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“Luck is what happens when preparation meets opportunity.”

by Seneca
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Abstract

The upcoming SQL:2023 standard introduces the SQL/PGQ (Property Graph

Queries) extension, which allows users (1) to define graph views over relational

tables and (2) to formulate graph pattern matching and path-finding operations

using a concise syntax. These features allow the extension of existing, mature

relational database management systems (RDBMSs) with efficient execution

techniques for graph queries, including graph pattern matching and path-

finding. However, as of 2022, SQL/PGQ is not yet implemented in any

RDBMS, lacking both a reference implementation and an optimized high-

performance implementation. Moreover, research on integrating path-finding

algorithms into RDBMSs has been limited.

In this thesis, we investigate the feasibility of integrating path-finding

algorithms in the open-source RDBMS DuckDB: unweighted shortest path,

cheapest path, and any shortest path. Using a lightweight extension approach

that relies on scalar user-defined functions (UDFs), we adopted the multi-source

breadth-first search and the batched Bellman-Ford algorithms to the vectorised

execution model of DuckDB.

We evaluated the performance and scalability of our implementation

using queries from the Linked Data Benchmark Council’s Social Network

Benchmark (LDBC SNB), a state-of-the-art benchmark suite for testing graph

functionalities and performance of DBMSs. The experiments show that the

implemented algorithms scale close to linearly and are able to handle the largest

graphs currently available in the LDBC SNB. The results demonstrate that

DuckDB is a suitable candidate to create an implementation of SQL/PGQ.
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1

Introduction

1.1 Context

There is a growing desire to perform more complex analyses on the increasing amounts of

data being gathered. A significant value of large data sets is that they capture connections

between their entities. It is intuitive to represent and think of these connections as

graphs (4). A comprehensive survey of Sahu et al. (5) shows that graphs are used across

various domains. Graphs often provide a natural way to structure data involving entities,

represented as vertices, and the connections (relationships) between them represented as

edges. In turn, this increased desire has caused an increased rise in the attention given to

graph database management systems (GDBMSs) (6).

These systems provide a graph data model, a graph query language, and have built-in

graph visualisation capabilities. However, the performance of these systems often leaves to

be desired (6, 7), which hampers their adoption. Meanwhile, traditional relational database

management systems (RDBMSs) are perfectly capable of storing graph data by using a

vertex table and an edge table. Still, providing a way to perform these more complex

analyses has been difficult due to the limitations of the standard query language SQL (8).

In response to the limited capabilities, a plethora of GDBMSs arose in the last fifteen

years, each having its graph query language (9). Examples of systems and their query

languages are TigerGraph with GSQL (10), Neo4j with Cypher (11), and Oracle Labs PGX

with PGQL (12). Amazon Neptune even supports three distinct languages: openCypher,

Gremlin, and SPARQL. Using these graph query languages, it is often easier to write queries

containing graph pattern matching and path-finding. However, each query language has

a different syntax, semantics, and capabilities. This exposes the user to the threat of

1



1. INTRODUCTION

vendor lock-in. The combination of these problems make working with graph-based data

cumbersome for users.

The limited capabilities of SQL will change as an extension of SQL is currently being

developed by the ISO/IEC JTC1 SC32 WG3 Database Languages working group in a

liaison with the Linked Data Benchmark Council (13) (LDBC) which is founded and led by

the CWI Database Architectures group. SQL/Property Graph Queries has been partially

based on graph query language research done by LDBC (14) and is scheduled to release in

June of 2023 as part of the upcoming SQL:2023 standard (15).

SQL/PGQ will make working with graph-based data in RDBMSs considerably

easier (15). In SQL/PGQ, a graph can be defined in terms of tables (16) and queries

can contain special syntax for path-finding and graph pattern matching.

For querying graph data, two functionalities are deemed most important: graph pattern

matching and path-finding (17). In SQL, it is possible to write queries containing graph

pattern matching and path-finding, but these queries are often hard to write, understand,

and inefficient to evaluate (18). In particular, path-finding requires using recursive queries.

An example can be seen in Listing 1.1, which shows a path-finding query using SQL:1999

syntax that returns the count of persons living in the city of Delft, who can be reached

through a transitive follows connection starting from the person named ’Daniel’ (19).

Listing 1.1 makes use of WITH RECURSIVE that starts with an initialisation query. This

is unioned (using UNION ALL) with a recursive query that joins the paths. In Listing 1.1,

paths are represented as a list of vertices, shown in red. In contrast, the same query

in SQL/PGQ is shown in Listing 1.2. The WITH RECURSIVE can be replaced with the +

operator that represents the Kleene plus, indicating that the pattern can occur 1 or more

time(s).

1 WITH RECURSIVE paths(startNode , endNode , path) AS (
2 SELECT -- Initialisation
3 p1id AS startNode ,
4 p2id AS endNode ,
5 [p1id, p2id] AS path
6 FROM follows
7 UNION ALL
8 SELECT -- Recursion
9 paths.startNode AS startNode ,

10 p2id AS endNode ,
11 array_append(path, p2id) AS path
12 FROM paths
13 JOIN follows ON paths.endNode = p1id
14 WHERE p2id != ALL(paths.path)

2



1.1 Context

15 )
16 SELECT count(p2.id) AS cp2
17 FROM person p1
18 JOIN paths ON paths.startNode = p1.id
19 JOIN person p2 ON p2.id = paths.endNode
20 JOIN city ON city.id = p2.livesIn AND city.name = 'Delft'
21 WHERE p1.name = 'Daniel ';

Listing 1.1: SQL:1999 query using WITH RECURSIVE

1 SELECT count(gt.id) AS cp2
2 FROM GRAPH_TABLE (socialNetwork ,
3 MATCH
4 (p1:person WHERE name = 'Daniel ') -[:follows]->+
5 (p2:person) -[:livesIn]->(c:city WHERE name = 'Delft')
6 COLUMNS (p2.id)
7 ) gt

Listing 1.2: SQL/PGQ query equivalent to Listing 1.1 using the Kleene plus operator (+)

The RECURSIVE statement was added in SQL:1999 (20), and is supported by popular

RDBMSs such as PostgreSQL, MySQL, and SQLite. However, as shown by Michels and

Witkowski (8), even relatively simple graph queries in plain SQL take up many lines and

are more difficult to understand than the equivalent query in SQL/PGQ. The goal of

SQL/PGQ is to provide a more compact syntax for graph-like data and make path-finding

queries more accessible.

SQL/PGQ is limited to read-only queries, making it impossible to modify the graph

through the graph tables. Therefore, the same workgroup is also working on Graph Query

Language (GQL) (21), in which it will be possible to modify the data in addition to most

features in SQL/PGQ, see Figure 1.1. GQL and SQL/PGQ will share the same pattern

matching syntax (22). In future versions, it will also be possible to return graphs as a

result of a query in GQL, a feature which is not supported by any graph query languages

to date (14).

Figure 1.1: SQL/PGQ in relation to SQL and
GQL

In this thesis, we integrate parts of the

SQL/PGQ standard in DuckDB (23).

DuckDB is an open-source in-process

SQL OLAP database management

system originating from CWI (24) that

uses a vectorised query execution (25).

With the new SQL/PGQ standard

releasing soon, work on integrating SQL/PGQ into DuckDB has already started by Singh

3



1. INTRODUCTION

et al. (26). However, SQL/PGQ was not been fully implemented at the start of this

project. In particular, certain path-finding functionalities have not been implemented yet.

Two cases exist for path-finding: one where the graph is unweighted, meaning the edges

do not have a weight assigned, and another in which edges have a numerical (but typically

positive) weight.

In the unweighted case, only reachability had been implemented. In this project, we

added algorithms for returning the shortest path length (in number of hops), as well as

returning the shortest path (as an array of vertices). For the weighted case, we needed to

add an algorithm for finding the cheapest paths, where the path contains the minimum sum

of weights and return this cost. Therefore, the goal is to further complete the SQL/PGQ

integration in DuckDB. Finally, we will identify and implement optimisations primarily

related to typical SQL/PGQ queries expected to be ran in DuckDB.

The implementation will be done while respecting the design principles followed by Singh

et al. (26). This included making sure that the integration is non-intrusive and can be

largely limited to a DuckDB extension module; yet achieves high efficiency, leveraging the

parallelism and vectorised query processing of DuckDB.

1.2 Research Questions

The following research questions have been defined for this thesis work:

1. How to best implement path-finding algorithms in DuckDB?

(a) How can path-finding best be implemented for unweighted graphs?

(b) How can path-finding best be implemented for weighted graphs?

2. What are the bottlenecks in the current SQL/PGQ implementation?

(a) How can these bottlenecks be optimised?

(b) What is the performance impact of vectorisation on the path-finding algorithms?

1.3 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 will provide information on

data models used to represent graphs, the upcoming SQL/PGQ standard, DuckDB and the

current state of the SQL/PGQ implementation in DuckDB. Chapter 3 shows related work,

such as existing graph query languages and various path-finding algorithms. Chapter 4

4



1.3 Thesis Structure

discusses the most important design and implementation details, and describes how the

various path-finding algorithms and optimisations have been implemented. Chapter 5

shows the results of the experiments conducted and provides an in-depth discussion on

the results obtained. Finally, Chapter 6 and Chapter 7 discuss future work and provide a

conclusion to the thesis.

5
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2

Background

As our running example, we use a small property graph instance that conforms to the

Linked Data Benchmark Council (LDBC) Social Network Benchmark’s (SNB) schema as

shown in Figure 2.1. It models persons residing in a city, who joined the social network,

formed friendships (knows relationships), studied at some university and worked at some

company.

2.1 Property Graph Data Model

Graphs can model complex, connected data through vertices and edges. The vertices

sometimes referred to as nodes, represent objects. The edges, referred to as relationships,

represent the connections (relations) between objects. The simplest form of a graph is the

simple directed graph model (9). In this model, the graph consists of a set of vertices and

a set of edges. Each edge has a source vertex and a destination vertex. In the case of an

Figure 2.1: Partial LDBC Social Network Benchmark schema depicted using a UML-like
notation

7



2. BACKGROUND

undirected graph, both vertices within an edge act as the source and destination vertex.

Graphs can either be weighted or unweighted. In weighted graphs, an edge between two

vertices is assigned a weight. This weight can be different for every edge. In unweighted

graphs, all edges are of equal weight.

The simple graph and weighted graph models suffice in some instances, such as computing

the reachability of a vertex from all other vertices or calculating the cheapest paths.

However, storing any information in either the vertices or edges is impossible. For this the

Labelled Property Graph (LPG) model was introduced, which is often used in GDBMSs (9).

The LPG model enriches the simple graph model with the ability to assign labels and

properties to vertices and edges. An example can be seen in Figure 2.2. In this case the

vertices can have the labels Person, City, or University. There is also the possibility of

assigning multiple labels to a single vertex. For clarity’s sake, it was chosen not to do this

in Figure 2.2.

In the property graph data model, it is possible to assign labels to edges, just like vertices.

In Figure 2.2 there are various edge labels. There is the knows label for which the source

vertex is of label Person, and the destination vertex is also of label Person. Additionally,

there is studyAt which starts from a Person and points to a University.

In addition to labels, it is also possible for vertices and edges to have properties

(attributes) typically related to the labels. These properties contain more specific

information about the given vertex or edge. An example can be seen in Figure 2.2 where

every Person vertex has the property firstName, providing more specific information on

the vertex.

Examples of database systems that have based their data model on the LPG model are

Neo4j (27), TigerGraph (10), and Oracle Labs PGX (28).

2.2 SQL/Property Graph Queries

Providing a way to perform graph processing analyses has been difficult due to the

limitations of the standard query language SQL (8). The two most crucial graph querying

functionalities are graph pattern matching and path-finding as described by Angles et

al. (17). These functionalities become more accessible with the addition of SQL/PGQ,

and queries involving these can be more easily expressed (8, 18).

With SQL/PGQ, graphs are stored as a set of vertex tables and edge tables, where each

row in a vertex/edge table represents a vertex/edge in the graph (29). A graph can be

defined using the SQL statement (30) found in Listing 2.1.

8



2.2 SQL/Property Graph Queries

Figure 2.2: Social network graph of Person nodes and the Universities where they study.

1 CREATE PROPERTY GRAPH <name > [WITH SCHEMA <schema >] [FROM <subquery >]

Listing 2.1: Clause for creating a graph in SQL/PGQ

For example, if we wish to create the schema of the graph of Figure 2.2, symbolising a

group of friends, some of whom study at a university, we would use the following query:

1 CREATE PROPERTY GRAPH social_network
2 VERTEX TABLES (
3 Person PROPERTIES ( personId , firstName ),
4 University PROPERTIES ( universityId , name )
5 )
6 EDGE TABLES (
7 knows SOURCE Person DESTINATION Person PROPERTIES ( creationDate ),
8 studyAt SOURCE Person DESTINATION University PROPERTIES ( classYear )
9 )

Listing 2.2: Creating the schema of the example social network graph of Figure 2.2 in
SQL/PGQ

To match a pattern to this graph in SQL/PGQ, the MATCH syntax can be used (22), as

can be seen in Listing 2.3. For example, Listing 2.3 selects the personid and first name of

persons from the graph in Figure 2.2 whose name is equal to ’Daniel’.

9
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1 SELECT p.personId , p.firstName
2 FROM GRAPH_TABLE ( social_network ,
3 MATCH ( a:Person WHERE a.firstName = 'Daniel ' )-[ :studyAt ]->( u:University )
4 COLUMNS ( a.personId , a.firstName )
5 ) p

Listing 2.3: Pattern matching all vertices with the property firstName “Daniel” who study
at a university

Matching such a simple graph pattern is also relatively straightforward in plain SQL.

However, it could be argued that the SQL/PGQ syntax feels more natural to write than

the plain SQL one since its syntax makes it obvious whether a variable refers to a vertex

or an edge. As can be seen in Listing 2.3, we use the () notation to denote a vertex.

Denoting an edge can be done using [].

To indicate that an edge is pointing from source to destination we write (source)-[

spec ]->(destination) (22). The arrow is an example of a directed edge pattern, which

in this case, points right. However, it is also possible to point left or be undirected. The

visual graph syntax is inspired by the syntax of Cypher; see Section 3.2.2.

A more complex graph pattern involving both vertices and undirected edges is shown

below:

1 MATCH
2 ( a:Person WHERE a.name = 'Jack' )-[ x:knows ]-( b:Person )
3 -[ y:studyAt ]->( c:University )

Listing 2.4: Graph pattern matching using vertices and edges of a subgraph

This statement extracts all patterns that match vertex a being a Person with the name

“Jack”, who knows a person studying at a university. Within every vertex or edge, we can

filter the possibilities by adding a WHERE statement, as seen in Listing 2.4.

One of the features of SQL/PGQ is the ability to match a single edge pattern or a

parenthesised path pattern for an arbitrary length (22). An example where we want to

find paths of length 2 to 5 of knows edges:

1 MATCH ( a:Person )-[ e:knows ]->{2,5}( b:Person )

Listing 2.5: Path length of 2 to 5 knows edges

It can be argued that finding such a path in plain SQL is more difficult to express as it

requires the union of multiple joins on the knows table (8). SQL/PGQ is not limited to

quantifying the upper bound of the path length in such a path-finding query. Similar to

regular expressions, it is possible to use the Kleene star (*) operator to indicate that the

pattern can occur 0 or more times. Additionally, matching the pattern one or more times

10
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is possible using the Kleene plus (+) symbol. The following is an example of a pattern

using the Kleene star operator:

1 MATCH ( a:Person )-[ e:knows ]->*( b:Person )

Listing 2.6: MATCH clause defining a path of arbitrarily many knows edges

An example of a Regular Path Query (RPQ, presented in Section 3.2.1) possible in

SQL/PGQ can be seen in Listing 2.7.

1 MATCH
2 ( a:Person )-
3 [ -[ e1:knows WHERE creationDate > 2019-01-01]->( c:Person )
4 -[ e2:knows WHERE creationDate > 2020-01-01]-> ]{2,5}->
5 ( b:Person )

Listing 2.7: MATCH clause defining a graph pattern with a repeating sequence of edges

Queries in SQL/PGQ can also perform path-finding operations. One can specify that

any shortest path matching the graph pattern should be returned using the ANY SHORTEST

keyword. The ANY feature has the known disadvantage of being non-deterministic as there

can be many shortest paths, all of the same length, and the language feature serves to

return only one path as a query result. As a query result, ANY allows for a single arbitrary

shortest path to be returned.

Another option is to return ALL shortest paths, which is deterministic. It is possible to

return the shortest k paths, which is also a non-deterministic operation in case there are

multiple paths with the same length as the kth result. Finally, in SQL/PGQ, it is possible

to return the vertices or edges found on a path corresponding to a query.

Performing path-finding operations on weighted graphs (e.g. finding cheapest paths) is

marked as a language opportunity in the first stable release of SQL/PGQ (22). Therefore,

while not yet officially part of the language, this feature is likely to be included in later

versions of SQL/PGQ. In this project, we have already sought to implement this feature.

2.3 DuckDB

DuckDB’s architecture is a database management system specialised in analytical

workloads, performing queries with joins, aggregations, and filtering operations on up to

100s of GB of data (23). Like SQLite, DuckDB is an in-process system, though SQLite is

specialised in transactional workloads.
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Figure 2.3: Query execution pipeline of DuckDB

DuckDB consists of several components: parser, transformer, logical planner, optimiser,

physical planner, and execution engine, see Figure 2.3. The system can be accessed through

a C/C++ API and has an SQLite compatibility layer.

2.3.1 DuckDB Query Execution Pipeline

The SQL parser is based on the PostgreSQL SQL parser (23). The logical planner consists

of a binder and a plan generator. The binder is responsible for the expressions from the

query related to anything containing a schema such as tables and views and retrieves the

required columns and data types. The plan generator then creates a tree of basic logical

relational algebra operators from the retrieved parse tree.

The optimiser will then create an optimised logical plan given to the physical planner,

turning it into a physical plan. The physical plan consists of operators, where each operator

implements one step of the plan. An example of a unary operator is the scan, which scans

a table and brings each tuple of a relation into main memory (31). A join operator that

uses two tables is an example of a binary operator.

These operators are split up into pipelines, which determines the order of operation

execution. The start of a pipeline is referred to as a source. The end is referred to as

the sink, where all the data is collected (materialised). A query can consist of one or

more pipelines, some of which contain a dependency on another pipeline. For example,

a pipeline with a dependency is one containing a join operator. Sink operators such as

sorting, building a hash table, and aggregation must access all the data before proceeding.

All other operators do not need to materialise all data before proceeding. In the case of

such binary operators, there are two pipelines, one that builds the hash table and one that

probes this hash table. Both pipelines contain a source and a sink, and since the probing

is a non-materialising operation, it can be scheduled in the middle of a pipeline.

Pipelines can run on multiple cores in parallel. Parallelisation is done using the morsel-

driven method (32). DuckDB will schedule work for one “morsel” on a thread for every

120 ·1024 = 122 880 tuples from the pipeline source for each core at a time. This threshold

can be adjusted using the pragma verify_parallelism, which will schedule a morsel for
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every vector of 1024 tuples on a thread, though this is only used for debugging purposes.

With a pragma, the internal properties of the database engine can be adjusted.

2.3.2 Vectorised Execution Engine

The execution engine of DuckDB is vectorised (23). The vectorised query execution engine

was pioneered by VectorWise (25, 33). Vectorisation uses pull-based iterations where every

operator fetches the next set of tuples using a next operation. Instead of fetching a single

tuple, done with Volcano-like tuple-at-a-time execution (34), it fetches a larger number of

tuples (35). DuckDB has a standard vector size of 1024 tuples, which is also said to be the

optimal vector size by Boncz et al. (25). Boncz et al. also found that vector sizes between

128 and 8k work well. When vectors no longer fit inside the cache, performance starts to

get worse (25). The use of vectors is more CPU efficient than the more common tuple-at-

a-time execution found in other DBMSs as it amortises the interpretation cost (25). The

size of vectors can be adjusted in DuckDB, though this is typically only done for debugging

purposes.

2.3.3 Join Operator

The join operation is a vital relation operation that performs a join between two tables.

For every join operator, a hash table needs to be built on which the join can be performed1.

The operator must wait for the entire hash table to be built before proceeding with the

join operation. Similarly, another pipeline might require the outcome of this join before it

can be executed, creating a chain of dependencies. Cardinality estimation is performed to

assess which of the two tables is the smaller one. These are estimations; thus, it cannot be

guaranteed that the smallest table is always used.

This smallest table is then used to build a hash table, referred to as the sink or the build

side. The other, larger table is then used to probe the hash table, looking for matching

entries, referred to as the source or the probe side. Whenever the two tables are of equal

size, a random one of the two is chosen to be the sink.

2.3.4 Scalar User-Defined Functions

In DuckDB it is possible to register scalar user-defined Functions (UDFs) in extension

modules that can be used in SQL expressions. These scalar UDFs are as fast as the built-
1Whenever the ids of the smaller table are dense, meaning the maximum id is not much larger than

the size of the table, an array is used instead, eliminating the need to build a hash table. Using an array
instead of a hash table is referred to as a perfect join (36).
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in functions of DuckDB due to the vectorised query processing, whereby DuckDB handles

the parallelisation of the UDF since the expression evaluation is part of the operator

evaluation, which in turn is part of the pipeline evaluation. We will use scalar UDFs for

the path-finding and CSR creation functions to create a lightweight implementation. A

benefit of implementing these operators as scalar UDFs instead of expressions is that little

to no changes have to be made to the internals of DuckDB.

DuckDB allows for the creation of extension modules. These extension modules are

separate from the mainline, core DuckDB and are not always included by default in every

distribution. They can be remotely installed by the user whenever required.

For each table, the rowid is a pseudo column that stores the row identifier based on the

physical storage. These ids are dense integers starting from zero up to the number of rows

in the table. If rows are deleted, they create a gap in the rowid which may be reclaimed

later.

It is possible to store client-related information in the client context. For example,

this information can be related to pragmas that have been enabled or disabled, such as

profiling options. The data inside the client context is stored for an entire session and can

thus store information spanning multiple queries. The client context is also shared between

parallel threads, which is useful when creating the CSR explained in Section 2.4.2.

2.4 Current State of SQL/PGQ in DuckDB

2.4.1 Overview

This thesis will use the work done by Singh et al. at CWI (26). They identified several

challenges that needed to be addressed. DuckDB is primarily intended for tabular

workloads, and its developers want to limit its core features to those required for the tabular

types of workloads. Therefore, minimal changes to the parser and transformer were made to

allow the correct parsing of SQL/PGQ queries. One of the first challenges was successfully

parsing SQL/PGQ queries. Modifications were made to the DuckDB parser to allow for the

visual graph style query syntax introduced with SQL/PGQ as shown in Section 2.2. New

keywords like GRAPH, LABEL and PROPERTIES were added to the parser to allow correct parsing

of SQL/PGQ queries. A parser is not extensible; therefore, the changes made to the parser

are part of the core of DuckDB, unlike the scalar UDFs, which are implemented as part of

an extension module. The binder translates the newly introduced MATCH to JOIN operations,

thus, the SQL/PGQ queries are transformed into SQL:1999 queries. Listing 2.8 contains
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1 SELECT c1id , c2id , c3id
2 FROM GRAPH_TABLE (aml ,
3 MATCH
4 (c1:customer) -[t1:transfers]->(c2:customer)-[t2:transfers]->
5 (c3:customer) -[t3:transfers]->(c1)
6 COLUMNS (c1.cid AS c1id , c2.cid AS c2id , c3.cid AS c3id)
7 ) gt;

Listing 2.8: SQL/PGQ query looking for 3-edge cycles between customers along transfers
edges

1 SELECT c1id , c2id , c3id
2 FROM (
3 SELECT c1.cid as c1id , c2.cid as c2id , c3.cid as c3id
4 FROM
5 customer c1 , transfers t1 , customer c2 , transfers t2,
6 customer c3 , transfers t3
7 WHERE c1.cid = t1.from_id
8 AND c2.cid = t1.to_id
9 AND c2.cid = t2.from_id

10 AND c3.cid = t2.to_id
11 AND t3.from_id = c3.cid
12 AND t3.to_id = c1.cid
13 );

Listing 2.9: SQL:1999-compliant implementation of the query in Listing 2.8

an example SQL/PGQ query with a MATCH statement followed by a graph pattern of vertices

and edges. This is translated in the binder such that every vertex to edge (()-[]) and edge

to vertex ([]-()) is a JOIN operation in the resulting SQL:1999 query shown in Listing 2.9.

Singh et al. have also implemented the functionality to compute the reachability between

two vertices in a graph. Computing the reachability was implemented as a scalar UDF

using the Multi-Source Breadth-First Search (MS-BFS) algorithm by Then et al. (37), a

more in-depth explanation of the algorithm is provided in Section 4.2.

Figure 2.4 shows a schematic overview of the elements worked on by Singh et al. Step 1

shows the CREATE PROPERTY GRAPH which defines the property graphs over the relational tables

previously created with SQL. This step only registers the view and does not do any data

processing yet. Step 2 is the path-finding query which leads to the on-the-fly creation

of a Compressed Sparse Row (CSR) data structure through steps 3 – 5 , and to the final

query results through 6 and 7 . Step 3 labels the vertices with numeric ids from a dense

contiguous range to represent the graph with good memory locality and neighbourhood
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Figure 2.4: Overview of SQL/PGQ execution in DuckDB by Singh et al.

lookups. Step 4 builds a CSR data structure, resulting in step 5 . Step 6 then uses the

CSR to compute the reachability between vertices using MS-BFS.

2.4.2 Compressed Sparse Row

An intuitive way to represent graphs in programs is using a pointer between objects

(vertices). In this case, every node contains a list of pointers to all nearby nodes (38).

However, this becomes inefficient in the case of multiple traversals. The edges in a graph

may be irregular and unstructured, resulting in the data access patterns not having good

memory locality (39), leading to random memory accesses.

The Compressed Sparse Row (CSR) data structure can be used to create a compact graph

data structure with a good locality. The locality is vital for the shortest and cheapest

path algorithms, as they are not computationally heavy but require intensive memory

access (37). Therefore, it is essential to reduce the number of cache misses.

Figure 2.5 shows an example of the CSR data structure for an unweighted directed graph.

The CSR consists of the vertex array and the edge array. In the vertex array, at the index

of a vertex id, the offset in the edge array at which the vertex id of the outgoing edges

corresponding to this vertex starts is stored. Consider the highlighted vertex 4, which has

outgoing edges to vertices 1 and 3. In the vertex array at index 4, we store the value 6.

This value can be used as a lookup value in the edge array. At index 6 in the edge array,

we find the value 1, corresponding to the first outgoing edge of vertex 4, namely vertex 1.

The next value in the edge array is 3, corresponding to the second outgoing edge of vertex

4, namely vertex 3. We know that vertex 4 has two outgoing edges because the offset in

the vertex array for vertex 5 is 8. Thus we stop looking for outgoing edges once the index

in the edge array reaches 8.
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(a) Unweighted directed graph (b) CSR representation of unweighted directed graph

Figure 2.5: Unweighted directed graph and the CSR representation

We chose to create the CSR on-the-fly just before the shortest or cheapest path function

is executed. The on the fly creation was chosen for two reasons. First, CSR creation will

likely not take much time relative to the shortest and cheapest path functions. Second,

when creating the CSR on-the-fly, we do not need to worry about maintaining the CSR

whenever the graph is updated. Updating a CSR data structure is a difficult operation (40).

We use the row identifiers of the vertex table to represent vertices in the CSR data

structure. The ids of the vertices in the vertex table need not be in order for the CSR to

work. In DuckDB, the CSR is created in two separate scalar UDFs.

The first scalar UDF, create_csr_vertex, is concerned with initialising the vertex array.

The vertex array consists of 64-bit integers. The parameters are an ID given by the user,

the total number of vertices and a dense id of a vertex and the number of outgoing edges

of that vertex. At first, the vertex array will only hold the number of outgoing edges per

vertex, which will later be used to compute the offsets for the edge array by computing a

running sum. Returned is the number of outgoing edges per vertex, the same as the last

parameter.

The second scalar UDF, create_csr_edge, is related to initialising the edge array, which

can only be done after the vertex array has been initialised. It modifies the offsets in the

vertex array using a running sum and fills the edge array with the destination vertices. In
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Figure 2.6: Vertex and edge tables related to the graph shown in Figure 2.5a

(a) Input of the function (b) Before executing the function (c) After executing the function

Figure 2.7: The CSR vertex array before and after executing the create_csr_vertex
function
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order to determine where the edge goes in the edge array, it looks up the offset value of

the vertex before the source vertex and increments the offset by one using an atomic. The

parameters are the CSR ID, the number of vertices, the total number of edges and the

vertex table dense ids of all source and destination vertices found in the edge table.

At the time of designing these functions, DuckDB did not allow for sorting to be done

in parallel1. This was one of the reasons to use an approach that avoids using ORDER BY was

chosen.

Upon creation, a CSR is stored in the client context. After the shortest or cheapest path

functions have been finalised, the CSR will be deleted.

(a) The dense IDs of all the source and
destination vertices used in create_csr_edge

(b) The CSR vertex array and edge array after
executing create_csr_edge

Figure 2.8: The CSR vertex array and edge array after executing create_csr_edge

Following is an example of the various steps involved in creating the CSR data structure

shown in Figure 2.52. The tables used as input are shown in Figure 2.6. Figure 2.7 shows

the CSR vertex array before and after executing the create_csr_vertex function. In

Figure 2.7b, the initial state is shown where the CSR vertex array contains all zero values.

The length of the array is |V |+1 to add padding for the rolling sum used later. The number

of outgoing edges for a vertex is inserted in the vertex array at the position Source ID

+ 1. Figure 2.8 shows parts of the input to the create_csr_edge function (the number

of vertices and edges have been omitted) and the CSR vertex array and edge array after

1The latest DuckDB version (0.4.0), allows sorting to be done in parallel (41), however in this thesis,
work is performed on an older DuckDB version (0.2.2) which did not yet have this feature

2The arrays in the example make use of 1-based indexing
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execution the function. We observe that the vertex array now contains the offset for the

first outgoing edge for every vertex. The last value in the vertex array, 13, is |E|+ 1 and

signifies there are no more edges following in the edge array.

2.5 Single Instruction, Multiple Data Execution Model

In order to increase the CPU efficiency, we can use Single Instruction, Multiple Data

(SIMD) instructions. As the name suggests, SIMD allows a single instruction to be

performed on multiple data.

SIMD instructions are helpful in a loop, where scalar instructions would execute the

exact instructions for every iteration in the loop. With SIMD instructions, we optimise

out the loop by using only a single instruction on multiple pieces of data, see Figure 2.9.

The requirement is that the data is aligned, meaning that all individual pieces of data are

of the same type, such as an 8-bit integer.

Figure 2.9: Scalar vs. vectorised instructions

An example can be observed in Figure 2.10a1, where we have two arrays A and B, each

containing 16 8-bit integers. We wish to add the values of these two arrays and assign

the value to array C. When adding these values using scalar operations, we require 16

addition instructions, which can be seen in Figure 2.10b. The instruction movzx copies the

content of the source (BYTE PTR [rsp+16+rax] in this case, to the destination (edx). Then

an add instruction is executed, which adds the destination operand (dl) and the source

operand (BYTE PTR [rsp+32+rax]) and stores the result in the destination operand. The

result is then moved using the mov instruction. The five instructions following are related

to the for-loop. The jne instruction ensures that as long as iterator i is not equal to 16

(checked with the cmp instruction), a jump is made back to the start of the instructions

for the for-loop. Thus, only in the last iteration do we execute the final two instructions.

The total number of instructions per iteration of the for-loop is six, except for the last
1See https://godbolt.org/z/d6v319sEq for full instructions.
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iteration, which has 8 instructions. Therefore, when executing this for-loop, we require

roughly 6 · 15 + 8 = 98 instructions.

(a) A for-loop to add two numbers in an array (b) x86-64 GCC 9.4 output without SIMD instructions

(c) x86-64 GCC 9.4 output with SIMD instructions

Figure 2.10: Comparison between non-SIMD-ised and SIMD-ised compiler outputs

On the other hand, Figure 2.10c shows that adding these two arrays can be performed in

just three instructions using special SIMD registers. The data is loaded into the registers

xmm0 and xmm1 using the movdqa instruction. When the values are loaded into the registers,

they can be added using the paddb instruction. This instruction performs a SIMD add

operation, similar to the add operation, adding the source and destination operands and

storing the result in the destination operand. The values from registers xmm1 and xmm0 are

then moved to a memory location. In total, only 8 instructions are needed.

Various versions of SIMD instructions exist, with the oldest being the SSE instruction

set introduced initially with the Intel Pentium III in 1999 (42). These came with the XMM

registers seen in the instructions in Figure 2.10c. The XMM registers are 128-bits wide.

SSE2 was introduced with the Intel Pentium 4 in 2000 (43). It added the support for

the double-precision data type, allowing operations to be performed on the full range of

data types, from 8-bit integer to 64-bit float. Nowadays, according to the Steam hardware

survey, 100% of CPUs in consumer PCs support SSE2 (44)1.

The Intel Advanced Vector Extensions (AVX) was introduced in 2008 and was first

supported by the Sandy Bridge processor (45). It introduced 256-bit wide YMM registers,
1It should be noted that this survey may not be entirely representative of the average computer user.
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with the lowest 128 bits identical to the XMM registers (46, Chapter 13). In 2013 AVX-512

was introduced with ZMM registers, which are 512 bits wide. The Steam hardware survey

shows that AVX and AVX2 are supported by roughly 90% of all CPUs observed, while

AVX-512 is supported by less than 10%.

ARM introduced a small set of SIMD instructions with ARMv6 in October of 2001 (47).

ARMv6 introduces special 32-bit registers on which 8-bit or 16-bit values could be operated.

Thus certain operations could be executed twice or four times faster. The implementation

of the Advanced SIMD instruction set for ARM is called NEON and was introduced with

the ARMv7 architecture (48). It added support to operate on more data types, such as

64-bit double. NEON consists of 32 64-bit registers that can be used for Advanced SIMD.

If needed, these 32 registers can also be viewed as 16 128-bit registers.

SIMD instructions can be generated either implicitly or explicitly. Implicit means that

the compiler generates SIMD instructions based on code patterns; an example of this can

be seen in Figure 2.10a. However, if the complexity of the code increases, it could be

that the compiler cannot generate SIMD-ised instructions automatically. Therefore, the

alternative is to write explicit SIMD code, which is guaranteed to be converted to SIMD

instructions by the compiler. The Intel® Intrinsics Guide (49) can be used as a reference

to figure out which function should be used and the instructions that are generated with

it.

A disadvantage of using explicit SIMD instructions is a loss of portability across

platforms. Therefore, it is not the preference of DuckDB to use explicit SIMD instructions.

An example of explicit SIMD code can be seen in Figure 2.11. Like in Figure 2.10a,

there are two 16-length 8-bit arrays A and B, occupying 128 bits. The first two lines

of Figure 2.11a are concerned with loading the arrays in the special XMM registers.

_mm_load_si128 corresponds with the movedqa xmm instructions seen in Figure 2.11b.

_mm_add_epi8 requires two vectors loaded into the XMM registers and adds packed 8-bit

integers, storing the result in C_vec in this case. This line corresponds with the paddb xmm

instruction in Figure 2.11b.

Knowing which specific instructions can be used is essential for the optimal use of SIMD

instructions. To make the most out of SIMD instructions, we want to use the newest

(AVX or AVX-512) as these provide the greatest speed-up. However, we need to know the

specific CPU on which we execute the code to use the correct instruction set. Information

such as the available SIMD instructions can be retrieved, allowing us to tailor the code to

the CPU. One option is to generate multiple versions of the same functions compiled for

different targets, in one library, at compile time. Additionally, it is necessary to use the
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(a) x86 explicit SIMD for adding two arrays
(b) x86-64 gcc 9.4 output using SIMD for adding two
arrays

Figure 2.11: x86-64 gcc 9.4 output with SIMD instructions.

open-source C library cpu_features (50), which can retrieve CPU features at run-time.

The process of selecting the correct function when the program is started is called runtime

dispatch. Vectorised engines can amortise the cost of runtime dispatch by installing the

function compiled for the most-appropriate target at database startup.

2.6 Cache Latency

The CPU cache can store small chunks of data that can be read orders of magnitude faster

than from the main memory (51). The trade-off is that the cache is typically much smaller

than the main memory. In a modern CPU, the cache consists of three levels, L1, L2, and

L3. The higher the level, the slower the speed, but the more data can be stored. Typically,

L1 and L2 are much smaller compared to L3 but, therefore, also much faster. L1 is split

into two segments: L1d, which can be used for storing data, and L1i, which can be used

for storing instructions.

Event Latency Scaled
3GHz CPU cycle 0.3 ns 1 s
L1 cache access 0.5 ns 2 s
L2 cache access 2.8 ns 9 s
L3 cache access 12.9 ns 43 s
Main memory access 120.0 ns 6 min

Table 2.1: Event with corresponding latency, also scaled to 1 second

When the CPU requests data, it first looks at whether this can be found in the L1 cache.

If this is not the case, it looks in the L2 and L3 caches. When the data is found in one of

these caches, it is referred to as a cache hit. When the data is not found in any caches, it

must be fetched from the main memory, causing a cache miss. Fetching data from main

memory is slower than fetching data from cache levels, as observed in Table 2.1.
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If a cache miss occurs and the CPU needs to fetch data, it fetches a chunk of data around

the accessed memory. Such a chunk of data is referred to as a cache line, with the whole

chunk being the cache line size. Typically, cache lines are 32, 64, and 128 bytes. The

theory is that it is likely that the surrounding data will also be required soon.

Smith shows that reading random values from RAM is about an order of magnitude

slower than sequentially reading the data (52). This speedup is due to the utilisation of

the cache line. In the experiments, single-threaded randomly accessing data was done

at 0.46GB/s, while sequentially accessing this data was done at 11.03GB/s. Another

technique used is sequential prefetching which is a hardware technique that predicts which

blocks of data are currently missing in the cache and prefetches these before a cache miss

can occur (53).
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Related Work

3.1 Resource Description Framework

Aside from the property graph data model described in Section 2.1, another data model is

the Resource Description Framework (RDF) which is a standard data model used for data

interchange on the Web (54). Data is modelled in the form of triples, which is composed

of a subject, predicate, and an object (54). The vertices within RDF can be of three types:

Internationalised Resource Identifiers (IRIs) used to globally identify entities and relations,

literals, and blank vertices (55). A vertex attribute is modelled as an extra outgoing edge

(being the predicate) to another vertex which is the object stored as a literal. A way

of modelling edge attributes is described by Sun et al. (56), where every edge attribute

requires four new edges to be added to the graph. This method of modelling edge attributes

is generally applicable, though verbose and inefficient in terms of storage (56). Database

management systems such as Blazegraph (57) and Amazon Neptune (58) have based their

data model on RDF.

Storing RDF data in relational databases comes with several challenges (59). One of the

challenges is how to store the data. A naïve approach uses a single table with three columns:

subject, predicate, and object. However, large-scale RDF data runs into performance and

scalability issues (60). In particular, SPARQL queries result in many more joins, causing

challenges for query optimisation, query execution and locality of data access (7, 60).

A challenge with storing the data in a single table is related to self-joins, i.e. joins between

instances of the same table. In this case, a join is required for every attribute queried to

be retrieved from the table. For example, given a single table triples, returning the

attributes name, birthday, and location requires the execution of the following query:
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1 SELECT
2 triples1.object AS name ,
3 triples2.object AS birthday ,
4 triples3.object AS location
5 FROM triples triples1
6 JOIN triples triples2
7 ON triples2.subject = 1
8 AND triples2.predicate = 'birthday '
9 JOIN triples triples3

10 ON triples3.subject = 1
11 AND triples3.predicate = 'location '
12 WHERE triples1.subject = 1
13 AND triples1.predicate = 'name';

Listing 3.1: Self-joins for collecting the attributes of the subject with identifier 1 (61)

Szárnyas describes several challenges related to self-joins (61). One of the challenges

is related to the hash-joins often used by database systems to evaluate join operations.

Whenever a join between two tables is performed, the smaller of the two tables is used

to build a hash table. The other table is then used to probe the hash table and look for

matches. However, with self-joins, both tables are equal in size, negating the advantage of

building a hash table on a smaller table. In addition, the resulting table will probably be

large when the table is of a many-to-many relation.

3.2 Graph Query Languages

Up until now, there has not been a standardised graph query language. For RDBMSs,

there exists SQL. However, SQL is arguably not as convenient to express graph workload

queries, which often involve recursive joins (18). To query graph data, two functionalities

are deemed most important: graph pattern matching and path-finding (17). Specialised

graph query languages, such as Cypher and PGQL, have introduced specialised syntax

that has made it easier to express queries involving these functionalities. This section

provides an overview of the current most widely used graph query languages and describes

SQL/PGQ and GQL.

3.2.1 Survey on Graph Query Languages

Angles et al. (17) provide a survey on the foundational features underlying modern graph

query languages. They note three critical ingredients for these query languages: a graph

data model, graph patterns, and navigational expressions.
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Two graph data models are highlighted by the authors: edge-labelled graphs and property

graphs, discussed in Section 2.1. In the edge-labelled graph data model, labels can be

assigned to edges to indicate the relationship between vertices. The edge-labelled graph

data model can be seen as the basis for the RDF model described in Section 3.1.

Several query languages have emerged to extract data from instances of graph data

models. One of the earliest used to query RDF graphs was SPARQL, see Section 3.2.6 and

is standardised by W3C (54). To query property graphs, the authors highlight two query

languages: Cypher, discussed in Section 3.2.2, and Gremlin (62), discussed in Section 3.2.7.

The languages vary in style, purpose, expressivity, and implementation though they share

a core of being able to perform graph pattern matching and graph navigation operations.

Graph pattern matching results from the pattern over the graph data (17). Basic graph

patterns match a graph-structured query against a graph database. These patterns can

be augmented using features such as projection, union, optional, and difference. For more

details on graph pattern matching, we refer the reader to (17).

Graph pattern queries are of a bounded nature. In the case where we wish to follow a

path of arbitrary length, we can make use of navigational queries. These are path queries in

combination with basic graph patterns. A fundamental path query is the path existence, in

which we ask if a directed path between two vertices in a graph exists. In theory, this path

can follow edges regardless of their label. However, in practice, one needs to restrict the

label type of the edge to limit the search space. Path queries can be specified using regular

expressions, such as concatenating two paths, applying a union/disjunction of paths, and

applying a path zero or more times. Such queries are referred to as Regular Path Queries

(RPQs). For more details, we refer the reader to (17).

3.2.2 Cypher

Francis et al. (11) describe Cypher, a language for querying and updating property graph

databases and formalise its read-only core. The language started in Neo4j (63), a property

graph database system, but has since also been implemented in other industrial products

such as SAP HANA Graph (64) and Redis Graph (65). It has also been used for academic

research. For example, Sarma et al. used Cypher and Neo4j to detect bank fraud (66).

Another example is Cytosm by Steer et al., which converts Cypher queries into plain

SQL queries (67), see Section 3.3. Cypher is based on the LPG data model, just like

G-CORE (14), see Section 3.2.3, and PGQL (12), see Section 3.2.4.

According to its authors, queries are structured linearly in Cypher, which allows users

to think of query processing as starting from the beginning and progressing linearly to the
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end (11). Whereas SQL queries start with a SELECT statement listing the attributes that

comprise the query result, Cypher queries end with a RETURN statement. An example of

a Cypher query can be seen in Listing 3.2. In this query we wish to bind person1 with

the vertices labelled Person who have the firstName property “Thomas”. From this we

follow all knows edges from person1 and return the information related to person2. The

equivalent SQL query can be seen in Listing 3.3.

1 MATCH (person1:Person {firstName: 'Thomas '}) -[:KNOWS]-(person2:Person)
2 RETURN person2

Listing 3.2: Simple matching example in Cypher

1 SELECT p2.*
2 FROM person p
3 JOIN knows k on k.source = p.id
4 JOIN person p2 on k.destination = p2.id
5 WHERE p.firstName = "Thomas";

Listing 3.3: Equivalent matching query in SQL

A key feature of Cypher is the “ASCII art”-style syntax, also referred to as visual graph

syntax and pattern matching style. The visual graph syntax way of describing a pattern is

also seen in SQL/PGQ and GQL (22), see Section 2.2. Data modification is also possible

in Cypher (68), using basic clauses such as CREATE to create new vertices and relationships,

DELETE for removing entities, SET for updating properties and MERGE which tries to match a

pattern, and creates one if it is not found in the database.

3.2.3 G-CORE

G-CORE is a combined effort of academia and industry to steer the future of graph query

languages (14). Angles et al. identify three main challenges with existing graph query

languages. Firstly, current implementations output tables of values, vertices, or edges.

Instead, the output should be graphs to improve usability so that the results of graph

queries can again be queried. Secondly, G-CORE is unique in how paths are treated as

first-class citizens. The authors argue that languages should be able to return paths to

the user to enable post-processing paths within the query language instead of in an ad-hoc

manner. Therefore, they change the LPG model to a Path Property Model (PPG) in which

paths are entities, in addition to vertices and edges, and can also have labels and properties.

The authors emphasise that G-CORE is a design language meant to guide other (future)

query languages towards making them more practical, powerful, and expressive. Thus, the

28



3.2 Graph Query Languages

goal of G-CORE is to capture the core of available languages and take what they do well

to create a standard. The final goal is related to the fact that no standard existed when

publishing the G-CORE paper in 2018.

3.2.4 Property Graph Query Language (PGQL)

Van Rest et al. identify that graph-based approaches to data analysis have become more

popular over the last couple of years (12). According to the authors, the standard way

of querying this data using SQL does not sufficiently cover all the graph-based approach

functionalities. They propose a new query language, PGQL, with additional features,

including reachability analysis, path-finding and graph construction. The language is

based on the property graph data model. The syntax of PGQL is SQL-like, which makes

it intuitive to use for SQL users. PGQL support two different pattern matching semantics:

isomorphism and homomorphism. With isomorphism, two entities are not allowed to map

to the same vertex or edge. With homomorphism, this is allowed to happen. PGQL

has vertex, edge, path, and graph types. The last one allows for the support of graph

transformation applications, which allows one or more graphs to be constructed and

returned from a query (12).

3.2.5 GSQL

The graph database system TigerGraph was built to support massive parallel computation

of queries and analytics (69). The high-level query language, GSQL, borrows syntax

elements from plain SQL, procedural SQL dialects (such as PL/SQL and T-SQL), and

G-CORE (14). It has strong imperative traits and is Turing complete (70), allowing users

to express both graph queries and specify analytical graph algorithms. GSQL supports

both a type-free approach where no schema is required, as well as a SQL-like strongly

typed approach where the graph schema has to be defined prior to loading the graph in

the database.

3.2.6 SPARQL

The query language SPARQL is designed for querying RDF, a directed labelled graph,

data format, see Section 3.1. As of SPARQL 1.1, queries can involve filters, unions, value

aggregations, nested queries, and path expressions (71). Queries in SPARQL are composed

of triple patterns (subject, predicate, object) with different clauses and operators. The result
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is a set of bindings, also referred to as a binding table (72). Systems such as Stardog (73)

and Amazon Neptune (58) allow their data to be queried using SPARQL.

3.2.7 Gremlin

Rodriguez describes the Gremlin graph traversal language, developed and distributed by

the Apache TinkerPop project (62). Gremlin’s query approach consists of three main

components, a graph, a traversal, and a set of traversers. The traversers move about

the graph according to the instructions which the user can create. It is a functional

programming language that can be implemented in other languages. However, this other

language does need to support function composition and function types. Several key

characteristics of Gremlin include that it supports both imperative and declarative pattern

matching styles. Furthermore, it can be embedded in another programming language, and

users can extend it. The traversal consists of a given number of steps arranged in either a

linear or nested motif. With a linear motif, the output of each step forms the input for the

next step. With the nested motif, the nested step(s) act as arguments for another step.

The output of this step can then be used as input for the next step. The traversers continue

to follow instructions for as long as possible. Whenever the traverser cannot follow the next

traversal instruction, it halts. Once all traversers have halted, an answer to the traversal

can be provided back to the user.

3.2.8 Graph Query Language

The Graph Query Language (GQL) is a standardised query language that is, at the time

of writing in 2022, scheduled to be released in March 2024 (74). It will share the graph

pattern matching language with SQL/PGQ (22). However, whereas SQL/PGQ is a read-

only extension of SQL, GQL is a stand-alone standardised query language. GQL will have

its Data Manipulation Language (DML) with Create, Read, Update, and Delete operations,

as well as its Data Definition Language (DDL), such as Create Type and Create Graph (74).

Another difference between SQL/PGQ and GQL is that GQL will support both schema-

fixed and schema-flexible variants, whereas SQL/PGQ does not support schema-flexible

graphs.
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3.3 Mapping Strategies

3.3.1 Mapping from Graph to Relational Queries

Research has been conducted on translating a given query language to another, such as

translating graph query languages to SQL. An example of this is Cytosm (Cypher to

SQL Mapping) by Steer et al. (67). It acts as an application to execute graph queries

on RDBMSs. In addition, they introduced gTop. This format can capture the structure

of property graphs and allow a mapping between a property graph and relational tables.

Steer et al. find that the translated SQL queries executed on the Vertica columnar RDBMS

show comparable performance to SQLGraph and vanilla Neo4j v2.3.4, depending on the

type of graph query on a columnar RDBMS (67). SQLGraph allows Gremlin queries to

be converted into SQL (56). It uses a combination of relational and non-relational data

storage. The adjacency information uses relational storage, while the attributes regarding

all the vertices and edges are stored with JSON storage.

GraphGen (75) acts as an abstraction layer on top of an RDBMS. Underlying relational

datasets are transformed and defined as graphs (Graph-Views). These graphs can then be

queried using a graph API. The GraphGen framework has two main functionalities. First,

users can define the structure of a graph using GraphGenDL, a Datalog-like domain-specific

language (DSL). The other functionality is taking queries and executing them against the

Graph-Views. GraphGenQL specifies the queries, loosely based on SPARQL, Cypher, and

PGQL (75).

Zhao and Yu showed that it was possible to support a large class of graph algorithms, such

as BFS, Bellman-Ford, and PageRank in SQL (76). They introduce new semiring-based

graph operators alongside the existing ones (selection, projection, union, set difference,

Cartesian product, and rename) to provide explicit support for graph algorithms.

Lastly, there is IBM Db2 Graph by Tian et al. (77), which is an in-DBMS graph query

approach that provides Gremlin support as an extension to Db2. Similar to GraphGen, it

has a graph overlay method that exposes graph views of the relational data.

There is a question whether expressing graph algorithms using recursive SQL can be as

fast as a direct implementation of these algorithms in a language such as C++.

3.3.2 Mapping from RDF to PG

Thakkar et al. (78) identify a lack of essential interoperability between two query languages

based on the two data models most commonly used for knowledge graphs: the query

languages are SPARQL (79) for RDF data models and Gremlin, a property graph traversal
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language. The paper presents Gremlinator, which acts as a translator between SPARQL

and Gremlin. The goal is to increase the interoperability between the expressive data

modelling that is RDF and efficient graph traversals that are possible with property graphs.

It claims the following advantages:

1. Existing SPARQL-based applications can switch to property graphs in a non-intrusive

way.

2. It provides the foundation for mixed-use of RDF triple stores and property graph

stores.

However, SPARQL engines tend to have lower performance than SQL databases due to

the query optimisationand exectuion challenges posed by many self-joins (80) Gremlinator

supports pattern matching and graph traversal queries and claims to be more general than

Cypher since it provides a common execution platform that supports any graph computing

system for addressing the querying interoperability issue (78). A limitation of Gremlinator

is the lack of support for variables for property predicates.

Thakkar et al. provide an in-depth explanation on the inner workings of sparql-gremlin

in (72). An implementation is available as a plugin for the Apache TinkerPop graph

computing framework. The translation takes a SPARQL graph pattern as input and

returns a Gremlin expression. For a given triple pattern (v1, v2, v3), the transformation

to Gremlin is different, depending on whether v2 refers to a property or a relationship.

AND graph patterns indicate a join between two tables, which is implemented in Gremlin

as a match operator. A FILTER can be implemented in Gremlin as a .where clause. The

SELECT clause is implemented using the .select operator. Both Gremlin and SPARQL

support several types of aggregates. During the experiments, the authors evaluated both

the query correctness as well as the performance. They observed that in all 60 SPARQL

queries tested, the corresponding Gremlin traversals provided identical results. In most

cases, the performance of the Gremlin traversals showed to be competitive compared to

the SPARQL query. However, Gremlin outperformed the SPARQL queries by two orders

of magnitude for path queries and queries containing a star -shaped execution plan.

3.4 Graph Traversal Algorithms

Table 3.1 shows an overview of some algorithms that can be used for path-finding in

various scenarios depending on the number of sources and destinations, as well as whether

the graph is unweighted/weighted (yielding shortest/cheapest problems, respectively).
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Shortest path Cheapest path
Single-source
Single-destination

Bidirectional BFS Bidirectional Dijkstra

Single-source
All destination

BFS
Dijkstra
Bellman-Ford

Multi-source
All destination

Multi-source BFS
Multi-source Bellman-Ford
Multi-source Dijkstra

All source
All destination

All-source BFS Floyd-Warshall

Table 3.1: Variatons of a graph traversal algorithms for various scenarios

3.4.1 Unweighted Shortest Path

With an unweighted shortest path, the goal is to find the path between a source vertex and

a destination vertex with a minimal amount of intermediate vertices. The shortest path

for unweighted graphs can be computed using the breadth-first search algorithm. This

algorithm uses a search tree data structure, which does not contain cycles. However, the

algorithm can be extended to graphs by preventing a vertex from being explored if it has

been seen before.

The exploration starts from a single vertex and explores all its direct neighbours. Once

all neighbours of the source vertex are explored, the subsequent iterations explore the

neighbours of the neighbours. Thus, the vertices with an equal distance to the source vertex

are discovered in the same iteration. The worst-case time complexity of the breadth-first

search is O(|V | + |E|), indicating that the time scales linearly to the number of vertices

and edges in the graph (81).

Then et al. observed that performing graph analytical algorithms on large datasets using

BFS as described above is time-consuming and involves redundant computation when

executed multiple times from different vertices. Therefore they introduce Multi-Source

BFS (37). A core challenge in creating efficient graph analytical algorithms was the lack

of data access locality, causing many random accesses (82). MS-BFS is designed to run

multiple BFSs over the same graph using a single CPU core. MS-BFS is designed to (1)

share computation between BFSs; (2) reduce the number of random memory accesses; (3)

not incur synchronisation costs. MS-BFS is most efficient in graphs with the small-world

network property (83) since these graphs are well-connected. This property means that

a BFS will discover most vertices in a few iterations, allowing other BFSs to have a high

chance of discovering the same vertices in the same iteration, allowing access to a single
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Algorithm 1 Breadth-first search
Function BFS(Graph, source)

2: let Q be a queue
label source as explored

4: Q.enqueue(source)
while Q is not empty do

6: v := Q.dequeue()
if v is the goal then

8: return v
end if

10: for each edge from v to w in G.neighbours(v) do
if w is not labelled as explored then

12: label w as explored
Q.enqueue(w)

14: end if
end for

16: end while

vertex to be shared among various BFSs. This reduces the number of random accesses and

avoids redundant computation, reducing the overall run-time (37).

An advantage of the MS-BFS algorithm by Then et al. is that it can utilise a direction-

optimised variant introduced by Beamer et al. (84). In the standard BFS algorithm, new

vertices are discovered in a top-down manner, meaning that vertices are discovered by

exploring the neighbours of the vertices found in the previous iteration. The direction-

optimised variant introduces a bottom-up approach that scans for vertices that have yet to

be discovered. A heuristic can be used every iteration to decide which approach to use. In

practice, the top-down approach will be used in the earliest iterations, while the bottom-up

will be used in the final iterations. This is because by then, most vertices have already

been discovered and starting from the unseen vertices will result in fewer edges that need

to be traversed.

Research has also been conducted on designing BFS algorithms for multi-core

processors (85, 86). Chhugani et al. (87) present a scalable BFS algorithm using lock- and

atomic-free operations. They observe that graph traversal algorithms do not fully utilise

compute or bandwidth resources since the limit is memory latency (87). Each step of a BFS

graph traversal involves iterating over a bounded set of vertices, looking at the adjacent

vertices and updating the Depth and Parent arrays. It is the accesses to the adjacent
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vertices and the Depth and Parent arrays that involve cache, and Translation Lookaside

Buffer (TLB) misses. Therefore, the authors introduce an atomic-free update mechanism

and rearrange the bounded set of vertices to reduce the TLB misses for accessing the

adjacent vertices, making the algorithm no longer limited by memory latency. Additionally,

the authors highlight optimisations to reduce the number of accesses to the Depth and

Parent arrays using bit-arrays to denote whether a vertex has already been visited or

not. They introduce a generalised, cache-resident, atomic-free representation of this bit-

array (87).

Hong et al. present a parallel BFS algorithm for multi-core CPUs that uses randomly

shaped real-world graph instances (86). The newly introduced BFS implementation

performs better than state-of-the-art (85) as the size of the graph grows larger.

Furthermore, the authors introduce a dynamic execution method for each BFS iteration

that can choose between a sequential execution, a multi-core CPU execution, and a GPU

execution.

Akiba et al. (88) propose a BFS algorithm that performs pruning during the search to

reduce the search space referred to as pruned landmark labelling. The algorithm allows not

to traverse edges from a vertex if the correct distance can be given using other, already

labelled vertices. This method is most effective on highly central vertices in complex

networks (89) since those vertices allow for the most pruning of other vertices.

3.4.2 Cheapest Path (Weighted Shortest Path)

For the cheapest path problem, commonly referred to as the weighted shortest path, the

goal is to find the path with the minimum sum of edge weights from a source vertex

to a destination vertex. The two textbook algorithms used are Dijkstra’s algorithm

and Bellman-Ford to compute the cheapest path in weighted graphs. In both of these

algorithms, the graph is explored from a single source. However, these algorithms differ in

how the graph is explored.

In Dijkstra’s algorithm, seen in Algorithm 2, a graph and a single source vertex are

given. The vertices in the graph are split into two sets. One set contains all vertices in the

shortest path tree, and the other set contains all other vertices that have not been explored

yet. The shortest path tree is then incrementally generated with the source vertex as the

root. In every step of the algorithm, a vertex from the not yet included set with the

minimal distance from the source vertex is added to the shortest path tree. This can be

implemented using a priority queue where the vertex with the lowest distance gets chosen.

Thus, as soon as a vertex is added to the cheapest path tree, the minimal distance from the
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Algorithm 2 Dijkstra’s algorithm
Function Dijkstra(Graph, source)

2: for each v in Graph do
dist[v] := infinity

4: previous[v] := undefined
end for

6: dist[source] := source
Q := Set of all vertices in Graph

8: while Q is not empty do
u := vertex in Q with smallest dist

10: Remove u from Q
for each neighbour v of u do

12: alt := dist[u] + weight(u, v)
if alt < dist[v] then

14: dist[v] := alt
previous[v] := u

16: end if
end for

18: end while

source to this vertex is known. Dijkstra’s algorithm has the constraint that there can only

be non-negative edge weights. An optimisation for Dijkstra’s algorithm is implementing

the priority queue as a Fibonacci heap (90).

Bellman-Ford, shown in Algorithm 3 is an alternative algorithm to compute the cheapest

distance and does not have the constraint that there must only be non-negative edge

weights. In Bellman-Ford, a graph and a single source vertex is given. The distances from

this source to all other vertices are stored in an array. Upon initialisation, the distance for

the source vertex is 0. All other vertices have a distance of ∞ since it is not yet known

how these vertices can be reached.

The algorithm iterates over all vertices in order, and the edges are traversed for every

vertex. If the distance of the current vertex plus the edge weight from the current vertex

to its neighbour is less than the current known cheapest distance, a cheaper path is found,

and the distance is updated.

If all vertices have been iterated without updating the distance array, all cheapest paths

have been found, and the algorithm terminates. At most, |V |−1 iterations over all vertices

need to be made, where |V | is the number of vertices. In every iteration, cheapest paths
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Algorithm 3 Bellman-Ford
Function Bellman-Ford(Graph, source)

2: for i← 1 to |V [G]| − 1 do
for each edge (u, v) ∈ E[G] do

4: Relax(u, v, w)
end for

6: end for
for each edge(u, v) ∈ E[G] do

8: if d[v] > d[u] + w(u, v) then
Return False

10: end if
end for

that are longer (i.e. consist of more edges) are found, and only at the last iteration is the

cheapest path guaranteed to be found.

Dijkstra’s algorithm using a Fibonacci heap has a worst-case time complexity of O(|E|+
|V |·log |V |) (91), which is better than Bellman-Ford’s worst-case time complexity of O(|V |·
|E|) (92). However, the expected runtime of Bellman-Ford is O(|E|) in large dense graphs

with low diameter (93).

Then et al. (82) have proposed two algorithms to compute the cheapest path, batched

Bellman-Ford and Batched Dijkstra’s algorithm. Implementing a batched version of

Dijkstra’s algorithm is more complex due to the Fibonacci heap required for every algorithm

instance. Multiple instances will be run during the execution, each having a unique

Fibonacci heap. The structures of these heaps are different, limiting the possibilities of

using SIMD instructions. Based on experimental results, the authors report that the

performance of the batched Bellman-Ford algorithm is 3–10× higher compared to batched

Dijkstra’s algorithm (82). Therefore, it was decided to implement the batched Bellman-

Ford algorithm proposed by Then et al., as shown in Algorithm 6.

Similar to MS-BFS, multiple instances of Bellman-Ford will be executed simultaneously,

allowing the memory access to be shared. For every source vertex, an array, referred to as

lane, is created with a length equal to the number of vertices in the graph. This array will

contain the distances from the source to all other vertices.

The batched Bellman-Ford implementation makes use of an optimisation introduced

by Yen (93) that only checks the neighbours of a vertex if their distance was modified.

Klein (94) introduces a multi-source shortest path algorithm for planar graphs with non-

negative edge weights in O(|V | · log |V |). Cabello et al. present a generalisation of the
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work by Klein in which the shortest path distance for multiple sources can be calculated

in embedded graphs (95).

Algorithm 4 Floyd-Warshall
Function Floyd-Warshall(Graph)

2: |V| := number of vertices in the graph
dist := |V | × |V | array of minimum distances

4: for each vertex v do
dist[v][v] := 0

6: end for
for each edge(u,v) do

8: dist[u][v] = weight(u,v)
end for

10: for k from 1 to V do
for i from 1 to V do

12: for j from 1 to V do
if dist[i][j] > dist[i][k] + dist[k][j] then

14: dist[i][j] := dist[i][k] + dist[k][j]
end if

16: end for
end for

18: end for

Both Dijkstra’s algorithm and Bellman-Ford are single-source algorithms. Floyd-

Warshall (96) (FW), see Algorithm 4, can be used to calculate the cheapest distance

for all pairs of vertices. The restriction is that there can not be negative cycles in the

graph; however, edges with negative weights are allowed. The same restriction holds for

Bellman-Ford.

FW uses a matrix with the dimensions |V | · |V | where |V | is the number of vertices in

the graph. During initialisation, the distances where the source is equal to the destination

(i.e. the cells in the diagonal of the matrix) are set to zero. The distances to the direct

neighbour for every v are set. The algorithm then loops over all possible combinations

of vertices and checks for a cheaper distance. The worst-case time complexity, O(|V |3),
equals the best-time complexity.

Penner and Prasanna provide a more cache-efficient implementation (97). However,

while the FW algorithm is efficient on dense graphs to calculate all pairs shortest path,

other algorithms, such as a variation of Dijkstra’s algorithm presented by Demetrescu and
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Italiano (98), are faster on sparse graphs. Han et al. (99) introduce a program generator

for the FW algorithm using tiling, loop unrolling, and SIMD vectorisation.

3.5 Survey on Graph Database Management Systems

Since the field of graph processing workloads is quite scattered (5, 100), many different

GDBMSs exist, having different strengths and weaknesses. Besta et al. (9) provide a survey

and taxonomy of 45 graph database systems. The authors start by explaining the various

graph models used by the surveyed systems; see Section 2.1 and Section 3.1 for a similar

explanation.

The graph database systems were categorised into several categories. Firstly, their

general backend type significantly impacts the other aspects of the graph database and

is easily defined. Backend types considered are tuple stores, document stores, key-value

stores, wide-column stores, RDBMS, or Object-Oriented DBMS. Further consideration was

the conceptual graph data models and representations supported, data organisation, data

distribution, query execution, transaction types, and the supported query languages.

Some systems use a specific backend (e.g. relational) technology to store the graph data.

They then have an added frontend to query the graph data. Other systems are specifically

designed to store graph data, also called native graph databases. These are based on either

the LPG or RDF. The survey compares features and languages supported by the systems

discussed. A point worth mentioning is that almost all systems are closed-source or do not

provide all the details on the internals of their system, making in-depth comparisons more

difficult. The comparison regarding the supported query languages shows how fragmented

the field is. There are six query languages, SPARQL, Gremlin, Cypher, SQL, GraphQL,

and API (formulating queries using a native programming language such as C++). While

some of these languages are similar, most systems only support one. Some systems do not

even support any of the six mentioned here but support some different language(s).

The authors highlight some challenges related to GDBMSs. The first one is that there

is no single graph model for the systems. The most widely used is LPG. However, it is

not always fully supported. Secondly, the different graph database workloads’ good design

choices are not yet determined. Some graph workloads, such as graph pattern matching

problems or vertex reordering problems, have been unaddressed by graph database system

designers, hurting these systems’ performance.
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3.6 Data Processing Systems Supporting Graph Processing
Workloads

This section highlights several data processing systems capable of handling graph

workloads. We show their purpose and highlight some of their strengths and the challenges

these systems have.

3.6.1 Neo4j

Neo4j is a JVM-based NoSQL graph database (101, 102), mainly focused on transactional

workloads (103). Query execution follows a conventional model and uses the Volcano

optimiser generator (104). Query compilation makes use of the tuple-at-a-time iterator-

based execution model. Alternatively, the query is compiled Java bytecode using a push-

based execution model (11, 105).

Neo4j provides multiple ways to query graphs. First is the low-level core API used for

elementary graph operations. The second uses the graph query language Cypher described

in Section 3.2.2 (102). Complex queries can be better optimised using the core API and

will often lead to better performance than Cypher (27).

3.6.2 Umbra

Umbra is a general-purpose disk-based (SSD-based) DBMS developed at the Technische

Universität München (TUM) (106). Umbra claims to support arbitrary data sizes by

using external memory whenever required. Furthermore, it retains performance when the

working set fits inside the main memory by introducing a novel buffer manager (106). It is

the successor of the in-memory system HyPer, a hybrid system able to handle both OLAP

and OLTP simultaneously (107).

Similarly to HyPer, Umbra uses a compiled query execution strategy. The logical query

plans are translated to parallel machine code (106) which calculates the query results. In

case the query contains steps that can be multi-threaded, a morsel-driven approach (108)

is used to distribute the work.

Umbra is compared to its predecessor HyPer and the column store MonetDB (109) using

the TPC-H benchmark at scale factor 10. It is shown that Umbra has a 1.8× geometric

mean speedup compared to HyPer and a 2.3× speedup compared to MonetDB. The pure

in-memory performance of Umbra is comparable to that of HyPer (106). As Umbra is, in

principle, able to use external memory whenever the working set no longer fits in main

memory, it would be interesting to observe the performance on larger scale factors.
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3.6.3 TigerGraph

TigerGraph is a graph database system tailored to support massive parallel computations

of queries and analytics (69). Queries can be expressed using GSQL, which has been

inspired by G-CORE (14), see Section 3.2.5.

TigerGraph is not an in-memory database system; the disk is used if the full graph

does not fit in memory. The storage and processing engines have been implemented in

C++ to allow for more fine-grained control over memory management. TigerGraph can

automatically partition the graph across a cluster of servers to maintain performance. All

edges from a given vertex are stored on the same server. Furthermore, TigerGraph has a

distributed query mode in which all servers work on a query on an as-needed basis (69).

3.6.4 GRADOOP

Junghanns et al. present GRADOOP (110), a framework that extends Apache Flink and

has the advantages of distributed graph processing. They identify two key categories

of systems that focus on the management and analysis of graph data: graph database

systems and distributed graph processing systems. Graph database systems focus mainly

on efficient storage and transactional processing using a provided declarative graph query

language. The problem with these systems is that they are unsuitable for high-volume data

analysis and graph mining (110). On the other hand, parallel graph processing systems

such as Google Pregel (111) can process large-scale graph data. However, these systems

lack an expressive graph data model and declarative graph operations.

To combine the strength of both, GRADOOP was built. It uses the Extended Property

Graph Model, which does not enforce any schema. Extended refers to the fact that

vertices and edges may exist simultaneously in one or more graphs. The analytical

programs are defined in the Graph Analytical Language (GRALA), a domain-specific

language for the Extended Property Graph Model, and can be accessed using a Java API.

It includes composable graph operators and general operators for data transformation

and aggregation. The operators take graphs as input and produce them, making them

composable. Several well-known operators have been implemented, such as PageRank

and connected components. GRADOOP uses a distributed dataflow system to achieve

horizontal scalability; an example of such a system is Apache Spark (112). A brief

demonstration of the system is provided. However, no actual results are presented, making

it difficult to estimate the performance of GRADOOP.
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3.6.5 The Case Against Specialised Graph Analytics Engines

Fan et al. (6) provide an answer to whether RDBMSs should be used for graph analytics

instead of creating specialised graph engines. The authors present Graph Analysis in

Legacy (Grail) as a syntactic mapping layer for any queries. It argues that the advantages

of extending an RDBMS for “non-core relational” processing come with the benefits of

building on top of mature technology that has been researched for decades and has proven

robust. In addition, it is likely that enterprises already make use of an RDBMS in their

ecosystem. Adding a system (a graph engine) would lead to more significant overhead

and reduce overall work efficiency. The authors use a single-node Microsoft SQL Server

2014 that provides T-SQL (6). The users can interact with Grail through an API since

formulating graph analytical queries in SQL may not feel natural to users. The query is

mapped to a runnable T-SQL query using the translator, which is then optimised using

the optimiser. The data is stored similarly to SQL/PGQ; the edges and vertices are stored

as tables. The computational model is a vertex-centric approach and uses intermediate

tables, in which data is stored that is required for every iteration of a computation.

Apache Giraph originated from Google Pregel (111) and GraphLab (113), which is mainly

designed for parallel machine learning algorithms, are used to compare the performance

of Grail. Three queries are tested, one related to the single-source shortest path, one

related to PageRank, and one related to Weakly Connected Components. The datasets

contain 9k to 41 million vertices and between 5 million and 1.46 billion edges. The authors

show that Grail is slower than GraphLab on the smaller datasets, though it scales better

for larger datasets. The figure presented shows both the computation and loading time.

It appears that GraphLab has a relatively high loading time, whereas SQL Server has

a high computation time. It is unclear what is precisely meant by loading time. If it

refers to loading the datasets, it should have been considered that this time is amortised

if the algorithms are conducted multiple times. In that case, GraphLab would show equal

performance compared to SQL Server. It is also unclear how well optimised the queries

for GraphLab and Giraph were. Therefore, the results may not be suitable for system-to-

system comparisons.

3.6.6 GRainDB

Jin et al. present GRainDB (18), a system that extends the RDBMS DuckDB by

providing graph modelling, querying, and visualisation capabilities. The authors modified

the internals of DuckDB to integrate storage and query processing techniques to make
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the workload on graphs more efficient. These modifications include predefined pointer-

based joins, hybrid graph-relational data modelling and querying, and graph visualisation.

Performing in-depth modifications on DuckDB appears to be a risky strategy, as this is

still a relatively new database system in which the internals are still prone to change quite

frequently. By making modifications, future versions of DuckDB become incompatible

with the modified version, and updating becomes difficult. Consequently, GRainDB is not

available in current DuckDB versions.

The team identifies advantages for relations and graphs in the data model. Relations

can represent n-ary relationships for arbitrary values of n, providing a natural structure to

model normalised data. However, the authors argue that the most popular query language,

SQL, is considered very cumbersome for graph-based queries. Most notably, recursive

queries are challenging to write and understand.

Since graph queries often involve joins, the authors looked at improving the join

capabilities of the RDBMS. Three techniques were implemented: Predefined pointer-based

joins, factorisation, and worst-case optimal join (WCOJ) algorithms. Furthermore, the

authors extended SQL to support vertices, edges, and path patterns using inspiration from

Cypher and GSQL.

3.6.7 MillenniumDB

Vrgoc̆ et al. present MillenniumDB, a persistent, open-source, graph database (114). It is

based on domain graphs, which can act as an abstraction on which other popular graph

models, such as RDF or the LPG, can be supported. The main strength of the domain

graph model is that it better captures higher-arity relations more directly; more details of

the model are provided in (114). The engine is based on relational database management

systems techniques, WCOJ (115) and graph-specific algorithms.

The authors set several goals for MillenniumDB. First, it should be able to support

various graph database models and query languages by generalising them. Second, it should

make use of state-of-the-art techniques, such as WCOJ. Third, MillenniumDB should be

easily extensible. Finally, it should be open-source, such that other researchers can reuse

the techniques. MillenniumDB aims to support multiple graph query languages. However,

the authors found that none of the existing ones can fully utilise the properties of the

domain graph model. Therefore, the authors created their graph query language, DGQL,

which closely resembles Cypher and contains SPARQL features.

To benchmark the performance of MillenniumDB, the authors used the WikiData

knowledge graph (116). They compared their performance with three RDF engines:
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Jena TDB (117), Blazegraph (118), and Virtuoso (119), as well as the property graph

database Neo4j Community Edition (101). It finds that the execution times of graph

pattern matching queries are consistently faster for MillenniumDB than other database

engines.
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Design & Implementation

The goal of this thesis is, by building on the work of Singh et al. described in Section 2.4,

to support shortest path-finding and returning the path length, as well as returning the

any shortest path containing a list of vertices found on the shortest path. In addition, the

SQL/PGQ implementation is also extended in DuckDB by adding support for path-finding

on weighted graphs. Supporting weighted graphs requires us to extend the CSR creation

as explained in Section 2.4.2 to support weighted edges and introduce a new scalar UDF

to compute the cheapest path length.

This chapter will describe key components related to implementing efficient path-finding

operators in DuckDB using C++. Figure 4.1 shows a schematic overview of the components

with the new elements highlighted in blue.

4.1 Overview

This thesis extends the previous work in multiple ways. In Section 4.2, we explain how

support is added to compute the shortest path length using the MS-BFS algorithm, see

Section 4.2. In Section 4.3 an explanation is given on how the any shortest path function

returning a list of vertices found in the shortest path is implemented. In Section 4.4,

support is added for building a CSR for weighted graphs. Using the weighted CSR, the

weighted shortest path (cheapest path) can be computed using the batched Bellman-Ford

algorithm discussed in Section 4.5. The output for the path-finding operations is used in

step 7 .

In step 3 and step 7 , we perform two join operations that create the same hash table.

These steps will use an optimisation introduced in Section 4.6 which allows for the hash
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Figure 4.1: Schematic overview of key components for efficient path-finding operators

table used to perform join operations to be shared between multiple joins in case these

joins are identical.

4.2 Shortest Path

Computing the shortest path between two vertices in an unweighted graph can be done

using Multi-Source Breadth-First Search (MS-BFS) by Then et al. (37), pseudo-code is

provided in Algorithm 5. MS-BFS is an extension of the textbook BFS discussed in

Section 3.4. Using MS-BFS, multiple BFS instances are exploring the graph together.

Whereas textbook BFS is a single-source algorithm, MS-BFS is a multi-source algorithm.

This algorithm is useful as multi-source shortest path queries can be common in SQL/PGQ.

We seek to improve efficiency by sharing the memory access of multiple searches. Moreover,

with MS-BFS, we can use the vectorised execution engine of DuckDB, possibly also

parallelising the execution of MS-BFS. A bottleneck for the MS-BFS algorithm will likely

be memory access (37). To alleviate the memory bottleneck, we create the CSR data

structure on-the-fly before executing the MS-BFS algorithm.

In the implementation made by Singh et al., it was possible to compute the reachability

of a node using the MS-BFS algorithm. The reachability implementation required a bitmap

for every source. The bitmap has a length equal to the number of vertices in the graph.

The bit relating to a vertex would be set to 1 if it was reachable from a given source.

When we wish to compute the shortest path, we need to allocate more than a single

bit for every vertex, as the distance is very likely to be greater than 1. However, keeping

in mind that we wish to write SIMD-friendly code, we should keep the space allocated

for the vertices as small as possible. For example, if we allocate 8 bits for every vertex

and use SSE/SSE2 instructions, it is only possible to execute 128/8 = 16 BFS instances

simultaneously.
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Algorithm 5 Multi-Source Breadth-First Search
Input: G,B, s

2: seensi ← {bi} for all bi ∈ B
visit←

⋃
bi∈B{(si, {bi})}

4: visitNext← ∅
while visit ̸= ∅ do

6: for each v in visit do
B

′
v ← ∅

8: for each (v′,B′) ∈ visit where v′ = v do
B

′
v ← B′

v ∪B′

10: end for
for each n ∈ neighboursv do

12: D← B′
v \ seenn

if D ̸= ∅ then
14: visitNext← visitNext ∪ {(n,D)}

seenn ← seenn ∪D
16: Do BFS computation on n

end if
18: end for

end for
20: visit← visitNext

visitNext← ∅
22: end while
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The shortest (unweighted) distance can never be a negative number. Therefore we can

use unsigned integers, doubling the maximum length we can store with the same amount of

bits. If we use 8-bit unsigned integers, the maximum length of a path can be 255. Though

we need to reserve one number to signal that a vertex is unreachable, thus the maximum

length will be 254.

The implementation works with batch sizes to allow for the code to be SIMD-ised by the

compiler. Due to the vectorised execution engine of DuckDB and the standard vector size

being 1024 tuples, we will receive at most 1024 tuples (source vertices in this case) at a

time. To process these more efficiently, we process these tuples in batches. The batch size

can be changed, though we assume the batch size is set to 256 for the remainder of this

thesis unless otherwise specified. Thus, a vector of 1024 vertices is processed in 4 batches.

Within a batch, every unique source vertex gets assigned a lane for which we calculate the

distance from this source to all other vertices in the graph.

In the current implementation, we start the algorithm with 8-bit unsigned integers to

keep track of the distance. It could be argued that 4-bit unsigned integers would also suffice

as a starting point. There exist no SIMD instructions for 4-bit integers (49). A workaround

is possible, though we do not consider that for this thesis. The arrays used to hold the path

lengths for the vertices are initialised with the maximum 8-bit unsigned integer value, 255,

to indicate that these vertices have not been reached yet. If the path length is longer than

254, we copy the 8-bit unsigned array to a 16-bit unsigned integer array to avoid integer

overflow. This pattern is repeated to 32-bit if we find that 16-bit unsigned integers are

also not enough to store the path length. However, every time we copy the array to larger

arrays, we reduce the efficiency of SIMD instructions. As mentioned, with 8-bit integers,

it is possible to run 128/8 = 16 BFS instances at once. With 32-bit integers we are only

able to run 128/32 = 4 BFS instances.

Figure 4.2 shows an example where two BFS instances will be run, one starting from

vertex 1, marked in green, and the other starting from vertex 7, marked in blue. The

algorithm comprises three arrays for every source. The visit array is a bitmap that contains

the currently active vertices for which neighbours will be explored for the next iteration.

The seen array, also a bitmap, holds information on all vertices that have been seen so far.

The depth array tells us in which iteration the vertex was discovered, i.e. the path length.

For B1 in Figure 4.2, we set the bit at position 1 in both the visit and seen arrays.

Additionally, we set the depth from position 1 to zero. The same is done for B2, where

the bits at position 7 are set to zero.
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For the next step in B1 and B2, we explore the neighbours for the active vertices in the

visit array. In step 1, shown in Figure 4.3, for B1, we explore the neighbours of vertex 1,

namely 2 and 4. We set the bits in visit and seen for 2 and 4 respectively and unset the

bit for 1, seen in Figure 4.3b. We mark that the distance for these vertices is one. For B2,

we do the same for the neighbours of vertex 7, which are 3, 4, and 5.

In step 2, shown in Figure 4.4 we see that vertex 4 is active for both B1 and B2. The

neighbours of vertex 4 are 1 and 3. For B1, vertex 1 has already been discovered (as this

was the source), which guarantees that no shorter path can be found. We, therefore, do

not update the distance and do not need to explore this vertex for this BFS instance. For

B2, we have already discovered vertex 3, which had a length of 1 from the source vertex

7. We, therefore, also do not explore vertex 3 further for B2.

In step 3, shown in Figure 4.5, we discover the last vertices for both B1 and B2. At

that point, we observe that no more edges lead to unseen vertices from these discovered

vertices, and thus we terminate the algorithm.

4.3 Any Shortest Path

With any shortest path we wish to find the shortest path and return all the nodes on

this shortest path. The input to this function is the CSR, the row ids of the source and

destination nodes. Returned will be a list containing the row ids of the nodes, including

the source and destination, found on the shortest path. We will only return a single one if

there are multiple shortest paths of equal length. This algorithm will also use the MS-BFS

described in Section 4.2. However, the MS-BFS algorithm needs to be extended to keep

track of the nodes on the shortest path. For simplicity, the explanation will make use of a

single-source BFS.

We start with an empty array p of length |V |. This array can reconstruct the final path

once the algorithm terminates. Additionally, we keep track of the currently active nodes

in an array w of length |V |.

The first step is to denote the starting node in the array p. The starting node will be used

when reconstructing the path once the algorithm has terminated. Denoting the starting

node can be done by inserting a value that cannot be used anywhere else in the array, such

as |V |. Thus, when reconstructing the path, if we reach |V |, we know that we have found

the original starting node. Once a value has been set in the array p, we need to ensure not

to overwrite this value in the future. If we come across the same node at a later step, we
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(a) Graph representation of the initial state

(b) Array representation of the initial
state. The symbol X marks that the value
of a bit is set to 1.

Figure 4.2: MS-BFS initial state

(a) Graph representation of step 1

(b) Array representation of step 1. The
symbol X marks that the value of a bit is
set to 1.

Figure 4.3: MS-BFS step 1

(a) Graph representation of step 2

(b) Array representation of step 2. The
symbol X marks that the value of a bit is
set to 1.

Figure 4.4: MS-BFS step 2
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(a) Graph representation of the final step.

(b) Array representation of the final step.
The symbol X marks that the value of a
bit is set to 1.

Figure 4.5: MS-BFS step 3 (final)

always know that this is from a longer path, which is not interesting. Therefore, we set a

boolean is_set to true to indicate that this value should not be changed later.

In every iteration, there are one or more nodes active. In w, we note the active node(s)

by entering their index at their respective position in the array. For example, if node 1

is active, there will be a 1 at position 1 in the array w. The next step is to explore the

neighbours of the active nodes. For every neighbour, we denote their parents’ row id at the

neighbour’s index in the array p. The next step is to make the current neighbouring nodes

active and update w. This step is similar to updating the visit_next and visit arrays in

the BFS algorithm.

(a) Graph representation (b) Matrix representation (c) Arrays

Figure 4.6: Any shortest path initial state

Constructing the paths Figure 4.6 shows the initial state where no algorithm steps

have been taken. The source from which the algorithm starts is node 1. In this algorithm,
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(a) Graph representation (b) Matrix representation (c) Arrays

Figure 4.7: Any shortest path step 1

(a) Graph representation (b) Matrix representation (c) Arrays

Figure 4.8: Any shortest path step 2

the destination node is only relevant after the entire graph has been explored and the path

needs to be recreated. Therefore the destination vertex is not included in the example.

Figure 4.7 shows the first step, where node 1 is set as the active node in array w, seen

in Figure 4.7c. Additionally, the neighbours of 1, nodes 2 and 4 are explored. In array p,

it is noted that the parent of nodes 2 and 4 is 1. In array w′, we denote the indices of the

nodes that have just been set in the array p, which in this case are 2 and 4.

For the next step, shown in Figure 4.8, we observe that nodes 2 and 4 are now active in

the array w, and nodes 3, 5, and 7 are being explored. The parent of node 3 is 4. Hence

at index 3 in the array p, we denote 4 as the parent. For nodes 5 and 7 the parent is node

2. Hence at positions 5 and 7, the denoted value is 2. We also observe that one of the

children of node 4, namely node 1, has already been explored in a previous iteration. We

do not note that node 1 can be reached through node 4, since it would always be a longer

path than what is currently known.

For a complete run-down of the algorithm, see Appendix B.
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(a) Weighted directed graph (b) CSR representation of weighted directed graph

Figure 4.9: Weighted directed graph and the CSR representation

Returning the paths In DuckDB, it is possible to return a column of type List (120).

Therefore, every row returned will be a list containing all nodes in the path. Once the

algorithm has terminated, it can reconstruct the path from a given destination to the

source. This is done by inserting the id of the destination node in the output array o.

Then in array p, take the value at the index of the destination node and add this to o. The

next step is to take the value at the index of the previous value and add this to o. Repeat

this until the index is equal to the id of the source node. Array o then contains all values

on the path between the source and destination nodes. In the example shown, node 1 is

the source node and node 6 is the destination node. Thus, the array o contains the value

[6]. At index 6 in array p we see the value 3, thus array o now contains the values [3,

6]. Then, nodes 4 and 1 are added to o, resulting in the path [1, 4, 3, 6].

The algorithm shown in the example is single-source. However, the implementation in

DuckDB uses the MS-BFS algorithm to traverse the graph, making the any shortest path

function multi-source.

4.4 Weighted Compressed Sparse Row

In order to compute the cheapest path, we need to extend the CSR data structure to

support edge weights. Supporting edge weights does not require significant modification

to the data structure. The only addition is an array that stores the weight related to an

outgoing edge, see Figure 4.9, similar to the edge array described in Section 2.4.2. The

current implementation in DuckDB supports 64-bit integers and doubles to be stored as
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edge weights. Storing the weights in the CSR is the same way the edges are stored. If we

want to create a CSR with the weights, the UDF responsible for creating the edge array

receives an additional variable, namely the column containing the weights, allowing the

CSR to be still created in parallel. Other data types that take up fewer bits should also

be supported for future work.

4.5 Cheapest Path

When every edge has assigned a weight, and thus we have a weighted graph, it is possible

to compute the cheapest path from a source to a destination. As described in Chapter 3,

multiple algorithms exist to compute the cheapest path, such as Dijkstra’s algorithm

and Bellman-Ford. Similarly to the shortest path, we wish to use a batched algorithm

to evaluate multiple source-destination pairs simultaneously. A SQL/PGQ query would

typically contain multiple source-destinations pairs. Using a single-source version of the

algorithms mentioned above, we would have to execute the entire algorithm for every

source. This sequential execution would create no opportunity for vectorising the code

and create more inefficient memory access patterns.

Then et al. (82) have proposed two algorithms to compute the cheapest path, batched

Bellman-Ford and Batched Dijkstra’s algorithm. Implementing a batched version of

Dijkstra’s algorithm is more complex due to the Fibonacci heap required for every algorithm

instance. Multiple instances will be run during the execution, each having a unique

Fibonacci heap. The structures of these heaps are different, limiting the possibilities of

using SIMD instructions. Based on experimental results, the authors report that the

performance of the batched Bellman-Ford algorithm is 3–10× higher compared to batched

Dijkstra’s algorithm (82). Therefore, we decided to implement the batched Bellman-Ford

algorithm proposed by Then et al., as shown in Algorithm 6. The implementation also

handles the sources within a vector in batches as described in Section 4.2

4.5.1 Batched Bellman-Ford implementation

Similar to MS-BFS, multiple instances of Bellman-Ford will be executed simultaneously,

allowing the memory access to be shared. For every source vertex, an array, referred to as

lane, is created with a length equal to the number of vertices in the graph. This graph will

contain the distances from the source to all other vertices. During initialisation, the value

at the index of the source vertex is set to zero. All other values are set to ∞ to indicate
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Algorithm 6 Directed batched Bellman-Ford Algorithm
Input: WeightedGraph G, Array<Vertex> sources

2: Output: VertexProperty<BatchVar<double> > dists
VertexProperty<BatchVar<bool> > modified = false

4: dists = Infinite
for i=1..sources.length do

6: Node v = sources[i]
dists[v][i] = 0

8: modified[v][i] = true
end for

10: bool changed = true
while changed do

12: changed = false
for each v in G.vertices do

14: if not modified[v].empty() then
for each n in G.neighbours(v) do

16: double weight = edgeWeight(v,n)
for each i in modified[v] do

18: double newDist = min(dists[n][i], dists[v][i] + weight)
if newDist != dists[n][i] then

20: dists[n][i] = newDist
modified[n][i] = true

22: changed = true
end if

24: end for
end for

26: end if
end for

28: end while
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that they are unreachable. In the DuckDB implementation, we use the maximum possible

value of the type we use, either a 64-bit integer or double.

We iterate over all the vertices in the graph, and for every vertex v, we evaluate the edges

to all its neighbours n. Every (v, n) edge has a weight w. Recall that we created a CSR

structure containing a vertex array in order of the row identifiers. The values in the vertex

array point to the starting location for their respective edges, which are also in order.

Hence, we traverse the CSR vertex and edge arrays in order, providing a good memory

locality. An issue arises when the distances of the neighbour (dists[n] in Algorithm 6) are

retrieved. Accessing the neighbour is random access in the memory as we cannot guarantee

that the neighbours are closely aligned. For an arbitrary vertex v, it could be that the first

neighbour is close to v in the dists array, while the second neighbour is not. The outgoing

edges in the CSR edge array are in order, which improves the locality in the best case.

However, no guarantee can be given and thus, most cache misses will occur when retrieving

dists[n].

Then for every lane i, we check if the currently cheapest known distance dists[n][i] is

higher than the distance known at dists[v][i] + w. If this is the case, we have found a new

cheapest path and updated dists[n][i] accordingly.

A possible optimisation was introduced by Yen (93) where a bitmap is created for every

lane, equal to the length of the number of vertices. A bit is set once the value at the

distance array corresponding with the vertex is modified. This optimisation ensures that

we only check edges which have a chance of being cheaper. If an edge has not been modified

yet, i.e. the distance is still set to ∞, there is no chance it will provide a cheaper distance

as ∞+ weight >∞.

We expect Bellman-Ford to be slower compared to the MS-BFS algorithm by Then (37).

With MS-BFS, we only have to iterate over all vertices once since we know the first time

we discover a vertex, it is guaranteed to be the shortest path. With Bellman-Ford, in the

worst case, we have to perform |V |−1 iterations until we have found all the cheapest paths.

With Bellman-Ford, we cannot give this guarantee after one iteration since it can be the

case that a cheaper path is discovered later. Only once all vertices have been iterated over

and no change has been made can we guarantee that all cheapest paths have been found.

This fact requires us to perform another iteration over all vertices. Even taking the best

possible case for Bellman-Ford, where all cheapest paths are found in the first iteration,

we still require a second iteration over all vertices to ensure no more changes have to be

made.
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4.5.2 Vectorising Batched Bellman-Ford

Batched Bellman-Ford, as shown in Algorithm 6 will not be auto-vectorised by the clang

or GCC compilers1. This is due to the modified array and the if-statement in line 19

(if newDist != dists[n][i] then . . .), which creates a branch. This alone does not necessarily

prevent vectorisation (121). However, in this case, every lane (i) can be a different value,

meaning that we wish to execute the code inside the if-statement only for some lanes. This

if-statement makes vector operations difficult as we wish to do the same operation on all

lanes in a vector.

Thus, we have tried to modify the algorithm such that it will be auto-vectorised. We do

not need the modified array to guarantee the correct output, as this was an optimisation

to avoid checking unnecessary lanes. Therefore, we have tried removing the modified array

and the if-statement mentioned earlier. The result is shown in Algorithm 7. We have

removed the code related to initialising all arrays as this is equal to what is shown in

Algorithm 6.

Algorithm 7 Batched Bellman-Ford without the modified array
bool changed = true

2: while changed do
changed = false

4: for each v in G.vertices do
for each n in G.neighbours(v) do

6: int weight = edgeWeight(v,n)
for i=0 to dists[v].size() do

8: int minDist = min(dists[n][i], dists[v][i] + weight)
changed |= ((minDist < dists[n][i]) | changed)

10: dists[n][i] = minDist
end for

12: end for
end for

14: end while

However, this will not generate vectorised instructions for the inner-most for-loop2. The

fact that no vectorised instructions are generated is likely due to the changed variable,

which can be different for every lane in this case. Hence auto-vectorisation is not possible.

1https://godbolt.org/z/zz7WeMshE
2https://gcc.godbolt.org/z/MfnMcb8he
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We include this implementation of the algorithm without the use of a modified array for

comparison sake.

In Algorithm 8 we show pseudocode that will be auto-vectorised by the GCC and

clang compilers1. We have split the inner-most for-loop into functions. The function

update_one_lane(n_dist, v_dist, weight) performs the same operations as was done

previously, checking if the newly found path is cheaper than the current known one.

If this is the case, we return a non-zero value; if not, we return zero. In the function

update_lane(dists, v, n), the for-loop is changed to a while loop.

In the current implementation, the edge weights are either 64-bit integers or doubles (also

requiring 64 bits). However, in the case that the edge weights are integers, it could be that

64-bits are never fully utilised, and instead, a smaller amount of bits can be used per edge

weight. If we use SSE instructions with 64-bit integers, it will only provide a speed-up of

roughly 2x since the XMM registers are 128-bit wide; thus, 128/64 = 2. Therefore, fewer

bits per edge weight will provide a more significant speed-up.

4.6 Shared Hash Join

Queries can contain multiple joins that are identical. Identical joins can occur in graph-like

queries, where the vertex table is joined twice on an edge table: once for the edge’s source

and once for the its destination, see Listing 4.1, where knows is the edge table and person

is the vertex table.

1 SELECT *
2 FROM knows k
3 JOIN person src ON k.person1_id = src.person_id
4 JOIN person dst ON k.person2_id = dst.person_id;

Listing 4.1: Example of identical joins

In the current state of DuckDB, a hash table is built from the smaller table for each join.

However, this is wasteful when queries containing multiple join operations have identical

sinks. This occurs during the creation of the CSR data structure described in Section 2.4.2,

see lines 21 and 22 of Listing A.1 in order to label the edges as (src, dst) combinations

of vertex table row ids. In this case, the right side is identical in both joins. See Figure 4.10

for the relevant part of the physical plan of this example query.

An optimisation is to build the hash table only once and reuse it for any identical joins

containing the same sink. This optimisation will eliminate the need to build the same hash
1See all instructions: https://godbolt.org/z/KWjKWPq51
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Algorithm 8 Auto-Vectorised batched Bellman-Ford
Function update_one_lane(n_dist, v_dist, weight):

int new_dist = v_dist + weight
bool better = new_dist < n_dist
int min = better ? new_dist : n_dist
int diff = n_dist

⊕
min

n_dist = min
return diff

EndFunction

Function update_lane(dists, v, n):

int weight = edgeWeight(v,n)
int num_lanes = dists[v].size()
int lane_idx = 0
int xor_diff = 0
while lane_idx < num_lanes do

xor_diff |= update_one_lane(dists[n][lane_idx], dists[v][lane_idx], weight)
++lane_idx;

end while
return xor_diff != 0;

EndFunction

bool changed = true
while changed do

changed = false
for each v in G.vertices do

for each n in G.neighbours(v) do
changed = update_lanes(dists, v, n) | changed;

end for
end for

end while

59



4. DESIGN & IMPLEMENTATION

Figure 4.10: Example of a duplicate sink state in the physical plan

table multiple times. We decided to add this optimisation to DuckDB for the benefit of

CSR construction performance but also the benefit of any other queries containing any

repeated identical joins. The optimisation can not be performed on FULL or RIGHT joins.

For these joins, a state needs to be kept for the hash tables to see if a particular value has

been accessed or not. This access may vary between joins and thus will result in different

states. Therefore, the hash table cannot be reused for these types of joins.

We have implemented this optimisation as follows. Our initial idea for the

implementation was to detect duplicate joins in the optimiser. The optimisation can

be done by adding a new rule to the optimiser, which scans for duplicate joins. In the

optimiser, the logical plan tree is traversed. Whenever a join is detected, the name of the

table on which the join is performed is saved in the client context. If an identical table is

detected multiple times in various joins in the same query, thus implying an identical join,

we will replace the later encountered join with a SHARED HASH JOIN logical node. This

node would reference the left-hand side table name of the original join and a single child

that represents the right-hand side table used for the source.

There turned out to be several challenges with this approach. First, using only the name

of the left-hand side table to detect duplicate joins is not sufficient. Multiple joins on the

same table can exist that use different columns. These would then result in non-duplicate

hash tables, which can not be reused by each other. Thus it is essential to also look at the

conditions of the joins. However, this can also be done in the optimiser.
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Assuming the duplicate join is detected, a logical node would have replaced this join.

However, this requires the introduction of a new logical node and a new physical operator

for the physical planner stage. This new physical operator would then have created its

own pipeline, creating additional work that could be saved using our chosen approach.

The chosen approach is to detect the duplicate joins during the pipeline creation, later

in the execution pipeline than the previous approach. At this point, the physical plan

has already been created and gets converted into pipelines. When the physical operator

HASH JOIN is detected, we save the corresponding pipeline that builds the hash table, and

the HASH JOIN operator is saved in a dictionary inside the Executor. Then, whenever an

additional HASH JOIN is detected, we check if this join results in a duplicate hash table

as seen earlier. This check is done by comparing the join type (INNER, OUTER, ANTI), the

number of conditions, and ultimately if the right-hand side of every condition is equal to

the earlier detected join. If the HASH JOIN is found to be equal, we replace its pipeline

that will build a hash table with a reference to the original pipeline. Hence, we prevent

the duplicate join from building the same hash table and instead potentially reusing the

original hash table multiple times.

A disadvantage of the current implementation is that it only works for syntactically

completely equal joins. Subsumed joins or joins with different column orders are not

supported.
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5

Evaluation

5.1 Experimental Setup

5.1.1 Environments

We conducted several experiments to assess the scalability of the proposed algorithms and

the effectiveness of the shared hash join optimization. These have been executed in the

following environments:

• DuckDB version 0.2.2 Development

• Intel(R) Xeon(R) CPU E5-4657L v2 @ 2.40 GHz, 48 cores with Hyper-Threading

• 1 TiB RAM

• L1 cache: 32 KiB per core (data), 32 KiB per core (instr), L2 cache: 256 KiB per

core, L3 cache: 2.5 MiB per core; shared

• Compiler: GCC 9.4.0

• Operating system: Fedora release 32

For the microbenchmark discussed in Section 5.4, the following environment was used:

• Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz, 4 cores with Hyper-Threading

• 16 GiB RAM

• L1 cache: 32 KiB per core (data), 32 KiB per core (instr), L2 cache: 256 KiB per

core, L3 cache: 2 MiB per core; shared1

• Compiler: GCC 9.4.0

• Compiler options for SSE2: -O3

• Compiler options for AVX2: -O3 -mavx2

• Operating system: Ubuntu 20.04.4 LTS
1https://en.wikichip.org/wiki/intel/core_i7/i7-8650u
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Figure 5.1: LDBC Interactive Query 13 (1)

5.1.2 LDBC Social Network Benchmark

The Linked Data Benchmark Council has created the Social Network Benchmark to

test graph functionalities and performance of database management systems (122). The

benchmark contains datasets structured similarly to real-world social networks, consisting

of persons and their connections. These datasets exhibit natural social-network phenomena

such as the small-world property (83). Two workloads are described in the benchmark, the

Interactive workload, which focuses on transactional queries, and the Business Intelligence

(BI) workload, which focuses on analytical queries.

The BI workload consists of 20 complex read queries and refresh operations (insert and

delete operations). Since SQL/PGQ is a read-only query language, we will only be focusing

on the queries related to the read operations. Each of the 20 queries contain substitution

parameters generated before executing the query. These parameters are then used in the

query to validate the correctness of the results. Various scale factors (SF) exist to help

evaluate the system’s scalability. The larger the scale factor, the more vertices and edges

are contained in the graph.

For every query, the benchmark has generated parameters on which the performance

can be evaluated. The parameters are generated so that they all provide similar run-time

behaviour (122).

Interactive query 13. Interactive query 13 (1), see Figure 5.1 can be used to evaluate

the performance of the shortest path algorithm. For this query, we are given two parameters

Person1 and Person2, for which we have to find the shortest path through the knows table.

If a path can be found, we should return the length of the path. We should return −1 as

the distance if no path is found. It can be the case that Person1 is the same as Person2.

In that case, we should return 0. The complexity of this query lies in its large search

space. Unlike the queries discussed from the BI workload, we cannot perform a filter

on the number of edges in the graph. In this case, we have to consider all knows edges

provided in the dataset. Since the SNB emulates a social network with the small-world

property (83), any two people will likely have a path containing six or fewer hops.
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Figure 5.2: LDBC BI Query 19 (2)

To create a direct comparison between the performance of our shortest path and cheapest

path functions, we will also evaluate the cheapest path implementation on query 13. To

do this, we assign a pseudo-random edge weight to every knows edge, namely (person1id+

person2id)%10 + 1.

Two queries require us to find the shortest or cheapest path from some starting point to

a target. These queries are 19 (2), and 20 (3).

BI query 19. For BI query 19 (2), see Figure 5.2, the parameters are City1 and City2.

The goal is to find Person1 and Person2, who are from their respective cities, where the

interaction path is the cheapest. The interaction path is defined as the number of direct

reply Comments to a Message by the other Person. More interactions imply a cheaper

path, calculated by 1/count(interactions), resulting in a 32-bit float. For this query, there

are two sets of parameters generated by LDBC. For the first set of parameters, referred

to as 19a from now, City1 and City2 are small cities within the same Country. For the

second set of parameters, 19b, City1 and City2 are small cities from different Countries.

People from the same country have a higher chance of knowing each other than persons

from different countries. Therefore, q19a will have more source-destination pairs compared

to q19b. We use 19a to evaluate the performance.
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Figure 5.3: LDBC BI Query 20 (3)

BI query 20. BI query 20 (3), see Figure 5.3, provides two parameters: Person2 and

Company. The goal is to find Person1 who is working or has worked at Company, who

has a path to Person2. Person2 is not working or has not worked at Company. This

connection is defined by persons who know each other and have studied at the same

university. The weight of the connection is an integer of the absolute difference between

the year of enrolment + 1 (to avoid division by zero errors). Since the weights between any

two persons are not all equal, it is necessary to use the batched Bellman-Ford algorithm

discussed in Section 4.5. If all weights were equal, MS-BFS, discussed in Section 4.2 could

be used.

The queries are executed in several phases. In the first phase, DuckDB performs any

pre-computing required for the query. For example, for BI query 20, the edge weights are

pre-computed and stored in an edge table. This edge table only contains entries that are

relevant to the query. For example, for BI query 20, any edge of personA who knows a

personB that has not studied at the same university as personA will be filtered out since

this edge is not relevant to computing the path length. The total search space is reduced

by filtering, so fewer vertices and edges need to be traversed.

The second phase consists of creating the CSR structure required for the shortest and

cheapest path algorithms. This phase is followed by inserting parameters into a temporary

table. It is then possible to compute the shortest or cheapest paths for all rows in this

temporary table and return the result.
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Scale
factor

Number of
vertices

Number of
edges

Number of
src-dst
pairs

Shortest path
length run-time
(s) / src-dst pair

Cheapest path
length run-time
(s) / src-dst pair

1 9 538 346 028 377 0.0023 0.1881
3 23 486 1 057 792 378 0.0036 0.5908

10 65 141 3 678 708 385 0.0079 1.8123
30 162 139 11 048 604 388 0.0185 6.3378

100 453 895 37 311 030 395 0.0561 26.1644
300 1 147 729 111 313 830 400 0.1487 70.5652

1 000 3 298 534 374 495 576 389 0.6568 285.0050
3 000 8 692 445 1 118 720 370 390 1.8107 N/A

10 000 25 633 648 3 709 057 850 359 8.3948 N/A

Table 5.1: Graph size and number of source-destination pairs per scale factor for Interactive
query 13

5.2 Shortest Path Length

Table 5.1 shows the number of source-destination pairs evaluated in query 13 for every scale

factor. In Interactive query 13, the number of source-destination pairs remains relatively

constant as the scale factor increases.

Figure 5.4: Average execution time per scale factor for shortest path Interactive query 13

In Figure 5.4 we observe the average run-time for Interactive query 13 using the shortest

path length function. This total execution time, seen on the y-axis, includes CSR creation
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time and the MS-BFS algorithm execution. The x-axis shows the number of edges in the

graph. The numbers ranging from 1 to 10 000 indicate the scale factors. We observe a

scaling that is close to linear with the number of edges. During this experiment, there

have been 400 unique source-destination pairs for each scale factor for which we find the

shortest path. In the largest scale factor, 10 000, we search for 400 path lengths in a graph

with three billion knows edges, this was done in 3 013 seconds (≈ 50 minutes).

Figure 5.5: Average execution time per source-destination pair per scale factor for shortest
path Interactive query 13

In Figure 5.5 we show the average run-time per source-destination pair. The y-axis is a

logarithmic time scale with the total execution time in the number of seconds. We observe

that the algorithm uses more time for every source-destination pair on average as the scale

factor increases. For scale factor 10 000, it takes 10 seconds to find the shortest path length

for a source. The increasing time taken makes sense; as the search space increases, more

edges must be traversed until all shortest paths are found.

In Figure 5.6, we observe the relative time spent per execution phase of the shortest

path query split up by the larger scale factors. Across all scale factors, most time is spent

performing the path-finding algorithm. In the scale factors 30 up to 1 000, creating the

CSR takes 5% of the time. However, in the larger scale factors, it can be observed that

CSR creation takes more time relatively compared to the smaller scale factors.

Figure 5.7 shows the total time taken to create the CSR data structure for the various

scale factors. Note that the y-axis is a logarithmic scale. We observe that for the scale

factors 1 to 30, the CSR is created in a constant amount of time, roughly 0.3 seconds.

68



5.2 Shortest Path Length

Figure 5.6: Relative time spent per phase for Interactive query 13 shortest path

Figure 5.7: CSR creation time for all scale factors
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However, we see a linear increase in the time it takes to create this data structure for larger-

scale factors. This is because, with the smaller scale factors, it is possible to perform the

creation in parallel. However, at some point, there are no more threads to which a morsel

can be given. Recall that a work is scheduled on a thread for every 120 · 1024 = 122 880

tuples. The environment in which this experiment was conducted has 96 threads. Hence,

once we exceed 122 880 · 96 = 11 796 480 tuples, all threads are filled. At scale factor 30,

there are 162 139 vertices and 11 048 604 edges, which are fewer tuples than can be handled

with 96 threads. However, at scale factor, there are 453 895 vertices and 37 311 030 edges,

which result in too many tuples to handle in parallel. Therefore, from scale factor 100, we

observe a linearly scaling for the time taken to create the CSR data structure.

Figure 5.8: CSR creation using a single thread

Figure 5.8 shows the execution time for creating the CSR data structure using a single

thread. This confirms that the time taken to create the CSR data structure scales linearly

with the number of edges and vertices in the graph. Intuitively this makes sense as the

CSR creation, as described in Section 2.4.2, is performed with one loop over all vertices

|V | and one loop over all edges |E|.
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5.3 Cheapest Path Length

5.3.1 Interactive Query 13

Figure 5.9: Total execution time per scale factor for the cheapest path variant of Interactive
query 13

Figure 5.9 shows the total execution time for Interactive query 13. The y-axis is in

seconds using a logarithmic scale. It can be observed that it is linearly scaling with the

number of edges. 1 000 is the highest scale factor evaluated. Completing Interactive query

13 with 400 source-destinations pairs for scale factor 1 000 took 110 867 seconds, roughly

31 hours.

Figure 5.10 shows the average time spent per source-destination pair for the larger scale

factors. For scale factor 1 000, the cheapest path for a source-destination pair was found

in 300 seconds on average. For scale factor 30, on average less than 3 seconds is required

for a source-destination pair.

Figure 5.11 shows the relative time spent in each phase of the query. As can be observed,

the path-finding phase, in which batched Bellman-Ford is executed, dominates all other

phases in terms of time spent.

5.3.2 Comparison Between Shortest and Cheapest Path Length

We conducted a performance comparison between the shortest and cheapest path length

functions using Interactive query 13.
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Figure 5.10: Average execution time per source-destination pair per scale factor for the
cheapest path variant of Interactive query 13

Figure 5.11: Relative time spent per phase for Interactive query 13 cheapest path
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(a) Difference in performance between shortest and cheapest path for query 13
Scale factor 1 3 10 30 100 300 1 000 3 000 10 000
Speed-up (Cheapest vs. shortest) 80× 163× 230× 342× 466× 475× 434× N/A N/A

(b) Speed-up of cheapest path function / shortest path function for query 13

Figure 5.12: Difference in performance between shortest and cheapest path for query 13

The performance gap between the shortest and cheapest path functions appears to be

several orders of magnitude, see Figure 5.12a. Since the y-axis uses a logarithmic scale,

Figure 5.12b has been included to make comparison easier. The shortest path function is

at most 475× faster.

The large performance gap can likely be attributed to three factors. The first is that the

problem of computing the cheapest path length is more difficult than the shortest path

length. Azad et al. (123) have created a comparison of the execution time for various

algorithms between graph frameworks. They observe that, depending on the dataset, BFS

is 2-10x faster compared to Single-source shortest path using the delta-stepping algorithm.

Second is that Bellman-Ford is not the most-efficient algorithm, even though it fits well

into the DuckDB execution model and can make good use of SIMD instructions (82).

However, Bellman-Ford is work-inefficient for graphs with only non-negative edge weights,

whereas Dijkstra’s algorithm or delta-stepping would be more efficient (124, Section 4.2).

The third factor is that the implementation introduced performance bottlenecks, mainly

due to the use of dictionaries. Dictionaries make use of a hash table for the key. Thus,

every time we wish to access a value in the hash table, a hash value needs to be calculated

first. This leads to a pointer which is a random memory access.
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Due to all these factors, it is expected that batched Bellman-Ford is slower than MS-BFS.

However, by eliminating the third factor, we should see the performance gap be decreased

substantially. Further optimisations are covered in Chapter 6.

If the graph is larger than can be stored in memory, this causes cache misses every

iteration. Following is a more in-depth analysis of the space required to calculate the

shortest and cheapest path lengths. The cache sizes in the environment tested are:

• L1 cache: 32 KiB per core (data), 32 KiB per core (instr)

• L2 cache: 256 KiB per core

• L3 cache: 2.5 MiB per core; shared

CSR creation The CSR structure in DuckDB uses 64-bit integers to store the vertices,

edges, and weights in the case of a weighted graph. In the scale factor 1 data set, there

are 9 538 vertices and 346 028 edges. Thus the CSR structure requires 9 538 · 64 = 76 KiB

for the vertices, 346 028 · 64 = 2 768 KiB = 2.7 MiB for the edges, and 346 028 · 64 =

2 768 KiB = 2.7 MiB for the weights. Thus, not all CSR data can be stored in the L2

cache on a single core for even the smallest scale factors. L3 cache can be used as that is

shared between the cores and is larger than L2.

Shortest path length For the shortest path length function, there are three bitmaps

of length |V |. In total there are 400 unique sources, however these are handled in batches

of 256 elements (lanes) at a time. Thus, the first batch handles the first 256 unique

sources. The second batch handles the remaining 144 sources. Thus the maximum total

space the three bitmaps used was 3 · 9 538 · 256 = 915 KiB total space. Additionally, the

shortest distance is stored using 8-bit integers initially 1. For every source, a new lane with

length |V | is created. Therefore in query 13, the distance matrix with 256 unique sources

required 256 · 9 538 · 8 = 2 441 KiB. Therefore, the total size for the shortest path function

is 2 441+915+2 768+76 = 6 200 KiB = 6.05 MiB. This data does not fit inside L2 cache,

though it does fit in the shared L3 cache.

Cheapest path length For computing the cheapest path length, the distances are stored

in a 64-bit integer matrix. For every source, a new lane is created of length |V |. When

testing with 400 unique sources in batches of 256 elements at a time, this matrix has a

total size of 256 · 64 · 9538 = 19 533 KiB = 19.5 MiB. Additionally, there is a bitmap
1We assume no overflows occurred in this test, which would necessitate scaling up us to scale up to

16-bit integers to store the distance
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Scale
factor

Number
of vertices

Number
of edges

Number of source-
destination pairs

Run-time (s) /
source-destination pair

1 9 322 346 028 2 185 0.1846
3 23 002 1 057 792 12 878 0.4824

10 63 988 3 678 708 89 650 1.7033

Table 5.2: Graph size and number of source-destination pairs per scale factor for BI query 19a

of length |V | to keep track of the modified entries, which takes 256 · 9 538 = 305 KiB.

The maximum total size required for computing one batch of the cheapest path length is:

305 + 19 533 + 2 768 + 2 768 + 76 = 25 450 KiB = 25.4 MiB. This data is more than can

be stored in the L2 cache; therefore, L3 is required. Since batched Bellman-Ford requires

multiple iterations over all vertices, this will cause cache misses and cause a slow-down

even in scale factor 1.

For larger scale factor, more L3 cache needs to be used and at some point even L3 will

fill up. The situation is slightly better for the shortest path length function compared

to the cheapest path length function since it requires less total storage. The growth in

total size is faster for the cheapest path because the distances are stored in 64-bit integers,

as opposed to 8-bit integers for the shortest path function. In addition, the CSR data

structure requires both the edge array and the equally sized weight array for the cheapest

path, whereas only the edge array is required for the shortest path.

5.3.3 BI Query 19a

Table 5.2 shows the size of the graph and the number of source-destination pairs evaluated

per scale factor. Different from what was shown in Table 5.1, in the case of BI query 19a,

the amount of source-destination pairs increases with the larger scale factors. Computing

the cheapest path length for more source-destination pairs becomes increasingly difficult.

Figure 5.13 shows the average run-time for BI query 19a using the cheapest path length

function. Note that the x-axis and y-axis are a logarithmic scales. The largest scale

factor evaluated was scale factor 10. The scaling appears to be linear, though the absolute

performance and scalability are lacklustre. Since the number of edges for BI query 19a and

Interactive query 13 being similar, it is likely that the absolute performance drop is due to

there being more source-destination pairs for BI query 19a, compared to Interactive query

13, increasing the total time needed to calculate all cheapest path lengths.
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Figure 5.13: Average execution time per scale factor for cheapest path BI query 19a

Figure 5.14: Average execution time per source-destination pair per scale factor for cheapest
path BI query 19a
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5.3 Cheapest Path Length

Figure 5.14 shows the average time spent per source-destination pair. The x-axis and

the y-axis are logarithmic scales. We observe that the time spent to calculate the cheapest

path length for a single source-destination pair increases with the number of edges in the

graph. For scale factor 10, it takes over one second to calculate the cheapest path length.

Figure 5.15: Relative time spent per phase for cheapest path BI query 19a

Figure 5.15 shows the relative time spent in each phase of the query. Similar to Figure 5.6,

we observe that the path-finding dominates all other categories.

5.3.4 BI Query 20

Table 5.3 shows the size of the graph, the number of source-destination pairs and the

average run-time per source-destination pair per scale factor for BI query 20. Compared

to BI query 19 shown in Table 5.2, there are roughly 3 times fewer vertices, and between 25

and 11 times fewer edges depending on the scale factor. Furthermore there are less source-

destination pairs to evaluate, leading to a lower average run-time per source-destination

pair.

Figure 5.16 shows the average run-time for computing the cheapest path length for BI

query 20. As the graph is smaller compared to BI query 19a, the scalability is marginally
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Scale
factor

Number of
vertices

Number of
edges

Number of
source-destination

pairs

Run-time /
source-destination pair

(in seconds)
1 3 017 13 732 198 0.0046
3 8 623 62 324 1 269 0.0050

10 27 693 321 794 7 791 0.0090
30 78 677 1 333 952 19 543 0.1508

100 255 062 6 171 262 66 328 0.5579

Table 5.3: Graph size and number of source-destination pairs per scale factor for BI query 20

Figure 5.16: Average execution time per scale factor for cheapest path BI query 20
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better for BI query 20. This can be attributed to the smaller graph sizes as well as a lower

amount of source-destination pairs that need to be evaluated.

Figure 5.17: Average execution time per source-destination pair per scale factor for cheapest
path BI query 20

Figure 5.17 shows the average run-time required per source-destination pair. Whereas

Figure 5.14 for BI query 19a showed a linear increasing run-time for the smaller scale, BI

query 20 shows a small increase in average query execution time between scale factor 1

and scale factor 10. The increase of average execution time between scale factors 10 and

30 is steeper.

Figure 5.18 shows the relative time spent in each phase of the query. It can be observed

that in BI query 20, relatively more time is spent precomputing the vertices and edges,

compared to Interactive query 13 and BI query 19a. However, for the larger scale factors,

computing the cheapest path length dominates the other phases of the query similar to

what was observed in Interactive query 13 and BI query 19a.

5.4 Vectorised Batched Bellman-Ford

To assess the performance of an auto-vectorised implementation of the batched Bellman-

Ford algorithm, we have conducted a microbenchmark, shown in Figure 5.19a. We conduct

a microbenchmark before integrating the auto-vectorised batched Bellman-Ford in DuckDB

since it is not always guaranteed that vectorising an algorithm improves the performance.
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Figure 5.18: Relative time spent per phase for cheapest path BI query 20

The microbenchmark seen in Figure 5.19a is performed on a tiny graph consisting of 1024

vertices, having an average of 100 edges each. This microbenchmark aims to keep the graph

small so it can be contained in the cache. This allows for a more accurate assessment of

the influence of the SIMD instructions compared to the scalar instructions.

In Figure 5.19a we observe on the y-axis a logarithmic scale on the number of CPU cycles

taken to complete the execution of the batched Bellman-Ford algorithm. On the x-axis,

we see the number of lanes (each representing a unique source).

We have compared three implementations of the batched Bellman-Ford algorithm. The

first one is the scalar implementation without any optimisations. The second one is also

a scalar implementation with the added optimisation of the modified array used to avoid

checking unnecessary neighbours. The third is the auto-vectorised implementation. We

have also performed experiments on both the SSE2 and AVX2 instruction sets.

As shown in Figure 5.19a, the auto-vectorised implementation is faster than both scalar

implementations across all lanes. Since the y-axis is a logarithmic scale, direct comparisons

can be difficult. Thus we have included Figure 5.19b to highlight the speedup across the

various lanes between the scalar and the vectorised AVX2 implementation. We observe

that when we have 16 lanes, the vectorised AVX2 version is 16 times faster. The most

considerable speedup is achieved when there are 512 lanes, in which case the vectorised

version is 129 times faster. The speedup is lower when doubling the number of lanes to
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5.4 Vectorised Batched Bellman-Ford

(a) Scalar vs. auto-vectorised implementations of batched Bellman-Ford
Lanes 16 32 64 128 256 512 1 024
Speed-up (Scalar vs. AVX2) 16× 30× 46× 64× 90× 129× 112×

(b) Speed-up of scalar vs. AVX2 instructions for batched Bellman-Ford

Figure 5.19: Performance of scalar vs. auto-vectorised implementations of batched Bellman-
Ford
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1024, in which case the speedup is 112x.

The microbenchmark was conducted using 32-bit integers for all components. The

components include the CSR vertex array, the CSR edge array, and the distances matrix

in the batched Bellman-Ford algorithm. The graph contained a total of 1024 vertices, thus

the CSR vertex array used 1024 · 32 = 4 KiB. Each vertex has 100 outgoing edges, thus

1024 · 32 · 100 = 400 KiB. The distance array, with length |V |, grows with the number of

sources or lanes. The lowest amount of lanes tested was 16. Thus the array has a total size

of 1024·32·16 = 64 KiB. The widest lane, 1024, had a total size of 1024·32·1024 = 4.1 MiB.

The cache sizes in the environment tested are:

• L1 cache: 32 KiB per core (data), 32 KiB per core (instr)

• L2 cache: 256 KiB per core

• L3 cache: 2 MiB per core; shared

Thus, in the smallest case the total size is 4 + 400 + 64 = 468 KiB. Therefore, this is

too much for L1 and L2; however, it does fit in L3. For the largest number of lanes, the

total size was 4 + 400 + 4198 = 4602 KiB = 4.6 MiB. This data is too large for L2; thus,

the L3 cache must be used.

The speed-up shown in Figure 5.19b is more significant than was expected solely from

SIMD instructions. When using AVX2 instruction, it is possible to handle 256/32 = 8

lanes at a time. Thus a speed-up of 8x was expected. However, this speed-up is already

more significant in the narrowest amount of lanes.

Another benefit is the amortisation that occurs when handling more lanes simultaneously.

When there are more lanes, the average amount of active lanes for an active vertex

increases. If only a single lane is active, it is expensive to visit the neighbours, as this

is random memory access. However, the memory cost of visiting the neighbours gets

amortised with the higher number of lanes.

5.5 Shared Hash Join

To evaluate the effectiveness of the shared hash join optimisation, DuckDB will execute the

query in Listing 5.1 twice; once with the optimisation enabled, once with the optimisation

disabled. We will be using the person and knows tables from the LDBC SNB dataset.

The person table is always smaller in size compared to the knows table.
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5.5 Shared Hash Join

1 SELECT * FROM knows k
2 JOIN person src ON k.person1_id = src.person_id
3 JOIN person dst ON k.person2_id = dst.person_id;

Listing 5.1: Query used to evaluate the shared hash join optimisation

In theory, optimisation should result in faster joins, as time is saved by not building the

hash table used for the join a second time. Recall that a join consists of both building a

hash table and probing this hash table. The hash table will be built based on the smaller

person table. The larger knows table will then be used to probe the hash table.

The larger the knows table is compared to person table, the more time is spent probing

the hash table relative to building the hash table. Hence, we test the optimization with

various table sizes for knows relative to the person table. The impact of not building a

second hash table should be more noticeable when the tables are of similar size.

Figure 5.20: Performance comparison of the shared hash join optimisation

Figure 5.20 shows the average query execution time with the shared hash join

optimisation enabled and disabled. The x-axis shows the average number of knows edges

per person. The more knows edges, the larger the size of the knows table is compared to

the person table. Using the query from Listing 5.1 we observe that the query execution

time is always lower with the optimisation enabled. However, the optimisation does not

appear to save more time when the average number of knows edges is lower, i.e. when the
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person and knows tables are more similar in size. A possible explanation is that the time

probing the hash table dominates the time to build the hash table. To determine this,

conducting further microbenchmarks is necessary. Another observation is that the query

execution times stay constant, whereas the size of the knows table increases.
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Future Work

In this chapter we potential optimisations for the algorithms presented in this thesis.

We have observed that the MS-BFS implementation is able to scale well. A further

optimisation for the MS-BFS algorithm is to perform a bidirectional search. In this

optimisation, exploration would be started from the source and destination vertices to

discover a common vertex. In the current implementation, the exploration is started only

from the source vertices.

Since every search is expensive, it is crucial to minimise the number of searches.

Therefore, searches should only be executed on unique sources. Within a single vector,

this can be done by only creating a lane for every unique source. A bitmap of length |V|

can be used to keep track of the sources, setting the bit to 1 whenever a unique source is

encountered. If the bit is already 1, we know a search has been done in a previous batch

or will be done in the current batch. When the bit is 0, this is a unique source; hence we

flip the bit and need to perform a search from this vertex. Currently, every new batch in

the current implementation will overwrite the results from the previous batch. To further

limit the number of searches, the batch results should be saved, as these can contain source

vertices for a later batch. If the same source is found in a later batch, the result from an

earlier batch can be used instead.

A similar optimisation to reduce the number of searches is to detect when the query is

a multi-source single-destination. In this case, it is better to reverse the CSR order, with

the sources and destinations swapped. It is then possible to start the path-finding search

from a single destination and discover the distances to the multi-sources.

The current implementation determines the number of lanes (batch size) at compile time.

An optimisation is to template the number of lanes and have variations for 1, 4, 16, 64,

256, and 1024 lanes, such that the ideal amount of lanes can be selected during run-time.
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For example, if there are just 8 sources in a vertex, it is wasteful to use 1024 lanes, as a

large majority will be empty.

A limitation for MS-BFS and batched Bellman-Ford is the random memory access to

fetch neighbours. These random accesses are unavoidable; however, to mitigate the latency,

it is possible to perform neighbour prefetching. We prefetch information of neighbours

before we need them. This optimisation is performed by Then et al. in their MS-BFS

implementation and shows an improvement by up to 25% (37).

An alternative to the batched Bellman-Ford is to implement bidirectional Dijkstra’s

algorithm. A critical difference between Bellman-Ford and Dijkstra is that the latter finds

the cheapest path first. In comparison, Bellman-Ford finds longer, cheaper paths in every

iteration. Only in the final iteration can it be guaranteed that the cheapest path has been

found in Bellman-Ford. This makes it impossible to use a bidirectional implementation

in which a search is started from both the source and the destination vertices. However,

in Dijkstra’s algorithm, it is possible to perform a bidirectional search since the cheapest

path is found first.

Similarly to bidirectional MS-BFS, with bidirectional Dijkstra, a search is started from

both the source and the destination. It continues until a common vertex has been found.

The cheapest distance between a source and destination is found at this point.

An optimisation related to the vectorised batched Bellman-Ford algorithm, see

Section 4.5 starts at the CSR creation. The optimisation would keep track of the maximum

weight of an edge. When the maximum edge weight is known, it is possible to minimise

the data type used to store the distances for the Bellman-Ford algorithm.

At the start, we will use 8-bit unsigned integers to store the distances, allowing us to

store distances up to 255. If it is known that the maximum weight is w, then there can be

255/w safe iterations before an overflow is possible. If an overflow can occur during the next

iteration, the 8-bit distances can be copied to 16-bit integers. Such an overflow-prevention

mechanism has already been implemented for the MS-BFS implementation.

For optimal use of SIMD instructions, the edge weight and the currently stored distances

must be of the same data type, so no data conversions need to be performed. Furthermore,

an optimisation should also use the smallest data type required to store the distances. By

minimising the data type, we can fill the SIMD registers with more lanes and thus handle

more lanes with fewer instructions.

In DuckDB, the number of threads used for a query is decided during the table scan.

A new thread is used for approximately every 120 000 tuples. However, as shown in the
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experiments, the path-finding queries will not often contain more than 120 000 source-

destination pairs in a realistic setting. Furthermore, in the queries tested, the number of

source-destination pairs is much smaller than the number of rows in the table. This fact

causes most vectors to be close to empty, in the worst case, only having a single element.

A solution could be introducing a new operator that ensures the vectors are as complete

as possible. It uses as input the emptier vectors and waits until it has a full vector before

continuing. We can utilise the lanes better by ensuring that the vectors are full.
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7

Conclusion

In this thesis, we aimed to create efficient path-finding operators that can be used in

implementations of the upcoming SQL/PGQ standard scheduled to be released in June

2023 as a part of SQL:2023 (22). The path-finding operators have been implemented in

the open-source RDBMS DuckDB. Following are answers to the research questions defined

for this thesis work.

How to best implement path-finding algorithms in DuckDB? It was decided

to implement the path-finding algorithms through a lightweight approach using scalar

user-defined functions. Using scalar UDFs allows the integration of SQL/PGQ to be non-

intrusive and be primarily limited to a DuckDB extension module. Nevertheless, still using

the parallelisation and vectorised query execution model provided by DuckDB. Before every

path-finding operation, a CSR data structure is created on-the-fly. Experiments show that

creating the CSR data structure can be done in parallel and its creation time becomes

small compared to the path-finding algorithms on large graphs.

How can path-finding best be implemented for unweighted graphs? In DuckDB,

path-finding for unweighted graphs is implemented using the Multi-Source Breadth-First

Search algorithm by Then et al. (37) designed to run multiple BFSs over the same graph

using a single CPU core. Experiments on the LDBC Social Network Benchmark have

shown that the largest scale factor available (SF10 000) can be handled, showing that the

algorithm can scale well.

How can path-finding best be implemented for weighted graphs? Path-finding

for weighted graphs in DuckDB is implemented using the batched Bellman-Ford algorithm
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by Then et al. (82). The performance gap between the shortest and cheapest path-

finding implementations is more significant than expected. The cheapest path-finding

implementation contains performance bottlenecks that result in poor absolute performance

compared to the shortest path-finding implementation.

What are the bottlenecks in the current SQL/PGQ implementation? A

bottleneck identified in the current SQL/PGQ implementation was the creation of duplicate

hash tables in the case where a query contains multiple identical joins. The duplicate joins

result in time spent building the same hash table multiple times.

Another performance bottleneck is related to the current implementation of the batched

Bellman-Ford algorithm in DuckDB. Experiments have shown that the performance of

the cheapest path length function using batched Bellman-Ford is 80–475× slower than the

shortest path length function using MS-BFS. Azad et al. (123) have observed that the BFS

algorithm calculates the shortest path 2–10× faster tha the delta-stepping algorithm used

to calculate the cheapest path on graphs with identical structure. In addition, experiments

have shown that the query execution time is heavily dominated by calculating the cheapest

path length. Therefore, the performance of the batched Bellman-Ford implementation is

seen as a performance bottleneck.

How can these bottlenecks be optimised? Since the hash tables are identical, we

have implemented an optimisation which detects these duplicate joins and ensures that a

hash table is only built once. If a duplicate join builds the same hash table, it will reuse

the hash table instead, saving the time it takes to construct it.

The performance of the path-finding operations can be optimised by (1) minimising the

total number of searches by only searching from unique searches, (2) performing neighbour

prefetching, (3) using the smallest the data type required to allow for more lanes to fit in

a SIMD register. More optimisations are described in Chapter 6.

What is the performance impact of vectorisation on the path-finding

algorithms? Our microbenchmark has shown that an auto-vectorised implementation

of the batched Bellman-Ford algorithm can be, depending on the number of lanes, up to

129× faster than an implementation that does not make use of SIMD instructions. The

speedup can be attributed to (1) making use of SIMD instructions and, (2) amortising the

memory cost of visiting the neighbour vertices when there are more lanes.
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To conclude, in this thesis we have shown that implementing path-finding operations to

support SQL/PGQ in an existing RDBMS is feasible. We implemented our operations

as a lightweight extension to the DuckDB RDBMS. We assessed the scalability of

the implementation, confirming that the proposed approach can take advantage of

the vectorised execution model of DuckDB. Furthermore, we identified a number of

performance optimisations including both algorithmic improvements (e.g. bidirectional

search) and implementation techniques (e.g. improved usage of SIMD instructions).
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Appendix A

SQL vs. SQL/PGQ Queries

1 SELECT gt.c1id , gt.c2id
2 FROM GRAPH_TABLE ( anti_money_laundering ,
3 MATCH ( c1:customer )-[ t1:transfers ]->*( c2:customer )
4 COLUMNS ( c1.cid AS c1id , c2.cid AS c2id )
5 ) gt
6

7 -- The above SQL/PGQ query with a Kleene star is transformed
8 -- into the SQL :1999 query below
9 SELECT c1id , c2id

10 FROM (
11 WITH cte1 AS (
12 SELECT min( CREATE_CSR_EDGE (0, (SELECT count(c.cid) as vcount FROM Customer c),
13 CAST ((
14 SELECT sum(CREATE_CSR_VERTEX (0,
15 (SELECT count(c.cid) as vcount FROM Customer c),
16 sub.dense_id ,
17 sub.cnt
18 )) as numEdges
19 FROM (
20 SELECT c.rowid as dense_id , count(t.from_id) as cnt
21 FROM Customer c
22 LEFT JOIN Transfers t ON t.from_id = c.cid
23 GROUP BY c.rowid
24 ) sub) AS BIGINT
25 ), src.rowid , dst.rowid
26 ) ) as temp ,
27 (SELECT count(c.cid) FROM Customer c) as vcount
28 FROM
29 Transfers t
30 JOIN Customer src ON t.from_id = src.cid
31 JOIN Customer dst ON t.to_id = dst.cid
32 )
33 SELECT src.cid AS c1id , dst.cid AS c2id
34 FROM cte1 , Customer src , Customer dst
35 WHERE ( reachability (0, true , cte1.vcount , src.rowid , dst.rowid) = cte1.temp )
36 );

Listing A.1: SQL/PGQ query transformed into SQL query with Kleene star
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Appendix B

Any Shortest Path Example

(a) Initial graph representation (b) Initial matrix representation (c) Initial arrays

Figure B.1: Any shortest path initial state

(a) Graph representation of step 1 (b) Matrix representation of step 1 (c) Arrays after step 1

Figure B.2: Any shortest path step 1
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B. ANY SHORTEST PATH EXAMPLE

(a) Graph representation of step 2 (b) Matrix representation of step 2 (c) Arrays after step 2

Figure B.3: Any shortest path step 2

(a) Graph representation of step 3 (b) Matrix representation of step 3 (c) Arrays after step 3

Figure B.4: Any shortest path step 3

(a) Graph representation of step 4 (b) Matrix representation of step 4 (c) Arrays in final state

Figure B.5: Any shortest path step 4 / final state
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Appendix C

Summary of Literature Study

# Title Year Included I1 I2 I3 I4 I5 I6 I7
1 Graph Pattern Matching in GQL and SQL/PGQ 2021 x x x x x x
2 Query, Analysis, and Benchmarking Techniques for Evolving Property Graphs of Software Systems 2019 x x x x x x x
3 Cypher: An Evolving Query Language for Property Graphs 2018 x x x x x x x
4 G-CORE A Core for Future Graph Query Languages 2018 x x x x x x x
5 Knowledge Graphs 2021 x x x x x
6 An early look at the LDBC Social Network Benchmark’s Business Intelligence workload 2018 x x x x x x
7 The property graph database model 2018 x x x x x
8 Two for one: querying property graph databases using SPARQL via gremlinator 2018 x x x x x x
9 MillenniumDB: A Persistent, Open-Source, Graph Database 2021 x x x x x x

10 GrainDB: A Relational-core Graph-Relational DBMS 2022 x x x x x x
11 Efficient Batched Graph Analytics Through Algorithmic Transformation 2017 x x x x x
12 The more the Merrier: Efficient Multi-Source Graph Traversal 2014 x x x x x
13 Demystifying Graph Databases: Analysis and Taxonomy of Data Organization [...] 2019 x x x x x x
14 The case against specialized graph analytics engines 2015 x x x x x x
15 PGQL: a Property Graph Query Language 2016 x x x x x
16 The Complete Story of Joins (inHyPer) 2017 x x x x
17 The ubiquity of large graphs and surprising challenges of graph processing: extended survey 2020 x x x x x
18 Trinity Graph Engine and its Applications. 2017 x x x x x
19 SQLGraph: An Efficient Relational-Based Property Graph Store 2015 x x x x x x
20 Building an efficient RDF store over a relational database 2013 x x x x x x
21 The RDF-3X engine for scalable management of RDF data 2010 x x x x x
22 GraphGen: Adaptive Graph Processing using Relational Databases 2017 x x x x x x
23 IBM Db2 Graph: Supporting Synergistic and Retrofittable Graph Queries Inside IBM Db2 2020 x x x x x
24 Graph Processing in RDBMSs 2017 x x x x x
26 Declarative and distributed graph analytics with GRADOOP 2018 x x x x x
27 Two for one: querying property graph databases using SPARQL via gremlinator 2018 x x x x x x
28 The case against specialized graph analytics engines 2015 x x x x x x x
29 Cytosm: Declarative Property Graph Queries Without Data Migration 2017 x x x x x x x
30 Foundations of Modern Query Languages for Graph Databases 2017 x x x x x x x
31 Columnar Storage and List-based Processing for Graph Database Management Systems 2021 x x x x
32 Making RDBMSs Efficient on Graph Workloads Through Predefined Joins 2021 x x x x x x
33 Bank Fraud Detection using Community Detection Algorithm 2020 x x x x x
34 Certified Graph View Maintenance with Regular Datalog 2018 x x x
35 Modeling of Emergency Evacuation in Building Fire 2020 x x x x
36 Aggregation Support for Modern Graph Analytics in TigerGraph 2020 x x x x
37 Finding Emergent Patterns of Behaviors in Dynamic Heterogeneous Social Networks 2019 x x x x
38 Integration of Relational and Graph Databases Functionally 2019 x x x x
39 Fast dual simulation processing of graph database queries 2019 x x x x x
40 Efficient graph pattern matching framework for network-based in-vehicle fault detection 2018 x x x x
41 Minimization of tree patterns 2018 x x x

42
In-Depth Benchmarking of Graph Database Systems with the Linked Data Benchmark
Council (LDBC) Social Network Benchmark (SNB)

2019 x x x x x x

43 TigerGraph: A Native MPP Graph Database 2019 x x x x x x x
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