight compres-

sion schemes, namely the split function. In addition to the design and implementation

of a completely SIMD-friendly bit-unpacking, we made the bit-packing more flexible by

having different bit-widths for each vector. We showed that the overhead of this change is

negligible and, indeed, in some cases, the performance is even improved. This change also

leads to better compression ratio for all schemes which are dependant on bit-unpacking.

Finally, we significantly improved the compression ratio of C-PFOR, in some cases, even

2 times, by storing the base parameter for every vector. This change also makes our new

scheme more flexible.
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6.1 Research questions

In this section we revisit the research questions that were defined in Section 1.5.

Research Question 1. How can compression functions be decomposed to multiple
functions to be flexible and efficient at the same time? is it possible to apply the whitebox
compression principles to blackbox compression schemes to achieve the desired flexibility
without performance penalty?

Our result shows that the complete whiteboxing of compression schemes such as PFOR,
PDelta, PDICT, despite providing the desired flexibility, leads to the performance penalty
as tuples need to be materialized (load/store) during each function, except for the functions
used for outlier handling. To solve this, we proposed a composable compression model, a
variation of whitebox compression, based on two new principles. First, the patch function
needs to be separated. Second, if possible, the other parts of decompression need to be
combined with the bit-unpacking function to avoid extra materialization. In this new
model, we defined C-PFOR as the composition of the bit-unpack combined with the plus
and patch functions, C-PDelta as the composition of the bit-unpack, prefix sum, and patch
functions, and the C-PDICT as the composition of the bit-unpack combined with the load,
and patch functions.

Research Question 2. The patching technique, which was proposed to mitigate the
light-weight compression vulnerability to outliers, leads to a worse compression ratio in
cases where only a few bits are required to represent data. What is a good alternative to
the patching technique to handle outliers in these cases?

We have introduced the split technique as an alternative to the patching techniques.
In our split technique, a bitmap, which contains one bit for each tuple, denotes whether
a tuple needs to be replaced with the corresponding exception. Furthermore, we have
optimized the split technique using the pruning technique. During the replacement, 64
tuples are skipped at once if there is no exception among them, which is the case for most
tuples as exceptions happen rarely. Our benchmark shows that our new implementation
can achieve a comparable compression ratio compared to the patch function for a low
number of exceptions, and even better performance for a higher number of exceptions.

Research Question 3. How can we make compression schemes such as PFOR, PDelta,
PDICT and RLE SIMD-friendly in which the compression scheme can exploits the instruc-
tions for the widest register that a CPU supports, both for the current available CPUs
and CPUs with wider SIMD registers in the future?



To have composable compression, which is SIMD-friendly, we defined each function as
follows. Note that 1024 is used as a prototype.
Bit-unpacking: This function bit-unpacks all numeric data. To exploit SIMD instruc-

tions of any kind, we designed a new layout called the 1024-bits interleaved layout in which
for every 1024 bits of data, the order of tuples are changed. Our experiment on different
CPUs with different SIMD register sizes shows that the performance of our layout grows
linearly with the register size. Note that our layout is capable of supporting the new SIMD
registers that will be released in the future. Furthermore, the scalar implementation of our
layout is improved 2 times using the multi cursor technique. Our results show that using
explicit SIMD instructions is worth the effort as the result of compiler auto-vectorization,
in some cases, is 2 times slower. Finally, we investigated the idea of having an interme-
diate word size to bit-unpack, which was not successful. We may consider investigating
this idea further in the future, as this idea depends on CPU instructions, which could be
accelerated in the future.
Plus: This function adds a constant to all the tuples of a vector of numeric values. Our

findings show that it is necessary to combine this function with the bit-unpacking function
to achieve the best possible performance. This is because there is no need to load and
store tuples again in the plus function.
Prefix Sum: This function calculates the prefix sum of the tuples in a vector. To be

able to SIMDize this function, we needed to remove the data dependency of the prefix
sum operation. Data dependency means to be able to process a tuple, the result of the
previous tuples needs to be known, which leads to a massive performance penalty. To
remove the data dependency, we designed a new layout called the transposed layout that
changes the order of tuples so that there is no data dependency between SIMD lanes. This
layout results in 20 times performance improvement compared to a simple (non-SIMD
implementation) and 10 times compared to the state-of-the-art SIMD implementation.
Note that the overhead of this layout is one bit per tuple.
Transpose: the transpose function restores the original layout of tuples, or transforms

a vector to the transposed layout. To be able to SIMDize this function, the new SCATTER
instruction introduced for AVX-512 registers was not useful. Therefore, we proposed a new
algorithm to do the transpose operator, which uses 17 registers and is not dependant on
the SCATTER instruction. This algorithm results in 4 times better performance compared
to other possible implementations of the transpose function.
Split This function combines two vectors. The performance of the split function is

improved 10 times with our new implementation, which uses the new SIMD instruction



EXPAND_LOAD. Moreover, we used the split function instead of the patch function in
C-PFOR to solve the compulsory exception problem of PFOR. The compulsory excep-
tion problem happens in PFOR when the number of bits used to bit-pack data is small,
and many tuples need to be considered as exception resulting in a worse compression ra-
tio. Finally, we used the split function to decompress nullable columns and improved its
performance using SIMD instructions.
RLE This function decompresses an RLE-compressed vector, which is compressed using

our layout, where the value and length are decoupled and stored in two different vectors.
To be able to SIMDize this function, we proposed a new layout called SIMD RLE in which
we RLE-compress each SIMD lane separately. This results in having a better compression
ratio and 3 times faster decompression speed for cases where the number of runs is high.
However, for other cases, the overhead of the compression ratio and the decompression
speed is significant. To mitigate this problem, we designed an intermediate RLE layout,
which later is converted to our SIMD RLE layout.
Research Question 4. Does our new SIMD-friendly compression schemes need to be

implemented using explicit SIMD intrinsics? Is auto vectorization offered by compilers,
such as GCC, able to obtain the performance of our explicit implementation?
To answer this question, all defined composable functions needs to be considered. For

bit-unpacking, our experiments show that the auto-vectorized code by GCC or Clang com-
pilers does not match the implementation in which explicit intrinsics are used. The GCC
auto vectorized code in all experiments is 3-4 times slower than explicit implementation.
The Clang compiler can achieve the same performance as the explicit implementation
only in some cases. For example, on a CPU with AVX-512, the result of the code auto-
vectorized by the Clang compiler is in some cases two times worse. On a CPU with AVX2,
for 64-bit integers, when the number of bits is more than 32, the code auto-vectorized by
Clang compiler completely fails to vectorize the code. It is worth mentioning that even
in cases where both approaches result in the same performance, a specific version of a
compiler is used. Therefore, it is not guaranteed that for other versions, the compilers
can achieve the same performance. Overall, depending on auto-vectorization can lead to
inconsistency in the performance in different systems. Therefore we suggest using explicit
code as it guarantees to achieve the best performance. In terms of maintenance we only
need to maintain the code generator and not the actual code. Note that the bit-unpacking
code is generated by a simple code generator that generates the code using SIMD intrinsics
during compilation for the widest SIMD register the target CPU supports.



For other functions such as the transpose function, the algorithms are dependant on
specific instructions and cannot be implemented using the scalar instruction. However,
as the implementations are only a few lines, it does not increase the complexity of the
system.

6.2 Future Work

In this thesis, we showed that how the composable compression model could be efficiently
implemented using SIMD instructions. The SIMD-friendly composable compression is the
basis for a new big data file format. In the future, we plan to work on other aspects of a file
format such as supporting metadata, tuple deletion, and allowing nested table structures
in metadata and data.
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Appendices

A.1 C-PFOR

# Dataset column pfor_r c-pfor_r diff
1 Bimbo_1 6 21.38 20.99 0.02
2 Bimbo_1 8 2.00 2.04 1.99
3 CityMaxCapita_1 7 2.02 2.04 0.07
4 CityMaxCapita_1 9 2.16 2.39 1.55
5 CityMaxCapita_1 10 2.43 2.59 0.42
6 CityMaxCapita_1 26 1.70 1.80 12.57
7 CommonGovernment_1 21 2.61 3.01 3.89
8 CommonGovernment_1 22 2.61 3.01 3.25
9 CommonGovernment_1 28 2.37 3.90 1.66
10 CommonGovernment_1 46 1.79 2.38 -7.29
11 CommonGovernment_10 21 2.61 2.97 3.56
12 CommonGovernment_10 22 2.61 2.97 3.61
13 CommonGovernment_10 28 2.37 3.83 1.57
14 CommonGovernment_10 46 1.79 2.34 -6.45
15 CommonGovernment_11 21 2.62 2.98 5.88
16 CommonGovernment_11 22 2.62 2.98 3.96
17 CommonGovernment_11 28 2.37 3.86 1.53
18 CommonGovernment_11 46 1.79 2.38 -7.66
19 CommonGovernment_12 21 2.62 2.97 3.67
20 CommonGovernment_12 22 2.62 2.97 4.13
21 CommonGovernment_12 28 2.37 3.79 1.62
22 CommonGovernment_12 46 1.79 2.36 -12.78
23 CommonGovernment_13 21 2.62 2.98 3.38
24 CommonGovernment_13 22 2.62 2.98 3.56
25 CommonGovernment_13 28 2.37 3.98 4.58
26 CommonGovernment_13 46 1.79 2.36 -5.39
27 CommonGovernment_2 21 2.62 2.97 3.79
28 CommonGovernment_2 22 2.62 2.97 3.64
29 CommonGovernment_2 28 2.37 3.85 1.32
30 CommonGovernment_2 46 1.79 2.36 -7.48
31 CommonGovernment_3 21 2.62 2.98 3.20
32 CommonGovernment_3 22 2.62 2.98 2.29
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# Dataset column pfor_r c-pfor_r diff
33 CommonGovernment_3 28 2.37 3.85 1.07
34 CommonGovernment_3 46 1.79 2.36 -9.80
35 CommonGovernment_4 21 2.62 2.96 5.28
36 CommonGovernment_4 22 2.62 2.96 5.28
37 CommonGovernment_4 28 2.37 3.83 0.43
38 CommonGovernment_4 46 1.79 2.33 -7.32
39 CommonGovernment_5 21 2.62 2.97 4.06
40 CommonGovernment_5 22 2.62 2.97 2.99
41 CommonGovernment_5 28 2.37 3.76 2.69
42 CommonGovernment_5 46 1.79 2.35 -7.37
43 CommonGovernment_6 21 2.63 2.99 4.14
44 CommonGovernment_6 22 2.63 2.99 4.06
45 CommonGovernment_6 28 2.37 3.85 4.00
46 CommonGovernment_6 46 1.79 2.35 -7.00
47 CommonGovernment_7 21 2.62 2.99 3.02
48 CommonGovernment_7 22 2.62 2.99 4.23
49 CommonGovernment_7 28 2.37 3.81 1.89
50 CommonGovernment_7 46 1.79 2.33 -9.01
51 CommonGovernment_8 21 2.62 3.01 3.44
52 CommonGovernment_8 22 2.62 3.01 3.54
53 CommonGovernment_8 28 2.37 3.81 4.71
54 CommonGovernment_8 46 1.79 2.35 -8.28
55 CommonGovernment_9 21 2.61 3.00 3.71
56 CommonGovernment_9 22 2.61 3.00 1.64
57 CommonGovernment_9 28 2.37 3.78 10.36
58 CommonGovernment_9 46 1.79 2.35 -7.28
59 Corporations_1 20 4.35 6.98 1.15
60 Corporations_1 25 24.29 23.59 -0.03
61 Eixo_1 9 2.99 3.44 2.19
62 Eixo_1 19 3.50 3.60 2.65
63 Food_1 2 1.87 1.92 4.14
64 Generico_1 7 1.77 1.85 3.46
65 Generico_2 7 1.77 1.84 -1.32
66 Generico_3 7 1.77 1.84 -0.90
67 Generico_4 7 1.77 1.85 -1.52
68 Generico_5 7 1.77 1.85 -1.14
69 HashTags_1 50 2.16 2.26 1.90
70 HashTags_1 51 2.27 2.43 1.41
71 HashTags_1 52 2.53 2.67 0.55
72 HashTags_1 57 3.80 4.37 -0.32
73 HashTags_1 63 1.76 1.85 8.63
74 Hatred_1 8 1.92 2.00 5.86
75 Hatred_1 9 2.26 2.32 0.75
76 Hatred_1 10 2.42 2.52 -0.42
77 Hatred_1 29 1.74 1.76 -3.47



# Dataset column pfor_r c-pfor_r diff
78 IGlocations1_1 9 1.76 1.79 -3.63
79 IGlocations2_1 8 3.64 3.78 2.46
80 IGlocations2_2 8 3.64 3.78 1.63
81 IUBLibrary_1 4 3.60 3.75 1.74
82 IUBLibrary_1 16 3.59 3.75 1.71
83 Medicare1_1 21 2.04 2.06 0.47
84 Medicare1_2 21 2.04 2.06 0.32
85 Motos_1 7 1.77 1.84 -0.61
86 Motos_2 7 1.77 1.85 0.42
87 MulheresMil_1 9 2.99 3.43 2.28
88 MulheresMil_1 19 3.49 3.58 2.50
89 RealEstate1_1 16 1.67 1.73 0.82
90 RealEstate1_2 16 1.67 1.74 0.14
91 RealEstate2_1 17 1.61 1.60 -4.92
92 RealEstate2_2 17 1.61 1.59 -5.50
93 RealEstate2_3 17 1.61 1.59 -5.30
94 RealEstate2_4 17 1.61 1.60 -4.99
95 RealEstate2_5 17 1.61 1.59 -2.55
96 RealEstate2_6 17 1.61 1.60 -5.44
97 RealEstate2_7 17 1.61 1.60 -5.07
98 Rentabilidad_1 62 3.32 4.87 7.18
99 Rentabilidad_1 63 1.57 1.90 4.28
100 Rentabilidad_1 131 3.68 5.67 7.16
101 Rentabilidad_1 139 3.71 5.74 7.32
102 Rentabilidad_2 60 3.32 4.86 7.26
103 Rentabilidad_2 61 1.57 1.89 4.09
104 Rentabilidad_2 129 3.68 5.66 7.24
105 Rentabilidad_2 137 3.71 5.73 7.21
106 Rentabilidad_3 62 3.32 4.86 7.46
107 Rentabilidad_3 63 1.57 1.89 4.49
108 Rentabilidad_3 131 3.68 5.66 6.81
109 Rentabilidad_3 139 3.71 5.73 7.04
110 Rentabilidad_4 62 3.32 4.86 7.37
111 Rentabilidad_4 63 1.57 1.88 3.70
112 Rentabilidad_4 131 3.68 5.66 6.82
113 Rentabilidad_4 139 3.71 5.73 7.03
114 Rentabilidad_5 62 3.32 4.85 7.19
115 Rentabilidad_5 63 1.57 1.89 4.28
116 Rentabilidad_5 131 3.68 5.66 7.13
117 Rentabilidad_5 139 3.71 5.73 13.60
118 Rentabilidad_6 62 3.32 4.86 8.41
119 Rentabilidad_6 63 1.57 1.90 4.04
120 Rentabilidad_6 131 3.68 5.66 7.24
121 Rentabilidad_6 139 3.71 5.73 8.23
122 Rentabilidad_7 62 3.32 4.86 7.16



# Dataset column pfor_r c-pfor_r diff
123 Rentabilidad_7 63 1.57 1.89 3.01
124 Rentabilidad_7 131 3.68 5.66 6.37
125 Rentabilidad_7 139 3.71 5.73 0.36
126 Rentabilidad_8 62 3.32 4.86 7.17
127 Rentabilidad_8 63 1.57 1.89 5.57
128 Rentabilidad_8 131 3.68 5.66 7.16
129 Rentabilidad_8 139 3.71 5.73 7.02
130 Rentabilidad_9 62 3.32 4.86 7.13
131 Rentabilidad_9 63 1.57 1.90 3.27
132 Rentabilidad_9 131 3.68 5.66 7.37
133 Rentabilidad_9 139 3.71 5.73 7.07
134 TableroSistemaPenal_2 5 1.60 1.73 7.72
135 USCensus_1 277 2.29 2.28 -0.10
136 USCensus_1 278 2.29 2.28 0.01
137 USCensus_1 315 1.52 1.52 0.54
138 USCensus_1 316 1.52 1.52 0.50
139 USCensus_2 277 2.29 2.28 -1.45
140 USCensus_2 278 2.29 2.28 0.01
141 USCensus_2 315 1.52 1.52 -0.21
142 USCensus_2 316 1.52 1.52 -0.44
143 USCensus_3 277 2.29 2.28 0.08
144 USCensus_3 278 2.29 2.28 -0.04
145 USCensus_3 315 1.52 1.52 0.17
146 USCensus_3 316 1.52 1.52 0.87
147 Uberlandia_1 9 2.99 3.44 2.00
148 Uberlandia_1 15 2.13 2.32 1.19
149 Uberlandia_1 19 3.50 3.58 2.41
150 Wins_1 40 1.91 1.90 0.33
151 Wins_1 41 1.94 1.93 0.13
152 Wins_2 154 1.91 1.90 0.45
153 Wins_2 155 1.94 1.93 0.17
154 Wins_2 484 12.88 13.37 -0.03
155 Wins_3 154 1.91 1.90 0.85
156 Wins_3 155 1.94 1.93 0.78
157 Wins_3 484 12.88 13.37 0.09
158 Wins_4 154 1.91 1.90 0.59
159 Wins_4 155 1.94 1.93 0.37
160 Wins_4 484 12.88 13.37 -0.16
Table 1: Difference between scenario A and B in terms of compression ratio.



A.2 Literature Study

Rel. TITLE I1 I2 I3 I4 I5 i6 I7 I8 E1 Included?
1 "++" Super-Scalar RAM-

CPU Cache Compres-
sion

x true

2 "++" Super-Scalar Database
Compression between
RAM and CPU Cache

x true

3 "++" Fast integer compres-
sion using SIMD in-
structions

x true

4 "++" SIMD-Scan: Ultra Fast
in-Memory Table Scan
using onChip Vector
Processing Units

x true

5 "++" BitWeaving: Fast scans
for main memory data
processing

x true

6 "+" Efficient Lightweight
Compression Alongside
Fast Scans

x true

7 "++" Compressing Relations
and Indexes

x true

8 "+" Searching Web Data:
an Entity Retrieval
and High-Performance
Indexing Model

x true

9 "++" Inverted index compres-
sion and query process-
ing with optimized doc-
ument ordering.

x true

10 "+ Efficient Parallel Lists
Intersection and Index
Compression Algo-
rithms using Graphics
Processing Units.

x true

11 "++" Decoding billions of
integers per second
through vectorization

x true

12 "++" SIMD Compression
and the Intersection of
Sorted Integers

x true



13 "++" Block-Oriented Com-
pression Techniques
for Large Statistical
Databases

x true

14 "++" V-PFORDelta: Data
Compression for Energy
Efficient Computation
of Time Series

x true

15 "+" Lightweight Data Com-
pression Algorithms:
An Experimental Sur-
vey (Experiments and
Analyses).

x true

16 "+" How to speed Con-
nected Component La-
beling up with SIMD
RLE algorithms

x true

17 "+" A Decomposition Stor-
age Model

x true

18 "++" Data Blocks: Hybrid
OLTP and OLAP on
Compressed Storage us-
ing both Vectorization
and Compilation

x true

19 "++" Parallel Prefix Sum
with SIMD

x true

20 "-" Fast Implementation of
Morphological Filtering
Using ARM NEON Ex-
tension

x true

21 "++" Dremel: Interactive
Analysis of Web-Scale
Datasets

x true

22 "++" Enhancing the Matrix
Transpose Operation
Using Intel Avx In-
struction Set Extension

x true

23 "++" Integrating Compres-
sion and Execution
in Column-Oriented
Database Systems

x true

24 "++" White-box Compres-
sion: Learning and
Exploiting Compact
Table Representations

x true



25 "++" Albis: High-
Performance File
Format for Big Data
Systems

x true

26 "++" Weaving Relations for
Cache Performance

x true

27 "++" Procella: Unifying serv-
ing and analytical data
at YouTube

x true

28 "++" Monkey: Optimal Nav-
igable Key-Value Store

x false

29 "++" WideTable: An Ac-
celerator for Analytical
Data Processing

x false

30 "++" Vectorizing Database
Column Scans with
Complex Predicates

x true

31 "++" Major Technical Ad-
vancements in Apache
Hive

x true

32 "++" RCFile: A fast and
space-efficient data
placement structure
in MapReduce-based
warehouse systems

x false

33 "+" High-Throughput
Big Data Analytics
Through Accelerated
Parquet to Arrow
Conversion

x true

34 "++" Nozzle: A Schemaon-
Read Parquet

x false

35 "++" Characterization of a
Big Data Storage Work-
load in the Cloud

x true

36 "++" Self-learning Whitebox
Compression

x true

37 "+" Beyond Straightfor-
ward Vectorization of
Lightweight Data Com-
pression Algorithms for
Larger Vector Sizes

x true



38 "+" Conflict Detection-
Based Run-Length
Encoding - AVX-512
CD Instruction Set in
Action

x true

39 "+" PIDS: Attribute De-
composition for Im-
proved Compression
and Query Performance
in Columnar Storage

x true

40 "++" FSST: Fast Random
Access String Compres-
sion

x true

41 "-" DSM vs. NSM: CPU
performance tradeoffs
in block-oriented query
processing

x true

42 "++" Index compression us-
ing 64-bit words

x true

43 "++" VSEncoding: efficient
coding and fast decod-
ing of integer lists via
dynamic programming.

x true

44 "++" A General SIMD-based
Approach to Accelerat-
ing Compression Algo-
rithms

x true

45 "++" ADAPTIVE FRAME
OF REFERENCE
FOR COMPRESSING
INVERTED LISTS

x true

Table 2: Literature inclusion table.



Inclusion and Exclusion Criterion
I1 A study that reviews or analyzes big data file formats
I2 A study that proposes a new storage layout for columnar storage
I3 A study that proposes an improvment to bit-(un)packing
I4 A study that proposes an improvment to light-weight compression al-

gorithmes such as FOR, differential coding, PFOR, PDELTA, PDICT,
PFORDELTA and RLE

I5 A study that uses, extends or is related to the concept of Whitebox
compression

I6 A study that designs a new big data file format
I7 A study that proposes or analyzes a storage layout for databas systems
I8 A study that SIMDize the matrix transpose operator
E1 A study which is related to other aspects of big data file formats (not

related to storage and compression)
Table 3: Inclusion and exclusion criteria
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