
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

ALP: Adaptive Lossless floating-Point
Compression

Author: Leonardo Xavier Kuffo Rivero (2722539)

1st supervisor: Prof. Peter Boncz
daily supervisor: Ph.D. (c) Azim Afroozeh
2nd reader: Ph.D. Pedro Holanda

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

August 28, 2023

Abstract

IEEE 754 doubles do not exactly represent most real values, introducing round-

ing errors in computations and [de]serialization from/to text. These rounding

errors inhibit the use of existing lightweight compression schemes such as Delta

and Frame Of Reference (FOR), but recently new schemes were proposed: Go-

rilla, Chimp, Chimp128, PseudoDecimals (PDE), Elf and Patas. However, their

compression ratios are not better than those of general-purpose compressors

such as zstd; while [de]compression is much slower than Delta and FOR. We

propose and evaluate ALP, that significantly improves these previous schemes

in both speed and compression ratio. We created ALP after carefully studying

the datasets used to evaluate the previous schemes. To obtain speed, ALP is

designed to fit vectorized execution. This turned out to be key for also im-

proving the compression ratio, as we found in-vector commonalities to create

compression opportunities. ALP is an adaptive scheme that uses a strongly en-

hanced version of PseudoDecimals (1) to losslessly encode doubles as integers

if they originated as decimals, and otherwise uses vectorized compression of

the doubles’ front bits. Its high speeds stem from our implementation in scalar

code that auto-vectorizes using building blocks provided by the FastLanes li-

brary (2), and an efficient two-stage compression algorithm that first samples

row-groups and then vectors. The evaluation shows that ALP can compress

orders of magnitude faster and better than all current floating-point compres-

sors in micro-benchmarks and in end-to-end queries inside a query processing

engine.

To my friends (Galo, Mabe, Cristhian, Daniela, Zhaolin, Ruben, Luisfer,

Lords, Pandis and many more), family (Mom, Dad, Tia, Tio Ric, Tio Leo (†),
Manuel, Bolivar, Marli, and all) and Many (†) which always supported me

during this 2-year adventure that is coming to an end.

This thesis, and my entire career, would have not been possible without all of

you. Thanks.

I also want to thank Peter for the opportunity of being part of his team at

CWI on this challenging project, and Azim for guiding me through the

process with patience and care. This thesis marks the end of my master, but

also the start of my PhD. under the supervision of Peter; which I am

thoroughly excited for.

Acknowledgements

This work would not have been possible without the help of my supervisor Prof.

Peter Boncz; whose supervision, feedback and corrections made this thesis cross

the excellence bar and achieve outstanding results. Similarly, this work would

not have been possible without the help of my daily supervisor Ph.D. (c) Azim

Afroozeh.

ALP is a result of the joint work of Azim, Peter and me. ALP would not have

been possible without any of our contributions.

This thesis was done as part of an internship at CWI (Centrum Wiskunde &

Informatica).

A summarized version of this work has been accepted for publication in ACM

SIGMOD.

Contents

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 Contributions . 3

1.2 Outline . 3

2 Literature Review 4

2.1 General Purpose vs. Lightweight Compression 4

2.1.1 General Purpose Compression . 4

2.1.2 Lightweight Compression . 6

2.2 All-Type Encodings . 6

2.2.1 Run-Length Encoding (RLE) . 7

2.2.2 Dictionary Encoding (DICT) . 8

2.3 Integer Encodings . 9

2.3.1 Variable Bytes (VByte) . 10

2.3.2 Bit-[un]packing (BP) . 11

2.3.3 Frame of Reference (FOR) . 12

2.3.4 Delta Coding . 13

2.3.5 FastLanes . 14

2.4 String Encodings . 16

2.4.1 Fast Static Symbol Table (FSST). 16

2.4.2 Conditional Huffman (CHuff) . 17

2.5 Floating-Point Encodings . 18

2.5.1 Predictive Schemes . 19

2.5.1.1 Delta Predictive Coding (FSD) 20

2.5.1.2 Differential Finite Context Method Predictor (DFCM) . . . 21

v

CONTENTS

2.5.1.3 Fpzip and Pzip . 23

2.5.1.4 FPC . 24

2.5.1.5 Sprintz . 26

2.5.2 XOR Schemes . 27

2.5.2.1 Gorilla . 28

2.5.2.2 TSXor . 30

2.5.2.3 Chimp . 33

2.5.2.4 Chimp128 . 36

2.5.2.5 Patas . 37

2.5.2.6 Elf . 39

2.5.3 Decimal-based Schemes . 41

2.5.3.1 BUFF (BoUnded Fast Floats compression) 42

2.5.3.2 PseudoDecimals (PDE) . 44

2.5.4 Other Schemes . 46

2.5.4.1 SPDP . 46

2.6 Cascading Lightweight Compression . 47

2.6.1 Kernel Fusing . 47

2.7 Storage Layouts: NSM, DSM & PAX . 48

2.8 Compression and Data Formats . 49

2.8.1 Parquet . 50

2.8.2 ORC . 52

2.8.3 BtrBlocks . 53

2.9 Compression and Database Engines . 54

2.9.1 Compression in DuckDB . 54

2.9.2 Compression in Amazon Redshift . 55

2.9.3 Compression in MySQL: InnoDB . 56

2.9.4 Compression in CodecDB . 56

2.10 Whitebox Compression . 56

2.11 Pattern Inference Decomposed Storage (PIDS) 57

3 Datasets Analysis 59

3.1 The Datasets . 61

3.2 XOR-based Analysis . 64

3.2.1 Leading and Trailing Zeros . 65

3.2.2 Towards a SIMD XOR-based encoding 67

vi

CONTENTS

3.3 Decimal-based Analysis . 69

3.3.1 Representing Doubles as Integers . 70

3.3.2 High exponents work for all values 71

3.3.3 The 52-bit limit for integers . 72

3.3.4 Division vs Multiplication . 73

3.3.5 Towards a SIMD Decimal-based encoding 73

3.4 Unexploited Opportunities . 73

3.4.1 Vectorizing Decimal Encoding . 74

3.4.2 Use of Long Integers (Cutting trailing 0s with an extra multiplication) 74

3.4.3 Limited Search Space . 75

3.4.4 Front-Bits Similarity . 77

4 Adaptive Lossless Floating-Point compression (ALP) 78

4.1 Compression . 78

4.1.1 Vectorized Compression . 78

4.1.2 Fast Rounding . 79

4.1.3 Handling Exceptions . 80

4.1.4 Fused Frame-Of-Reference (FFOR). 80

4.2 Adaptive Sampling . 81

4.3 Decompression . 83

4.4 ALP for Real Doubles . 83

4.4.1 Encoding . 84

4.4.2 Decoding . 84

5 Evaluation 86

5.1 Compression Ratios . 87

5.1.1 When ALP shines . 87

5.1.2 When ALP struggles . 88

5.2 [De]compression Speed Microbenchmarks . 88

5.2.1 ALP on Different Architectures . 93

5.2.2 Kernel Fusion . 94

5.2.3 Sampling Overhead . 95

5.2.4 ALPrd speed. 95

5.3 End-to-End Query Performance . 96

5.3.1 SUM and SCAN . 96

5.3.2 Compression . 98

vii

CONTENTS

5.4 Single Precision and Machine Learning Data 100

6 Discussion 101

7 Conclusions 103

References 104

viii

List of Figures

2.1 Overview of reviewed LWC methods . 7

2.2 Overview of RLE applied in an ideal scenario (a), and in a not-ideal scenario

(b). 8

2.3 Overview of dictionary encoding applied in an ideal scenario (a), and in a

not-ideal scenario (b). 9

2.4 Classic RLE representation as a dictionary encoding (a) side by side with

FastLanes-RLE representation (b) (Figure borrowed from Afroozeh & Boncz

work (3)) . 15

2.5 FastLanes-RLE index vector representation in the Unified Transposed Lay-

out (Figure borrowed from Afroozeh & Boncz work (3)) 15

2.6 Overview of FSST in action with a small example (Figure borrowed from

Boncz et al. work (4)) . 17

2.7 IEEE 754 double precision floating-point bitwise representation. One bit for

sign, 11 bits for exponent and 52 bits for mantissa / fraction. 18

2.8 Depiction of calculating the first order differences (m = 1) for 64-bit integer

values a3 and a4; namely c3 and c4. (Figure borrowed from Engelson et al.

work (5).) . 21

2.9 Depiction of the bitwise XOR operator between 0.2 and 0.4 represented as

64-bit doubles. Equal bits between both numbers are highlighted in green. . 21

2.10 Overview of the DFCM algorithm. (Figure borrowed from Ratanaworabhan

et al. work (6).) . 23

2.11 Overview of Fpzip (top) and Pzip (bottom) algorithms. (Figure borrowed

from Cayoglu et al. work (7).) . 24

2.12 Overview of FPC. (Figure borrowed from Burtscher & Ratanaworabhan

work (8).) . 25

ix

LIST OF FIGURES

2.13 Overview of Gorilla algorithm. Case identifiers are enclosed in diamonds.

(Figure format inspired by Liakos et al. work (9).) 29

2.14 Depiction of local optimum escape in gorilla (Figure borrowed from Wang

et al. work (10).) . 30

2.15 Depiction of the bitwise XOR operator between 11.3 and 11.5 doubles. Equal

bits between both numbers are highlighted in green. 31

2.16 Overview of TSXor algorithm. Case identifiers are enclosed in diamonds.

(Figure format inspired by Liakos et al. work (9).) 32

2.17 TSXor trade-offs when using increasingly window sizes for the reference

value on compression ratio (left), decompression speed (middle) and com-

pression speed (right) (Figure borrowed from Bruno et al. work (11).) . . . 32

2.18 Distribution of trailing zeros from XORing with previous value on real-life

datasets analized to develop Chimp. (Figure borrowed from Liakos et al.

work (9).) . 33

2.19 Distribution of leading zeros from XORing with previous value on real-life

datasets analized to develop Chimp. (Figure borrowed from Liakos et al.

work (9).) . 34

2.20 Overview of Chimp algorithm. Case identifiers are enclosed in diamonds.

(Figure format inspired by Liakos et al. work (9).) 35

2.21 Overview of Chimp128 algorithm. Case identifiers are enclosed in diamonds.

Text highlighted in bold are the main differences with Chimp. (Figure

format inspired by Liakos et al. work (9).) 37

2.22 Overview of Patas algorithm. (Figure format inspired by Liakos et al.

work (9)) . 38

2.23 Overview of how DuckDB stores Patas compressed data. 39

2.24 Elf eraser and restorer applied to the double 3.17 (Figure borrowed from Li

et al. work (12)) . 40

2.25 Overview of Elf architecture (Figure borrowed from Li et al. work (12)) . . 40

2.26 Bits needed to achieve a decimal precision in a float (Figure borrowed from

Liu et al. work (13)) . 42

2.27 BUFF key idea overview (Figure borrowed from Liu et al. work (13)) 43

2.28 Overview of the N-ary Storage Model (Figure borrowed from Ailamaki et

al. work (14)) . 49

2.29 Overview of the Partition Attributes Across storage layout (Figure borrowed

from Ailamaki et al. work (14)) . 50

x

LIST OF FIGURES

2.30 Overview of the Apache Parquet file format (Figure borrowed from Apache

Parquet documentation 111) . 51

2.31 Overview of the ORC file format (Figure borrowed from Huau et al. work (15)) 53

2.32 An example of Logical vs Physical data in the whitebox compression model

(Figure borrowed from Ghita et al. work (16)) 57

3.1 Distribution of Trailing Zeros resulting from XORing each value with its

previous immediate value. 64

3.2 Distribution of Trailing Zeros resulting from XORing each value with one

of its 128 previous values. 64

3.3 Distribution of Leading Zeros resulting from XORing each value with its

previous immediate value. 66

3.4 Distribution of Leading Zeros resulting from XORing each value with one

of its 128 previous values. 66

3.5 Distribution of Trailing Zeros resulting from XORing each value with its

previous immediate value on a block of values sorted in ascending order. . . 67

3.6 Distribution of Leading Zeros resulting from XORing each value with its

previous immediate value on a block of values sorted in ascending order. . . 68

3.7 Distribution of the minimum number of leading zeros in vectors resulting

from XORing each value with its previous immediate value. 68

3.8 Distribution of the minimum number of leading zeros in vectors resulting

from XORing each value with its previous immediate value by patching 10%

of exceptions. Exceptions are XORed values inside a vector whose number

of leading zeros is less than 8. 68

3.9 Analysis of the best combinations of exponent e and factor f for each vector

of 1024 values. For most datasets, the best combination for any vector is

found among a set of just 5 different combinations. For some datasets, a

single combination is always the best one. A combination is the best when

it achieves the highest encoding rates yielding the smallest integers using

ALPenc and ALPdec procedures. 76

xi

LIST OF FIGURES

5.1 Compression performance for all schemes (on Intel Ice Lake). Each dot is

one dataset. ALP is 1-2 orders of magnitude faster in [de]compression than

all competing schemes, while providing excellent compression ratio. The

only one to achieve a compression ratio similar to ALP is zstd, but it is slow

and block-based (one cannot skip through compressed data). Elf is inferior

to zstd on all performance metrics. 92

5.2 Decompression speed measured in tuples per cycle on different architectures.

Each dot represents the decompression performance on a dataset in a dif-

ferent architecture. 93

5.3 Speed comparison of ALP decoding with and without fusing ALP and FFOR

into one single kernel (Ice Lake). Tests performed on our analyzed datasets

(top) and on generated data with specific vector bit-width (bottom). ALP

benefits from fusing consistently with a ≈40% decompression speed increase

(and sometimes much more). 94

5.4 End-to-end SUM query execution speed for 5 datasets in Tectorwise (Ice

Lake) measured in CPU cycles per Tuple. ALP is faster than all other

schemes (even faster than uncompressed), while achieving perfect scaling

(=speed stays the same) when using multi-core. Results show that SCAN is

virtually free if data is compressed with ALP. PDE can’t compress NYC/29. 98

xii

List of Tables

2.1 Lightweight and General Purpose Compression schemes supported by a va-

riety of file formats and database engines. 58

3.1 Floating-Point Datasets . 60

3.2 Detailed metrics computed on the Datasets 63

5.1 Hardware Platforms Used . 87

5.2 Compression ratio measured in Bits per Value. The smaller this metric,

the more compression is achieved (uncompressed data is 64 bits per value).

ALP achieves the best performance in average (excluding zstd). *: ALPrd

was used. 89

5.3 Average compression and decompression speed as tuples processed per com-

puting cycle of all datasets on the Ice Lake architecture. 90

5.4 Compression and decompression speed as tuples processed per computing

cycle of every datasets on the Ice Lake architecture. ALP is faster in all

datasets in both [de]compression. Zstd can’t compress all datasets due to

lack of sufficient data (< 1MB). *: ALPrd was used. 91

5.5 End-to-end performance on City-Temp in the Tectorwise system, measured

in Tuples per CPU cycle per core. ALP is even faster than uncompressed,

and extends its lead w.r.t. the micro-benchmarks. The competitors are so

CPU bound that they scale well in SCAN (=speed stays equal), while ALP

and uncompressed drop speed when running multi-core, due to scarce RAM

bandwidth. But when doing query work (SUM), speed is lower, and scaling

is not an issue for ALP. 97

5.6 Machine Learning models presentation and detailed metrics computed on

their weights. W2V Tweets model was a model trained by us using Python

Gensim and 50K tokenized tweets. 99

xiii

LIST OF TABLES

5.7 Compression ratios (bits/value) that ALPrd32 and its competitors achieved

on machine learning models’ weights (32-bits floats). ALPrd32 achieved the

best compression ratio. 100

xiv

1

Introduction

Data analytics pipelines manipulate floating-point numbers (64-bit doubles) more fre-

quently than classical enterprise database workloads, which typically rely on fixed-point

decimals (systems often store these as 64-bit integers). Floating-point data is also a natural

fit in scientific and sensor data; and can have a temporal component, yielding time series.

Analytical data systems and big data formats have adopted columnar compressed stor-

age (17, 18, 19, 20, 21, 22), where the compression in storage is either provided by general-

purpose or lightweight compression. Lightweight methods, also called "encodings", exploit

knowledge of the type and domain of a column. Examples are Frame Of Reference (FOR),

Delta-, Dictionary-, and Run Length Encoding (RLE) (23, 24, 25). The first two are used

on high-cardinality columns and encode values as the addition of a small integer with

some fixed base value (FOR) or the previous value (Delta). These encodings also bit-pack

the small integers into just the necessary bits. However, with IEEE 754 doubles (26),

additions introduce rounding errors, making Delta and FOR unusable for raw floating-

point data. General-purpose methods used in big data formats are gzip, zstd, snappy

and LZ4 (27, 28, 29). LZ4 and snappy trade more compression ratio for speed, gzip the

other way round, with zstd in the middle. The drawback of general-purpose methods is

that they tend to be slower than lightweight encodings in [de]compression; also, they force

decompression of large blocks for reading anything, preventing a scan from pushing down

filters that could skip compressed data.

Recently though, a flurry of new floating-point encodings were proposed: Gorilla (30),

Chimp and Chimp128 (9), PseudoDecimals (PDE) (1), Patas (31) and Elf (12). A common

idea in these is to use the XOR operator with a previous value in a stream of data; as

combining two floating-point values at the bit-pattern level using XOR provides somewhat

similar functionality to additions, without the problem of rounding errors. Chimp does

1

an XOR with the immediate previous value, whereas Chimp128 XORs with one value

that may be 128 places earlier in the stream – at the cost of storing a 7-bit offset to

that value. After the XOR, most bits are 0, and the Chimp variants only store the bit

sequence that is non-zero. Patas, introduced in DuckDB compression (31), is a version of

Chimp128 that stores non-zero byte-sequences rather than bit-sequences. Whereas Patas

trades compression ratio for faster decompression, Elf (12) does the opposite: it uses a

mathematical formula to zero more XOR bits and improve the compression ratio, at the

cost of lower [de]compression speed. PDE is very different as it does not rely on XOR: it

observes that many values that get stored as floating-point were originally a decimal value

and it endeavours to find that original decimal value, and compress that.

While these floating-point encodings avoid the need to always decompress largish blocks,

as required by general-purpose compression, and thereby allow for predicate push-down in

big data formats (32), their [de]compression speed (as well as compression ratio) is not

much higher than that of general-purpose schemes (12); in other words, these encodings

are not quite lightweight.

We introduce ALP, a lightweight floating-point encoding that is vectorized (33): it en-

codes and decodes arrays of 1024 values. It is implemented in dependency-free scalar code

that C++ compilers can auto-vectorize, such that ALP benefits from the high SIMD per-

formance of modern CPUs (34, 35). In addition, ALP achieves much higher compression

ratios than the other encodings, thanks to the fact that vectorized compression does not

work value-at-a-time but can take advantage of commonalities among all values in one

vector. Its vectorized design also allows ALP to be adaptive without introducing space

overhead: information to base adaptive decisions on is stored once per vector rather than

per value, and thus amortized. While per-value adaptivity (e.g., Chimp[128] has four de-

coding modes) needs control instructions (if-then-else) for every value, and can run into

CPU branch mispredictions, ALP’s per-vector adaptivity only needs control-instructions

once per vector, but vector [de]compression itself has very few data- or control dependen-

cies, leading to higher speeds.

2

1.1 Contributions

1.1 Contributions

Our main contributions are:

• a study of the datasets that were used to motivate and evaluate the previous floating-

point encodings, leading to the new insights (e.g., many floating-point values actually

were originally generated as a decimal).

• the design of ALP, an adaptive scheme that either encodes a vector of values as

compressed decimals, or compresses only the front-part of the doubles, that holds

the sign, exponent, and highest bits of the fraction part of the double.

• an efficient two-level sampling scheme (happening respectively per row-group, and

per vector) to efficiently find the best method during compression.

• an open-source implementation of ALP in C++ that uses vectorized lightweight com-

pression that can cascade (e.g., use Dictionary-compression, but then also compress

the dictionary and the code columns, with Delta, RLE, FOR – such as provided

by (1, 3, 36)).

• an evaluation (microbenchmarks and end-to-end queries) versus the other encodings

on the datasets that were used when these were proposed, showing that ALP is faster

and compresses better (as summarized in Figure 5.1).

1.2 Outline

First, we present a comprehensive literature review on lightweight compression in section 2,

with special attention to encodings tailored for floating-point data. Next, in section 3, we

present our in-depth analysis of real-world double datasets which uncovered unexploited

opportunities for compression. In section 4 we present ALP and its design decisions.

Next, we evaluate ALP compression ratios and [de]compression speed by performing micro-

benchmarks and end-to-end query speed benchmarks on section 5. Finally, in sections 6

and 7 we discuss our results and present conclusions of our work.

3

2

Literature Review

We present a comprehensive literature review of lightweight compression methods. We

start by introducing the most basic ideas of general purpose and lightweight compression

schemes in section 2.1. Next, in section 2.2, 2.3, 2.4 and 2.5 we review lightweight com-

pression schemes tailored for specific data types. In section 2.5 we focus on lightweight

schemes for floating-point data. Next, in section 2.6 we review how lightweight compres-

sion schemes can be used in cascade. In section 2.7 we introduce storage layouts in order

to expand on how lightweight compression has been leveraged in the context of different

[big]-data formats and data systems on sections 2.8 and 2.9. Finally, we introduce white-

box compression and compression by attributes decomposition in sections 2.10 and 2.11

respectively.

2.1 General Purpose vs. Lightweight Compression

2.1.1 General Purpose Compression

General Purpose Compression (GPC) methods are the most commonly used algorithms to

compress data regardless of its context. They can be used to compress files in an Operating

System or to compress records and attributes in a database system. Such versatility stems

from the fact that they can be applied to any small or large stream of bits without needing

context of the data nature. Thus, they are data-agnostic. GPC methods work like a black

box that can be plugged into any data to compress it without loss of information. Most of

these algorithms are based on variations of the Lempel-Ziv family of algorithms (37) that

works by trying to build a dictionary based on patterns found on the bits streams; achieving

good compression ratios on a variety of data 1. However, such algorithms have long suffered
1https://github.com/facebook/zstd#benchmarks

4

https://github.com/facebook/zstd#benchmarks

2.1 General Purpose vs. Lightweight Compression

shortcomings in terms of speed and random access of the compressed information.

Most GPC methods have been shown to perform relatively slow on both data compression

and decompression (8, 9, 38). Hence, GPC methods are not ideal in the context of ana-

lytical databases (OLAP) in which speed of information retrieval is of critical importance.

In addition to this, most GPC methods perform both compression and decompression on

quite large blocks of data. The latter becomes a problem when random access to infor-

mation is required. For instance, if one wants to access a single record compressed with a

GPC algorithm, most probably a decompression of an entire block has to be done to do

so. Moreover, GPC methods performance is hindered when small blocks of data are com-

pressed since the algorithms are not able to find enough patterns to achieve compression.

However, there have been recent advancements in GPC methods to improve their speed

and to work as efficiently on smaller streams of data. As an example, we will analyze

Zstandard – one of the most widely used GPC algorithms.

Zstandard1, also known as Zstd, is a multithread lossless general purpose compression

algorithm. Zstandard finds patterns in streams of bits by using the LZ772 algorithm.

LZ77 is one variation of the Lempel-Ziv family of algorithms. This family of algorithms

tries to find recurrent bit patterns to build a dictionary to map these –ideally– long bit

patterns into smaller codes. As the algorithm advances through the data, this dictionary

is continuously updated in such a way that it optimizes the patterns. Zstd also uses a

variation of a Huffman (entropy) coder (FSE3) to further optimize the dictionary codes

based on the frequency of the patterns (i.e. most repeated patterns are assigned the

smallest codes). Since the algorithm depends on its own history of patterns, it struggles

with small streams of data for which there is not a big enough window of bits to build such

a dictionary. However, Zstd offers a special mode to be able to perform well on small data.

In this mode, the algorithm passes through a sample of the data to build the dictionary

a-priori. Afterwards, this dictionary is used to compress the data. This is a way to avoid

the algorithm to start from nothing before compressing; which works especially well for

small streams. The latest version of Zstd (i.e. 1.5.1) reports benchmark results of x2.8

improved compression ratios on average and 500 MB/s and 1660 MB/s of compression

and decompression speeds which makes it one of the fastest and most performant GPC

method. Similar to any GPC method, when data is compressed with Zstd it is not possible

to perform random access.
1https://github.com/facebook/zstd
2https://en.wikipedia.org/wiki/LZ77_and_LZ78
3https://github.com/Cyan4973/FiniteStateEntropy

5

https://github.com/facebook/zstd
https://en.wikipedia.org/wiki/LZ77_and_LZ78
https://github.com/Cyan4973/FiniteStateEntropy

2.2 All-Type Encodings

Other GPC methods such as Brotli1 or LZ42 follow a similar architecture. They use

a variation of the Lempel-Ziv family of algorithms and afterwards use an entropy coder

to optimize the dictionary patterns codes based on the patterns entropy. The differences

between most GPC methods usually are on small optimizations, architectural decisions

and API design.

2.1.2 Lightweight Compression

In contrast to General Purpose compression, lightweight methods, also called "encodings",

exploit knowledge of the type and domain of the data. For instance, if one knows that

the data to compress are 32-bit integers, one could encode the difference between consec-

utive numbers in the hope of obtaining a smaller integer. Then, the encoding can further

bit-pack the small integers into just the necessary bits. Lightweight encodings have been

demonstrated to be orders of magnitude faster than most General Purpose compression

algorithms in terms of [de]compression time (8, 12, 13, 38). This is thanks to the fact that

they usually can fit in vectorized execution and can be fully (or partially) implemented

using SIMD instructions (single-instruction-multiple-data). Furthermore, they usually en-

able random access into the data; in contrast to general purpose compression which is

block-based (i.e. the entire block of data needs to be decompressed to access any value

in it). For these reasons, LWC methods and databases, which store values of the same

attribute close together (i.e. columnar storage) are a great fit. We will discuss more about

how data formats and databases have leveraged LWC methods in sections 2.8 and 2.9.

In the next sections, we review a series of lightweight encodings that take advantage of

different data types (i.e. integers, strings, floating-points) in addition to encodings that

can be used regardless of the type of the data. A summary of these reviewed encodings

is presented in Figure 2.1. It is important to note that we will give special attention to

floating-point encodings since we are interested in the development of a new encoding for

this data type. Furthermore, we will also analyze relevant variants of each encoding and

the efforts made to SIMDize their implementation.

2.2 All-Type Encodings

Some lightweight compression schemes can be used to encode data regardless of their

type. In other words, they are data-agnostic. These approaches take advantage of data
1https://github.com/google/brotli
2https://github.com/lz4/lz4

6

https://github.com/google/brotli
https://github.com/lz4/lz4

2.2 All-Type Encodings

Figure 2.1: Overview of reviewed LWC methods

distributions and high percentages of repeated values. However, if the data lacks these

properties, they can result in negative compression (i.e. compressed data is bigger than

uncompressed). For this reason, it is usually encouraged to scan or sample data before

applying these types of encodings; or have knowledge of the data a-priori. It is important

to note that even these all-type encodings, in contrast to GPC, do not work over one

continuous large stream of bits, but they have to be able to identify the bits corresponding

to each tuple (i.e. value) inside the data.

2.2.1 Run-Length Encoding (RLE)

RLE takes advantage of consecutive repetition of values (runs) inside a dataset. For each

value in a dataset, RLE encodes the value itself and the number of times it is consecutively

repeated. An example of this can be seen in Figure 2.2.a. When used on data that

lacks such runs of values, RLE results in negative compression (i.e. output is bigger than

input) since the original value is stored alongside an additional length which would be

near to 1 every time (Figure 2.2.b). If an entire block of data consists of the exact same

value, a special case of RLE may be used in which all the block is encoded as one single

value without explicitly specifying the length of such run. However, in such scenarios, the

algorithm needs to know how many values a block is comprised of. The latter is called One

Value or Constant Encoding.

In (36), Damme et al. presented a vectorized implementation of RLE based on parallel

7

2.2 All-Type Encodings

Figure 2.2: Overview of RLE applied in an ideal scenario (a), and in a not-ideal scenario
(b).

comparisons; analyzing vectors of 4 integers at a time for each value to encode (i.e. 128

bits for 32-bit integers). In this approach, a 4-bit comparison mask is generated from the

parallel comparisons performed with the value and each value of the vector. Afterwards,

the trailing bits of this mask are analyzed to determine whether to store the value and

its run length (i.e. run ended due to a non-equality found) or whether to advance to the

next vector on the same run (i.e. the four bits of the mask deemed as equality). However,

decoding requires two loops, one that iterates over the values, and an inner one that iterates

over the run lengths. The latter is hard to fully SIMDize since SIMD instruction sets do

not contain control instructions necessary for loops, and the scalar code required for this

will incur branch mispredictions (especially frequently on low run-lengths). To tackle this

problem Afroozeh & Boncz proposed FastLanes-RLE (3) which is part of a bigger project

named FastLanes that we will review in subsection 2.3.5

2.2.2 Dictionary Encoding (DICT)

When data contains a high percentage of repeated values, but these values are not con-

secutively arranged, a dictionary of these values can be built. Inside such a dictionary,

each value is mapped to a smaller value (usually an incremental integer starting from 0)

which is used to replace the original value in the data (Figure 2.3.a). At decoding time, the

original data is reconstructed using the dictionary mappings. Dictionary Encoding results

in negative compression when data contains a small-to-zero percentage of repeated values.

The latter results in a dictionary which size is equal to the raw data in addition to the

mapped values. An example of this can be seen in Figure 2.3.b.

Variations of Dictionary Encoding have been developed in order to maintain a dictio-

nary size small when the encoded data contains outliers. For instance, Patched Dictionary

8

2.3 Integer Encodings

Figure 2.3: Overview of dictionary encoding applied in an ideal scenario (a), and in a not-
ideal scenario (b).

Encoding (PDICT) (17) introduces the concept of exception patching in the dictionary. Ex-

ceptions are values in the original data which, when introduced to the dictionary, diminish

the compression ratios substantially due to being outliers (e.g. infrequent values). These

exceptions are detected and stored uncompressed in a separate storage segment alongside

a reference to the position in which these occurred in the original data. This technique of

exception handling was introduced in (17, 34) and it can potentially be exploited in other

encodings that also expect certain properties in the data.

This concept of exceptions may also be used when one wants to build a constant-size

dictionary. For instance, if one wants to build a dictionary of at most 16 entries, only the

first 16th most frequent values in the data would be added to the dictionary and other

values would be encoded as exceptions. This is useful when the data follows a skewed

distribution or when the codes of a dictionary need to be bitpacked in a fixed bit-width.

We will dive more into the latter when analyzing bit-packing encoding in subsection 2.3.2.

Along the way, we will encounter more LWC methods that leverage the use of exceptions

in order to achieve more speed or increased compression ratios.

2.3 Integer Encodings

Integers have received quite some attention regarding lightweight compression (3, 36, 38,

39). This is no surprise since in many applications such as search engines and database

systems, data (and even indexes) are stored as arrays of integers. Hence, not only there

are quite a few well-established algorithms to compress them in a lightweight fashion, but

they have been optimized to be fast by using vectorized and SIMDized implementations

up until the point of being able to decode hundreds of billions of compressed integers per

second (3). Integers are usually represented in memory as 32-bits. In this representation,

9

2.3 Integer Encodings

every bit represents a power of 2, being the least significant bit (i.e. the right-most one)

20 and the most significant bit being 231 (i.e. the left-most one). If the bit is 1 then the

power of two at that position is added to a summation to compute the integer number;

otherwise, it is ignored. From here we can make a difference between signed and unsigned

integers. As their name implies, signed integers support negative numbers, while unsigned

integers do not. In signed integers, the left-most bit is used to represent the sign of the

number (i.e. 1 for negative, 0 for positive). Hence, unsigned 32-bit integers range from 0 to

4294967295 (i.e. 232− 1) and signed integers from -2147483648 to 2147483647 (i.e. 231− 1

on both negative and positive ranges). It is important to note how this representation

based on summations of powers of 2 results in integers potentially having a lot of leading

zeros. For instance, if numbers in a sequence are within the range from 0 to 7, they will

always have 29 trailing zeros; in other words, we can represent them with at most 3 bits.

The latter is a powerful observation leveraged by many integer encodings. There also exist

other integer representations, for instance, long integers (represented by 64-bits) and short

integers (represented by 16-bits); both maintaining the same definition based on a bit-wise

summation of powers of 2. The key difference in these smaller/bigger representations relies

on the range of the integers that they are able to represent. We now review the most

relevant integer LWC methods and their variants.

2.3.1 Variable Bytes (VByte)

As we mentioned, the 32-bit representation of integers sometimes is not efficient. Such

is the case of small numbers. Variable bytes, also called VByte, is an encoding that

tries to only use the necessary bytes needed to represent integers (39). Although it may

sound tempting to directly cut the leading bytes which are full of 0’s, this will represent

a problem at decoding time, since every number could have been encoded with a different

number of bytes. Thus, VByte proposes to encode integers as sequences of individual

bytes. In every byte, a control bit is located at the least significant bit (i.e. the right-

most bit) to determine if one must continue reading the next byte to complete the integer

representation or if that byte marks the end of the integer. For instance, let us say we

want to encode the number 135 (00000000 00000000 00000000 10000111). It has 24

leading 0’s. In order to use VByte we have to take its significant bits (i.e. 10000111;

the bits after the leading 0’s) and for every 7 significant bits, add a control bit packed

into a byte. Hence, the bytes encoded with VByte would be: 00000011 00001110. In

the end, our number can be recovered by removing the control bit (marked in red) and

concatenating the remaining 14 bits. We have then effectively reduced the storage size

10

2.3 Integer Encodings

of our number in half. In practice, VByte has been demonstrated to be suboptimal in

terms of compression ratios when compared to other encoding schemes (34). However,

its simple algorithm makes it faster than most non-SIMDizable compression methods even

with its scalar implementation (34). Nevertheless, a vectorized implementation using SIMD

instructions called Masked VByte is presented in (40) which achieved twice as fast speed

at decoding time than scalar VByte implementation. Furthermore, a more recent variant

called StreamVByte presented by Lemire et al. (38) achieved even better performance

(around x2 speed) than Masked Vbyte by optimizing the way in which control bits are

stored and read.

2.3.2 Bit-[un]packing (BP)

Taking Variable Bytes to the level of bits results in Bit-packing (BP). Such an approach only

uses the exactly necessary bits to store integers. For instance, to encode the number 135

(00000000 00000000 00000000 10000111) we only take its significant bits (i.e. 10000111;

the bits after the leading 0’s). As a general rule, every integer in the range from [0, 2b) can

be exactly represented with b bits. A logarithm in base 2 can also be used to determine

how many bits one exactly needs to store an integer. For example, the number 135 needs

ceil(log2(135)) = 8 bits.

The reverse operation (i.e. to decode the compressed integers into 32-bit integers) is

called bit-unpacking. Bit-unpacking can be implemented without control dependencies (i.e.

if-else-then branches) with five instructions (LOAD, SHIFT, AND, OR, and STORE) (41).

As one may have noticed, bitpacking faces the same problem as VByte: How to decode

bits of variable length without a control bit? In order to solve this, the community has

adopted the implementation of BP in blocks of integers (e.g. 1024 integers) (3, 17, 34).

Each block therefore has a range of integers. The maximum number of such range will

then determine the number of bits b to encode every value in the block. In other words,

every value in the block is said to be of a fixed bit-width. This b value is stored as a header

or as metadata of the compressed data. Recently, Wang & Song presented descending

bit-unpacking (42), in which a block of bitpacked integers support variable bit-width in a

descending fashion; effectively never using more bits than needed for the integers. This

type of bit-packing is effective for data which are known to have a skewed distribution and

that can be sorted in descending order.

There have been efforts to make Bit-[un]packing fast by fully vectorizing the algo-

rithm in blocks of different lengths (e.g. 128 or 32 integers at a time) and using SIMD-

instructions (3, 34, 43) which have effectively achieved throughput of encoding and decod-

11

2.3 Integer Encodings

ing of billions of integers per second (e.g. SIMD-BP128 (34)) and even hundred billions of

integers per second (i.e. FastLanes BP (3)). The latter is achieved by Afroozeh & Boncz

in the FastLanes project (3) by introducing a novel 1024-bit interleaved data layout not

tied to specific SIMD-widths, which accomplishes completely data-parallel decompression.

In subsection 2.3.5 we will review FastLanes more in detail.

As we will see in the next subsection, bit-[un]packing is an essential part of other en-

codings to achieve impressive compression ratios. Thus, it is no surprise that such efforts

have been made to improve its speed.

2.3.3 Frame of Reference (FOR)

In 1998, Goldstein et al. proposed Frame of Reference (FOR) (23). As its name suggests,

FOR compresses a sequence of integers using a referential value to reduce the range of the

entire sequence. For instance, let us assume we have an array of integers such as: [135, 136,

137, 138]. Such an array is within the range of [0, 28), hence every value can be bit-packed

with 8 bits. However, if we take the minimum value of this range as our frame of reference,

namely 135; and we subtract this value from every element of the sequence we end up with

the following array: [0, 1, 2, 3]. This array is within the range of [0, 22) hence every value

can be bit-packed with 2 bits. Thus, for a block of values with M and m being respectively

the maximum and the minimum value of the block; FOR is able to bit-pack every number

into log2(M − m + 1) bits (ceiled). In contrast to simply bit-packing; which can only

bit-pack every number into log2(M) (ceiled). Goldstein et al. (23) reported compression

ratios of x4 on real datasets and x88 on datasets identified with low cardinalities (i.e. small

difference between their minimum and maximum values). From there, many variants of

FOR have been developed to further improve its compression ratios and [de]compression

speed.

FOR performance can be negatively impacted if there are values out of the distribution

in the data (i.e. outliers). For instance, if we add the number 1023 into our first example

array it will result in a bitpacking of 10 bits (ceil(log2(1023))). Applying FOR will still

keep our numbers within the same range of 10 bits (ceil(log2(1023− 135 + 1))). To tackle

this problem, Zukowski et al. (17) proposed Patched Frame of Reference (PFOR)–a FOR

which supports the encoding of exceptions. PFOR takes samples from a chunk of the data

in search of an optimal bit-width b that should result from applying FOR on that sample.

A chunk is defined here as 128 consecutive integers in the data. By taking samples, the

algorithm aims to find a target b for the entire chunk which effectively ignores outliers.

Hence, the used minimum and maximum values of a chunk are not necessarily the true

12

2.3 Integer Encodings

ones. Afterwards, every value in the chunk that needs more than 2b bits to be encoded

after FOR is treated as an exception. Exceptions are stored uncompressed (32-bits) in a

separate location called the exceptions section. PFOR achieves better compression ratios

than FOR and faster [de]compression (even faster than the fastest version of the Lempel-

Ziv algorithm) thanks to its implementation without control dependencies.

Lemire et al. introduced FastPFOR and SimplePFOR (34). The main idea of both

algorithms is to have a variant of PFOR such that it stores compressed blocks that are

always aligned at a 32-bit level. They achieve the latter by not entirely skipping excep-

tions, rather they store the least b significant bits of the exception. This not only speeds

up decompression but also creates opportunities to increase compression ratios. An extra

location called the byte array is used to store in a byte-aligned way metadata such as

the bit-width b, the number of exceptions and the location offset of the exceptions. The

difference between SimplePFOR and FastPFOR is in how they store the truncated excep-

tions. SimplePFOR further compresses these using Simple-8b (44). On the other hand,

FastPFOR, stores exceptions into 32 possible arrays, each array of a different bit-width.

Each array is then bit-packed to its bit-width and padded to be aligned at a level of 32

bits. Finally, a variant of FastPFOR called SIMD-FastPFOR was presented, which works

exactly the same but uses vectorized bit-packing. Both SimplePFOR and FastPFFOR

achieved better compression ratios than PFOR but were slightly slower in compression

and decompression. On the other hand, SIMD-FastPFOR was much faster than PFOR

and both SimplePFor and FastPFOR. Achieving almost twice as fast decompression speed

while only being in general slightly worse in compression ratios than PFOR.

Since bit-[un]packing is a key part of FOR [de]compression, FastLanes BP can be used as

a building block for an even faster implementation of FOR (3). In fact, FastLanes proposes

FFOR; a FOR implementation which fuses the kernels of both FOR and bit-[un]packing

into a single kernel. We will discuss more regarding kernel fusion in subsection 2.6.1.

2.3.4 Delta Coding

In 1997, Ng & Ravishankar presented Tuple Differential Coding (24), also known as Delta

Coding or just DELTA. The idea of Delta Coding is to compress integers by only storing

the differences between consecutive values. For instance, our example of integers: [135,

136, 137, 138], will be encoded as: [135, 1, 1, 1]. Therefore, the ith value is equal to

the running sum from all the previous values before i. As one may expect, the resulting

integers must be bit-packed to achieve compression. However, the resulting delta-coded

array could still have one big number which would ruin the bit-packing of the other rather

13

2.3 Integer Encodings

small integers. PDelta (17) introduces a base number equal to the first number (in our case

135) stored in another location in such a way that the output array results as follows: [0,

1, 1, 1]. Finally, PDelta also introduces exceptions in Delta Coding, similar to PFOR. This

same work introduces PFOR-Delta to further improve compression ratios. As its name

suggests, PFOR is applied to the differences obtained from Delta.

Delta coding can achieve better compression ratios than other encodings if the data is

appropriate. However, it introduces data dependencies at decompression since an integer

value can only be decoded when all its previous values have been decoded. To tackle this

data dependency problem, Afroozeh & Boncz introduced a Unified Transposed Layout in

FastLanes (3) which we talk about in the next subsection.

2.3.5 FastLanes

FastLanes proposes a new layout optimized for a virtual SIMD register of 1024 bits (i.e.

FLMM1024) which supports all common denominator instructions of most common ISAs.

This layout called the Unified Transposed Layout, reorders tuples in such a way that they

are (i) independent of the SIMD register width and (ii) they maximize independent work of

instructions. At a high level, the key idea of the Unified Transposed Layout is to reorganize

1024 values (i.e. tuples) into eight 8x16 transposed blocks and to put these eight blocks

in the order "04261537" (being these the original block indexes). This Unified Transposed

Layout helps to tackle some of the problems we previously discussed regarding RLE and

DELTA SIMDization while introducing significant speed improvements to other encodings

and to Bit-[un]packing.

For instance, FastLanes-RLE leverages the Unified Transposed Layout and a special

representation of RLE that uses the value array of standard RLE as a dictionary (in which

contrary to normal DICT, values can repeat) and replaces the lengths with DELTA-encoded

codes. In RLE, the next value is either equal to the previous, in which case the code is

equal to the previous and hence its delta is 0; or the next value is different and stored

in the next position of the value array (now, the dictionary), array and hence the code

delta is 1. As such, the storage for the lengths becomes a bitmap and [de]compression

can be handled with the efficient FastLanes primitives for DELTA decoding (that rely on

the Unified Transposed Layout). Figure 2.4 depicts the differences between a traditional

RLE compression (using DICT as internal representation) and FastLanes-RLE. Aside from

FastLanes-RLE achieving better compression ratios than conventional RLE (up to average

run-lengths of 12); it also achieves increased speed when the average runs in a 1024-value

vector are less or equal to 15. The latter stems from the lack of branch-mispredictions that

14

2.3 Integer Encodings

FastLanes-RLE can achieve thanks to the Unified Transposed Layout tuples reordering

(depicted in Figure 2.5) and the profit of using the full-width of a SIMD register.

Figure 2.4: Classic RLE representation as a dictionary encoding (a) side by side with
FastLanes-RLE representation (b) (Figure borrowed from Afroozeh & Boncz work (3))

Figure 2.5: FastLanes-RLE index vector representation in the Unified Transposed Layout
(Figure borrowed from Afroozeh & Boncz work (3))

This reordering that happens at the Unified Transposed Layout effectively breaks sequen-

tial dependencies which happen for instance in the DELTA encoding. FastLanes reports

a performance higher than 40 tuples processed per CPU cycle on the faster platforms for

8-bit integers (i.e. 8-bit lane). In addition to this, the performance of Bit-unpacking can

reach up to 60 tuples decompressed per CPU cycle for 8-bit integers (x40-x60 times against

Scalar implementations); and 3x-4x times faster against Scalar implementations for wider

types such as 64-bits. Furthermore, the performance of FOR in FastLanes is one order of

magnitude over naive sequential bit-packed layouts.

Another advantage of FastLanes is the portability of the code in terms of heterogeneous

ISAs and the capability of modern compilers to auto-vectorize the scalar code written

within the FastLanes framework; thus avoiding the need for explicitly writing SIMD in-

trinsics for each different SIMD ISA (e.g. SSE, AVX, NEON).

15

2.4 String Encodings

2.4 String Encodings

Strings can be compressed by using Dictionary or RLE encoding. However, as we previously

mentioned, such encodings require fully repeating strings to be effective. The latter is

not useful for human-generated text such as descriptions, reviews or comments. Neither

for common user-related database attributes such as usernames, emails or URLs. Hence,

general purpose compression such as LZ4 has been the easy way out for compressing strings

inside databases. However, we have already discussed the shortcomings of such approaches.

Nevertheless, recently Boncz et al. (4) introduced Fast Static Symbol Table (FSST)–a true

fast encoding for strings when Dictionary or RLE are not suitable.

2.4.1 Fast Static Symbol Table (FSST).

FSST key idea relies on the observation that in a sequence of string values (e.g. a database

column), there are data commonalities amongst the substrings of such values. For instance,

if a column in a database is comprised of URLs, the prefix http://www and the suffix .com

would repeat several times amongst every value. Hence, if one could represent these fre-

quently occurring substrings as smaller codes while maintaining a symbol table (i.e. a

mapping of the codes to their substrings), compression can be achieved by storing the

concatenation of such codes to build the original strings. Figure 2.6 shows a small example

of this procedure in practice. This enables random access to compressed strings since each

string is compressed to a (typically) shorted consecutive sequence of bytes, independent

of the surrounding strings. Decompression is reasonably fast on platforms that allow un-

aligned memory access, and can often be postponed or avoided (by delaying decompression

and operating on the compressed string).

Even though simple at first glance, a couple of challenges are presented: (i) How to build

an efficient symbol table in terms of size and compression ratios? and (ii) How to prevent

this symbol table from growing infinitely with data?

To build an efficient symbol table and prevent it from infinitely growing, symbols are

bounded to a maximum of 8 bytes and codes are bounded to 1 byte. Hence, only a

maximum of 256 symbols are used per table. It is important to note that the symbol table

that is built at compression time, is immutable (i.e. static). In other words, it will not

change if new data is compressed – this is the "static" in Fast Static Symbol Table (FSST).

Finally, a special code is defined as an escape code. This escape code is used to encode raw

substrings after it if they are not found in the symbol table. Hence, giving the algorithm

flexibility to compress new data without having to re-build the symbol table. The symbol

16

2.4 String Encodings

Figure 2.6: Overview of FSST in action with a small example (Figure borrowed from Boncz
et al. work (4))

table itself is constructed in a bottom-up approach by iteratively scanning samples of the

data, using a mechanism similar to a genetic algorithm.

FSST was evaluated against LZ4 using 23 string columns from real-world data which

ranged from human-readable names and human-generated texts. FSST achieved on av-

erage x2 times more compression ratios than LZ4 and a slightly faster compression and

decompression. Moreover, FSST achieved significant improvements over LZ4 when tested

on selective queries. The lower the percentage of information that was queried (i.e. se-

lective queries), the more orders of magnitude FSST performed faster than LZ4. This is

because FSST can just skip over strings that belong to tuples that are not selected, but

LZ4 needs to decompress entire blocks of values to perform random access. On top of

that, FSST decompression is fast as it requires few instructions, does not have control

dependencies, and the symbol table fitting into the L1 CPU Cache.

2.4.2 Conditional Huffman (CHuff)

CHuff (45) trades-off [de]compression speed for higher compression ratios than FSST; while

still maintaining the capabilities of random access into the data. As its name suggests,

CHuff uses a set of Huffman Encoding trees optimized for read operations built from

random samples of the data. Huffman Encoding is a type of entropy encoding that maps

symbols to smaller codes that do not share a prefix equal to another code. Furthermore,

more frequent symbols are mapped to the smallest codes. Huffman Encoding mappings can

be represented in a binary tree data structure in which leaves closer to the root are more

frequent symbols on the data. The key idea to CHuff is to build a set of Huffman trees

17

2.5 Floating-Point Encodings

instead of only one; based on the prefix of common strings. At decompression time, the tree

used to compress the original substrings is determined based on its code K-length prefix.

Hence the algorithm name, Conditional Huffman. Since the trees are built from a sample

of the data, and each tree has a limited size, an escape code is used as an exception-like

mechanism.

CHuff achieves 24% higher compression ratios than FSST, also beating GPC methods

such as LZ4 and Zstd; while still supporting random access into the data. In terms of

decompression speed, CHuff is faster than FSST only in settings in which there is a re-

strictive disk throughput bound. In other words, CHuff works better than FSST in the

context of low read-throughput. However, we have to note that this is mostly thanks to

the higher compression ratios. On absolute performance, FSST is still faster.

2.5 Floating-Point Encodings

IEEE 754 (26) represents 64-bit doubles in 3 segments of bits: 1 bit for sign (0 for negative,

1 for positive), 11 bits for an exponent (represents an unsigned integer from 0 to 2047),

and 52 bits for the fraction (also known as mantissa) –each bit representing an inverse

power of 2 inside a summation. Figure 2.7 shows a depiction of this representation and

Formula 2.1 shows how this representation is decoded bit-by-bit into a double.

Figure 2.7: IEEE 754 double precision floating-point bitwise representation. One bit for
sign, 11 bits for exponent and 52 bits for mantissa / fraction.

(−1)sign

(
1 +

52∑
i=1

b52−i2
−i

)
× 2e−1023 (2.1)

18

2.5 Floating-Point Encodings

The higher the precision of a double, the more entropy is present in the bits of the

mantissa. The same standard also defines 32-bit floats (with 8 bits for exponent and 23

for mantissa) and half-precision (float16) as well as quadruple and octuple floating points.

These representations cannot accurately represent all real numbers. For instance, the real

number 0.1 cannot be represented either in the 32-bit or 64-bit floating-point definitions.

The closest one can get to this value in a double is 0.100000000000000005551. This creates

precision errors when performing arithmetic (e.g. additions). Hence, using integer encod-

ings such as FOR or DELTA on floating-points would result in lossy compression if used

without care. Also, these representations make floats not suitable for bit-packing because

small or low-precision numbers do not necessarily have a representation with many leading

zero bits.

We now review the relevant work done in lossless lightweight floating-point compression;

the main focus of this thesis. The techniques developed can be categorized mainly into

three groups, which at the same time, tell the progression of how the encodings have

evolved through time: (i) Predictive schemes, (ii) purely XOR schemes and (iii) Decimal-

based schemes. There is an additional branch of research focused on lossy algorithms.

Lossy compression trades off the precision of the data for higher compression ratios. In

other words, the exact original data is lost. In this literature review, we will only focus

on lossless compression methods; in which the output of the decompression process is the

exact original data (bit by bit).

2.5.1 Predictive Schemes

Predictive Schemes were the first novel approaches designed to compress floating-point

data (5, 18, 46, 47, 48). The core idea of these approaches is to use a function to generate

a predicted value based on patterns found within the data prior to the value to encode.

Predictive algorithms are as good as their prediction can be. If the predicted value and

the value to encode are similar enough, one can yield a compressible chain of bits by

applying an operation between them. Such operation, the predictor function, and the

ways to encode the result from this operation (also called residual) have greatly changed

through time. The used predictor function can be context-specific. For instance, if one is

trying to compress points in space of a 3D mesh, this predictor function can be a Lorenzo

Predictor (49) which estimates a point value based on its n-previous neighbours in every

dimension. However, we are more interested in approaches tailored to work regardless of

the nature of the floating-point data.

19

2.5 Floating-Point Encodings

2.5.1.1 Delta Predictive Coding (FSD)

Back in 2000, Engelson et al. (5) introduced Delta Predictive Coding –the first true en-

coding for any floating-point data. Prior to this research, floating-point compression was

focused on domains such as audio, geometry meshes and images. The algorithm is based

on the well-known Delta encoding we already discussed in subsection 2.3.4. It converts

every float into its 64-bit integer representation. In other words, the 64 bits allocated for

the floating-point number, are used to define an integer. This is a clever way to enable

the use of arithmetic on floating-point data without losing precision, since any operation

between integers is reversible to the original integer that, in its bitwise representation,

represents the original double. Afterwards, the algorithm computes the mth previous dif-

ferences for every value in a position further than m. To understand this let us define

an array of 64-bit integers b. The first order difference (m = 1) for a bi element for

i = 1...n is then defined as: ∆1bi = bi − bi−1. Then, the mth order of difference is

∆mbi = ∆m−1bi − ∆m−1bi−1. Hence, this computation of the mth differences results in

an array as follows: (b1, b2, ...bm,∆mbi+1,∆
mbi+2, ...,∆

mbn). An image of how this pro-

gressive differences calculation works for m = 1 (i.e. lookup into one previous value) can

be seen in Figure 2.8. From this sequence (which occupies the same space as the original

doubles sequence), we can restore the original array b losslessly since we are using integer

arithmetic. Based on the assumption that such numbers in the array of differences are

small, these 64-bit integers are then compressed with a type of variable-length bit-packing

in which all 0’s front-bits are removed and the number of stored significant bits (i.e. the

bits after the 0’s front-bits) are stored in 6 additional bits. Six bits are needed since at

most, the significant bits would be 64 (log2(64) = 6).

Compression ratio benchmarks were performed on artificially generated data, achieving a

maximum of x3.68 compression ratio with differences of 10th order on blocks of 216 values.

As expected, the higher the mth orders the higher the compression performance since

the predictions are closer to the real value. Further testing showed that the compression

algorithm was greatly affected by the smoothness of the data. Engelson et al. (5) defined

a sequence of values as smooth of order m if a value at position i can be well approximated

by a polynomial extrapolation of m-consecutive previous values. For instance, a sequence

of values close to 0th order (e.g. data generated from a function that has small and slow

changes) achieved the best performance in terms of compression ratios.

20

2.5 Floating-Point Encodings

Figure 2.8: Depiction of calculating the first order differences (m = 1) for 64-bit integer
values a3 and a4; namely c3 and c4. (Figure borrowed from Engelson et al. work (5).)

2.5.1.2 Differential Finite Context Method Predictor (DFCM)

FSD performance greatly depended on the smoothness of the data. In 2006, Ratanaworab-

han et al. (6) proposed a new predictive encoding for 64-bit doubles whose novelty was to

use a bitwise XOR as the operator between the predicted value and the value to encode

instead of conventional arithmetics operators (while still being a fast operator with low

latency in most ISAs (50)). The XOR operator compares two bit streams position-by-

position. If the bits are the same, the result is a 0-bit, otherwise, the result is a 1-bit. This

is illustrated in an example in Figure 2.9. The XOR definition is completely independent

of the datatype on which the operator is applied since it works at a bit level. When two

floats are close to each other in the numeric range, their sign, exponent and –possibly–

the first bits of the fraction part are equal. This results in leading zeros when using the

XOR operator. Furthermore, if their precision is similar (i.e. their radix point position)

then the last bits of the mantissa could be similar. This results in trailing zeros when

using the XOR operator.

Figure 2.9: Depiction of the bitwise XOR operator between 0.2 and 0.4 represented as 64-bit
doubles. Equal bits between both numbers are highlighted in green.

21

2.5 Floating-Point Encodings

An overview of the DFCM algorithm is presented in Figure 2.10. In addition to using

the XOR operator, DFCM somewhat removes the dependency on the smoothness of the

data since it does not rely on consecutive values being similar, rather it tries to record

and identify in a hash lookup table all the predictions that have previously occurred. If

a new prediction wants to be made, a hash is computed using the previous m-differences

of the current value to predict. Using this hash as an index, a lookup is performed to

retrieve the last predictions that followed the last m-times that the same hash was found.

In other words, it tries to find predictions that happened in a similar context. Similarly

to FSD, this lookup also happens up to a predefined m-order, which was fixed to 3 after

experimentation (i.e. the two last predictions for the two hashed last differences are looked

up). This is called a differential-finite-context-method predictor (DFCM) (51)– the name

by which the algorithm will be referred to later in the literature. Contrary to FSD, the

differences are computed with the raw doubles. For this reason, the hash index does not

store all the precision of the differences, rather it only uses the n-most significant bits of

the doubles and ignores the rest. By doing so, it is more likely to find recurrent patterns

(e.g. a difference sequence of (0.5001 and 0.6001) are stored as an index in the lookup table

as (0.5000 and 0.6000)). After experimentation, only storing the first 14 bits is enough

to achieve good enough predictions. Once the algorithm has found in the lookup table

the last two predictions of the same previous two differences, it uses them to calculate the

current predicted value in the following way: if both previously predicted values (dpred′

and dpred′′ in Figure 2.10) are similar (i.e. their first 14 bits are the same), then the new

predicted value is calculated as dpred′+(dpred′−dpred′′). Otherwise, the predicted value

is equal to dpred′. In such a formula, the dpred′ − dpred′′ term takes into account the

drift in the difference of values, which improved the prediction accuracy and compression

ratios.

With a predicted value at hand, the XOR operation is applied between it and the true

value (left-most part of Figure 2.10). The yielded chain of bits is compressed with a variable

length bit-pack of the first front 0’s bits based on the assumptions that similar values will

have the same sign, exponent and first front bits of mantissa (resulting in an XOR filled

of leading 0’s). However, instead of storing the exact count of 0’s in 6 bits (as DPC), they

encode the count of 0’s divided by 4 in only 4 bits (a floor to the nearest common divisor

of 4 is done to avoid decimal results). This increases the algorithm speed since the offset

is at a half-byte granularity instead of a bit-granularity. The rest of the bits are stored

bitpacked to only the needed amount of bits.

22

2.5 Floating-Point Encodings

Figure 2.10: Overview of the DFCM algorithm. (Figure borrowed from Ratanaworabhan et
al. work (6).)

DFCM was tested on 7 datasets from different sources of scientific data against 6 general

purpose compression algorithms (bzip2, gzip, lzpx, p7zip, rar and zzip) and against FSD.

In terms of compression speed DFCM achieved the fastest performance of all, being 15%

faster than FSD and 257% faster than gzip. In decompression, however, it resulted to

be 2.5% and 31% slower than FSD and gzip. In terms of compression ratios, it achieved

the highest compression ratios in 5 out of 7 datasets, only beaten by p7zip which was

orders of magnitude slower in both compression and decompression. On the other hand,

it outperformed FSD in every dataset in terms of compression ratios.

2.5.1.3 Fpzip and Pzip

Later on in the same year in which DFCM was developed, Lindstrom & Isenburg developed

fpzip (46) (also referred to as PLMI). Fpzip diverges from the DFCM idea of XORing. It

first predicts subsequent values using already encoded values with a 1D generalization of

the Lorenzo predictor (49). Then, both the predicted and true values are transformed to

their 64-bit integer representation. Finally, residuals are computed between both values

using an arithmetic subtraction. The novelty of fpzip is that these residuals are then

further compressed using a combination of entropy coders and raw bit storage. Fpzip was

benchmarked on 2D and 3D grids data (despite of this, a generalization for 1D arrays of

floating-point data is given). Fpzip achieved better compression ratios than the ones of

DFCM on these types of datasets. However, in terms of speed, it is slightly slower than

DFCM. In 2019, Cayoglu et al. (7) improved on fpzip to develop pzip. Pzip introduces the

23

2.5 Floating-Point Encodings

XORing idea into fpzip to calculate the residual between the predicted and true values.

However, before the XOR, the predicted value is adjusted with an operation they defined

as shift. A shift is a sequence of bit flips that tries to maximize the count of 1’s which

follows the initial count of 0’s. Afterwards, these counts of 0’s and 1’s are rearranged

and encoded with an entropy encoder. Pzip demonstrated to be on average 10% better

in compression ratios and 6 times faster than fpzip. Unfortunately, the benchmarks were

only done against fpzip despite the fact that many more floating-point schemes surfaced

in years prior to this work as we will see in the next subsections. Both fpzip and pzip

algorithms are depicted in Figure 2.11.

Figure 2.11: Overview of Fpzip (top) and Pzip (bottom) algorithms. (Figure borrowed from
Cayoglu et al. work (7).)

2.5.1.4 FPC

Shortly after DFCM, Burtscher & Ratanaworabhan developed FPC (8), which achieved

orders of magnitude better compression and decompression speeds while still improving

on compression ratios compared to both DFCM and FSD. FPC is depicted in Figure 2.12.

FPC followed the same idea of DFCM: sequentially predicting each value to encode, XOR-

ing the predicted value with the value to encode and compressing the XOR result with

compression of the front 0’s bits. The main architecture-wise difference is that FPC uses

two different predictors instead of one to improve prediction accuracy and therefore improve

compression ratios. Then, a selector chooses the best prediction among both predictors

(i.e. the one that shares the most front bits with the value to encode). The first predictor

is a fcm (52) while the second is an dfcm (51). Similarly to the DFCM algorithm, both

24

2.5 Floating-Point Encodings

predictors are hash tables indexed at the m-previous values. The main difference between

fcm and dfcm predictors is that the dfcm table is indexed on the differences of the m-

previous values (similar to the DFCM algorithm) and the fcm table is indexed on the raw

m-previous values. On FPC, doubles are converted to their 64-bit integer representations

(similar to FSD) to use integer arithmetics. Similarly to the DFCM algorithm, the hash-

ing function in FPC also cut the numbers to their first 14 bits to eliminate the random

mantissa bits.

Figure 2.12: Overview of FPC. (Figure borrowed from Burtscher & Ratanaworabhan
work (8).)

Since two predictors are used at compression time, the algorithm has to be able to

detect which one was used to perform the decompression. Hence, when encoding the XOR

result, an additional control bit is added to the compressed value. This additional bit is

compensated by only using 3 bits to store the XORed value front 0’s count (contrary to

the 4 bits used in DFCM). Although 3 bits only allow us to store a maximum count of

32 leading zeros (a count from 1-8 times 4), 4 bits are deemed to be unnecessary since in

practice, leading 0’s count bigger than 32 rarely happens. If it does, these extra 0’s are

stored alongside the residual (i.e. trailing bits; see bottom of Figure 2.12). Finally, as shown

in Figure 2.12, FPC stores data in two separate segments: metadata and residuals. The

metadata segment contains blocks of half-bytes comprised of 1 control bit (i.e. predictor

used) and 3 bits for the count of leading zeros / 4. The residuals segment contains the

raw trailing bits of the compressed number. Each block is stored with a header that

25

2.5 Floating-Point Encodings

determines how many values are compressed in a block. This separation of the compressed

data into two segments instead of interleaving them substantially improves decompression

speed since all metadata can be sequentially read without any bit-level offset corrections

if read as a pair (effectively 1 byte).

FPC was evaluated on 4 different computer architectures (i.e. Alpha, Athlon, Itanium

and Pentium) using 13 different datasets of 3 different natures (i.e. observational scientific

data, numeric simulations and parallel messages). FPC was tested against two general-

purpose compressors (i.e. BZIP2 and GZIP) and three compressors for floating-point data

(i.e. FSD, DFCM and Fpzip (referred to here as PLMI)). In terms of compression speed

measured in throughput, FPC is orders of magnitude better than any other compressor

in every architecture (8 to 300 times faster in compression and 9 to 100 times faster

in decompression). Furthermore, by using predictor tables that fit into L1 Cache, FPC

achieved a throughput of 84 million doubles per second on the 1.6GHz Itanium architecture.

In terms of compression ratio, the performance of FPC widely depends on the maximum

size set for the predictors’ hash tables. For instance, with a size of 1MB, FPC achieved

the highest compression ratio than any other algorithm in 4 datasets and individually it

achieved compression ratios between x1.08 and x15.05. Although competitive, FPC fails

to be on par with Gzip and Bzip2 on some datasets with a high entropy in its values. In

general, FPC performed better than DFCM. This is due to DFCM focusing on specializing

one complex predictor. On the other hand, FPC has the advantage that it uses two simpler

predictors, and when one predictor performs poorly, the other is able to help obtain a

better-predicted value. Increasing the table size in FPC helps to achieve more compression

ratios, however, it affects the speed of [de]compression.

2.5.1.5 Sprintz

Striving for a predictive scheme that can run in low-memory environments such as IoT

devices while still achieving improved compression ratios and decompression speed Blalock

et al. (53) developed Sprintz. In contrast to previous approaches, Sprintz gets its speed

from processing small blocks at-a-time. Furthermore, its improved compression ratios stem

from the use of FIRE (Fast Integer REgression) as a predictor, instead of Delta Encoding;

and the use of other LWC methods to further compress the residuals.

In a high-level overview, Sprintz compresses data in 4 steps:

• Floating-point values are converted to their integer representation.

• The FIRE predictor is used to forecast a value based on previous values.

26

2.5 Floating-Point Encodings

• The residuals (subtraction) between the predicted value and the true value are bit-

packed to only the necessary amount of bits (SIMDized).

• RLE is used to further compress such residuals (SIMDized).

• Finally, metadata (i.e. bits used on bit-packing and run lengths) and residuals are

encoded with Huffman codes.

FIRE is a novel predictor introduced in the same work and despite being more com-

putationally expensive than Delta, it achieved more accurate predictions, hence smaller

residuals. FIRE is a linear regression model in the form of: xi = xi−1+αxi−1+αxi−2+ ϵi;

being x a true value of the data to encode and ϵ a term that accounts for noise. Essentially,

a model is built for every block of data.

Sprintz was tested on around 100 datasets from 5 time series repositories of floating-point

data, and compared against some LWC (e.g. SIMD-BP128 and FastPFOR) and some GPC

(Snappy, Zstd and LZ4). As one may have noticed, these LWCs used for comparison are

for the integer type. Sprintz was compared against such methods since it only works by

converting floats to integers in the first step of compression. Sprintz achieved on average

higher compression ratios than all of the algorithms (LWCs and GPCs) it was compared

against, ranging from 2x - 6x compression ratios. However, in terms of decompression

speed, it was orders of magnitude slower than SIMD-BP128 and FastPFOR. In addition

to that, Sprintz also showed to be slower than some GPCs such as LZ4.

2.5.2 XOR Schemes

Motivated to achieve even higher throughput in the compression of floating-point data

within a streaming context, Pelkomen et al. (30) re-evaluated the need for a predictor

function to obtain a similar value to the value to encode. Their key idea was that in certain

contexts such as time series, using the immediate previous value in a stream of data to

operate with the current value to encode works as well as using a predictor function. This

assumption motivated the development of Gorilla which at the same time, has recently

motivated countless schemes to compress floating-point data which we explore in the next

subsections. All of these schemes value the simplicity and power of the XOR operator when

trying to make floating-points compressible, thus making it the core of their algorithms.

This effectively allowed researchers to focus on clever ways to optimize the way in which

the XORed chain of bits is compressed, instead of focusing on developing better predictive

functions. Despite their implementation being relatively recent, none of these encodings

27

2.5 Floating-Point Encodings

implements a SIMD-friendly variation or counterpart, and neither is tailored for vectorized

execution. The latter is due to most of these algorithms having a strong use of control

structures and data dependencies which inhibit SIMD implementations.

2.5.2.1 Gorilla

The motivation behind Gorilla was to create an algorithm able to compress floating-point

data incoming in a streaming fashion at a high throughput rate. In such a setting a

predictor function introduces significant overhead and the need to look at previous values.

The novelty of Gorilla lies in the fact that no predictor function is needed to generate a value

that yields a nice compressible chain after the XORing process. In Gorilla, the predictor

function is replaced in favour of using the immediate previous value. This idea was based on

the observation that on time series data, similar values (i.e. same sign, exponent and first

bits of the mantissa) are stored close-by given the temporal commonalities of consecutive

values. On time series, each floating-point value vi+1 is recorded further in time than

value vi. Hence, a time series can be defined as a sequence of observations ordered

increasingly by time. On the other hand, in non-time series data, this temporal property

is not present. For instance, this can result in a higher entropy between consecutive

values. Gorilla’s original compression algorithm encodes a pair of timestamp and floating-

point values. In the context of our LWC study, we focused on the part of the algorithm

that compresses floating-points rather than timestamps since both of these may exist as

standalone algorithms.

Each block encoded by Gorilla leaves the first value uncompressed, and consequent values

are encoded by applying a bit-wise XOR between its immediate previous value and using

the following variable length encoding scheme for each XORed chain of bits:

• If the XORed chain of bits is 0 (i.e. perfect XOR; equal values)

– Write "0" bit [case #1 in Figure 2.13]

• Otherwise,

– Write "1" bit

– If the number of leading zeros and trailing zeros is equal or higher than the

previous XORed chain leading zeros and trailing zeros: (i) write "0" bit and (ii)

write the significant bits (i.e. bits after the leading zeros) [case #2 in Figure 2.13]

28

2.5 Floating-Point Encodings

– Otherwise: (i) write "1" bit, (ii) write the number of leading zeros (in 5 bits, due

to log2(32) being the maximum amount of leading zeros supported), (iii) write

the number of significant bits (in 6 bits, due to log2(64) being the maximum

amount of possible significant bits) and (iv) write the significant bits themselves.

[case #3 in Figure 2.13]

These cases are visually depicted in Figure 2.13. There are a couple of remarks we would

like to highlight from Gorilla: 1) The significant bits of an XOR result are the bits that are

not deemed as leading or trailing zeros. 2) The previous number of leading and trailing zeros

are stored as an algorithm state every time we reach the right-most branch (Figure 2.13).

As one may have noticed, this means that every time the current XOR leading or trailing

zeros are smaller than the previous one, these state values become progressively smaller;

hindering the performance if the analyzed blocks are big. For instance, if at one point the

previous leading zeros or trailing zeros are equal to 0, there is no point of return until the

next block starts. The following values to encode will fall into the worst-case scenario (case

#2 in Figure 2.13) in which all bits would be stored as significant. The latter can be seen

as being stuck in a local optimum.

Figure 2.13: Overview of Gorilla algorithm. Case identifiers are enclosed in diamonds.
(Figure format inspired by Liakos et al. work (9).)

29

2.5 Floating-Point Encodings

Unfortunately, the Gorilla paper does not perform benchmarking against previous schemes.

However, Gorilla was deemed to be faster than any predictive scheme on both compression

and decompression, since encoding and decoding are achieved using a simple XOR with

the immediate previous value instead of tuning and running a predictive function.

Recently, Wang et al. (10) proposed a small optimization to Gorilla to improve compres-

sion ratios in such cases when Gorilla get stuck in a local optimum. In order to do so, the

block of compressed values is scanned and case #3 is preferred in favour of case #2 when

the state of previous leading and trailing zeros is already low but a further XOR results

in more zeros that could potentially save space in the further next cases. Essentially, this

process serves as a recovery for Gorilla when its state of leading and trailing zeros is close

to 0 and compression is not effective anymore since case #3 overwrites the state of the

algorithm. Figure 2.14 shows an example in which favouring case #3 instead of case #2

despite the amount of leading zeros being higher than the previous one, results in higher

saves for the latter values.

Figure 2.14: Depiction of local optimum escape in gorilla (Figure borrowed from Wang et
al. work (10).)

2.5.2.2 TSXor

In 2021, Bruno et al. (11) followed the line of XORing floating-points and developed TSXor.

TSXor authors observed that floating-point values which look similar in their decimal

representation (i.e. their human-readable representation), may not have a similar bitwise

representation. An example of this is seen in Figure 2.15.

Hence, the key idea of TSXor is to look for the best value to XOR within a window of

previous values. The best value to XOR is defined as the value that yields the most amount

of leading and trailing zero bits after XOR. This lookup window is set to the previous 128

30

2.5 Floating-Point Encodings

Figure 2.15: Depiction of the bitwise XOR operator between 11.3 and 11.5 doubles. Equal
bits between both numbers are highlighted in green.

values to comfortably fit the reference index into one byte (we can store an index from 0

to 127 in 7 bits). From here, 3 different compression cases are defined:

• Reference: If a perfect XOR is found (i.e. equal values), write the previous index

position in 1 byte. [case #1 in Figure 2.16]

• XOR: If the sum of the number of leading zeros and trailing zeros is bigger or equal

to 2; write (i) the previous index position + 128 (1 byte), (ii) the number of leading

bits (in 4 bits) and the number of trailing bits (in 4 bits) packed in 1 byte and (iii)

write the significant bytes. [case #2 in Figure 2.16]

• Exception: Otherwise, write (i) 255 as an exception code in 1 byte and (ii) the

uncompressed double (8 bytes). [case #3 in Figure 2.16]

TSXor algorithm cases are depicted in Figure 2.16. It is important to note that TSXor

works in a byte-aligned way. This efficiently increases the algorithm speed since there

are no bit-level offsets to manage in compression or decompression procedures. It is also

important to highlight that the three cases are differentiated at decompression time by

the first byte. In the case of Reference, this first byte ranges from 0 to 127. In the case

of XOR, the addition with 128 makes this control byte always have a ’1’ as the first bit.

Finally, the special value 255 is used to encode exceptions. Note that in the case of a high

number of exceptions, TSXor may lead to negative compression (i.e. compressed data is

bigger than uncompressed) due to the extra control byte to represent the special value 255

alongside the uncompressed value.

TSXor was tested in 7 real-life floating point datasets. In terms of compression ratios,

TSXor beats both FPC and Gorilla in most of the datasets with compression ratios ranging

from x1.30 and x6.4. In such datasets, on average 7.8% of the values were encoded as

exceptions, 54.3% as reference and 37.9% as XOR. However, in two of the seven datasets,

the exceptions percentage goes as high as 23%. In terms of decompression speed, TSXor is

31

2.5 Floating-Point Encodings

Figure 2.16: Overview of TSXor algorithm. Case identifiers are enclosed in diamonds.
(Figure format inspired by Liakos et al. work (9).)

1.9 and 4.2 times faster than Gorilla and FPC respectively mainly due to its byte-aligned

way of storing information. In compression speed, however, TSXor falls behind both FPC

and Gorilla mainly due to the window lookup for the proper value to XOR. In Figure 2.17

we can see how different window size creates a tradeoff between slower compression speed

(due to lookup) and higher compression ratios while decompression speed remains the

same.

Figure 2.17: TSXor trade-offs when using increasingly window sizes for the reference value on
compression ratio (left), decompression speed (middle) and compression speed (right) (Figure
borrowed from Bruno et al. work (11).)

We can notice how TSXor combines ideas from both predictive schemes (e.g. maintaining

a lookup table to search for the best value to operate with) and purely XOR schemes (e.g.

packing both leading and trailing zeros).

32

2.5 Floating-Point Encodings

2.5.2.3 Chimp

In contrast to Gorilla, which only leverages Facebook’s time series data, Liakos et al. (9)

analyzed 19 real datasets of floating point data of different natures and decimal precision

to develop Chimp. 14 of these were data in a time series fashion and 5 of these were data

from non-time series. For instance, these last 5 datasets are more representative of doubles

stored in classical database workloads. These datasets contain data from temperature mea-

surements, monetary data (i.e. stocks, prices), coordinates and scientific measurements.

Furthermore, each dataset had different decimal precisions, ranging from 1 up to 17. This

variety of datasets is remarkable since it is the first research work on floating-point compres-

sion which did not focus on a specific data domain to test its compression algorithm. Let

us remember that up until now, predictive schemes have focused on scientific/simulations

data, and Gorilla focused on very specific data from Facebook’s systems.

Figure 2.18: Distribution of trailing zeros from XORing with previous value on real-life
datasets analized to develop Chimp. (Figure borrowed from Liakos et al. work (9).)

When analyzing these datasets output when XORing every value with its previous value,

Liakos et al. (9) observed that in the case in which two values are not identical, their XORed

chain of bits is not likely to have a large number of trailing zeros. In fact, the distribution

shows that there is a high probability that the resulting XORed values have less than six

trailing zeros and only a few cases of 6 to 63 trailing 0’s bits and lesser of 64 bits (equal

XOR). This distribution is depicted in Figure 2.18. This means that reserving 6 bits to

denote the number of trailing zeros (as Gorilla) is usually worse than storing the bits itself.

On the other hand, they observed that such an XORed chain of bits exhibits a considerable

33

2.5 Floating-Point Encodings

Figure 2.19: Distribution of leading zeros from XORing with previous value on real-life
datasets analized to develop Chimp. (Figure borrowed from Liakos et al. work (9).)

number of leading zeros instead. For instance, there are very limited cases in which the

leading zeros range is between 1-7 bits. Most of the leading zeros distributions are located

between 9 and 24 bits (Figure 2.19).

These observed trailing and leading zeros properties make most real-world scenarios

quickly fall in a local optimum which leads to the worst case scenario of Gorilla, in which

almost no compression is achieved (case #2 of Figure 2.13). Leveraging these proper-

ties, Liakos et al. developed Chimp. Chimp (9) refined Gorilla by exploiting previously

mentioned properties of the bit-chains yielded by the XORing process in time series data.

Chimp uses a 2-bit control flag to distinguish four compression cases mainly distinguished

by the amount of trailing zeros in the XORed chain. The first value of the block to compress

is stored uncompressed. Consequent values are stored based on the following rules:

• If XOR with previous value has more than 6 trailing zeros (> log2(64))

– Write "0" bit.

– If values are identical (i.e. perfect XOR), write "0" bit. [case #1 in Figure 2.20]

– Otherwise, write (i) "1" bit, (ii) write the number of leading zeros (in 3 bits; we

explain why only 3 bits are used later), (iii) write the length of the significant

bits (in 6 bits) and (iv) write the significant bits themselves. The significant

34

2.5 Floating-Point Encodings

bits are the bits of an XOR bit-chain which are neither trailing zeros nor leading

zeros. Hence, the number of significant bits can be calculated as follows: 64 −
leading_zeros_count− trailing_zeros_count. [case #2 in Figure 2.20]

• If XOR with previous value has less or equal to 6 trailing zeros (≤ log2(64))

– Write "1" bit.

– If the number of leading zeros is equal to the previous XORed value leading

zeros: (i) write "0" bit and (ii) write the non-leading XORed bits (i.e. significant

bits). [case #3 in Figure 2.20]

– Otherwise, (i) write "1" bit, (ii) write the number of leading zeros (in 3 bits)

and (iii) write the non-leading XORed bits (i.e. significant bits). [case #4 in

Figure 2.20]

Figure 2.20: Overview of Chimp algorithm. Case identifiers are enclosed in diamonds.
(Figure format inspired by Liakos et al. work (9).)

Chimp encoding cases can be seen in detail in (Figure 2.20). There are a couple of

remarks regarding the Chimp algorithm: 1) The significant bits of an XOR result are the

bits that are not deemed as leading or trailing zeros. 2) In contrast to Gorilla, Chimp

stores the leading zeros count in 3 bits instead of 5. This is an observation based on the

observed skew of the distribution of leading bits (Figure 2.19). For instance, values of

leading zeros between 1 and 8, or 24 and 32 rarely happen. Hence, these 3 bits are used

35

2.5 Floating-Point Encodings

to map 8 exponentially decaying steps of possible leading zero counts: 0, 8, 12, 16, 18,

20, 22 and 24. In other words, it serves as an optimal floored rounding of the number of

leading zeros. 3) In contrast to Gorilla, the previous number of leading zeros stored in the

algorithm state is not always decreasing; it is updated every time the algorithm lands in

case #4 and it is reset on cases #1 and #2.

2.5.2.4 Chimp128

Chimp was jointly developed with a variant called Chimp128 in which, very similar to

TSXor, the algorithm looks into the previous 128 values in order to find the most suitable

value to XOR at the expense of 7 additional bits to store the position of this value (7 bits

due to log2(128)). Note that it is remarkable that the TSXor paper was not cited by the

Chimp paper. The use of a buffer to look into the previous 128 values effectively skew the

distribution of trailing bits towards more than 6 bits, and even towards perfect XOR (i.e.

64 trailing zeros–equal values). However, by maintaining Chimp’s 4-cases, this previous

index is only used if it is useful to achieve compression. That is, only if the number of

trailing zeros resulting from the XOR with any of the previous 128 values is higher than

the number of bits needed to store the index itself (7 bits for a buffer of 128 values), plus

the number of bits to specify the number of significant bits. The latter slightly changes

both left-most cases of Chimp compression as follows (Figure 2.21):

• If XORed value trailing zeros surpass the space needed to store the previous value

index plus the number of significant bytes (trailing_zero_count > log2(128) +

log2(64))

– Write "0" bit

– If values are identical (i) write "0" bit and (ii) write the previous index (in 7

bits)

– Otherwise, (i) write "1" bit, (ii) write the previous index (in 7 bits), (iii) write

the number of leading zeros (in 3 bits), (iv) write the number of significant bits

(in 6 bits) and (v) write the significant bits themselves.

• Otherwise (trailing_zero_count ≤ log2(128) + log2(64))

– Write "1" bit

– If the number of leading zeros is equal to the previous XORed value leading

zeros: (i) write "0" bit and (ii) write the non-leading XOR bits

36

2.5 Floating-Point Encodings

– Otherwise: (i) write "1" bit, (ii) write the number of leading zeros (in 3 bits)

and (iii) write the non-leading XORed bits.

Figure 2.21: Overview of Chimp128 algorithm. Case identifiers are enclosed in diamonds.
Text highlighted in bold are the main differences with Chimp. (Figure format inspired by
Liakos et al. work (9).)

In terms of evaluation, Chimp128 proved to be substantially better than FPC and Go-

rilla with 39% and 40% higher compression ratios respectively (9). Moreover, Chimp128

achieved higher compression ratios than GPC methods as Snappy and LZ4; while still

underperforming against Zstd. In terms of speed, Chimp128 is on par with Gorilla, faster

than FPC and faster than every general purpose approach in both compression and decom-

pression (9). Chimp128 buffer lookup was tested also with 16 values instead of 128. Such

configuration did not achieve substantial improvements over only looking at the previous

value in some datasets. Interestingly enough, Chimp128 showed that previous-value XOR-

ing approaches also work well for non-time series data. Based on these results, Chimp128

was deemed to be the de facto alternative for floating-point compression.

2.5.2.5 Patas

In order to improve Chimp decompression speed, DuckDB Labs developed Patas (31). The

goal was to get a variant of Chimp128 faster at [de]compression. Patas achieves this by

37

2.5 Floating-Point Encodings

re-engineering Chimp128 into an algorithm with a single encoding mode (i.e. no if-else

statements) that stores bits in a byte-aligned way (i.e. less CPU work). Patas is depicted

in Figure 2.22. Due to its single encoding mode (instead of four), Patas does not encode

control bits. Furthermore, compressed data is divided into two close-by segments: data and

metadata (red and yellow in Figure 2.22). For every value, Patas encodes a metadata block

of exactly 2 bytes (i.e. 16 bits) containing: (i) the previous value index (in 7 bits), (ii) the

XORed value number of significant bytes (in 3 bits due to log2(8)) and (iii) the number of

trailing zeros (in 6 bits). These metadata blocks are stored continuously. At decompression

time, the number of leading zeros can be known from the number of significant bytes and

the number of trailing zeros available in the metadata. On the other hand, the data

block contains the significant bytes of the XORed value. Note that these are bytes, rather

than bits. Hence the unpacking of data is byte-aligned; which makes it faster since there

are no bit-level offsets that require shift operations. In addition to this, the uniformly

packed metadata (also byte-aligned) makes decompression faster since there is no need to

maintain and update multiple pointers to access each array of metadata; unlike Chimp128.

Figure 2.23 depicts how Patas compressed data is physically stored in DuckDB.

Figure 2.22: Overview of Patas algorithm. (Figure format inspired by Liakos et al. work (9))

Patas trades compression ratio for an x3-4 speed improvement at decompression time

compared to Chimp128. In the context of analytical databases such as DuckDB decom-

pression speed is important for obtaining fast query results. Note that Patas may easily

lead to negative compression (i.e. compressed data bigger than uncompressed) since, no

38

2.5 Floating-Point Encodings

Figure 2.23: Overview of how DuckDB stores Patas compressed data.

matter what, every encoded value significant bytes (which could be 8 bytes) comes with its

block of 2 bytes of metadata. For this reason, Patas is always going to be at a disadvantage

against Chimp, TSXor or Gorilla if perfect XORs are found.

2.5.2.6 Elf

Most recently, Li et al. (12) proposed a new scheme called Elf (12); which trades both

compression and decompression speed for increased compression ratios. Elf is a LWC

method for streaming floating-point compression which serves mainly as a pre-processor of

the doubles. Elf erases bits from the mantissa at encoding time to make the XOR result

more compressible. After erasure, any floating-point compression method can be plugged in

to encode the less random doubles. After decoding, Elf losslessly reconstructs the original

double. For instance, in Figure 2.24 we present an example of how Elf is able to erase 44

bits of the mantissa of the double 3.17. Afterwards, this double XORed to its previous value

resulting in a chain of bits filled with trailing and leading zeros (∆′ in Figure 2.24). The

latter is a chain from which Gorilla and Chimp can achieve higher compression ratios. As

Elf architecture depicts in Figure 2.25, these erasure and restoring procedures are agnostic

of the used LWC method. In other words, any state-of-the-art method can be plugged into

Elf’s architecture. For example, in Figure 2.25, one can replace XORcmp and XORdcmp

with Gorillacmp and Gorilladcmp.

Elf challenges are: How to erase bits from the mantissa, and more importantly, how to

recover them at decoding time without information loss. And second, how to do it fast.

The idea behind erasing bits from a double n is to find a number δ between 0 and an inverse

power of 10 (0 < δ < 10l), being l the decimal place count of n, such that the number

obtained from δ−n result in a good XORed result with a previous value n′. We define a good

XORed result as a chain of bits with a high number of leading 0’s bits. At decompression,

the original n can be recovered from the XOR result, and both δ and n′. Such pair

(n′, δ) is satisfied by many combinations. For instance, for n = 3.17, such pairs could be

39

2.5 Floating-Point Encodings

Figure 2.24: Elf eraser and restorer applied to the double 3.17 (Figure borrowed from Li et
al. work (12))

Figure 2.25: Overview of Elf architecture (Figure borrowed from Li et al. work (12))

(3.17, 0), (3.169999837875366, 0.000000162124634) or (3.1640625, 0.0059375). From these

three possible pairs, the latter has the n′ with the most amount of trailing zeros. This

search can be done with brute force (at most 52 trials; that is, one trial per each position

of the mantissa). However, by knowing the decimal place count of n, namely α; Elf is able

to find the best n′ by simply erasing the mantissa bits after the bit at position α of the

mantissa. The latter is formally demonstrated in (12). This effectively removes the need to

compute and store δ, since n can be recovered only by knowing α and n′. If we construct

a procedure called LeaveOut which removes digits from a double decimal representation,

we can recover n at decompression time with Equation 2.2:

n = LeaveOut(n′, α) + 10α (2.2)

Additionally, Elf uses a 1-bit flag to mark if a number n has gone through the erasing

procedure or not. The latter is to handle the edge cases of 0, Inf and NaN.

Elf experiments were carried out on 22 datasets. Of which 14 represent time series and 8

represent non-time series. 19 of these were the same ones already tested in the development

40

2.5 Floating-Point Encodings

of Chimp[128]. The 3 new datasets represent vehicle charges with a maximum precision of 3

decimals and latitude and longitude coordinates with 6 and 7 decimal precision respectively.

Elf achieves significant improvements in compression ratio against previous LWC methods

for floating points. Beating FPC, Gorilla and Chimp with an average relative improvement

of ≈51% more compression ratios. Against Chimp128, this improvement is ≈10%. Elf

achieves an average relative improvement of 30.2%, 7.5% and 27.5% against LZ4, Zstd and

Snappy respectively for time series datasets. On the other hand, it achieves an average

relative improvement of 18%, 3.5% and 16.7% on non-time series datasets. Regarding

speed, Elf is the slowest of all the LWC methods on both compression and decompression

time, demonstrating a very strong tradeoff between compression ratios and speed. Being

around x4 slower than Gorilla and 3x slower than Chimp at compression time, and x2

slower in decompression when compared to both.

It is important to note here that the used Zstd implementation is from Apache Hadoop,

rather than the more optimized Facebook’s version. This was also the case when evaluating

Chimp and Chimp128.

2.5.3 Decimal-based Schemes

Fast and well-known encodings such as Delta or FOR cannot be applied to floating-point

data since they are based on arithmetic which is prone to rounding errors when operating

with floating-point values. However, there is a branch of research that has focused on

trying to convert floating-point numbers into integers to make them compressible with

these encodings. In fact, we have already previously introduced Delta Predictive Coding,

whose first step is to transform floating-point numbers into an integer representation.

This transformation is based on the bitwise representation of the doubles, which can also

effectively represent a 64-bit integer. Afterwards, a delta encoding is applied between

this integer and a predicted value. However, the randomness of the mantissa makes the

64-bit integer representation of similar looking doubles very different. Thus, without a

predictor, trying to achieve compression using Delta or FOR is not effective. For instance,

the doubles 2.5 and 3.5 have a raw decimal integer value of 4612811918334230528 and

4615063718147915776. In this section, we review efforts to compress floating-point data

based on their visible decimal representation rather than their bitwise representation.

41

2.5 Floating-Point Encodings

2.5.3.1 BUFF (BoUnded Fast Floats compression)

Liu et al. (13) observed that in many real-world data stores, floating-point data is bounded

within a specific range and precision. If such precision is known, one can just ignore bits

from the mantissa at compression time. For instance, we can take the single precision

float 3.14: 10000000 10010001111010111000011. Given a precision of two decimals, we

can eliminate mantissa bits: 10000000 10010001100000000000000. This would be equal

to 3.13671875. However, since we know that the original number had a precision of 2

decimal places, we can recover it by rounding without losing the original representation.

From empirical analysis, the number of bits needed for a specific precision was computed

(Figure 2.26). Such trailing zeros create opportunities for compression; especially if one

knows that such precision is bounded.

Figure 2.26: Bits needed to achieve a decimal precision in a float (Figure borrowed from Liu
et al. work (13))

Based on this observation, BUFF compress floating-points by splitting their integer and

fractional decimal parts (Note that here we are not talking about exponent and mantissa

but integer and fractional parts of the decimal representation of the number). BUFF works

in the following way:

• The exponent of the float (namely E) is obtained as an integer (marked in green in

Figure 2.27). In the example presented in in Figure 2.27, the exponent 4 is obtained

from E − 127;E = (10000011)2 = (131)10. Based on this exponent value, and using

the single precision floating-point definition, one can determine the bit offset to the

decimal point of the real number. Hence, we are able to determine which bits of the

floating-point bitwise representation, are used to represent the integer part of the

real number. An important observation to understand this is that the integer value

of a floating-point (i.e. the number at the left of the decimal point) is defined by

the first n bits of the mantissa. Being n = E − 127 for floats and n = E − 1023 for

doubles. Hence, we are able to only retain that integer part of the number (marked

in blue in Figure 2.27).

42

2.5 Floating-Point Encodings

• The rest of the bits are truncated to the number of bits needed to maintain a given

precision (Figure 2.26). In the example provided in Figure 2.27, we maintain 15 bits

(marked in bold orange) since the precision is of 4 decimal places.

• If the range of the values to compress is known, one can apply a FOR to the extracted

integer part of the number; further reducing its size (step 2 in Figure 2.27).

• Both parts (orange and blue) are stored byte-aligned to improve [de]compression

speed.

• The doubles precision and the value used as a Frame Of Reference are stored as

metadata for decompression.

Figure 2.27: BUFF key idea overview (Figure borrowed from Liu et al. work (13))

It is important to highlight that BUFF needs to know a-priori the precision of the floating

points in order to be used. Otherwise, BUFF is not able to perform compression.

BUFF was tested in 8 datasets; all within ranges of bounded floating-point data. In-

cluding stocks, temperature measurements, CPU usage and GPS coordinates. BUFF was

tested against some LWC and GPC methods such as Gorilla, Sprintz, GZIP and Snappy.

Furthermore, end-to-end query benchmarks were presented. BUFF outperforms Gorilla,

Sprintz, Snappy and GZip by a considerable margin. Achieving the best compression ratios

for all datasets. In terms of speed, BUFF outperforms almost every algorithm in every

dataset, only falling behind Snappy in one dataset. On end-to-end query performance,

BUFF shines and outperforms every other method by orders of magnitude in queries with

highly selective equal filters and MAX aggregation. The latter is due to being able to de-

compress on a per-value basis and the ability to keep statistics of compressed data thanks

to the splitting of the integer part of the numbers. Furthermore, a faster version of BUFF

43

2.5 Floating-Point Encodings

called Fast-Buff leverages the availability of the ranges of values in a block as metadata.

This eliminates the search for the FOR value in the third step of the process.

2.5.3.2 PseudoDecimals (PDE)

One way to achieve compressibility is to consider floating-point numbers that appear to be

decimals and convert those to integers in order to apply integer encodings. For instance,

one can take advantage of their visible decimal representation based on the fact that some

doubles were generated as decimals (54). For example, if one could encode the number

8.0605 as the number 80605; integer encoding schemes could be applied and therefore take

advantage of the commonalities found within the data. This can be effectively achieved

by multiplying the double with a power of 10. Afterwards, one could recover the double

by doing the inverse operation (i.e. multiplying the integer with an inverse power of 10).

However, this process is lossy due to the error introduced by the inverse power of 10 in the

multiplication at decoding (9). However, based on this same idea, Kuschewski et al. (1)

recently introduced PseudoDecimals (PDE) – a lossless approach to encode floating-point

values as integers based on their visible decimal representation.

PDE tries to encode doubles as a division between an integer and an inverse power

of 10 under the assumption that the doubles were generated from a DECIMAL. Thus, we

could also refer to this type of encoding as Decimal-based encoding. As we mentioned,

this operation may result in errors if the chosen inverse power of 10 lacks the necessary

precision. Hence, PDE performs a brute-force search among the entire solution space to

find the inverse power of 10 which leads to the original double. In the PDE implementation,

this solution space is set to the first 22 inverse powers of 10. Furthermore, PDE allows

the encoding of exceptions in the case that a double is not able to be recovered from an

integer representation with any of the possible powers of 10.

In detail, PDE works as follows for every double that is encoded:

• For every exponent e between 0 and 22:

– Encode a candidate integer by dividing the double by the current inverse power

of 10 (10−e) and rounding the result.

– Try to recover the exact original double from the candidate integer by multi-

plying it with the current inverse power of 10 (10−e).

– If the original double was recovered, store the candidate integer and the expo-

nent e and stop the search.

44

2.5 Floating-Point Encodings

– Otherwise, continue to the next exponent.

• If no candidate integer to encode the double losslessly was found, store the double

uncompressed as an exception

There are a couple of remarks regarding the PDE algorithm that are important to note:

1) Candidate integers are bounded to a maximum size of 32 bits. Thus, floating-points of a

significant precision of more than 11 digits will always be encoded as exceptions. 2) As one

may have noticed, by itself PDE does not compress data. PDE stored a 32-bit integer and

a 32-bit exponent. However, PDE has the advantage that its output is further compressible

using integer lightweight encoding schemes such as FOR, BP or DELTA (1, 3, 36). This is

called cascading compression; which we will dive in-depth in section 2.6. To benchmark

its compression ratios, PDE used a SIMD bitpacking implementation (SIMD-BP128) to

compress the encoded exponent and integers (34).

PDE was tested against FPC, Gorilla, Chimp and Chimp128 using 12 non-time series

datasets from the Public BI Benchmark (55)–a collection of the biggest Tableau Public

workbooks (56). PDE achieved the best compression ratios in 7 out of the 12 datasets. In

two datasets it achieved no compression since it encoded all values as exceptions. In some

datasets, it achieved significant compression ratios of x75 and x54. On further inspection of

these datasets, we discovered that they are comprised mostly of 0’s. Despite not reporting

speed benchmarks for PDE; we believe that it is slower than any other previous approach at

compression due to the brute-force search and the use of division (an expensive operation in

most ISAs (50)). However, we think decompression is the fastest of all since it is basically

comprised of only one multiplication plus the overhead to handle exceptions.

Since decompression is made up of only one multiplication, PDE was easily SIMDized

by using the _mm256_cvtepi32_pd1 intrinsic (in case of the AVX2 ISA) to convert 32-

bit integers to doubles and the _mm256_mul_pd2 intrinsic to multiply doubles. However, if

there are any exceptions in the block, the scalar implementation is used. PDE compression

is hard to SIMDize since it is comprised of many control dependencies and a FOR loop with

data dependencies (i.e. the continuity of the loop depends on a previous result).
1https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/

2021-8/mm256-cvtepi32-pd.html
2https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/

2021-8/mm256-mul-pd.html

45

https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/mm256-cvtepi32-pd.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/mm256-cvtepi32-pd.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/mm256-mul-pd.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/mm256-mul-pd.html

2.5 Floating-Point Encodings

2.5.4 Other Schemes

In this section, we discuss a scheme which greatly varies from the three main floating-point

LWC research branches we have previously discussed.

2.5.4.1 SPDP

Claggett et al. (57) experimented with algorithms synthesizing to generate a new floating-

point compression scheme called SPDP. The idea behind such synthetization is to au-

tomatically build all the possible permutations from a set of algorithms (referred to as

components). Each permutation is then used as a pipeline to compress data. A permu-

tation performance is ranked based on the compression ratio achieved on the data used

for testing. Using this method, Claggett et al. generated 9,400,320 permutations of at

most 4 stages from 48 components. These components were composed of LWC methods

such as bit-packing and RLE, GPC methods (LZ77) and transformations such as bitwise

negation, bitwise equidistant cuts, previous n-value XOR and previous n-value arithmetic

subtraction. The best performant combination was: 1) Arithmetic subtraction with the

2nd previous value, 2) bytes cutting and reordering, 3) Previous value arithmetic subtrac-

tion and 4) LZ77. We would like to clarify step 2. This step cuts the result from step 1

into bytes (i.e. every double is cut into 8 segments). Then, the bytes of all the numbers

in a block are reordered in such a way that the bytes of the same position of each tuple

are next to each other. For instance, if result from step 1 is x, y, z values, the cutting

will result in x1, x2, ..., x8, y1, y2, ..., y8, z1, z2, ..., z8, and the tuples reordering will result in

x1, y1, z1, x2, y2, z2, ..., x8, y8, z8.

SPDP was evaluated on the same datasets that were used to evaluate FPC, and the

benchmarks were performed against standalone GPC schemes. It demonstrated to be on

average, 30% better in terms of compression ratio than the next most performant (bzip2);

leaving behind other GPC schemes such as LZ4, LZO and Snappy. However, SPDP still

fell behind Zstd in compression ratios. In terms of speed, SPDP while not being the best

(beaten by Snappy), was still on par with methods such as Zstd while being faster than

LZO and LZ4 modes optimized for compression ratios. Although not referred to as such,

SPDP was a hint that cascading compression schemes worked also for floating-point data.

This idea of synthezising algorithms to achieve better compression ratios has been further

used to achieve better methods to compress 3D and 2D geometry grids (58).

46

2.6 Cascading Lightweight Compression

2.6 Cascading Lightweight Compression

Some LWC compression methods output is just a smaller representation of a certain data

type. For instance, if we apply DELTA compression to integers, the encoded values are just

smaller integers that are bit-packed into just the necessary bits. This property of some

LWC methods can be advantageous since it enables the possibility of applying them in

a cascading fashion. In other words, we are able to apply different encodings one after

another in order to achieve even higher compression ratios by trading off the speed of both

[de]compression. For instance, if data exhibits a high percentage of consecutively repeated

string values one can apply a RLE encoding, and then encode the runs lengths (integers)

with a FOR encoding and the values with FSST encoding. It is important to note that

such cascading cannot be used with GPC methods, since neither the input nor output are

considered a sequence of values but rather continuous streams of bits.

This idea of cascading compression has been only recently explored by a few studies (1,

36) and proposed as future work on others (3). For instance, Damme et al. (36) were the

first to introduce this idea with such a name (cascade). They tested the compression ratios

that could be achieved by cascading schemas in different combinations such as DELTA +

RLE and FOR + DICT. From these experiments, they observed that not every cascade

works to improve compression ratios. For instance, DELTA + RLE usually negatively

affects compression ratios. On the other hand, FOR + DICT proved to be a combination

that always yields positive results. However, they only explored cascades of one level.

Kuschewski et al. (1) natively implemented multi-level cascading compression of LWC

methods in their proposed big-data format based on Parquet (i.e. BtrBlocks) to decrease

data size. In fact, the entire format is based upon cascading compression applied recursively

to attributes inside datasets. In order to do so, BtrBlocks scans a sample of the data and

calculates certain statistics such as the maximum, minimum and ratio of repeated values.

Based on these statistics and the data type, BtrBlocks chooses an encoding from a pool

of available encodings and applies it to the data. Afterwards, if possible, the output of

the encoding is subject to the same process to apply a scheme on cascade. This is done

recursively until the output is deemed not further compressible or a configurable maximum

level of depth is reached.

2.6.1 Kernel Fusing

There are some encodings which by design must be used in combination with another

encoding for it to compress data. For instance, a FOR encoding cannot achieve any com-

47

2.7 Storage Layouts: NSM, DSM & PAX

pression at all if it is not used with BP to store only the necessary bits. In such scenarios, one

needs the implementation of two different kernels (i.e. functions)–one for FOR and one for

BP. In such a setting, a "data transmission" must happen between the FOR kernel and the

BP kernel once the former finishes its encoding. This translates into one STORE and one

LOAD instruction. However, Afroozeh & Boncz (3) propose the idea of kernel fusing for

these cases of encodings that only work when used together. The key idea is to implement

more than one encoding into only one kernel (i.e. one function), which effectively saves

both STORE and LOAD instructions between every encoding that is fused. Testing the

fusing idea in a FOR + BP kernel resulted in an x2 performance increase at decoding speed.

Furthermore, the big-data format BtrBlocks (1) implements fusing on DICTIONARY + RLE

encodings since they found it is a recurring cascade that works well to achieve increased

compression ratios.

Kernel fusing opens the opportunity to freely speedup virtually any combination of LWC

schemas that can be plugged in cascade. The tradeoff mainly falls on implementation work

and an increase in code size.

2.7 Storage Layouts: NSM, DSM & PAX

Data schemas are usually comprised of records and their properties (attributes). In rela-

tional schemas, these are namely rows and columns depicted as tabular data. However, the

underlying layout of how the data is stored on disk can greatly vary. Such a design decision

has an effect on the performance in terms of the speed of certain types of operations within

the data. Furthermore, it has an effect on how the data can be compressed.

For instance, in the N-ary Storage Model (NSM) data is stored row-by-row. In other

words, all attributes of a record are stored contiguously. A depiction of NSM can be seen

in Figure 2.28. In this kind of storage random access of an entire record is fast since there

is a locality by records. However, analytical queries are usually not interested in accessing

all attributes of a record, but few. This causes an I/O bottleneck when querying since we

would be forcefully reading unnecessary attributes due to how the data is stored. Similarly,

the CPU cache is rapidly filled with attributes of records that probably are never need to

be read. This translates into an increased number of cache misses. Moreover, this storage

layout challenges LWC methods capabilities since the contiguous data in the disk is of

variable size, nature and type. Thus, GPC is the preferred way to save storage in such a

setting.

48

2.8 Compression and Data Formats

Figure 2.28: Overview of the N-ary Storage Model (Figure borrowed from Ailamaki et al.
work (14))

The Decomposition Storage Model (DSM) proposed by Copeland et al. (59) tries

to overcome these performance issues of NSM by storing together attributes (columns)

instead of rows. Although more performant for OLAP workloads, if the entire record

attributes are needed to be retrieved, DSM falls short with performance overhead, since

different attributes of the same record are not stored close-by. To improve this Ailamaki

et al. (14) proposed Partition Attributes Across (PAX). In this storage layout, both

attributes and records are stored close-by in pages. A depiction of PAX is presented in

Figure 2.29. Each page is comprised of a header with information regarding the number of

attributes, number of records, size of each attribute and free space of the page. Each page

is then divided into mini-pages. Each mini-page is a partition that stores each attribute of

all the records stored on the page. PAX defines two types of mini-pages: fixed-length (F-

minipages) and variable-length (V-minipages). On F-minipages the attribute size is fixed,

hence running through the minipage is done seamlessly. This kind of pages implement a

footer composed of presence flags (0 or 1 bit) to detect null values in the minipage. On

the other hand, each attribute value on V-minipages is of variable size. Hence, these pages

implement a footer composed of the offset of bits each value in the minipage occupies.

PAX and its many variations in modern data formats are known as columnar-storage.

Both DSM and PAX opened opportunities for more efficient compression since data

stored close-by share the same type, nature and size (excluding V-minipages). This enables

the use of LWC algorithms and motivated research on more data-type-specific encodings.

2.8 Compression and Data Formats

Compression is able to substantially reduce the size of data. This translates into more

optimized storage usage and cost savings. Furthermore, it reduces the data transmission

49

2.8 Compression and Data Formats

Figure 2.29: Overview of the Partition Attributes Across storage layout (Figure borrowed
from Ailamaki et al. work (14))

overhead over a network since less data has to be moved. Thus, it is no surprise that [big]-

data formats have compression mechanisms intrinsically implemented into their core. In

addition to optimizing storage size, data formats usually provide efficient ways of traversing

through large chunks of data and optimizing analytical SQL-like queries to query, filter or

aggregate data. Sometimes these formats are a black box to end-users. However, most of

these are optimized versions of open formats such as Parquet or ORC. In this section we

analyze 3 different open-data formats for big data which leverage compression into their

implementation: (i) Parquet, (ii) ORC and (iii) BtrBlocks.

2.8.1 Parquet

Parquet1 is an open data format for [big]-data developed by Apache which was built to

efficiently support data encoding, efficient data querying and nested data structures in

the values of their columns. An example of nested data is a multi-level object. Parquet

stores data using a PAX-based storage. In other words, it tries to store data in a columnar

format while maintaining attributes from the same records close-by (though close-by in this

context can be interpreted as "within a few megabytes" rather than within a traditional

4KB disk block). A high-level abstraction of a parquet file is depicted in Figure 2.30.

Each Parquet file is comprised of a 4 bytes magic number (which contains the file format),

a series of row groups and a footer (which contains metadata of the file and each row

group). Rowgroups are a logical horizontal partitioning of data into rows. This ensures

that all the attributes (columns) of the same records are stored close-by. Parquet allows to

configure a variable row group size. Each rowgroup is comprised of one column chunk per
1https://github.com/apache/parquet-format

50

https://github.com/apache/parquet-format

2.8 Compression and Data Formats

Figure 2.30: Overview of the Apache Parquet file format (Figure borrowed from Apache
Parquet documentation 1)

each attribute of the rowgroup. Each column chunk is then divided into sequential pages.

Aside from containing the actual column data, the pages also contain a page header and

two values which are used when the values are part of a nested column: repetition levels

and definition levels. We will dive further into these parameters further on this section.

The page header contains metadata regarding the page, such as it’s [un]compressed

size, the number of values, and the encoding used for the values. The footer of a Parquet

file (right part of Figure 2.30) contains metadata of the file and of each column inside a

rowgroup. Having this information inside a footer effectively separates the metadata from

the data. The metadata of each rowgroup contains the column type (i.e. boolean, int32,

int64, int96, float, double, bytearray, fixedlengthbytearray), the number of values, an offset

to the first page, its [un]compressed size, and the encodings or compression used on the

data. At a column level, GPC methods can be used to further encode pages. GPC1 and

LWC2 algorithms supported in Parquet are presented in Table 2.1. Parquet automatically

analyzes the data to determine which encoding is appropriate for the values inside a page.

As the table shows, Parquet implements a few of the LWC methods we discussed in previous

sections. On the contrary, they implement a lot of modern GPC methods. As one may

have noticed, Parquet does not really focus its compression on LWC methods.
1https://github.com/apache/parquet-format/blob/master/Compression.md
2https://github.com/apache/parquet-format/blob/master/Encodings.md

51

https://github.com/apache/parquet-format/blob/master/Compression.md
https://github.com/apache/parquet-format/blob/master/Encodings.md

2.8 Compression and Data Formats

As we previously mentioned, Parquet supports the storage of nested data structures.

Parquet implements a novel approach introduced by Melnik et al. (60) by storing two

additional values per page which capture the nested structure of a record: definition and

repetition levels. Definition levels specify at which level of the nested structure that value

falls within. For instance, if the maximum nested level of a column is 3, then every value

in the definition level will range between 0 and 3 depending up to which level the nesting is

defined or not. On the other hand, repetition levels serve as an indicator of at which levels

repeated structures (i.e. arrays) can happen. In other words, it determines the structure

of the nested type. Needless to say, both repetition and definition values are only present

if the column is nested.

Parquet is currently the de-facto standard when building data lakes or storing data to

be used by analytical workflows (e.g. Apache Spark in Databricks). Being an open-source

format with an accessible API, any individual can use Parquet as their file format to store

and query their data. For instance, Pandas, the popular data analysis Python library,

allows reading and saving DataFrames from and to Parquet files. Another example is the

analytical database DuckDB (20), which allows the importing of tables directly from the

Parquet format.

2.8.2 ORC

Even though Parquet is currently the de-facto standard for [big]-data formats, there exist

other open data formats that are worth studying. For instance, Optimized Row Columnar

(ORC) (15) is another open [big]-data format created as an optimized version of the RC

file format (61) to be data-type aware in order to use encodings to compress data more

efficiently. Contrary to Parquet, ORC implements more LWC encodings into their format.

A high-level abstraction of an ORC file is depicted in Figure 2.31.

Similarly to Parquet, ORC is also a PAX-based storage that stores data in a colum-

nar format while maintaining attributes from the same records close-by to easily traverse

through records. ORC files start with a sequence of stripes and end with a footer and a

postscript. The footer contains a sequence of pointers to each stripe, the number of rows

per stripe, each column datatype and each column aggregated statistics (min, max, count

and sum). The postscript contains information about the used compression parameters

and the size of the compressed footer.

Stripes are a logical partition of data (tables) horizontally. They are similar to row-

groups in Parquet. Stripes have a fixed configurable size. Each stripe is comprised of three

segments: (i) row index data, (ii) row data and (iii) stripe footer. The row index data

52

2.8 Compression and Data Formats

Figure 2.31: Overview of the ORC file format (Figure borrowed from Huau et al. work (15))

contains, for each column, statistics (min/max) and pointers to where the data streams of

that column are located inside the row data. Such pointers, alongside the file footer stripe

pointers and statistics, enable fast seeking to the right data stream. As Figure 2.31 shows,

these row indexes are stored for each attribute inside the data. This allows for fast reads

despite a high stripe size since data can be easily skipped.

One of the main reasons to develop ORC was the implementation of encodings before

plugging in any GPC. ORC leverages data statistics, data type and ratio of distinct values

to decide which encoding to use to compress the data streams. Encodings supported by

ORC are presented in Table 2.1. Afterwards, the result of the encoded values can be

further optionally compressed with any of the GPC methods listed in Table 2.1.

2.8.3 BtrBlocks

Parquet can be deemed costly in terms of scan performance since they do not leverage

most of the current LWC encodings to further optimize the file sizes; rather Parquet prefers

GPC schemas. This results in elevated costs for scanning data that in the end is going to

be discarded by a query filter. BtrBlocks (1) is a recently proposed open-data format for

Data Lakes that tries to overcome this problem with a new file format that implements fast

[de]compression through a great variety of LWC methods that can be applied recursively

in cascade to achieve even higher compression ratios (e.g. A column initially compressed

53

2.9 Compression and Database Engines

with PDE can be further compressed with DELTA, and then with BP). By optimizing

storage, cloud provider costs of data transmission and processing can be reduced. LWC

encodings implemented in BtrBlocks are presented in Table 2.1. BtrBlocks also introduces

a new LWC encoding called PseudoDecimals for floating-point data previously reviewed in

subsection 2.5.3.2. Furthermore, they support recursive cascade encoding of LWC methods.

BtrBlocks also introduces a simple sampling mechanism to further optimize the selection

of the most suitable encoding algorithm for the data. The sampling scans through 1% of

the data in equidistant runs of values. From this sampling, BtrBlocks leverages data types,

data repetition, and data statistics (e.g. min, max) to choose from the pool of encodings.

2.9 Compression and Database Engines

In the context of OLAP and OLTP databases the speed in which information is stored and

queried is of critical importance. Implementing any compression schema to reduce storage

size usually comes with a speed overhead to execute the compression and decompression

procedures. However, modern databases value size reductions at the expense of this speed

overhead. General purpose compression methods are not efficient in such setups since

random access is required to be able to efficiently query segments of the data. Thus, in

the context of databases, lightweight compression is preferred in most cases –if possible.

In this section, we analyze use cases of how some modern database engines implement

compression.

2.9.1 Compression in DuckDB

DuckDB(20) is an in-process SQL OLAP database management system that uses a colum-

nar storage layout. DuckDB specializes in the performance of complex analytical queries on

large tables. Its speed stems from its vectorized engine and parallel query processing. Ta-

bles are split into row-groups of 120K rows, which store each attribute in columnar chunks

called Segments (analogous to Parquet rowgroups and columns). However, in DuckDB,

these segments are of fixed size. At query time, these segments are loaded and processed

as vectors, also of fixed size (2048 values); so that they can fit in CPU cache and achieve

vectorized execution.

DuckDB implements LWC into its tables’ schemas (62) by first scanning the columnar

segment and deciding which encoding will achieve the best gains in terms of compression

ratios. After a decision has been made, compression is executed and compressed data is

written on disk. The engine also allows users to manually set different encodings into

54

2.9 Compression and Database Engines

their columns instead of automatically choosing an encoding. The available encodings

in DuckDB are presented in Table 2.1, from which we can highlight the implementation

of Chimp[128] and Patas and the lack of GPC methods. Thanks to its storage layout

comprised of many columnar chunks, DuckDB allows the use of different encodings for

different chunks of the same column.

2.9.2 Compression in Amazon Redshift

Redshift1 is a columnar storage relational database created by Amazon Web Services whose

engine is built upon PostgreSQL. Redshift is specialized in analytical queries of big data

while also efficiently supporting transactional queries (e.g. INSERT, UPDATE).

By default, Redshift applies different compression methods depending on the column

type2. Furthermore, they allow users to manually set different encodings into their columns.

The available encodings are presented in Table 2.1, from which we can see a few of the LWC

methods we have already discussed: RLE, Delta, Dictionary, and some GPC methods such

as Zstd and LZO. However, as seen in Table 2.1, there is one encoding which we have not

discussed: AZ64. This encoding is an encoding designed by Amazon from which there is

little to no information on how it works34. AZ64 is used by default on columns of any of

these types: INTEGER, DECIMAL, DATE, TIME and TIMESTAMP. Amazon reports a

5-10% improvement in compression ratio and a 70% improvement in speed against Zstd.

However, recent empirical testing has contradicted these benchmarks; reporting a similar

performance between both algorithms5. In addition to this, recent reverse engineering

efforts6 have concluded that it is an adaptive scheme with four different modes depending

on properties of the data. All of these modes are based on enhanced versions of the

Facebook’s Gorilla algorithm for timestamps compression in combination with RLE.

However, these efforts have found that there are four cases in which the algorithm does

not perform well: (i) Tables sorted with interleaved keys7, (ii) Unsorted tables, (iii) Un-

sorted columns, (iv) Data which have a high number of repeated values (on this cases RLE

is much better).
1https://aws.amazon.com/redshift/
2https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_TABLE_NEW.html
3https://aws.amazon.com/about-aws/whats-new/2019/10/amazon-redshift-introduces-az64-a-new-compression-encoding-for-optimized-storage-and-high-query-performance/
4https://docs.aws.amazon.com/redshift/latest/dg/az64-encoding.html
5http://www.hydrogen18.com/blog/redshift-az64-performance-vs-zstd.html
6https://www.amazonredshiftresearchproject.org/white_papers/downloads/az64_encoding.pdf
7https://docs.aws.amazon.com/redshift/latest/dg/t_Sorting_data.html

55

https://aws.amazon.com/redshift/
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_TABLE_NEW.html
https://aws.amazon.com/about-aws/whats-new/2019/10/amazon-redshift-introduces-az64-a-new-compression-encoding-for-optimized-storage-and-high-query-performance/
https://docs.aws.amazon.com/redshift/latest/dg/az64-encoding.html
http://www.hydrogen18.com/blog/redshift-az64-performance-vs-zstd.html
https://www.amazonredshiftresearchproject.org/white_papers/downloads/az64_encoding.pdf
https://docs.aws.amazon.com/redshift/latest/dg/t_Sorting_data.html

2.10 Whitebox Compression

2.9.3 Compression in MySQL: InnoDB

In MySQL (InnoDB) Data is stored on a row-by-row basis. They use an optimized version

of the NSM format which we will not explain in detail in this literature review. In MySQL

(InnoDB), only general purpose compression is used. Specifically, they implement LZ771

– another algorithm of the Lempel-Ziv family. It is important to highlight how the way in

which data is stored in MySQL (InnoDB) inhibits the use of LWC methods.

2.9.4 Compression in CodecDB

CodecDB (63) is a recently presented columnar database which is encoding-aware. In other

words, the database design and the data encodings are tighly coupled. As seen in Table 2.1,

CodecDB natively implements RLE, DICTIONARY, Delta, FOR, PFOR, Bitpacking and

even encodings in cascade such as DICTIONARY + RLE. CodecDB implements an en-

coding selection scheme in which a series of features are extracted from the data in order

to choose the encoding that best fits these features. Some of these features are the ratio

of distinct values, the values statistics (i.e. mean, max, min), the sparsity ratio (non-

empty records vs. total number of records) and the level of sortedness in the data (how

"in order" the data is). Experiments carried out to test query speed differences between

query engines that are oblivious to the encoding schemes and CodecDB were carried out,

demonstrating that an encoding-aware query execution engine is faster in several queries

(e.g. aggregation, joins, comparisons).

2.10 Whitebox Compression

While data is compressed, query engines are not able to fully exploit query optimization

techniques such as predicate push-downs. Blocks of data must be first decompressed en-

tirely for query operators to operate on data. Ghita et al. (16) refer to all conventional LWC

and GPC methods as black-box compression since their [de]compression logic is unknown

and inaccessible to the query execution engine. Thus, they propose a compression model

called whitebox compression. Whitebox compression differentiates two types of columns:

logical and physical columns. Logical columns are the columns with the "raw" data that

the end-user can visibly understand (i.e. data in its tabular representation). However,

logical columns are not stored on disk, rather they are generated at query execution time

from the physical columns using a series of composite functions. Such functions consist
1https://dev.mysql.com/doc/refman/8.0/en/innodb-compression-internals.html

56

https://dev.mysql.com/doc/refman/8.0/en/innodb-compression-internals.html

2.11 Pattern Inference Decomposed Storage (PIDS)

of simple scalar operators. Hence, the physical columns are the only ones that are stored

on disk and these columns are (ideally) "compressed" representations of the data. In Fig-

ure 2.32, an example of Logical vs. Physical columns is presented, alongside the functions

to recover the logical columns.

Figure 2.32: An example of Logical vs Physical data in the whitebox compression model
(Figure borrowed from Ghita et al. work (16))

This representation allows the fusing of decompression and query execution allowing

query optimizations such as predicate push-down and physical column pruning. Further-

more, it demonstrated to be able to achieve on average two times more compression ratio

than black-box methods (i.e. LWC and GPC) since the functions are defined on a per-

column basis instead of having a fixed algorithm for all cases.

Although promising, whitebox compression is still in an early stage of research. Some

questions arise regarding how to find the best functions to represent the logical columns,

and how to address dirty data (e.g. exceptions/outliers in columns which make a simple

function non-viable for an optimal physical representation).

2.11 Pattern Inference Decomposed Storage (PIDS)

In 2020, Jiang et al. presented PIDS (64). PIDS main idea is to use unsupervised learning

on string columns to detect recurring patterns in the strings and outliers to these patterns.

Here, a pattern is not only limited to recurring substrings but also patterns such as strings

of equal-length or equal-structure which can be exploited by splitting the string and storing

each segment physically separately and applying further encoding schemes to each segment.

PIDS allows for predicate pushdowns at query execution time, hence resulting in faster

queries to obtain data. In some way, PIDS could be considered a white-box compression

mechanism.

57

2.11 Pattern Inference Decomposed Storage (PIDS)

Type Name GPC LWC Cascade Sup-
port

File Format
Parquet Snappy,

Brotli,
Gzip, Zstd,
LZ4, LZO

Dictionary, RLE, BP,
Delta

Dictionary +
RLE / BP

ORC Zlib,
Snappy,
LZO

Dictionary, RLE, Delta No

BtrBlocks None Dictionary, RLE,
Constant, BP (SIMD-
FastBP128), FOR
(SIMDFastPFOR),
FSST, PDE

[LWC] + [LWC] +
... + [LWC]

Database Engine

DuckDB None Dictionary, RLE, Con-
stant, BP, FOR, FSST,
Chimp, Chimp128,
Patas

No

Amazon
Redshift

Zstd, LZO Dictionary, RLE, BP
(by the name of Most-
lyn), Delta, AZ64

No

MySQL
(InnoDB)

LZ77 None No

CodecDB None Dictionary, RLE, Delta,
FOR, BP

Dictionary +
RLE / BP

Table 2.1: Lightweight and General Purpose Compression schemes supported by a variety
of file formats and database engines.

The capabilities of PIDS for string compression were compared against GPC schemes

such as Snappy and GZIP. PIDS achieved the best compression ratio amongst all of the

methods it was compared against by a comfortable margin. For instance, achieving 20%

more compression than Gzip. In terms of compression throughput, it stands faster than

both GZIP and Snappy (around 2x faster) at almost 50MB/s. As expected, on end-to-end

query performance on compressed data PIDS is superior by orders of magnitude (2x - 30x)

to GPC methods.

58

3

Datasets Analysis

The main objective of LWC algorithms is to find exploitable properties in values within

a block of data. The more of these properties that they may find, the more compression

they can potentially achieve. On the other hand, if such properties are not present in

data, a compression method can fail to achieve compression and even result in negative

compression (i.e. compressed data is bigger than uncompressed). Hence, data properties

are a conditioning factor for performance in terms of compression ratio and [de]compression

speed. For instance, XOR-based approaches perform the best when the data entropy is

low and there are data similarities within their bit-wise representation. On the other

hand, Decimal-based approaches perform the best when the data consists of floating-point

numbers that stem from a decimal representation.

In this section, we meticulously analyze the properties of a wide variety of real floating-

point datasets. By doing so, we aim to discover properties that have not been previously

exploited by other algorithms. Furthermore, we are interested in analyzing these datasets

from the point of view of vectorized query processing, since big data format readers and

scan subsystems of database systems by now standardize on this methodology (20, 65):

they deliver vector-sized chunks of data, and use decompression kernels that decompress

one vector (e.g., 1024 values) at-a-time.

In subsection 3.1 we present the chosen datasets and their semantics. Next, in subsec-

tions 3.2 and 3.3 we analyze properties from the datasets from two different points of view:

(i) their bitwise properties (IEEE 754) and (ii) their human-readable properties. This

segmentation aligns with the two active branches of research in floating-point compression

(i.e. XOR-based and Decimal-based). Finally, in subsection 3.4 we summarize and discuss

the unexploited opportunities that cemented the road for the development of ALP.

59

Table 3.1: Floating-Point Datasets

Name ↓ Semantics Source N° of Values

T
im

e
se

ri
es

Air-Pressure(66) Barometric Pressure (kPa) NEON 137,721,453
Basel-temp1 Temperature (C°) meteoblue 123,480
Basel-wind1 Wind Speed (Km/h) meteoblue 123,480
Bird-migration2 Coordinates (lat, lon) InfluxDB 17,964
Bitcoin-price2 Exchange Rate (BTC-USD) InfluxDB 2,686
City-Temp3 Temperature (F°) Udayton 2,905,887
Dew-Point-Temp(67) Temperature (C°) NEON 5,413,914
IR-bio-temp(68) Temperature (C°) NEON 380,817,839
PM10-dust(69) Dust content in air (mg/m3) NEON 221,568
Stocks-DE4 Monetary (Stocks) INFORE 43,565,658
Stocks-UK4 Monetary (Stocks) INFORE 59,305,326
Stocks-USA4 Monetary (Stocks) INFORE 282,076,179
Wind-dir(70) Angle Degree (0°-360°) NEON 198,898,762

N
on

T
im

e
se

ri
es

Arade/45 Energy PBI Bench. 9,888,775
Blockchain-tr6 Monetary (BTC) Blockchain 231,031
CMS/15 Monetary Avg. (USD) PBI Bench. 18,575,752
CMS/255 Monetary Std. Dev. (USD) PBI Bench. 18,575,752
CMS/95 Discrete Count PBI Bench. 18,575,752
Food-prices7 Monetary (USD) WFP 2,050,638
Gov/105 Monetary (USD) PBI Bench. 141,123,827
Gov/265 Monetary (USD) PBI Bench. 141,123,827
Gov/305 Monetary (USD) PBI Bench. 141,123,827
Gov/315 Monetary (USD) PBI Bench. 141,123,827
Gov/405 Monetary (USD) PBI Bench. 141,123,827
Medicare/15 Monetary Avg. (USD) PBI Bench. 9,287,876
Medicare/95 Discrete Count PBI Bench. 9,287,876
NYC/295 Coordinates (lon) PBI Bench. 17,446,346
POI-lat8 Coordinates (lat, in radians) Kaggle 424,205
POI-lon8 Coordinates (lon, in radians) Kaggle 424,205
SD-bench9 Storage Capacity (GB) Kaggle 8,927

60

3.1 The Datasets

3.1 The Datasets

Table 3.1 presents an overview of the 30 datasets that we choose to analyze in detail in

order to design ALP: 18 of these datasets were previously analyzed and evaluated to develop

Elf (12) and Chimp[128] (9). Similarly, the other 12 were used to evaluate PDE (1) and

are part of the Public BI Benchmark (55). The Public BI Benchmark is a collection of the

biggest Tableau Public workbooks (56). We consider these 30 datasets to be relevant since

they consist of a great variety of double precision floating point data from different nature

and distribution. Furthermore, they played a key role in the design and evaluation of the

other state-of-the-art floating-point encodings; which at the same time enables us to focus

on properties that have not been analyzed yet. Finally, by using these datasets we are able

to perform a fair comparison between these methods and our new ALP compression.

The first 13 datasets presented in Table 3.1 are comprised of sequences of doubles ordered

increasingly by the time in which they were recorded. The latter is known as time series

data. On these datasets, each double value vi+1 is recorded further in time than value vi.

The next 17 datasets contain doubles which are not stored in a time series fashion. These

are more representative of doubles stored in classical database workloads. We segregate the

analysis of time series and non-time series data since the underlying temporal property of

such datasets can create exploitable advantages for compression methods. It is important to

highlight that all these datasets are non-synthetic, since generating datasets synthetically

could produce predictable results for a compression scheme given the synthetic generation

method chosen.

Our datasets have further variety regarding the nature of the data itself. As presented in

Table 3.1, 14 datasets contain doubles that represent monetary values (i.e. Exchange rates,

public funds, product prices, stocks and crypto-currencies). 4 of our datasets represent

coordinates (i.e. latitude and longitude), 2 contains discrete counts stored as doubles and

1 contains computer storage capacities. Finally, the other 9 datasets depict a variety of

scientific measures (i.e. temperature, pressure, concentration, speed, degrees and energy)

with different decimal precision. Some datasets share a common prefix in their name
1https://www.meteoblue.com/en/weather/archive/export/basel_switzerland
2https://github.com/influxdata/influxdb2-sample-data
3https://www.kaggle.com/sudalairajkumar/daily-temperature-of-major-cities
4https://zenodo.org/record/3886895#.ZDBBKuxBz0r
5https://github.com/cwida/public_bi_benchmark
6https://gz.blockchair.com/bitcoin/transactions/
7https://data.humdata.org/dataset/wfp-food-prices
8https://www.kaggle.com/datasets/ehallmar/points-of-interest-poi-database
9https://www.kaggle.com/datasets/alanjo/ssd-and-hdd-benchmarks

61

https://www.meteoblue.com/en/weather/archive/export/basel_switzerland
https://github.com/influxdata/influxdb2-sample-data
https://www.kaggle.com/sudalairajkumar/daily-temperature-of-major-cities
https://zenodo.org/record/3886895##.ZDBBKuxBz0r
https://github.com/cwida/public_bi_benchmark
https://gz.blockchair.com/bitcoin/transactions/
https://data.humdata.org/dataset/wfp-food-prices
https://www.kaggle.com/datasets/ehallmar/points-of-interest-poi-database
https://www.kaggle.com/datasets/alanjo/ssd-and-hdd-benchmarks

3.1 The Datasets

followed by a number. This means that a dataset, from the point of view of a database

table, had more than one double column. Thus, this number represents the index of the

analyzed column.

The format in which these datasets are found online greatly varies. For instance, the

data of the stock datasets are scattered amongst thousands of files which contain metadata

for each registered double. Thus, a pre-processing was made to strip from these files only

the doubles themselves. Furthermore, it is important to mention that such doubles are

found as string literals that are then read and cast into a 64-bit double. Hence, each

double in its raw format contains a fixed decimal point that determines what we will refer

to as a double visible precision. Note that this is usually how user-contributed data is

generated (e.g. a field in a web form to enter an individual height and is afterwards stored

as a double).

62

3.1 The Datasets
T
ab

le
3.

2:
D

et
ai

le
d

m
et

ri
cs

co
m

pu
te

d
on

th
e

D
at

as
et

s

N
am

e
↓

D
ec

im
al

P
re

ci
si

on
M

ax
|
M

in
|

A
vg

.
|
S
td

.
D

ev
.

V
al

u
es

p
er

V
ec

to
r

N
on

-U
n
iq

u
e

%
|
A
vg

.
|
S
td

.
D

ev
.

IE
E
E

75
4

E
xp

on
en

t
p
er

V
ec

to
r

A
vg

.
|
S
td

.
D

ev
.

S
u
cc

es
s

of
P
en

c
an

d
P
en

c

u
si

n
g

on
e

ex
p
on

en
t
e

p
er

:
V

al
u
e

|
D

at
as

et
|
V

ec
to

r

P
re

vi
ou

s
V

al
u
e

X
O

R
0’

s
B

it
s

Fr
on

t
|
T
ra

il
.

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

C
13

C
14

C
15

A
ir

-P
re

ss
ur

e
5

0
4.

9
0.

3
74

.7
%

93
.4

0.
1

10
21

.5
0.

0
63

.2
%

14
(9

9.
4%

)
99

.4
%

44
.5

32
.9

B
as

el
-t

em
p

11
5

6.
3

0.
4

26
.2

%
11

.4
4.

6
10

25
.5

1.
0

64
.3

%
14

(9
9.

7%
)

99
.7

%
14

.0
2.

6
B

as
el

-w
in

d
8

0
6.

1
1.

2
61

.8
%

7.
1

4.
1

10
24

.7
12

.8
65

.8
%

14
(9

8.
6%

)
98

.6
%

14
.2

3.
1

B
ir

d-
m

ig
ra

ti
on

5
1

4.
5

0.
8

55
.9

%
26

.6
6.

0
10

26
.4

0.
6

61
.7

%
14

(9
3.

8%
)

96
.4

%
26

.4
7.

8
B

it
co

in
-p

ri
ce

4
1

3.
9

0.
4

0.
0%

19
18

7.
5

79
0.

6
10

37
.0

0.
0

84
.2

%
14

(9
9.

9%
)

99
.9

%
20

.6
1.

0
C

it
y-

T
em

p
1

0
0.

9
0.

3
60

.3
%

56
.0

21
.3

10
28

.3
1.

6
67

.3
%

14
(9

7.
4%

)
97

.4
%

15
.8

11
.0

D
ew

-P
oi

nt
-T

em
p

3
0

2.
8

0.
3

19
.3

%
14

.4
1.

4
10

26
.0

1.
1

80
.2

%
14

(9
9.

3%
)

99
.3

%
16

.8
1.

5
IR

-b
io

-t
em

p
2

0
1.

9
0.

3
49

.1
%

12
.7

4.
2

10
25

.6
4.

8
83

.5
%

14
(9

9.
3%

)
99

.3
%

22
.0

7.
8

P
M

10
-d

us
t

3
0

2.
8

0.
2

93
.7

%
1.

5
0.

8
10

16
.1

1.
2

88
.8

%
14

(9
9.

9%
)

99
.9

%
40

.5
38

.3
St

oc
ks

-D
E

3
0

2.
4

0.
5

89
.2

%
63

.8
9.

1
10

27
.8

0.
3

84
.2

%
14

(9
8.

9%
)

99
.1

%
24

.9
5.

8
St

oc
ks

-U
K

2
0

1.
2

0.
6

88
.1

%
15

93
.7

31
7.

1
10

32
.2

0.
4

84
.5

%
14

(9
9.

9%
)

10
0.

0%
23

.7
19

.4
St

oc
ks

-U
SA

2
0

1.
9

0.
4

91
.5

%
14

6.
1

11
.7

10
29

.1
0.

1
87

.5
%

14
(9

8.
6%

)
99

.2
%

32
.6

16
.8

W
in

d-
di

r
2

0
1.

9
0.

3
3.

9%
19

2.
4

81
.1

10
29

.8
1.

2
90

.0
%

14
(9

9.
5%

)
99

.5
%

13
.8

2.
6

T
S

A
V

G
.

3.
9

0.
5

3.
2

0.
5

54
.9

%
16

46
.7

96
.3

10
26

.9
1.

9
77

.3
%

94
,8

%
99

.0
%

23
.8

11
.6

A
ra

de
/4

4
0

3.
5

0.
6

0.
2%

73
8.

4
38

9.
8

10
31

.6
0.

9
80

.1
%

14
(9

9.
5%

)
99

.5
%

13
.1

1.
1

B
lo

ck
ch

ai
n-

tr
4

0
3.

8
0.

6
0.

6%
63

86
46

.4
1.
3E

7
10

31
.8

12
.5

76
.3

%
14

(9
2.

1%
)

92
.3

%
9.

8
1.

7
C

M
S/

1
10

0
4.

0
2.

8
54

.7
%

97
.0

11
0.

0
10

28
.0

1.
3

83
.2

%
14

(9
8.

5%
)

98
.6

%
32

.9
24

.8
C

M
S/

25
10

0
9.

1
1.

9
5.

7%
12

.6
19

.2
98

4.
1

17
9.

1
68

.0
%

14
(9

8.
7%

)
98

.7
%

9.
5

1.
5

C
M

S/
9

1
0

0.
0

0.
0

71
.5

%
23

5.
7

90
8.

5
10

28
.3

1.
6

10
0.

0%
14

(9
9.

9%
)

10
0.

0%
11

.8
47

.3
Fo

od
-p

ri
ce

s
4

0
1.

1
1.

1
52

.5
%

64
15

.8
14

65
6.

8
10

30
.4

1.
8

92
.4

%
14

(9
9.

2%
)

99
.2

%
27

.1
33

.5
G

ov
/1

0
2

0
1.

0
0.

8
26

.1
%

24
01

53
.6

1.
6E

7
87

3.
5

29
8.

8
90

.5
%

14
(8

9.
9%

)
95

.9
%

13
.8

18
.8

G
ov

/2
6

2
0

0.
0

0.
0

99
.5

%
44

2.
3

80
36

.8
4.

6
11

.9
10

0.
0%

14
(9

9.
9%

)
10

0.
0%

63
.7

63
.8

G
ov

/3
0

2
0

0.
1

0.
3

89
.7

%
10

99
8.

7
10

27
48

.6
11

5.
6

17
0.

6
98

.6
%

14
(9

8.
5%

)
99

.4
%

56
.6

57
.1

G
ov

/3
1

2
0

0.
1

0.
1

96
.0

%
89

3.
2

62
88

.2
69

.9
57

.4
99

.1
%

14
(9

9.
8%

)
99

.9
%

60
.6

60
.9

G
ov

/4
0

2
0

0.
0

0.
0

99
.1

%
79

1.
4

66
50

.9
12

.1
18

.7
99

.9
%

14
(9

9.
8%

)
99

.9
%

63
.4

63
.5

M
ed

ic
ar

e/
1

10
0

4.
0

2.
9

41
.3

%
97

.0
14

6.
2

10
28

.0
1.

6
83

.2
%

14
(9

8.
5%

)
98

.6
%

25
.2

16
.6

M
ed

ic
ar

e/
9

1
0

0.
0

0.
0

70
.6

%
23

5.
7

10
06

.2
10

28
.3

1.
7

10
0.

0%
14

(9
9.

9%
)

10
0.

0%
11

.3
47

.1
N

Y
C

/2
9

13
0

12
.9

0.
3

51
.0

%
-7

3.
9

0.
0

10
29

.0
0.

0
93

.7
%

14
(9

9.
9%

)
10

0.
0%

38
.9

23
.2

P
O

I-
la

t
20

0
15

.9
0.

4
1.

4%
0.

6
0.

4
10

21
.7

1.
4

73
.4

%
16

(7
4.

1%
)

76
.4

%
10

.6
1.

0
P

O
I-

lo
n

20
0

15
.7

0.
5

0.
8%

-0
.1

1.
2

10
22

.0
4.

0
64

.6
%

16
(6

1.
5%

)
70

.5
%

5.
1

1.
0

SD
-b

en
ch

1
0

0.
9

0.
2

92
.4

%
44

6.
0

52
1.

5
10

30
.3

1.
2

65
.8

%
14

(9
9.

9%
)

10
0.

0%
17

.4
15

.8
N

O
N

-T
S

A
V

G
.

6.
4

0.
0

4.
2

0.
7

50
.2

%
52

94
8.

9
17

45
16

2.
6

78
6.

4
45

.0
86

.4
%

95
.1

%
95

.8
%

27
.7

28
.2

A
L
L

A
V

G
.

5.
3

0.
2

3.
8

0.
6

52
.2

%
30

71
7.

9
98

89
67

.2
89

0.
6

26
.3

82
.5

%
95

.0
%

97
.2

%
26

.0
21

.0

63

3.2 XOR-based Analysis

Figure 3.1: Distribution of Trailing Zeros resulting from XORing each value with its previous
immediate value.

Figure 3.2: Distribution of Trailing Zeros resulting from XORing each value with one of its
128 previous values.

3.2 XOR-based Analysis

From a bitwise perspective, two double floating point values are considered similar if their

sign, exponent and fraction parts are similar (IEEE 754). Table 3.2:C9 and C10 show the

doubles exponent average and deviation per vector. We define a vector as 1024 consecutive

values. Also, note that here the 11 bits of the exponent are used to represent an unsigned

integer. In most of the datasets, this exponent deviation is very small. Especially in time-

series data. These small deviations on the exponent, which comprises most of the front

bits, are consequently reflected in the amount of leading 0’s bits resulting when XORing

the doubles with their previous values.

64

3.2 XOR-based Analysis

3.2.1 Leading and Trailing Zeros

When similar values are XORed, a compressible-friendly chain of bits is yielded. This

XORed chain of bits usually contains a high amount of leading and trailing zero bits. As

we can see in Table 3.2:C14 and C15, the average number of leading and trailing zero bits

after XORing is similar between time series and non-time series data. Hence, this similarity

of values stored close-by is also present on non-time series data. This is further shown by

how well Chimp and Chimp128 perform on both of these types of datasets (9). Note that

this has an explanation: Data usually follows normal or skewed distributions with few

outliers. Furthermore, the nature of the data usually determines its decimal precision. For

instance, data measured from one sensor will always have the same precision. Knowing

that by the IEEE 754 definition, the front bits in a certain way determine the magnitude of

numbers; and the trailing bits determine their precision; such finding that close-by values

are similar in their bitwise representation is expected.

Regardless of the data nature, leading and trailing zero bits seem to be compromised by

lower percentages of non-unique values (Table 3.2:C6) and higher decimal precisions (Table

3.2:C2). For instance, in both datasets in which the visible decimal precision reaches up to

20 (i.e. POI-lat and POI-lon), the leading and trailing zero bits average of XORed values

is the lowest. It is important to note that these values of decimal precision stem from the

doubles being originally found as string literals. Only then it is possible to have a number

with a significant precision of 20 decimals; since the IEEE 754 definition of doubles would

not be able to achieve such precision accurately (maximum of 17).

The distribution of the number of trailing zeros for each dataset can be seen in Figure 3.1.

Here we can see that the distributions of zeros are mainly located in three ranges of bits

(i.e. 0 - 8; 32 - 48; and 64). When plotting the same distribution but looking for the best

XOR result amongst the previous 128 values (Figure 3.2) the differences are subtle. The

distributions of zeros are still within the same 3 ranges of bits. However, when looking into

the previous 128 values, the distribution is less cluttered in the first range (1-8 bits) and

much more cluttered on a perfect XOR (64 zeros). At the same time, some datasets gain

zeros in the middle range (from 32 to 48 bits). Even though the gains on this range are

remarkable for a few datasets (e.g. Wind-dir, City-Temp, Dew-Point-Temp, Basel-Temp);

we believe the biggest gains achieved by Chimp128 are in its ability to achieve a perfect

XOR. The two datasets with the highest amount of zero trailing zeros are both datasets in

which the decimal precision is truly high (i.e. POI-lat and POI-lon) and there are almost

no repeated values.

65

3.2 XOR-based Analysis

Figure 3.3: Distribution of Leading Zeros resulting from XORing each value with its previous
immediate value.

Figure 3.4: Distribution of Leading Zeros resulting from XORing each value with one of its
128 previous values.

When analyzing the distribution of leading zeros for each dataset we found that these

are more consistently exploitable than trailing zeros (Figure 3.3). This is due to most of

the doubles inside a vector having a low variance on their IEEE 754 exponent. In fact,

only a few datasets have a relevant part of their leading zero distribution between 0 and 8

bits (e.g. POI-lon, Gov/26, Gov/40, Gov/10). Most of the datasets have their distribution

between 8 and 24 bits in an unimodal fashion. When doing the same analysis but XORing

with one of the previous 128 values (Figure 3.4) we found that the changes are very subtle.

There are no significant gains in terms of leading zero bits. In fact, some distributions even

become worse by being more skewed to the right (e.g. Air-pressure, Stocks-USA, Bitcoin-

Price, Basel-Wind). This shows how looking into the previous 128 values is more beneficial

in terms of trailing zeros than leading zeros and it even diminishes the performance on some

datasets regarding leading zeros.

66

3.2 XOR-based Analysis

Figure 3.5: Distribution of Trailing Zeros resulting from XORing each value with its previous
immediate value on a block of values sorted in ascending order.

3.2.2 Towards a SIMD XOR-based encoding

Looking into a ring buffer of N-previous values creates data dependencies since a value

[de]compression always depends on a previous value that could be far behind the stream.

Such a buffer would not be necessary to achieve higher compression ratios if an optimal

value to XOR was found immediately prior to the current value. One could try to partially

sort the block of doubles to achieve this (as similar doubles in magnitude are more likely to

share their front bits). Figures 3.5 and 3.6 show the resulting distributions of trailing and

leading zeros when XORing with the immediate previous value inside a vector of doubles

sorted in ascending order. In contrast to 1 and 128-previous value XORing (Figures 3.3

and 3.4) the distributions of leading zeros are mostly skewed to the left, with a mean of

around 16 and 32 and a smaller standard deviation. On the other hand, the trailing zero

distributions depict a higher percentage of datasets values falling in 64 zeros and a much

lower percentage of the distributions between 0 and 8 bits; while the middle range (32-48

bits) is now not present for most datasets. These distributions hint to us that having sorted

tuples a-priori would improve compression ratios of XORing (we estimate improvements

of ≈12% in Patas). In FastLanes (3); tuples in a SIMD lane are reordered in a certain way

to process them more efficiently. However, in our experiment, most of the tuples inside a

vector were moved at a much larger distance than what FastLanes can reorder in its virtual

register. Furthermore, the need for an additional index to store the original position of the

tuples would decrease compression ratios.

Another factor that inhibits SIMD decoding is the variable bit-width of the encoded

data resulting from Gorilla and its variants. Despite Patas always using a fixed size for

67

3.2 XOR-based Analysis

Figure 3.6: Distribution of Leading Zeros resulting from XORing each value with its previous
immediate value on a block of values sorted in ascending order.

Figure 3.7: Distribution of the minimum number of leading zeros in vectors resulting from
XORing each value with its previous immediate value.

Figure 3.8: Distribution of the minimum number of leading zeros in vectors resulting from
XORing each value with its previous immediate value by patching 10% of exceptions. Excep-
tions are XORed values inside a vector whose number of leading zeros is less than 8.

68

3.3 Decimal-based Analysis

metadata, each value in the encoded data itself (i.e. significant bytes of the XOR) is still

of variable bit-width.

A fixed bit-width of the encoded data would be achieved if, similar to BP, one packs

all the values with the minimum bit-width needed to fit the biggest encoded value inside

a vector. In such a scenario, an encoded value of 64 bits would ruin the bit-width of

the entire vector and lead to negative compression (as the 64 bits would still have their

associated metadata). Thus, at least one of the minimum number of leading and trailing

zeros resulting from the XOR of all values inside a vector must be higher than 0 to not fall

into negative compression.

We saw that in almost 100% of the vectors of every dataset, the minimum amount of

trailing zeros for a vector is 0. Hence, trailing zeros are not reliable enough to achieve

gains with a fixed bit-width. Such is not the case for leading zeros. Figure 3.7 shows the

distribution of the minimum number of leading zeros present in every vector. Here we can

see that in some datasets we could have a fixed bit-width of 52 bits in a great percentage

of vectors (i.e. 64 - 8 bits), and even more in some datasets such as NYC/29, Air-pressure

and the Stocks datasets. However, most of the datasets still have a relevant percentage

of their vectors at around 0 and 2 minimum leading zeros. By tolerating around 10% of

exceptions (XORed values inside a vector whose number of leading zeros is less than 8)

the left part of the distributions resides in the range of 8 - 11 bits instead of 0 - 2 bits

(Figure 3.8). However, the compression ratios that one could achieve by using this idea

of fixed bit-width for the encoded data would be sub-optimal in comparison to Chimp128

and even Patas.

3.3 Decimal-based Analysis

From a human-readable perspective, two doubles are similar when their orders of magnitude

and their visible decimal precision (as a string literal) are similar. On our time-series

datasets, the standard deviation of the values magnitude (Table 3.2:C8) is relatively small

(e.g. Stocks-USA, Dew-Point-Temp, Air-Pressure). In contrast, on non-time series data,

this measure is elevated for some datasets (e.g. Food-Prices, Gov/40, CMS/9), without

being orders of magnitude higher than the values magnitude average (Table 3.2:C7). The

latter means that close values are similar in their orders of magnitude.

Decimal precision varies between datasets (Table 3.2:C2 and C3). For instance, datasets

that contain coordinates such as POI-lat and POI-lon can vary between 0 and 20 decimals

of precision. On the other hand, datasets such as Medicare/9, SD-bench and City-Temp

69

3.3 Decimal-based Analysis

contain at most values with 1 decimal precision. Despite these differences in decimal

precision inside a dataset, the deviation of this property is usually small from a vector per-

spective (Table 3.2:C5). In fact, for 25 out of 30 datasets, the decimal precision deviation

inside vectors is smaller than 1. The latter means that most of the values inside a vector

share the same decimal precision.

As we reviewed in section 2.5.3, decimal-based encoding approaches exploit these human-

readable similarities of doubles by trying to represent them as integers. The more similar

the decimal precision and the orders of magnitude of doubles inside a block of values, the

more performance in terms of compression ratio can be achieved. In contrast to XOR-

based approaches, these outputs of integers can be further compressed with integer LWC

techniques. Additionally, having metadata regarding the precision bounds of the doubles

is beneficial for algorithms such as BUFF (13) in order to perform arithmetic to get rid of

unnecessary information in the bitwise representation of such numbers. However, we are

not interested in designing an encoding limited by the availability of metadata of a block

of doubles.

3.3.1 Representing Doubles as Integers

Representing double precision floating-point values as integers is non-trivial. Take for

instance the number n = 8.0605. At first glance, to encode n as an integer we could be

tempted to move the decimal point e spaces to the right until there are no decimals left

(i.e., 4 spaces). The latter can be achieved with the following procedure: Penc:

Penc = round(n× 10e) (3.1)

Since one of the multiplication operands of Penc is a double, we need to round the result

to obtain an integer. Then, we could conclude that we have reduced our double precision

floating point number into a 32-bit integer d = 80605 (i.e. result of Penc) and another

32-bit integer representing the number of spaces e we moved the decimal point (i.e. a

factor of 10).

Hence, from the encoded integer d result of Penc, and the number of spaces e we moved

the decimal point, we should be able to recover the original double by performing the

following procedure Pdec:

Pdec = d× 10−s (3.2)

70

3.3 Decimal-based Analysis

Executing this in a programming language will visually yield on screen the original

number 8.0605. However, the exact bitwise representation of the original double has been

lost in the process. The correctness of the procedures fails to hold due to our number

8.0605 not being a real double (71). The real representation of the number 8.0605 as a

double based on the IEEE 754 definition is: 8.06049999999999933209 . To achieve lossless

compression, this has to be the exact result of our procedure Pdec. However, in our example

Pdec yields 8.0605000000000011084 . This is a consequence of the error introduced in the

multiplication by the inverse factor of 10 in Pdec. The latter turns out to be a double

that does not have an exact decimal representation either. Hence, 10−4 is not 0.0001

but more something like 0.000100000000000000002082. This error is introduced in the

multiplication, and reflected in the end result of the procedure Pdec. The Penc procedure

does not suffer this problem since 10e has an exact double representation for e ≤ 21.

Table 3.2:C11 depicts the percentage of doubles in each dataset that can be losslessly

represented by an integer d and an exponent e using the Penc and Pdec procedures. But,

always using the visible precision of the doubles as the exponent e (e.g., for 0.0001, the

visible precision is 4; for 1.4297546, the visible precision is 7). This results in only 82.5%

of the values successfully encoded and decoded on average for all the datasets. However,

in some datasets, the success probability gets as low as 61.7%. We found the success of

the procedures Penc and Pdec to encode and decode the exact original doubles to depend

on two factors: (i) the real precision of the exponent e and (ii) the visible precision of the

double n.

3.3.2 High exponents work for all values

Table 3.2:C12 shows the exponent e which leads to the highest success-rate of Penc and Pdec

on each dataset. It is evident that higher exponents e such as 14 and 16 are predominant,

with an average of 95% successfully encoded values in all of the datasets; and up to a rate

of 99.9% in datasets such as SD-bench, Stocks-UK, Medicare/9, Gov/31 and PM10-dust.

The effectiveness of higher exponents stems from the fact that the more we increase the

exponent e the closer we can get to obtaining the real double with the procedures. This

is due to higher exponents e resulting in a more precise inverse factor of 10 on Pdec. For

instance, 10−14 represented as a double is equal to 1.00000000000000007771E−15. As a

consequence, the result of Pdec to recover the real double is more accurate. Furthermore,

higher exponents are powerful because they are able to cover a wider range of decimal pre-

cision. Moreover, as shown in Table 3.2:C13, when optimizing to use a different exponent e

per vector, we reach an average of 97.2% of successfully encoded values in all the datasets.

71

3.3 Decimal-based Analysis

Based on these results, we question whether a different exponent e for each value is needed

– which is what PDE does.

Nevertheless, by using higher exponents e the integers resulting from the procedure Penc

transform into big integers (i.e. 64 bits). These high exponents that lead to big integers are

not taken into account by PDE since they lead to a worse compression ratio than leaving

the data uncompressed. The latter is due to the number of bits needed to store big integers

(i.e. 64 bits) and the number of bits needed to store the exponent itself (i.e. 32 bits) being

bigger than the uncompressed value (i.e. 64 bits for a double). However, some doubles

found in datasets such as the ones in NYC/29, POI-lat and POI-lon are only representable

as big integers.

3.3.3 The 52-bit limit for integers

Exponent e = 14 is the most successful in most of the datasets to represent doubles as

integers using Penc and Pdec. We have shown that this is due to the difference between

the exact value and the real value of 10−14 being too small to have an effect in Pdec result.

However, there are two datasets in which even higher exponents e are needed (i.e. POI-lat,

POI-lon). This is due to the visible precision of the double values inside those datasets

being on average higher than 14 (Table 3.2:C4). As we explain subsequently, when the

order of magnitude of a double n plus its visible decimal precision reaches 16, Penc is prone

to fail due to a limitation of the IEEE 754 doubles.

The multiplication inside Penc yields a double due to having a double operand. Hence,

before rounding, our resulting integer d is a double. However, there is a known limitation

to the accuracy of the integer part of a double. Only the integers ranging from −253 to

253 (i.e. -9,007,199,254,740,992.0 to 9,007,199,254,740,992.0) can be exactly represented in

the integer part of a double number. Going beyond this threshold is problematic. Between

253 and 254 (i.e. 18,014,398,509,481,984.0), only even integer numbers can be represented

as doubles. Similarly, between 254 and 255 only multiples of 4 can exist. Furthermore,

doubles stop having a decimal part after 253. Hence, if a double multiplication yields a

double higher than 253, results will be automatically rounded to the nearest existing double

number. The latter happens in Penc when the order of magnitude of the double plus the

visible decimal precision reaches 16. Hence, representing a number as an integer could be

impossible in these cases using Penc and Pdec. Thus, the reason why Air-sensor, POI-lat

and POI-lon achieve a relatively low successful encoding rate of 76.4%, 70.5% and 91.7%

respectively. This is also the reason why we stated earlier that 10e only has an exact double

representation for e ≤ 21.

72

3.4 Unexploited Opportunities

3.3.4 Division vs Multiplication

We can define a different procedure Penc_aux as a variation of Penc as follows:

Penc_aux = round(n/10−e) (3.3)

Penc_aux performs a division with an inverse factor of 10 instead of multiplication with

a factor of 10. The latter can help to slightly increase the success rate on some of these

special cases. This happens since the error introduced in the inverse power of 10 helps

to propagate the invisible decimals of the original double into the integer representation.

For example, trying to encode the double n = 1.42975460000000009764 with e = 16

using Penc and Penc_aux will go as follows: Before rounding, Penc would have yielded d1 =

14297546000000000.9764 and Penc_aux would have yielded d2 = 14297546000000001.27525.

Due to the IEEE 754 limitation, both d1 and d2 are automatically converted to the nearest

representable double, which are only the even numbers on these orders of magnitude.

Therefore, d1 = 14297546000000000 and d2 = 14297546000000002 (note here that the

round instruction of both procedures is now redundant). However, only d2 is able to yield

the original double using Pdec. From our investigations, in these cases obtaining the right

d is a mathematical coincidence, rather than a consistent phenomenon. In addition to this,

division is an expensive operation in most computer architectures (50). Hence, avoiding it

is key to achieving desirable encoding and decoding speeds.

3.3.5 Towards a SIMD Decimal-based encoding

In contrast to our XOR-based analysis, there are opportunities to implement a truly SIMD

approach tailored for vectorized execution based upon decimal-based encodings. For in-

stance, the in-vector commonalities that we have found can be exploited to store metadata

per-vector instead of per-value. In the following section, we dive more in-depth into these

unexploited opportunities.

3.4 Unexploited Opportunities

Both current state-of-the-art approaches to compress doubles (i.e. Chimp128 and Pseu-

doDecimals) already exploit some of the properties analyzed in the previous subsections.

However, we believe there is room for substantial improvement both in terms of compres-

sion ratio and (de)compression speed; especially in decimal-based encodings.

73

3.4 Unexploited Opportunities

3.4.1 Vectorizing Decimal Encoding

In subsection 3.3.2 we demonstrated that it is possible to achieve near 100% success rate of

our procedures Penc and Pdec to encode doubles as two integers by using only one exponent e

on a per-vector basis. The current state-of-the-art approach (i.e. PseudoDecimals) uses one

individual exponent e per value. This not only increases the computational cost of finding

such exponent per value but also decreases the compression ratios that can be achieved.

Hence, if we exploit this in-vector commonality of exponents, we believe compression ratios

can be greatly improved.

3.4.2 Use of Long Integers (Cutting trailing 0s with an extra multipli-
cation)

In subsection 3.3.1 we demonstrated that high exponents e achieve the highest success rate

on our procedures Penc and Pdec to store doubles as integers. However, we also mentioned

that using exponents such as 14 results in 64-bit integers being encoded. Despite this,

we believe that using a unique exponent e per vector opens the opportunity to encode

big integers without instantly falling behind in compression ratio against uncompressed

values. This is due to the unique 32-bit exponent being amortized by all the values inside

the vector. More interestingly, we have also observed that in some cases, these long integers

yielded from Penc can be exploited further due to their tails of 0’s digits.

High exponents e in combination with low-precision decimals datasets (e.g. SD-bench,

City-Temp, Stocks-UK, Wind-Dir, PM10-Dust) results in long integers which contains

tails of repeated digits (e.g. n ≈ 37.3 and e = 14, yields Penc = 3730000000000000;

n ≈ 100.8333 and e = 14, yields Penc = 10083330000000000). These tails of repeated

digits will have the same length in datasets with low values magnitude variance and low

decimal precision variance (e.g. SD-bench, City-Temp, PM10-Dust, Air-pressure). Cutting

these tails with an extra multiplication with an inverse factor of 10, namely f , results in a

smaller integer that can be used to recover the big integer with the inverse operation (i.e.

a multiplication with a factor f of 10). Hence, we can redefine Penc and Pdec as follows:

ALPenc = round(n× 10e × 10−f) (3.4)

ALPdec = d× 10f × 10−e (3.5)

Based on our previous analysis done in subsection 3.3.1 we could suspect that this new

multiplication with another inverse factor of 10 in ALPenc would result in a new error

74

3.4 Unexploited Opportunities

introduced in the procedure. However, in this scenario, the introduced error due to the non-

exact representations of inverse factors of 10 produces zero side effects on both procedures.

For example, with n ≈ 8.0605, e = 14 and f = 10, ALPenc and ALPdec will execute as

follows:

ALPenc = round(8.06049999999999933209 × 1014 × 10−10)

ALPenc = round(806049999999999.875× 10−10)

ALPenc = round(80604.999999999985448)

ALPenc = d = 80605

ALPdec = 80605 ∗ ×1010 × 10−14

ALPdec = 806050000000000× 10−14

ALPdec = n = 8.06049999999999933209

As we can see in the third step of ALPenc, the error introduced by 10−10 is negligible to

the resulting integer d. Using this reducing factor f in the procedures is a way of taking

advantage of the high exponents coverage and success rates without having to encode big

integers d. Note that this example is the same n we used at the beginning of subsection

3.3.1, which could not be encoded by simply using e = 4. Also, note how a tail composed

of 9’s digits can also be reduced without any side-effect. Despite the effectiveness of using

a reducing factor, this comes at the expense of doing an additional operation at encoding

and decoding. Plus, an additional 32-bit to store the factor amortized by all the values

inside a vector.

3.4.3 Limited Search Space

As of now, we have ignored the process of finding the exponent e for our decimal-based

encoding procedures ALPenc and ALPdec. The current state-of-art on decimal-based en-

coding (i.e. PseudoDecimals) performs a brute-force search for each value in a dataset in

order to find the exponent e. For our ALP procedures, an additional nested brute-force

search needs to be performed in order to find the best combination of exponent e and

factor f . We define the best combination as the one in which ALPenc yields the smallest

integer d with which ALPdec succeed in recovering the original double n. This translates

into a search space of 253 possible exponent e and factor f combinations (given that f ≤ e

and 0 ≥ e ≤ 21). This is not SIMD-friendly or efficient. However, we have already demon-

strated that most values inside a vector can be encoded by using one single exponent.

75

3.4 Unexploited Opportunities

Figure 3.9: Analysis of the best combinations of exponent e and factor f for each vector of
1024 values. For most datasets, the best combination for any vector is found among a set of
just 5 different combinations. For some datasets, a single combination is always the best one.
A combination is the best when it achieves the highest encoding rates yielding the smallest
integers using ALPenc and ALPdec procedures.

Furthermore, we have already shown that vectors exhibit a low variance in their decimal

precision and in their values orders of magnitude. Hence, we believe that the search space

for the combination of exponent e and factor f can be greatly reduced and it can be done

on a per-vector basis. In order to prove this, we computed the best combination for each

vector in each dataset by brute force. That is, for each vector we tested what is the combi-

nation that yielded the smallest integers from which the most amount of original doubles

could be recovered. For this experiment, we define a vector as 1024 consecutive values

from a dataset. Figure 3.9 shows the results of the experiment. We can see how for most

datasets a search space of 5 combinations is enough to obtain the best combination among

all vectors. Moreover, for some datasets such as Basel-wind, Bird-migration, City-Temp,

Wind-dir and IR-bio-temp, an entire dataset search space is only one combination. Hence,

performing a search among 253 possible combinations every time is unnecessary. Such

optimization of the search space would greatly improve compression speed in contrast to

the current state-of-the-art brute-force approach.

76

3.4 Unexploited Opportunities

3.4.4 Front-Bits Similarity

When the magnitude plus decimal precision exceeds 16, it is often impossible to encode a

double as an integer with our procedure ALPenc. On such data, decimal-based encoding

would have to deal with integers bit-packed to more than 52 bits (and similarly, Chimp

variants would have to deal with trailing bit-strings of more than 52 bits). A basic obser-

vation is that such data is not very compressible in the first place (64-bit data takes at

least 52 bits); nevertheless, compression may still be worthwhile.

We believe that the approach of a decimal-based encoding is not appropriate for such

compression-unfriendly data; thus when encountering such data, our approach could adap-

tively switch to a different encoding strategy, that exploits regularities in the front-bits

in a vectorized manner. In Table 3.2:C10, even on these datasets (i.e., POI-lat, POI-lon)

we see that the exponent of the bitwise representation of a double exhibits a low variance.

Data with low variance can be compressed with lightweight integer encodings, such as RLE

and Dictionary – all building blocks provided by the FastLanes compression library (3).

Furthermore, based on the analysis of leading 0-bits from XOR-ing with the previous value

(Table 3.2:C14), on some of these datasets we should not limit this idea to just the expo-

nent, because the highest bits of the mantissa often are regular (if the data stems from a

particular value range).

77

4

Adaptive Lossless Floating-Point
compression (ALP)

ALP is an adaptive lossless encoding designed to compress double precision floating-point

data. ALP takes advantage of the opportunities discussed in subsection 3.3.1. Compression

and decompression are built upon the ALPenc and ALPdec procedures described in section

3.4. Furthermore, ALP is able to adapt its encoding/decoding scheme if it encounters

high precision doubles by taking advantage of the similarity in the front-bits uncovered in

section 3.4.4. in both compression and decompression. In the following subsections, we

describe the key design aspects of ALP and how it implements adaptivity.

4.1 Compression

ALP compression is built upon the ALPenc procedure (Formula 3.4). ALP tries to encode

all doubles n inside a vector v with the same exponent e and factor f . Inside the encoding,

ALP must verify that the procedures ALPenc and ALPdec yield the original double n. If

the original double n cannot be recovered, we treat the double as an exception. Algorithm

4.1 shows the pseudo-code for ALP encoding.

4.1.1 Vectorized Compression

ALP introduces the use of one exponent e and factor f for all doubles inside the same

vector. Note that PDE needs to store one exponent per value – taking more space. Based

on our empirical investigation, in order for this approach to be successful we need to be

able to use high exponents e. Hence, ALP does not limit the encoded integers to int32

representations, but int64. Furthermore, ALP incorporates the new idea of the factor f

78

4.1 Compression

Algorithm 4.1: ALP Compression.

1 double i_F10 = {1.0, 0.1, 0.01, 0.001, ...};

2 double F10 = {1.0, 10.0, 100.0, 1000.0, ...};

3
4 // Adaptive search of exponent e and factor f in a vector

5 int e, f = ALP::ADAPTIVE_SAMPLING(input_vec, BEST_COMBINATIONS);

6
7 encoded_vec, exc_vec, exc_pos_vec = ALP::ENCODE([]() {

8 for (i = 0; i < VECTOR_SIZE; ++i){ // Encode the vector

9 double n = input_vec[i];

10 int64 d = fast_double_round(n * F10[e] * i_F10[f]); // ALPenc

11 encoded_vec[i] = d;

12 decoded_vec[i] = d * F10[f] * i_F10[e]; // ALPdec

13 }

14 int exc_count = 0;

15 for (i = 0; i < VECTOR_SIZE; ++i) { // Find Exceptions

16 bool neq = (decoded_vec[i] != input_vec[i]);

17 exc_pos_vec[exc_count] = i;

18 exc_count += neq; // predicated comparison

19 }

20 int64 first_encoded = FIND_FIRST_ENCODED(exc_pos_vec);

21 for (i = 0; i < exc_count; ++i){ // Fetch Exceptions

22 encoded_vec[exc_pos_vec[i]] = first_encoded;

23 exc_vec[exc_pos_vec[i]] = input_vec[i];

24 }

25 });

26 FFOR(encoded_vec);

for reducing the trailing 0-digits, explored in subsection 3.4.2. After multiplying with the

factor, the resulting integer is small again and is then bit-packed compactly, using the same

number of bits for all values inside the same vector. The exponent, factor and bit-width

parameters do not use much space, as these parameters are stored only once per vector

(1024 doubles). The fact that all three parameters are the same per-vector also means that

the [de]compression work is regular and thus has no control-instructions inside the loops,

making them suitable for auto-vectorization.

4.1.2 Fast Rounding

The round operation is not supported in SIMD instruction sets. However, ALP replaces

the round function with a procedure that takes advantage of the limitation of doubles

to store exact integers of up to 52 bits, discussed earlier. An algorithmic trick resulting

79

4.1 Compression

from this limitation is that one can round a double by adding and subtracting 252. In

other words, we take the doubles to the orders of magnitude in which they are not al-

lowed to have a decimal part (+252). At this stage, the double is automatically rounded

to its nearest integer without a need for an extra instruction. We named this procedure

fast_double_round. This procedure is SIMD-friendly since it only consists of one ad-

dition and one subtraction; operations supported by SIMD intrinsics. For instance, to

round a double n, fast_double_round will go as follows: n_rounded = cast<int64>(n +

magic_number - magic_number). The magic number is actually 6755399441055744.0, or

1.5 × 252, which is deemed as the perfect number to take doubles into this sweet range

in which they cannot have a decimal part. This trick is not novel to ALP, since it

is even used in Lua as a macro (lua_number2int32) to round numbers1. The use of

fast_double_round can be seen in Algorithm 4.1: Line 10.

4.1.3 Handling Exceptions

Values which fail to be encoded as decimals become exceptions. Exceptions are stored

uncompressed in a separate segment (i.e., exc_vec in Algorithm 4.1). However, since

our approach is vectorized, we cannot simply skip the exceptions in the resulting vector

of encoded values (i.e., encoded_vec in Algorithm 4.1). Hence, when exceptions occur

we store an auxiliary value in the encoded_vec (i.e., first_encoded in Algorithm 4.1

Line 20). This auxiliary value is the first successfully encoded d which is obtained by

the FIND_FIRST_ENCODED function in Algorithm 4.1: Line 20. Such value will not affect

negatively the bit-width of the encoded vector. Note that by searching for this value after

the encoding process we avoid an additional control statement in each iteration of the main

encoding loop. Further, we also need to store in another storage segment the position in

which each exception occurred within a vector (i.e., exc_pos_vec in Algorithm 4.1). For

v = 1024, each exception has an overhead of 80 bits: 64 bits for the uncompressed value and

16 bits to store the exception position. Lines 15 to 25 in Algorithm 4.1 show the exception

handling process which is cleverly built to avoid control structures (i.e., if-then-else).

4.1.4 Fused Frame-Of-Reference (FFOR).

By itself, ALP encoding does not compress the data. Rather, it enables the use of

lightweight integer compression to further encode its output. Based on our study of data

similarity in subsection 3, we decided to encode the yielded integers using a Fused variant
1http://www.lua.org/source/5.2/llimits.h.html

80

http://www.lua.org/source/5.2/llimits.h.html

4.2 Adaptive Sampling

of the Frame-Of-Reference encoding, available in the FastLanes library called FFOR (2).

FastLanes (3) proposes a new data layout to accelerate the encoding and decoding of

lightweight [de]compression methods with scalar code that auto-vectorizes. In FastLanes,

FFOR fuses the implementation of bit-[un]packing with the FOR encoding and decoding pro-

cess into a single kernel that performs both processes. The FOR encoding subtracts the

minimum value of the integers in a vector; this will pick up on localized doubles (inside a

tight range) and reduce bits needed in the subsequent bit-packing. Fusing saves a SIMD

store and load instruction in between the subtraction and the bit-packing loop; improving

the performance of the encoding. We note that it would also be possible to also fuse FFOR

and ALP; this is not done yet here, and could provide a performance boost, especially in

decoding. It is important to note that since FastLanes work in a fully vectorized execution,

each encoded vector will have a fixed bit-width that is capable of fitting all the encoded

values in it. We choose to use FastLanes due to its capabilities to perform on heteroge-

neous and evolving Instruction Set Architectures (ISAs). Hence, being future-proof and

minimizing the technical debt by relying only on scalar code.

However, there is some more headroom as a modern compression library (e.g., (1, 3))

could try multiple different integers encodings and also cascade these. For instance, if

the data is repetitive, one could use Dictionary coding, and compress the Dictionary with

FFOR; or use RLE and then separately encode Run Lengths and Run Values. If the data is

(somewhat) ordered, one could apply Delta encoding rather than FFOR to the Dictionary

or the Run Values.

4.2 Adaptive Sampling

Our compression method does not perform a brute-force search for the exponent e and

factor f to use in a vector. Instead, to find the best e and f for a vector, we designed a

novel two-level sampling mechanism, inspired by the findings in subsection 3.4. Specifically,

from Figure 3.9, we conclude that there is a limited set of best combinations of exponent

e and factor f for the vectors in a dataset.

Our sampling mechanism goes as follows: on the first sampling level, ALP samples m

equidistant values from n equidistant vectors of a row-group. We define a row-group as a

set of w consecutive vectors of size v. The total number of values obtained from this first

sampling is equal to m×n. For each vector ni we find the best combination of exponent

e and factor f . This search is performed on the entire search space (i.e., 253 possible

combinations). The best combination is the one that minimizes the sum of the exception

81

4.2 Adaptive Sampling

Algorithm 4.2: ALP Decompression.

1 int e, f = ALP::READ_VECTOR_HEADER(input_vec);

2 int64_vec = UNFFOR(input_vec);

3 decoded_vec = ALP::DECODE([](int64_vec) {

4 for (i = 0; i < VECTOR_SIZE; ++i){

5 decoded_vec[i] = int64_vec[i] * F10[f] * i_F10[e] }}); //ALPdec

6 ALP::PATCH(decoded_vec, exc_vec, exc_pos_vec);

size and the size of the bit-packed integers resulting from the encoded m values. This

process yields n combinations (one for each vector). From these n combinations we only

keep the k ones which appeared the most. If two combinations appeared the same amount

of times, we prioritize combinations with higher exponents and higher factors. It could be

possible that fewer combinations than k are yielded. If the same best combination is found

in every vector, there would only be 1 combination. Hence, we define during runtime a k′

which is smaller than or equal to k that represents the number of yielded combinations.

Once we have found the k′ best combinations, we proceed to the second level of sampling.

The second level of sampling (Line 5 of Algorithm 4.1) samples s equidistant values

from a vector. Then, it tries to find the combination of exponent e and factor f which

performs the best on the s sampled values. However, this time, the search is performed only

among the k′ best combinations found from the first sampling level. To further optimize

the search, we implemented a greedy strategy of early exit. If the performance of two

consecutive combinations, namely k′i+1 and k′i+2, is worse or equal to the performance of

the combination k′i, we stop the search and k′i combination is selected to encode the entire

vector. If k′ is equal to 1, this second sampling level is omitted for all the vectors inside

the row-group.

The first level of sampling is the most computationally demanding process of our com-

pression scheme due to the large search space. However, it occurs only once per row-group.

Hence, the time spent is amortized into w× v encoded values. The second sampling level

happens once for each vector. Hence, it is amortized into v values. However, this sec-

ond level of sampling will only occur if k′i > 1. Hence, if the sampling parameters (i.e.,

m,n,w, k and s) are tuned optimally, the second sampling level will be skipped in datasets

such as City-Temp or SD-bench, in which there exists only one best combination for all

the vectors in the dataset (Figure 3.9).

82

4.3 Decompression

Algorithm 4.3: ALPrd Compression and Decompression.

1 // ENCODING //

2 p, DICT = ALP::RD::ADAPTIVE_SAMPLING(input_rowgroup);

3 left_vec, right_vec = ALP::RD::ENCODE([]() {

4 for (i = 0; i < VECTOR_SIZE; ++i){

5 double n = input_vec[i];

6 left_vec[i], right_vec[i] = ALP::RD::CUT(p);}

7 });

8 BITPACK(right_vec);

9 SKEWDICT_BITPACK(left_vec, DICT);

10
11 // DECODING //

12 p, DICT = ALP::RD::READ_ROWGROUP_HEADER();

13 left_vec = BITUNPACK_DECODEDICT(encoded_left_vec, DICT);

14 right_vec = BITUNPACK(encoded_right_vec);

15 decoded_vec = ALP::RD::DECODE([]() {

16 for (i = 0; i < VECTOR_SIZE; ++i){

17 int16 left, int64 right = left_vec[i], right_vec[i];

18 decoded_vec[i] = ALP::RD::GLUE(left, right, p);}

19 });

4.3 Decompression

ALP decompression builds upon the ALPdec procedure (Formula 3.5) to recover the original

doubles from a vector of integers d yielded by the encoding process. In order to do so,

ALP first reads from the vector header the unique exponent e and factor f used to encode

the vector. Then, ALP needs to reverse the FFOR integer encoding to recover each value.

Values encoded as exceptions are directly read from the exception segment alongside their

position on the original vector in order to correctly reconstruct it (i.e., patching). The

pseudo-code of for ALP decoding is presented in Algorithm 4.2.

4.4 ALP for Real Doubles

During the first level of sampling ALP will detect whether the doubles in a row-group are

not compressible. In that case, ALP encoding would result in a high number of exceptions

and integers bigger than 248. Therefore, for such data, ALP changes its strategy to a

different encoding approach based on the analysis performed in subsection 3.4.4 which

hinted to us that even on these doubles, their front-bits tend to exhibit low variance. We

named this approach ALPrd, which stands for ALP for Real Doubles. ALP takes this

83

4.4 ALP for Real Doubles

decision at the row-group level rather than the vector level since we found no dataset in

which the decimal precision deviates on more than 3 decimals; hence taking this decision

at a vector level would neither be efficient nor effective. We believe that the data in 28 of

the 30 datasets analyzed originate as decimals and are thus not "real" doubles; however,

we think that this is representative of the majority of data people store in data systems as

doubles. The encoding and decoding of ALPrd are presented in Algorithm 4.3.

4.4.1 Encoding

The first level of sampling finds at a row-group level which is the smallest position p ≥ 48

where the highest 64-p front-bits still have low variance. Afterwards, it uses this number

p as the position to cut the bits of every double of that row-group in two parts (Line 6 of

Algorithm 4.3). The right part is compressed using p-bits bit-packing (BP). The position

p is stored once per row-group (i.e., 8 bits of overhead per row-group, which can be safely

ignored). At first glance, this method does not achieve any compression, however, the

integers yielded from the left part are easily further compressible with integer lightweight

encoding methods. For the version of ALP presented here, we compress them using a

fixed method: skewed DICTIONARY+BP compression. A skewed dictionary is a DICTIONARY

encoding which tolerates exceptions. Here, exceptions are values not in the dictionary, and

these are stored as 16-bit values in an exception array, together with an array containing

16-bit exception positions. After sampling, we consider dictionaries of sizes 2b with b ≤ 3

(i.e., just 1, 2, 4, or 8 values), and fill these with the most frequent values in the sample

and then choose the smallest dictionary size b < 3 such that the exception percentage does

not exceed 10% (or else use b=3). We bit-pack the dictionary codes in b bits; and store the

dictionary as 16-bit values. Both BP and skewed DICTIONARY encodings implementations

are available in the FastLanes project1. These encodings implemented in FastLanes have

already been demonstrated to achieve astonishingly fast performances.

4.4.2 Decoding

The b bits dictionary codes are bit-unpacked using a fast vectorized bit-unpacking primitive

(that does this for the entire vector of 1024 values in one go) and (64-p) bits right parts

of the doubles as well. Dictionary decompression requires one memory load from the

dictionary for every code; which is relatively expensive. In SIMD it can be implemented

with a gather instruction, but this is not supported on all CPU architectures nor does this
1https://github.com/cwida/FastLanes

84

https://github.com/cwida/FastLanes

4.4 ALP for Real Doubles

instruction tend to be fast; hence we do not use such an approach (explicitly). Because

we use small dictionaries of size ≤ 23 = 8 and the front-bits are maximally 16 bits wide;

we note that we could implement decoding by preloading the dictionary (maximally 8x16

bits values) in a 128-bits SIMD register and then use a shuffle instruction. However, the

results presented in this paper are based on purely scalar dictionary decompression code,

leaving space for improvement. Finally, we glue both parts together by left-shifting p bits

the dictionary-decoded front-bits, after applying exception patching (34, 41) and adding

in the decompressed right part (using vectorized SHIFT and OR, fused together in a GLUE

primitive seen in Line 18 of Algorithm 4.3). Notice again that all operations are performed

in a tight loop over arrays (vectorized query processing (17)) and the work is regular in

nature such that C++ compilers get to very efficient code. Only the exception patching

has some data dependencies and random memory access, but it is performed on a minority

of the data only – limiting its performance effects.

85

5

Evaluation

We experimentally evaluate ALP with respect to its compression ratio and [de]compression

speed using all analyzed datasets in Table 3.1 against six competing approaches for lossless

floating-point compression: Gorilla (30), Chimp / Chimp128 (9), Patas (31), Elf (12)

and PDE (1). Furthermore, we also compare against one general-purpose compression

approach: Zstd (27). To further test the robustness of ALP we tested its speed on different

hardware architectures which are described in Table 5.1 and using Auto-vectorized, Scalar

and SIMDized code. In subsection 5.3 we present end-to-end query speed benchmarks of

ALP on Tectorwise (72) to test its performance in a real system. Finally, in subsection 5.4

we present a version of ALP for 32-bit floats and evaluate it on machine learning data.

Sampling Parameters: Based on Figure 3.9, we defined the maximum number of

combinations k as 5. The number of vectors w inside a row-group is fixed to 100 to

emulate the usual modern OLAP engines row-group sizes (e.g., DuckDB (20)). The size

of every vector v is fixed to 1024 to comfortably fit in the CPU cache (33). On the first

sampling level, the number of vectors sampled per row-group m is set to 8, and the

number of values sampled per vector n is set to 32. Finally, on the second sampling level,

the number of values sampled per vector s, is set to 32. m, n and s were tuned during

evaluation and showed to yield a good trade-off between compression ratio and speed.

Algorithms Implementations: ALP is implemented in C++ and is available in our

GitHub repository https://anonymous.4open.science/r/sigmod-E783. Gorilla, Chimp,

Chimp128 and Patas were implemented in C++. Gorilla was implemented by ourselves,

and the other implementations were stripped from the DuckDB codebase (73) and adjusted

to work as standalone algorithms. Note that Gorilla is part of a closed-source Facebook

system. On the other hand, PDE and Elf1 benchmarks were carried out using code from the
1https://github.com/Spatio-Temporal-Lab/elf

86

https://anonymous.4open.science/r/sigmod-E783
https://github.com/Spatio-Temporal-Lab/elf

5.1 Compression Ratios

Table 5.1: Hardware Platforms Used

Architecture Scalar ISA Best SIMD ISA CPU Model Frequency

Intel Ice Lake x86_64 AVX512 8375C 3.5 GHz
AMD Zen3 x86_64 AVX2 (256-bits) EPYC 7R13 3.6 GHz
Apple M1 ARM64 NEON (128-bits) Apple M1 3.2 GHz
AWS Graviton2 ARM64 NEON (128-bits) Neoverse-N1 2.5 GHz
AWS Graviton3 ARM64 NEON (128-bits) modified 2.6 GHz

SVE (variable) Neoverse-V1

original authors. Finally, we used Facebook’s implementation of zstd in C (27), configured

at the default compression level (3).

5.1 Compression Ratios

Table 5.2 shows the compression ratios of all approaches measured in bits per value (un-

compressed, each value is a 64-bit double). In this experiment the algorithms compressed

all vectors in a dataset. The best-performing floating-point approach is marked in green.

ALP evidently stands out from the other floating-point encoding schemes in compression

ratio. ALP shows an average improvement of ≈31% compared to PDE. When compared

to Gorilla, Patas, Chimp, and Chimp128, ALP is respectively ≈49%, ≈39%, ≈43% and

≈24% better. In time series datasets, ALP achieves a ≈33% and ≈46% improvement over

Chimp128 and PseudoDecimals. Similarly, on non-time series data ALP performs better

than both by a ≈19% and ≈21% on average. Elf is ALP’s most fierce competitor in terms

of compression ratio – excluding zstd. On the other hand, zstd is the only compression

algorithm that slightly takes the upper hand in compression ratio with 20.6 bits per value

on average. Even so, ALP is slightly better than zstd on time series data. One has to take

into account that zstd has a much lower [de]compression speed and, being block-based, has

the disadvantage that one cannot optimally skip through compressed data. For instance,

in zstd’s 256KB block-based compression, a system has to decompress 32 8KB vectors,

even if 31 of those 32 vectors are not needed.

5.1.1 When ALP shines

ALP outperforms Chimp128 and Elf on datasets with fixed or low decimal precision or

with a low percentage of repeated values (e.g., Blockchain-tr, Arade-4, Dew-Point-Temp,

Bitcoin-price). In other words, ALP gets its best gains when the doubles were generated

87

5.2 [De]compression Speed Microbenchmarks

from decimals. ALP performs better than Chimp128 in 27 out of 30 datasets, and better

than PDE in the same amount. In fact, ALP is at most 2 bits worse than PseudoDecimals

on CMS/9 and Medicare/9. Both these datasets contain mostly integers encoded as doubles

(Table 3.1). PDE benefits from such data since 0 bits are stored after applying BP to

the exponents output due to the exponents always being equal to 0. Nevertheless, on

these types of datasets Decimal-based encoding approaches are much better than XORing

approaches. When ALP encounters real doubles, ALPrd comes into the equation. There

are two datasets for which ALP failed to achieve any compression and ALPrd encoding was

used: POI-lat and POI-lon (marked with *). These datasets are characterized by almost

0% of repeated values and a maximum decimal precision of 20 (Table 3.2:C2). In both

datasets, these compression ratios achieved by ALPrd represent an improvement over all

the other floating-point compression approaches.

5.1.2 When ALP struggles

ALP struggles to keep up with both Elf and Chimp128 on datasets in which the XORing

process benefits from a high percentage of repeated values and the decimal-based encoding

process is hindered by high variability in value precision. Those datasets are: CMS/1,

Medicare/1 and NYC/29. Despite ALP encoding also taking advantage of similar data,

the profit of Chimp128 / Elf when it can find an exactly equal value is much higher than

the profit that ALP can get. Nevertheless, on data with many duplicates, we question

whether floating-point encodings were the best decision in the first place. For instance,

due to the high percentage of repeated values we could plug in a DICTIONARY encoding

before applying a floating-point encoding (or RLE, if the repeats are consecutive). We

in fact tried using DICTIONARY and then compressing the dictionary with ALP, allowing

it to achieve 33.1, 35.7 and 24.7 bits per value for CMS/1, Medicare/1 and NYC/29

respectively. The compression ratios that ALP is able to achieve by cascading compression

using another lightweight encoding (i.e., DICTIONARY or RLE) are shown in the penultimate

column of Table 5.2. By doing so, ALP even beats zstd in compression ratios while still

retaining its advantages (higher speed, compatibility with predicate-pushdown).

5.2 [De]compression Speed Microbenchmarks

We measured speed as the amount of tuples (i.e., values) that an algorithm is capable

of [de]compressing in one CPU clock cycle. In order to do so we took a vector within

each of our datasets (i.e., 1024 values) and executed the [de]compression algorithms. The

88

5.2 [De]compression Speed Microbenchmarks

Table 5.2: Compression ratio measured in Bits per Value. The smaller this metric, the more
compression is achieved (uncompressed data is 64 bits per value). ALP achieves the best
performance in average (excluding zstd). *: ALPrd was used.

Dataset Gor. Ch.
Ch.
128

Patas PDE Elf ALP
LWC+
ALP

Zstd

Air-Pressure 24.7 23.0 19.3 27.9 30.2 10.5 16.5 11.9dict 8.7
Basel-Temp 61.6 54.1 31.2 36.5 39.3 32.9 29.8 13.8dict 18.3
Basel-Wind 63.2 54.7 38.4 48.9 35.1 34.5 29.8 10.3dict 14.6
Bird-Mig 48.7 41.9 26.3 35.9 35.2 19.9 20.1 19.8dict 21.0
Btc-Price 51.5 48.2 45.1 57.1 44.1 31.9 26.4 26.4 49.9
City-Temp 59.7 46.2 23.0 24.2 31.5 15.1 10.7 10.0dict 16.2
Dew-Temp 56.2 51.8 32.6 39.0 29.5 17.7 13.5 13.5 20.9
Bio-Temp 51.9 46.3 18.9 22.9 23.4 13.0 10.7 10.7 14.5
PM10-dust 27.7 24.4 13.7 19.9 12.9 7.1 8.2 8.2 6.9
Stocks-DE 46.9 42.9 13.6 20.8 25.1 12.3 11.0 11.0 9.4
Stocks-UK 35.6 31.3 16.8 21.5 26.1 11.0 12.7 12.7 10.7
Stocks-USA 37.7 35.0 12.2 19.2 26.1 8.8 7.9 7.9 7.8
Wind-dir 59.4 53.9 27.8 28.2 31.5 22.1 15.9 15.9 24.7
TS AVG. 48.1 42.6 24.5 30.9 30.0 18.2 16.4 13.2 17.2
Arade/4 58.1 55.6 49.0 59.1 33.7 30.8 24.9 24.9 33.8
Blockchain 65.5 58.3 53.2 62.6 39.1 39.2 36.2 36.2 38.3
CMS/1 37.8 34.8 28.2 36.8 40.7 25.4 35.7 33.1dict 24.5
CMS/25 65.4 59.5 57.2 70.1 63.9 48.6 41.1 27.1rle 56.5
CMS/9 17.1 18.7 25.7 26.0 9.7 15.8 11.7 11.3dict 14.7
Food-prices 40.8 28.0 24.7 28.3 25.4 16.8 23.7 23.7 16.6
Gov/10 58.1 45.7 34.2 35.9 35.6 30.1 31.0 31.0 27.4
Gov/26 2.4 2.3 9.3 16.2 0.9 4.2 0.4 0.2rle 0.2
Gov/30 10.3 8.9 12.9 19.3 8.2 8.0 7.5 6.2rle 4.2
Gov/31 5.7 5.0 10.4 17.1 2.8 5.4 3.1 2.5rle 1.5
Gov/40 2.7 2.6 9.4 16.4 1.2 4.3 0.8 0.5rle 0.4
Medicare/1 45.9 42.7 32.3 39.9 42.8 29.9 39.4 35.7dict 28.7
Medicare/9 17.9 19.1 26.0 26.3 10.2 16.0 12.3 11.3dict 14.9
NYC/29 30.8 29.6 28.7 38.8 69.3 32.6 40.4 24.7dict 20.5
POI-lat 66.0 57.7 57.5 71.7 69.3 62.5 55.5* 55.5* 48.1
POI-lon 66.1 63.4 63.1 75.9 69.2 68.7 56.4* 56.4* 53.1
SD-bench 51.1 45.7 19.2 23.0 30.6 18.4 16.2 12.0dict 11.8
NON-TS 37.7 34.0 31.8 39.0 32.5 26.9 25.7 23.1 23.3
ALL AVG. 42.2 37.7 28.7 35.5 31.4 23.1 21.7 18.8 20.6

89

5.2 [De]compression Speed Microbenchmarks

Table 5.3: Average compression and decompression speed as tuples processed per computing
cycle of all datasets on the Ice Lake architecture.

Tuples per CPU Cycle (Higher is better)
Algorithm

Compression
ALP is

faster by:
Decompression

ALP is
faster by:

ALP 0.487 - 2.609 -
Chimp 0.042 12x 0.039 66x
Chimp128 0.040 12x 0.040 65x
Elf 0.010 47x 0.012 215x
Gorilla 0.052 9x 0.047 55x
PDE 0.002 251x 0.387 7x
Patas 0.060 8x 0.157 17x
Zstd 0.035 14x 0.101 26x

measure tuples per cycle is then calculated as 1024 divided by the number of computing

cycles the process took. We chose one vector as the size of the experiment since every

float compressor we compare against is optimized to work over a small block of values at

a time; except Zstd. As such, we increased the size of the experiment for Zstd to one

rowgroup (i.e. roughly 1 MB of data). In order to correctly characterize CPU cost, we

repeated this process 300K times and averaged the result, to ensure all data is L1 resident.

In this experiment, we prefer the metric tuples per cycle over elapsed time since it is a

more effective comparison method across platforms. Furthermore, this metric makes Zstd

speed measurements comparable regardless of the input data size. This experiment was

performed on Ice Lake.

90

5.2 [De]compression Speed Microbenchmarks
T
ab

le
5.

4:
C

om
pr

es
si

on
an

d
de

co
m

pr
es

si
on

sp
ee

d
as

tu
pl

es
pr

oc
es

se
d

pe
r

co
m

pu
ti

ng
cy

cl
e

of
ev

er
y

da
ta

se
ts

on
th

e
Ic

e
La

ke
ar

ch
it

ec
tu

re
.

A
LP

is
fa

st
er

in
al

l
da

ta
se

ts
in

bo
th

[d
e]

co
m

pr
es

si
on

.
Zs

td
ca

n’
t

co
m

pr
es

s
al

l
da

ta
se

ts
du

e
to

la
ck

of
su

ffi
ci

en
t

da
ta

(<
1M

B
).

*:
A
L
P
r
d

w
as

us
ed

.
D

at
as

et
C

om
p
re

ss
io

n
(T

u
p
le

s
p
er

C
P

U
C

yc
le

)
D

ec
om

p
re

ss
io

n
(T

u
p
le

s
p
er

C
P

U
C

yc
le

)
A

L
P

C
h
im

p
C

h
im

p
12

8
E
L
F

G
or

il
la

P
D

E
P
at

as
Z
st

d
A

L
P

C
h
im

p
C

h
im

p
12

8
E
L
F

G
or

il
la

P
D

E
P
at

as
Z
st

d

A
ir

-P
re

ss
ur

e
0.

51
6

0.
03

3
0.

02
9

0.
01

2
0.

03
0

0.
00

1
0.

06
3

0.
00

8
1.

94
7

0.
03

0
0.

02
8

0.
01

1
0.

03
3

0.
39

7
0.

19
2

0.
05

1
B

as
el

-t
em

p
0.

46
8

0.
02

5
0.

02
7

0.
00

6
0.

03
1

0.
00

1
0.

06
1

0.
01

2
1.

54
5

0.
02

4
0.

02
7

0.
00

8
0.

02
8

0.
24

7
0.

14
9

0.
05

0
B

as
el

-w
in

d
0.

48
2

0.
02

5
0.

02
5

0.
00

7
0.

02
3

0.
00

1
0.

06
2

0.
01

4
1.

60
6

0.
02

4
0.

02
5

0.
00

8
0.

03
0

0.
31

6
0.

16
2

0.
05

1
B

ir
d-

m
ig

ra
ti

on
0.

49
9

0.
03

3
0.

04
1

0.
00

6
0.

02
7

0.
00

1
0.

06
1

-
1.

70
1

0.
02

5
0.

04
1

0.
01

0
0.

03
3

0.
42

1
0.

17
7

-
B

it
co

in
-p

ri
ce

0.
48

9
0.

03
0

0.
02

3
0.

00
7

0.
03

0
0.

00
1

0.
06

2
0.

21
0

1.
63

6
0.

02
4

0.
02

4
0.

00
8

0.
03

1
0.

16
7

0.
10

4
0.

77
2

C
it
y-

T
em

p
0.

50
5

0.
02

7
0.

04
3

0.
01

0
0.

02
6

0.
00

1
0.

05
5

0.
01

5
1.

76
9

0.
02

4
0.

04
3

0.
01

2
0.

02
8

0.
29

3
0.

21
8

0.
04

7
D

ew
-P

oi
nt

-T
em

p
0.

49
9

0.
02

9
0.

02
6

0.
00

9
0.

02
7

0.
00

1
0.

06
1

0.
00

9
1.

71
4

0.
02

5
0.

02
6

0.
00

9
0.

03
2

0.
41

4
0.

12
4

0.
04

7
IR

-b
io

-t
em

p
0.

50
9

0.
02

9
0.

04
0

0.
01

0
0.

02
6

0.
00

1
0.

06
0

0.
01

5
1.

79
0

0.
02

4
0.

04
0

0.
01

0
0.

03
2

0.
42

4
0.

19
8

0.
04

6
P

M
10

-d
us

t
0.

53
0

0.
03

6
0.

05
6

0.
01

2
0.

04
1

0.
00

3
0.

05
7

0.
02

0
1.

90
4

0.
02

8
0.

05
5

0.
01

1
0.

04
2

0.
44

0
0.

17
7

0.
04

9
St

oc
ks

-D
E

0.
50

7
0.

03
0

0.
05

1
0.

00
9

0.
02

9
0.

00
2

0.
05

9
0.

01
7

1.
77

1
0.

02
4

0.
05

1
0.

00
9

0.
03

2
0.

42
4

0.
17

5
0.

05
4

St
oc

ks
-U

K
0.

50
5

0.
03

7
0.

04
4

0.
01

0
0.

04
8

0.
00

2
0.

05
8

0.
01

6
1.

78
6

0.
04

4
0.

04
5

0.
01

5
0.

05
7

0.
46

6
0.

17
0

0.
04

6
St

oc
ks

-U
SA

0.
50

5
0.

04
3

0.
06

1
0.

01
2

0.
04

5
0.

00
3

0.
05

8
0.

02
0

1.
80

3
0.

03
0

0.
06

1
0.

01
1

0.
04

5
0.

41
6

0.
16

9
0.

05
2

W
in

d-
di

r
0.

51
9

0.
02

5
0.

04
0

0.
00

8
0.

02
5

0.
00

1
0.

06
0

0.
00

8
1.

96
4

0.
02

3
0.

04
0

0.
00

9
0.

03
2

0.
42

5
0.

08
9

0.
04

3
T

S
.
A
V

G
.

0.
50

3
0.

03
1

0.
03

9
0.

00
9

0.
03

1
0.

00
1

0.
06

0
0.

03
0

1.
76

4
0.

02
7

0.
03

9
0.

01
0

0.
03

5
0.

37
3

0.
16

2
0.

10
9

A
ra

de
/4

0.
49

8
0.

02
5

0.
02

3
0.

00
7

0.
03

2
0.

00
1

0.
06

2
0.

00
7

1.
75

3
0.

02
4

0.
02

3
0.

00
8

0.
03

0
0.

46
8

0.
07

3
0.

04
0

B
lo

ck
ch

ai
n-

tr
0.

48
9

0.
02

4
0.

02
6

0.
00

6
0.

02
4

0.
00

1
0.

06
2

-
1.

61
2

0.
02

8
0.

02
6

0.
00

7
0.

03
1

0.
21

1
0.

14
6

-
C

M
S/

1
0.

47
3

0.
02

5
0.

02
3

0.
00

6
0.

03
0

0.
00

1
0.

06
2

0.
00

9
1.

49
7

0.
02

3
0.

02
3

0.
00

6
0.

03
0

0.
14

6
0.

10
0

0.
04

7
C

M
S/

25
0.

48
7

0.
02

4
0.

02
2

0.
00

7
0.

02
2

0.
00

1
0.

05
6

0.
00

8
1.

55
0

0.
02

3
0.

02
2

0.
00

6
0.

03
0

0.
42

6
0.

15
6

0.
04

9
C

M
S/

9
0.

50
7

0.
03

4
0.

04
2

0.
00

9
0.

04
5

0.
00

2
0.

05
8

0.
01

4
1.

77
6

0.
04

3
0.

04
2

0.
01

5
0.

05
3

0.
45

3
0.

16
4

0.
03

4
Fo

od
-p

ri
ce

s
0.

47
4

0.
04

7
0.

04
4

0.
01

0
0.

04
4

0.
00

1
0.

06
0

0.
01

1
1.

59
1

0.
04

1
0.

04
4

0.
01

6
0.

04
6

0.
30

7
0.

17
3

0.
04

4
G

ov
/1

0
0.

42
7

0.
02

8
0.

03
4

0.
00

7
0.

02
5

0.
00

1
0.

05
9

0.
00

8
1.

50
4

0.
02

7
0.

03
5

0.
00

8
0.

02
8

0.
19

1
0.

11
4

0.
04

0
G

ov
/2

6
0.

61
8

0.
11

6
0.

07
3

0.
02

1
0.

20
0

0.
00

6
0.

06
2

0.
23

6
9.

26
1

0.
11

7
0.

07
3

0.
02

6
0.

12
0

0.
62

0
0.

17
4

0.
36

2
G

ov
/3

0
0.

61
4

0.
11

1
0.

07
1

0.
02

3
0.

15
8

0.
00

4
0.

06
1

0.
02

9
8.

86
8

0.
10

9
0.

07
1

0.
02

6
0.

12
0

0.
34

1
0.

16
3

0.
11

3
G

ov
/3

1
0.

61
8

0.
11

5
0.

07
2

0.
02

5
0.

17
0

0.
00

6
0.

06
2

0.
11

1
9.

19
3

0.
11

3
0.

07
2

0.
02

7
0.

12
4

0.
46

6
0.

17
2

0.
23

7
G

ov
/4

0
0.

61
9

0.
11

4
0.

07
2

0.
02

5
0.

17
6

0.
00

6
0.

06
2

0.
10

1
9.

02
5

0.
11

3
0.

07
2

0.
02

7
0.

12
3

0.
61

8
0.

17
3

0.
24

3
M

ed
ic

ar
e/

1
0.

46
4

0.
03

1
0.

03
1

0.
00

7
0.

03
2

0.
00

1
0.

06
1

0.
00

9
1.

49
8

0.
02

6
0.

03
1

0.
00

8
0.

03
7

0.
17

3
0.

16
3

0.
04

5
M

ed
ic

ar
e/

9
0.

50
7

0.
03

3
0.

04
2

0.
00

9
0.

04
4

0.
00

2
0.

05
7

0.
01

4
1.

77
4

0.
04

1
0.

04
2

0.
01

5
0.

05
2

0.
50

2
0.

15
9

0.
03

4
N

Y
C

/2
9

0.
48

8
0.

05
2

0.
04

3
0.

00
9

0.
05

4
0.

00
3

0.
06

0
0.

00
9

1.
55

6
0.

03
5

0.
04

3
0.

01
3

0.
05

2
0.

46
2

0.
17

6
0.

04
7

P
O

I-
la

t*
0.

14
2

0.
02

4
0.

02
3

0.
00

6
0.

02
6

0.
00

1
0.

05
9

0.
00

7
0.

57
4

0.
02

4
0.

02
3

0.
00

7
0.

02
8

0.
46

2
0.

15
4

0.
04

5
P

O
I-

lo
n*

0.
15

8
0.

02
2

0.
02

1
0.

00
5

0.
02

6
0.

00
1

0.
04

9
0.

00
7

0.
59

0
0.

02
2

0.
02

1
0.

00
7

0.
02

8
0.

46
1

0.
16

5
0.

04
4

SD
-b

en
ch

0.
49

9
0.

02
8

0.
04

3
0.

00
9

0.
03

1
0.

00
3

0.
06

0
-

1.
71

0
0.

02
6

0.
04

3
0.

01
3

0.
03

3
0.

44
2

0.
16

6
-

N
O

N
-T

S
0.

47
5

0.
05

0
0.

04
2

0.
01

1
0.

06
7

0.
00

2
0.

06
0

0.
03

9
3.

25
5

0.
04

9
0.

04
2

0.
01

4
0.

05
7

0.
39

7
0.

15
2

0.
09

5
A

L
L

A
V

G
.

0.
48

7
0.

04
2

0.
04

0
0.

01
0

0.
05

2
0.

00
2

0.
06

0
0.

03
5

2.
60

9
0.

03
9

0.
04

0
0.

01
2

0.
04

7
0.

38
7

0.
15

7
0.

10
1

91

5.2 [De]compression Speed Microbenchmarks

Figure 5.1: Compression performance for all schemes (on Intel Ice Lake). Each dot is one
dataset. ALP is 1-2 orders of magnitude faster in [de]compression than all competing schemes,
while providing excellent compression ratio. The only one to achieve a compression ratio
similar to ALP is zstd, but it is slow and block-based (one cannot skip through compressed
data). Elf is inferior to zstd on all performance metrics.

Figure 5.1 shows the result of this experiment aggregated by all datasets. ALP clearly

outperforms every other algorithm in both compression and decompression speed in every

dataset; even being able to achieve sub-cycle performance in decompression. This speed

measurement also includes the FFOR encoding and decoding in ALP. Table 5.3 shows the

average amount of tuples per cycle processed in compression and decompression for every

algorithm along all datasets. ALP is the fastest of all other approaches in both compression

and decompression.

ALP is ≈7x faster than PDE; which is the second-best at decompression speed. However,

PDE is also the slowest at compression (251x slower than ALP) due to the brute force and

–per value– search for a viable exponent e to encode the doubles as integers. Furthermore,

ALP is ≈8x faster than Patas, which is the second-best at compression speed. This was

expected since Patas is a single-case-byte-aligned variant of Chimp optimized for decoding

speed. On the other hand, Elf speed under-performed against the other algorithms, with

ALP being ≈47x times faster in encoding and ≈215x faster in decoding. This was also

expected since Elf is a variant of Gorilla tailored to trade speed for more compression ratios.

Hence, the fact that ALP achieved higher compression ratios than Elf is remarkable. ALP

is x55 faster than Gorilla at decompression since the latter has complex if-then-else (i.e.

branch mispredictions) and data dependencies that not only cause wait cycles, but also

92

5.2 [De]compression Speed Microbenchmarks

Figure 5.2: Decompression speed measured in tuples per cycle on different architectures.
Each dot represents the decompression performance on a dataset in a different architecture.

prevent SIMD. Zstd resides in a middle position in that it achieves better compression

speed than PDE and Elf, and decompression speed only slower than Patas and PDE.

It is important to mention how ALP is faster on some datasets than others. Table 5.4

shows the speed of ALP [de]compression against all other schemes disseminated by every

dataset. These differences in speed between datasets are due to multiple factors. For

instance, the most impactful one is the bit-width of the resulting integer-encoded vectors;

as a bigger bit-width will result in slower execution (more information to pack/load, use

of wider lane). Another factor is the number of exceptions found in the data. Exceptions

negatively impact the speed of ALP since they have to be looked up after the main encoding

and used to reconstruct the vector at decoding. Finally, ALP speed also depends on

the amount of k combinations resulting from the first sampling phase. However, ALP

decompression is always on sub-cycle performance, with outliers of astonishing speed on

the datasets with a bit-width of 0.

5.2.1 ALP on Different Architectures

In order to investigate the performance robustness of ALP, we evaluated it on all currently

mainstream CPU architectures, as described in Table 5.1. CPU turbo-scaling features were

disabled when available to allow for reliable tuples-per-cycle measurements. In our pre-

sentation here we just show results for decompression speed (due to space reasons) as this

is the most performance-critical aspect for analytical database workloads. Furthermore,

on each architecture, we tested three different implementations of our decoding proce-

dure: SIMDized, Auto-vectorized and Scalar. The SIMDized implementation uses explicit

93

5.2 [De]compression Speed Microbenchmarks

Figure 5.3: Speed comparison of ALP decoding with and without fusing ALP and FFOR
into one single kernel (Ice Lake). Tests performed on our analyzed datasets (top) and on
generated data with specific vector bit-width (bottom). ALP benefits from fusing consistently
with a ≈40% decompression speed increase (and sometimes much more).

SIMD intrinsics. The Auto-vectorized implementation is the Scalar implementation au-

tomatically vectorized by the C++ compiler. Finally, the purely Scalar implementation

is obtained when we explicitly disabled the auto-vectorization of the C++ compiler by

using the following flags: -O3 -fno-slp-vectorize -fno-vectorize. Figure 5.2 shows

the results of this experiment. We can see how Auto-vectorized and SIMDized on Ice Lake

yield the best performance results. This is due to this platform having the widest SIMD

register of all the platforms at 512-bits. We can also see that Gravitons have weak SIMD

performance (compared to Scalar). Furthermore, in every platform, Auto-vectorization

matches or surpasses Scalar code. However, Zen3 auto-vectorized performance is hurt by

the scalar code using the built-in rounding function due to the lack of a SIMD instruction

to perform the cast from double to int64 in our fast rounding procedure. This is a result

of the robustness obtained using the FastLanes library in our implementation. The latter

makes our ALP implementation portable and able to perform on heterogeneous ISAs.

5.2.2 Kernel Fusion

We performed speed comparisons of our decompression between FFOR+ALP as a fused kernel

and as two separate kernels. The plot at the top of Figure 5.3 shows the result of this

experiment. Fusing increases the decompression speed by a median ≈40% (but for some

datasets 6x). However, the vectors from our datasets used for this experiment do not cover

all the possible bit-widths that FFOR could use. The latter is a known factor that may

affect the performance of vectorized execution (36). Hence, for robustness purposes, we

performed an additional comparison on synthetic integer vectors generated with a specific

vector bit-width from 0 to 52. Bit-widths from 52 to 64 are omitted from this analysis

94

5.2 [De]compression Speed Microbenchmarks

since on these bit-widths ALPrd is used. The bottom plot of Figure 5.3 shows the result

of this experiment.

5.2.3 Sampling Overhead

ALP implements a two-level sampling mechanism to find the correct encoding method and

parameters, described in section 4.2. The first level samples row-groups and the second

level is done for every vector. We analyze the performance cost of the second sampling

level, since it is on the performance-critical path of ALP compression.

When the first level sampling yields only one potential combination (e.g., Bird-Migration,

Bitcoin-Price), there is 0 sampling overhead at a vector level for the entire row-group since

ALP already knows which combination of exponent and factor to use for all the vectors.

This occurs on ≈54% of the vectors in our datasets. However, when ALP has to perform

the second level sampling, there is a non-negligible overhead at compression. From our

experiments, this overhead represents on average ≈6% of the total compression time. The

latter is a trade-off for fast decompression; which in the context of analytical databases

is a more often-used operation than compression. This overhead is bounded by k factor

and exponent combinations, which was set to 5 in our evaluation. 22.9% and 20.0% of the

vectors tried 2 and 3 combinations respectively in search of the best one. Only 2.9% and

0.3% of the vectors tried 4 and 5 combinations respectively on the vector sample.

Finally, we question how effective our adaptive two-level sampling is. In order to do so,

we compute the best combination for each vector by brute-force search and compare the

compression ratios of both approaches (i.e., adaptive sampling and brute-force). In other

words, we set the second-level sample size equal to the values inside a vector (i.e. 1024)

and tested all the possible 253 combinations of e and f . We found that the combinations

yielded by the brute-force approach only improved the compression ratio by less than 1%.

Thus, demonstrating the efficiency and portability of our fixed sampling parameters across

all datasets.

5.2.4 ALPrd speed.

Doing a side-by-side comparison ALPrd is on average ≈3x slower in compression and ≈4x

slower in decompression than the main ALP encoding. In fact, the two datasets in which

ALPrd was used can be seen at the bottom of ALP green dots in Figure 5.1. Although

ALPrd is still remarkably performant compared to the competitors, we deem this speed re-

duction necessary to achieve compression on these types of doubles, which present problems

95

5.3 End-to-End Query Performance

for every floating-point compression scheme. We believe there is room for improvement

since ALPrd encoding and decoding are not fused into one single kernel due to current

implementation limitations. However, given that [de]compression in almost any encoding

gets faster at high compression ratios, this result is not surprising: ALPrd is used when

only low compression ratios can be achieved (maximum ≈1.2x).

5.3 End-to-End Query Performance

We benchmarked end-to-end query speed of ALP and the other floating-point compressors,

when integrated in the research system Tectorwise (72). The difference with our micro-

benchmarks is that a complete dataset is decompressed by Tectorwise’s scan operator

(SCAN), rather than only a small part. Also, in the SUM experiment, the scan operator

feeds data vector-at-a-time into an aggregation operator; using the vectorized query exe-

cution of Tectorwise. We scaled all datasets up to 1 billion doubles by concatenation (8GB

uncompressed). We also test compression performance, which writes the compressed data.

This also writes extra meta-data for the compressed blocks, at the least byte-offsets where

they start, but for PDE and ALP also offsets where their exceptions start, as well as any

other compression parameters (like bit-width for bit-packing).

For presentation purposes, we picked five datasets with diverse characteristics, such

as magnitude, decimal precision, XORed 0’s bits, and compressability. These datasets

are: Gov/26, City-Temp, Food-Prices, Blockchain-tr and NYC/29. We benchmarked 3

queries: COMPRESSION (COMP), SCAN and SUM (Aggregation). For SUM and SCAN we also

benchmarked the scaling of every algorithm when using multiple cores (up to 16). This

experiment was again carried out on Intel Ice Lake in a machine with 16 cores (32 SMT),

256GB of RAM with a bandwidth of 18.75 Gibps. The reported results are the average

of 32 executions of one query. Elf was not included in this analysis due to the lack of an

implementation in C++.

5.3.1 SUM and SCAN

Table 5.5 shows that in the single-threaded SCAN | 1 experiment, the achieved 1.33 Tuples

per CPU cycle is in line with the microbenchmarks shown in Figure 5.3 – though there

is about a 25% drop in performance in the end-to-end situation compared to these. We

attribute this to: (i) the extra effort in reading block meta-data (not present in the micro-

benchmarks), (ii) the interpretation cost of choosing and calling a decompression function

based on the meta-data (always the same and thus free of CPU branch mispredictions in

96

5.3 End-to-End Query Performance

Table 5.5: End-to-end performance on City-Temp in the Tectorwise system, measured in
Tuples per CPU cycle per core. ALP is even faster than uncompressed, and extends its lead
w.r.t. the micro-benchmarks. The competitors are so CPU bound that they scale well in
SCAN (=speed stays equal), while ALP and uncompressed drop speed when running multi-
core, due to scarce RAM bandwidth. But when doing query work (SUM), speed is lower, and
scaling is not an issue for ALP.

Algorithm
Tuples per CPU Cycle (Higher is Better)

QUERY | THREADS
SCAN|1 SCAN|8 SCAN|16 SUM|1 SUM|8 SUM|16 COMP

ALP 1.337 1.074 0.882 0.233 0.230 0.234 0.147
Uncompressed 0.565 [x2 slower ↓] 0.408 0.350 0.197 [x1.2 ↓] 0.186 0.175 N/A
PDE 0.070 [x19 ↓] 0.071 0.071 0.058 [x4 ↓] 0.057 0.057 0.001 [x138 ↓]
Patas 0.067 [x20 ↓] 0.063 0.065 0.055 [x4 ↓] 0.055 0.055 0.039 [x4 ↓]
Gorilla 0.030 [x44 ↓] 0.030 0.030 0.028 [x8 ↓] 0.027 0.027 0.023 [x7 ↓]
Chimp 0.021 [x64 ↓] 0.021 0.021 0.019 [x12 ↓] 0.019 0.019 0.015 [x10 ↓]
Chimp128 0.028 [x47 ↓] 0.028 0.028 0.026 [x9 ↓] 0.026 0.026 0.019 [x8 ↓]
Zstd 0.044 [x31 ↓] 0.042 0.039 0.038 [x6 ↓] 0.037 0.035 0.014 [x11 ↓]

the micro-benchmarks) and (iii) the variable amount of exceptions present in the entire

dataset.

Given these extra activities in end-to-end, and just a 25% drop, we deem our micro-

benchmarks as representative of core decompression work achieved in end-to-end situations.

What is further striking is that SCAN and SUM on ALP is faster than on uncompressed

data, and the fact that ALP extends its performance lead over the competitors in the

end-to-end benchmarks, compared to the micro-benchmarks. Note, however, that the

micro-benchmark results were aggregated for all datasets (Table 5.3) so one should not

directly compare with these tables.

Regarding multi-threading, the performance metrics in Table 5.3 and Figure 5.4 are per-

core, hence equal performance would be perfect scaling. As all cores of the CPU get loaded,

per-core ALP SCAN performance slightly drops – which also happens for uncompressed.

This is caused by the query becoming RAM-bandwidth bound. However, in the SUM

experiment, there is additional summing work (although not much) and therefore the

query runs slower. As a result, ALP is able to scale perfectly while uncompressed is not.

Note that in Figure 5.4 the performance metric is reversed: lower is better. We present

the summing work in the SUM query (=SUM-SCAN, because SUM also scans) as the lower

part of the stacked bar: it is roughly 3 cycles per tuple. Figure 5.4 confirms our results

across the board: ALP is much faster end-to-end than the other compressors, even faster

than uncompressed, and scales well.

97

5.3 End-to-End Query Performance

Figure 5.4: End-to-end SUM query execution speed for 5 datasets in Tectorwise (Ice Lake)
measured in CPU cycles per Tuple. ALP is faster than all other schemes (even faster than
uncompressed), while achieving perfect scaling (=speed stays the same) when using multi-core.
Results show that SCAN is virtually free if data is compressed with ALP. PDE can’t compress
NYC/29.

5.3.2 Compression

ALP again is the fastest when compressing (Table 5.5): it is x4 and x7 times faster than

the second and third-best algorithms in the City-Temp dataset (i.e. Patas, Gorilla) while

still maintaining distance from Zstd (x11 slower) and PDE (x138 slower). COMP end-to-

end performance is lower than in our micro-benchmarks. We attribute this to the extra

effort in storing meta-data, the variable amount of exceptions (which are rather costly

at compression time) and the first sampling phase which was not present in the micro-

benchmarks.

98

5.3 End-to-End Query Performance

T
ab

le
5.

6:
M

ac
hi

ne
Le

ar
ni

ng
m

od
el

s
pr

es
en

ta
ti

on
an

d
de

ta
ile

d
m

et
ri

cs
co

m
pu

te
d

on
th

ei
r

w
ei

gh
ts

.
W

2V
T
w

ee
ts

m
od

el
w

as
a

m
od

el
tr

ai
ne

d
by

us
us

in
g

P
yt

ho
n

G
en

si
m

an
d

50
K

to
ke

ni
ze

d
tw

ee
ts

.
D

ec
im

al
P

re
ci

si
on

V
al

u
es

p
er

V
ec

to
r

D
ec

im
al

P
re

ci
si

on
p
er

V
ec

to
r

IE
E
E

75
4

ex
p
on

en
t

p
er

ve
ct

or
N

am
e

M
od

el
T

yp
e

N
°

of
P
ar

am
et

er
s

M
ax

M
in

N
on

-U
n
iq

u
e%

A
vg

.
S
td

.
D

ev
.

M
ax

M
in

A
vg

.
S
td

.
D

ev
.

M
ax

M
in

A
vg

.
S
td

.
D

ev
.

D
in

o-
V

it
b1

6
(7

4)
V

is
io

n
T
ra

ns
fo

rm
er

86
,3

89
,2

48
20

13
0.

00
0

0.
00

5
0.

31
1

19
.5

13
.5

16
.7

0.
7

10
23

.0
10

11
.0

10
19

.8
1.

7
G

P
T

2
(7

5)
T
ex

t
G

en
er

at
io

n
12

4,
43

9,
80

8
20

0
0.

00
1

-0
.0

01
0.

01
6

20
.0

15
.0

18
.1

0.
7

10
18

.2
10

04
.9

10
15

.0
2.

0
G

ra
m

m
ar

ly
-lg

(7
6)

T
ex

t2
T
ex

t
G

en
er

at
io

n
78

3,
09

2,
73

6
20

2
0.

00
1

0.
00

0
0.

13
2

19
.8

13
.9

17
.1

0.
7

10
21

.6
10

08
.9

10
18

.5
1.

7
W

2V
T
w

ee
ts

W
or

d2
V

ec
3,

00
0

20
0

0.
00

6
-0

.0
09

0.
72

8
19

.5
13

.4
16

.7
0.

7
10

22
.7

10
10

.2
10

19
.8

1.
6

A
V

G
.

20
3.

75
0.

00
2

-0
.0

01
0.

29
7

19
.7

13
.9

17
.1

0.
7

10
21

.4
10

08
.7

10
18

.3
1.

7

99

5.4 Single Precision and Machine Learning Data

Table 5.7: Compression ratios (bits/value) that ALPrd32 and its competitors achieved on
machine learning models’ weights (32-bits floats). ALPrd32 achieved the best compression
ratio.

Name Model Type
N° of
Params.

Gor. Ch.
Ch.
128

Patas ALPrd Zstd

Dino-Vitb16 (74) Vision Transformer 86,389,248 34.1 33.4 33.4 45.8 28.3 29.7
GPT2 (75) Text Generation 124,439,808 34.1 33.5 33.5 45.6 27.7 29.7
Grammarly-lg (76) Text2Text 783,092,736 34.1 33.4 33.4 45.5 27.7 29.6
W2V Tweets Word2Vec 3,000 34.1 33.3 33.3 45.5 28.8 29.8

AVG. 34.1 33.4 33.4 45.6 28.1 29.7

5.4 Single Precision and Machine Learning Data

We have also ported ALP to 32-bits. Those of our double datasets with decimal precision

≤10 can be properly represented as 32-bit floating point numbers (all except Medicare/1,

POI-lat, POI-lon, Basel-temp, Basel-wind and NYC/29); and 32-bit ALP works on them.

This leads to the same compressed representation as in 64-bits (Table 5.2); but given that

the uncompressed width is 32-bits, the average compression ratio is halved (and becomes

≈1.77).

A currently relevant different kind of 32-bit floats are found in trained machine learning

models (i.e., the weights). However, these were created out of many multiplications and

additions, and hence tend to have high precision. Still, there are commonalities in their sign

and exponent parts (IEEE 754) that ALPrd could take advantage of. Table 5.6 presents

4 different types of machine learning models and some metrics computer on their weights.

As we mentioned, the IEEE 754 exponent deviation is small (with an average of ≈1.74),

even on these datasets. The percentage of repeated values is ≈0% in all datasets and the

average and maximum decimal precision is high.

Motivated by this, we ported ALPrd to 32-bits and benchmarked it on four different

ML models, against those competing schemes that have a version for 32-bit floats (i.e.

Gorilla, Chimp, Chimp128, Gorilla) as well as Zstd. The results of this experiment are

in Table 5.7; with ALPrd for 32-bit floats achieving the best compression ratios out of all

the other algorithms (28.1 bits/value; ≈12% of reduction). In fact, it is the only floating-

point encoding to achieve compression. Alternatively, model weights are usually quantised

(i.e. lossy reduction of precision) when deployed for inference (77). However, if this is not

desired or possible; ALPrd thus can provide some useful lossless compression for ML.

100

6

Discussion

A striking feat of our study of datasets used for database compression of doubles is that

out of the 30 datasets our community uses for evaluating double compression, only the two

POI datasets would not better be represented as fixed-point decimals. In fact, most POI

data comes from GPS, which has an accuracy of a few meters, and the Earth’s diameter is

≈12.750.000 meters (i.e., 8 digits, which corresponds to 28 bits). Indeed, when the POI-lat

and POI-lon values are converted back from radians by multiplying with π/180 we observe

this precision in the data – but we think it would go too far to define a specific ALP mode

that deals with pi-multiplied data.

One may question why none of the datasets requires true double precision, nor is any all

over the place in terms of magnitude – doubles allow numbers as close to zero as 10−308 and

as large as 10308. One interpretation could be that double is a catch-all type for two use

cases: storing measures for which a-priori little is known about their domain (min/max),

or where the magnitude is truly wide and/or variable. In the former use case, the actual

data will tend to have min/max locality, leading to low variance in the high bits (equal

or close exponent and highest mantissa bits). As the actual precision of actual values is

limited by the measurement method, one either sees “pseudo-decimals” where the lower

digits (in 10-base) are zero, or in the worst case, randomly filled in. The latter use case,

high magnitude variance, seems to be rare, though weights and activations in machine

learning could be the best example of this (not regarding large numbers, but numbers

close to zero, i.e., highly variable negative exponents). Such data demonstrated to be

hard to compress, for any scheme; and reducing their size is so crucial that it triggered

the appearance of TensorFloat (Google) and Bfloat16 (Nvidia 1). These new thin floats,
1https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

101

developed with Machine Learning hardware in mind, mostly cut down on mantissa and

somewhat on exponent.

The use of doubles in scientific calculations is common; though researchers have criti-

cized the rounding errors produced (71), and proposed alternatives like unum and posit(78).

There are strong arguments for compressing doubles stored in big data formats and database

files: data gets smaller, reducing storage cost across the memory hierarchy, reducing also

I/O time, network transfer time and usage. We think that with the increased conver-

gence of data science and scientific computations and machine learning data with database

workloads, there will be growing demand for doubles in databases, and their compressed

storage.

102

7

Conclusions

We have presented and evaluated ALP: a strongly enhanced version of Decimal-based

encoding with an adaptive fallback to front-bit compression if doubles have truly large

precision. ALP beats the competition in all relevant dimensions. Its compression ratio

is better than all recently proposed floating-point encodings, while being much faster in

[de]compression speed. Its compression ratio is only equalled by heavy-weight general-

purpose compression; but these methods have slow [de]compression speeds and are block-

based: forcing database scan to fully decompress a large block of data. In contrast, one

can skip through ALP-compressed data at the vector-level; allowing for efficient predicate

push-down. We think ALP will be a valuable encoding in cascading lightweight compression

formats (1, 3), and recall that in our evaluation it already beat zstd (18.8 vs. 20.6)

when cascading on Dictionary and RLE. The robustness of ALP speed was tested on 30

real datasets that were also used to evaluate previous schemes and further proven in five

different modern computer architectures (i.e., Intel Ice Lake, AMD Zen 3, Apple M1, and

AWS Graviton 2 & 3) and using Auto-vectorized, Scalar and SIMDized code.

We would like to stress that the key idea behind ALP is to design for vectorized execu-

tion; it led us to analyze and uncover unexploited opportunities from a vector perspective

in a variety of datasets. Vectorized execution reduces computational cost (reducing loop-,

function call-, and load/store-overhead), brings out the best in compilers (vectorized code

triggers loop-centered optimizations including auto-vectorization), but also amortizes stor-

age (parameters such as exponent are stored once per-vector instead of per-value), allows

for per-vector adaptivity without reducing performance due to branch-mispredictions (as

happens in per-value adaptivity in e.g., the Chimp variants), and can take advantage of

in-vector data commonalities. As for future work, we think that the implementation of

ALP on massively parallel hardware such as GPUs and TPUs could be fruitful.

103

References

[1] Kuschewski Maximilian, Sauerwein David, Alhomssi Adnan, and Leis Vik-

tor. BtrBlocks: Efficient Columnar Compression for Data Lakes. Associa-

tion for Computing Machinery, 2023. In press. Accessed on: 2023-04-13. ii, 1, 3, 44,

45, 47, 48, 53, 61, 81, 86, 103

[2] FastLanes Library (Github), 2023. Accesed on: 2023-04-13. ii, 81

[3] Azim Afroozeh and Peter Boncz. The FastLanes Compression Layout:

Decoding >100 Billion Integers per Second with Scalar Code, April 2023.

Technical Report. Accessed on: 2023-04-13. ix, 3, 8, 9, 11, 12, 13, 14, 15, 45, 47, 48,

67, 77, 81, 103

[4] Peter Boncz, Thomas Neumann, and Viktor Leis. FSST: fast random

access string compression. Proceedings of the VLDB Endowment, 13(12):2649–

2661, 2020. ix, 16, 17

[5] Vadim Engelson, Peter Fritzson, and Dag Fritzson. Lossless compression

of high-volume numerical data from simulations, 2000. ix, 19, 20, 21

[6] Paruj Ratanaworabhan, Jian Ke, and Martin Burtscher. Fast lossless

compression of scientific floating-point data. In Data Compression Conference

(DCC’06), pages 133–142. IEEE, 2006. ix, 21, 23

[7] Ugur Cayoglu, Frank Tristram, Jörg Meyer, Jennifer Schröter, Tobias

Kerzenmacher, Peter Braesicke, and Achim Streit. Data Encoding in

Lossless Prediction-Based Compression Algorithms. In 2019 15th International

Conference on eScience (eScience), pages 226–234. IEEE, 2019. ix, 23, 24

[8] Martin Burtscher and Paruj Ratanaworabhan. FPC: A high-speed com-

pressor for double-precision floating-point data. IEEE transactions on comput-

ers, 58(1):18–31, 2008. ix, 5, 6, 24, 25

104

https://www.cs.cit.tum.de/fileadmin/w00cfj/dis/papers/btrblocks.pdf
https://github.com/cwida/FastLanes
https://ir.cwi.nl/pub/32992
https://ir.cwi.nl/pub/32992

REFERENCES

[9] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis.

Chimp: efficient lossless floating point compression for time series

databases. Proceedings of the VLDB Endowment, 15(11):3058–3070, 2022. x, 1,

5, 29, 32, 33, 34, 35, 37, 38, 44, 61, 65, 86

[10] Zhiqi Wang, Jin Xue, and Zili Shao. Heracles: an efficient storage model

and data flushing for performance monitoring timeseries. Proceedings of the

VLDB Endowment, 14(6):1080–1092, 2021. x, 30

[11] Andrea Bruno, Franco Maria Nardini, Giulio Ermanno Pibiri, Roberto

Trani, and Rossano Venturini. TSXor: A Simple Time Series Compres-

sion Algorithm. In String Processing and Information Retrieval: 28th International

Symposium, SPIRE 2021, Lille, France, October 4–6, 2021, Proceedings 28, pages

217–223. Springer, 2021. x, 30, 32

[12] Ruiyuan Li, Zheng Li, Yi Wu, Chao Chen, and Yu Zheng. Elf: Erasing-

based Lossless Floating-Point Compression. Proceedings of the VLDB Endow-

ment, 16(7), 2023. x, 1, 2, 6, 39, 40, 61, 86

[13] Chunwei Liu, Hao Jiang, John Paparrizos, and Aaron J Elmore. Decom-

posed bounded floats for fast compression and queries. Proceedings of the

VLDB Endowment, 14(11):2586–2598, 2021. x, 6, 42, 43, 70

[14] Anastassia Ailamaki, David J DeWitt, Mark D Hill, and Marios Sk-

ounakis. Weaving Relations for Cache Performance. In VLDB, 1, pages

169–180, 2001. x, 49, 50

[15] Yin Huai, Ashutosh Chauhan, Alan Gates, Gunther Hagleitner, Eric N

Hanson, Owen O’Malley, Jitendra Pandey, Yuan Yuan, Rubao Lee, and

Xiaodong Zhang. Major technical advancements in apache hive. In Proceed-

ings of the 2014 ACM SIGMOD international conference on Management of data,

pages 1235–1246, 2014. xi, 52, 53

[16] Bogdan Ghita, Diego G Tomé, and Peter A Boncz. White-box Compres-

sion: Learning and Exploiting Compact Table Representations. In CIDR,

1, page 27, 2020. xi, 56, 57

105

REFERENCES

[17] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-

scalar RAM-CPU cache compression. In 22nd International Conference on Data

Engineering (ICDE’06), pages 59–59. IEEE, 2006. 1, 9, 11, 12, 14, 85

[18] Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating com-

pression and execution in column-oriented database systems. In Proceedings

of the 2006 ACM SIGMOD international conference on Management of data, pages

671–682, 2006. 1, 19

[19] Deepak Vohra. Apache Parquet, pages 325–335. 09 2016. 1

[20] Mark Raasveldt and Hannes Mühleisen. Duckdb: an embeddable analyt-

ical database. In Proceedings of the 2019 International Conference on Management

of Data, pages 1981–1984, 2019. 1, 52, 54, 59, 86

[21] Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith

Sakka, Krishna Pai, Wei He, and Biswapesh Chattopadhyay. Velox:

meta’s unified execution engine. Proceedings of the VLDB Endowment,

15(12):3372–3384, 2022. 1

[22] Biswapesh Chattopadhyay, Priyam Dutta, Weiran Liu, Ott Tinn, Andrew

Mccormick, Aniket Mokashi, Paul Harvey, Hector Gonzalez, David Lo-

max, Sagar Mittal, et al. Procella: Unifying serving and analytical data

at YouTube. 2019. 1

[23] Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. Compress-

ing relations and indexes. In Proceedings 14th International Conference on Data

Engineering, pages 370–379. IEEE, 1998. 1, 12

[24] Vijayshankar Raman and Garret Swart. How to wring a table dry: En-

tropy compression of relations and querying of compressed relations. In

Proceedings of the 32nd international conference on Very large data bases, pages 858–

869. Citeseer, 2006. 1, 13

[25] Mark A Roth and Scott J Van Horn. Database compression. ACM Sigmod

Record, 22(3):31–39, 1993. 1

[26] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision

of IEEE 754-2008), pages 1–84, 2019. 1, 18

106

REFERENCES

[27] Yann Collet. Zstandard - Fast real-time compression algorithm, 2015. Ac-

cesed on: 2023-04-13. 1, 86, 87

[28] Yann Collet. LZ4 - Extremely fast compression, 2014. Accesed on: 2023-04-13.

1

[29] Seungyeon Lee, Jusuk Lee, Yongmin Kim, Kicheol Park, Jiman Hong, and

Junyoung Heo. Efficient scheme for compressing and transferring data in

hadoop clusters. In Proceedings of the 35th Annual ACM Symposium on Applied

Computing, pages 1256–1263, 2020. 1

[30] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro,

Qi Huang, Justin Meza, and Kaushik Veeraraghavan. Gorilla: A fast,

scalable, in-memory time series database. Proceedings of the VLDB Endow-

ment, 8(12):1816–1827, 2015. 1, 27, 86

[31] DuckDB Labs. Patas Compression: Variation on Chimp. https://github.

com/duckdb/duckdb/pull/5044, 2022. Accessed on: 2023-04-13. 1, 2, 37, 86

[32] Boudewijn Braams. Predicate Pushdown in Parquet and Apache Spark.

MSc thesis, 2018. 2

[33] Peter A Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100:

Hyper-Pipelining Query Execution. In Cidr, 5, pages 225–237, 2005. 2, 86

[34] Daniel Lemire and Leonid Boytsov. Decoding billions of integers per sec-

ond through vectorization. Software: Practice and Experience, 45(1):1–29, 2015.

2, 9, 11, 12, 13, 45, 85

[35] Johannes Pietrzyk, Annett Ungethüm, Dirk Habich, and Wolfgang

Lehner. Beyond Straightforward Vectorization of Lightweight Data Com-

pression Algorithms for Larger Vector Sizes. In Grundlagen von Datenbanken,

pages 71–76, 2018. 2

[36] Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang

Lehner. Lightweight Data Compression Algorithms: An Experimental Sur-

vey (Experiments and Analyses). In EDBT, pages 72–83, 2017. 3, 7, 9, 45, 47,

94

107

https://github.com/facebook/zstd
https://github.com/lz4/lz4
https://github.com/duckdb/duckdb/pull/5044
https://github.com/duckdb/duckdb/pull/5044

REFERENCES

[37] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data

compression. IEEE Transactions on information theory, 23(3):337–343, 1977. 4

[38] Daniel Lemire, Nathan Kurz, and Christoph Rupp. Stream VByte: Faster

byte-oriented integer compression. Information Processing Letters, 130:1–6,

2018. 5, 6, 9, 11

[39] Hugh E Williams and Justin Zobel. Compressing integers for fast file

access. The Computer Journal, 42(3):193–201, 1999. 9, 10

[40] Jeff Plaisance, Nathan Kurz, and Daniel Lemire. Vectorized vbyte de-

coding. arXiv preprint arXiv:1503.07387, 2015. 11

[41] Azim Afroozeh and P Boncz. Towards a New File Format for Big Data:

SIMD-Friendly Composable Compression, 2020. 11, 85

[42] Haoyu Wang and Shaoxu Song. Frequency domain data encoding in apache

IoTDB. Proceedings of the VLDB Endowment, 16(2):282–290, 2022. 11

[43] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner,

Alexander Zeier, and Jan Schaffner. SIMD-scan: ultra fast in-memory

table scan using on-chip vector processing units. Proceedings of the VLDB

Endowment, 2(1):385–394, 2009. 11

[44] Vo Ngoc Anh and Alistair Moffat. Index compression using 64-bit words.

Software: Practice and Experience, 40(2):131–147, 2010. 13

[45] Bhavik Nagda. CHuff: Conditional Huffman String Compression. PhD thesis,

Massachusetts Institute of Technology, 2021. 17

[46] Peter Lindstrom and Martin Isenburg. Fast and efficient compression

of floating-point data. IEEE transactions on visualization and computer graphics,

12(5):1245–1250, 2006. 19, 23

[47] Nathaniel Fout and Kwan-Liu Ma. An adaptive prediction-based approach

to lossless compression of floating-point volume data. IEEE Transactions on

Visualization and Computer Graphics, 18(12):2295–2304, 2012. 19

[48] Martin Isenburg, Peter Lindstrom, and Jack Snoeyink. Lossless compres-

sion of predicted floating-point geometry. Computer-Aided Design, 37(8):869–

877, 2005. 19

108

REFERENCES

[49] Lawrence Ibarria, Peter Lindstrom, Jarek Rossignac, and Andrzej

Szymczak. Out-of-core compression and decompression of large n-

dimensional scalar fields. In Computer Graphics Forum, 22, pages 343–348. Wiley

Online Library, 2003. 19, 23

[50] Agner Fog et al. Instruction tables: Lists of instruction latencies,

throughputs and micro-operation breakdowns for Intel, AMD and VIA

CPUs. Copenhagen University College of Engineering, 93:110, 2011. 21, 45, 73

[51] Bart Goeman, Hans Vandierendonck, and Koenraad De Bosschere. Dif-

ferential FCM: Increasing value prediction accuracy by improving table

usage efficiency. In Proceedings HPCA Seventh International Symposium on High-

Performance Computer Architecture, pages 207–216. IEEE, 2001. 22, 24

[52] Yiannakis Sazeides and James E Smith. The predictability of data values.

In Proceedings of 30th Annual International Symposium on Microarchitecture, pages

248–258. IEEE, 1997. 24

[53] Davis Blalock, Samuel Madden, and John Guttag. Sprintz: Time series

compression for the internet of things. Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies, 2(3):1–23, 2018. 26

[54] Aliaksandr Valialkin. VictoriaMetrics: achieving better com-

pression than Gorilla for time series data. https://faun.pub/

victoriametrics-achieving-better-compression-for-time-series-data-than-gorilla-317bc1f95932,

2019. Accesed on: 2023-04-13. 44

[55] Public BI Benchmark. https://github.com/cwida/public_bi_benchmark, 2019.

Accessed on: 2023-04-13. 45, 61

[56] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper,

Viktor Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel Then.

Get real: How benchmarks fail to represent the real world. In Proceedings of

the Workshop on Testing Database Systems, pages 1–6, 2018. 45, 61

[57] Steven Claggett, Sahar Azimi, and Martin Burtscher. SPDP: An au-

tomatically synthesized lossless compression algorithm for floating-point

data. In 2018 Data Compression Conference, pages 335–344. IEEE, 2018. 46

109

https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://faun.pub/victoriametrics-achieving-better-compression-for-time-series-data-than-gorilla-317bc1f95932
https://faun.pub/victoriametrics-achieving-better-compression-for-time-series-data-than-gorilla-317bc1f95932
https://github.com/cwida/public_bi_benchmark

REFERENCES

[58] Fabian Knorr, Peter Thoman, and Thomas Fahringer. ndzip: A high-

throughput parallel lossless compressor for scientific data. In 2021 Data

Compression Conference (DCC), pages 103–112. IEEE, 2021. 46

[59] George P Copeland and Setrag N Khoshafian. A decomposition storage

model. Acm Sigmod Record, 14(4):268–279, 1985. 49

[60] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer,

Shiva Shivakumar, Matt Tolton, and Theo Vassilakis. Dremel: inter-

active analysis of web-scale datasets. Proceedings of the VLDB Endowment,

3(1-2):330–339, 2010. 52

[61] Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xiaodong

Zhang, and Zhiwei Xu. RCFile: A fast and space-efficient data placement

structure in MapReduce-based warehouse systems. In 2011 IEEE 27th Inter-

national Conference on Data Engineering, pages 1199–1208. IEEE, 2011. 52

[62] Mark Raasveldt. Lightweight Compression in DuckDB. https://duckdb.

org/2022/10/28/lightweight-compression.html, 2022. Accesed on: 2023-04-13.

54

[63] Hao Jiang, Chunwei Liu, John Paparrizos, Andrew A Chien, Jihong Ma,

and Aaron J Elmore. Good to the last bit: Data-driven encoding with

codecdb. In Proceedings of the 2021 International Conference on Management of

Data, pages 843–856, 2021. 56

[64] Hao Jiang, Chunwei Liu, Qi Jin, John Paparrizos, and Aaron J Elmore.

Pids: attribute decomposition for improved compression and query perfor-

mance in columnar storage. Proceedings of the VLDB Endowment, 13(6):925–938,

2020. 57

[65] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A Boncz,

Thomas Neumann, and Alfons Kemper. Data blocks: Hybrid OLTP and

OLAP on compressed storage using both vectorization and compilation.

In Proceedings of the 2016 International Conference on Management of Data, pages

311–326, 2016. 59

[66] National Ecological Observatory Network (NEON). Barometric pres-

sure (DP1.00004.001), 2021. 60

110

https://duckdb.org/2022/10/28/lightweight-compression.html
https://duckdb.org/2022/10/28/lightweight-compression.html
https://data.neonscience.org/data-products/DP1.00004.001/RELEASE-2021
https://data.neonscience.org/data-products/DP1.00004.001/RELEASE-2021

REFERENCES

[67] National Ecological Observatory Network (NEON). Relative humidity

above water on-buoy (DP1.20271.001), 2021. 60

[68] National Ecological Observatory Network (NEON). IR biological tem-

perature (DP1.00005.001), 2021. 60

[69] National Ecological Observatory Network (NEON). Dust and particu-

late size distribution (DP1.00017.001), 2021. 60

[70] National Ecological Observatory Network (NEON). 2D wind speed and

direction (DP1.00001.001), 2021. 60

[71] David Goldberg. What every computer scientist should know about

floating-point arithmetic. ACM computing surveys (CSUR), 23(1):5–48, 1991.

71, 102

[72] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew

Pavlo, and Peter Boncz. Everything you always wanted to know about

compiled and vectorized queries but were afraid to ask. Proceedings of the

VLDB Endowment, 11(13):2209–2222, 2018. 86, 96

[73] Mark Raasveldt and Hannes Muehleisen. DuckDB, 2019. Accesed on: 2023-

04-13. 86

[74] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien

Mairal, Piotr Bojanowski, and Armand Joulin. Emerging Properties in

Self-Supervised Vision Transformers. CoRR, abs/2104.14294, 2021. 99, 100

[75] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and

Ilya Sutskever. Language Models are Unsupervised Multitask Learners.

2019. 99, 100

[76] Vipul Raheja, Dhruv Kumar, Ryan Koo, and Dongyeop Kang. CoEdIT:

Text Editing by Task-Specific Instruction Tuning. 2023. 99, 100

[77] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin,

Daniel Y Fu, Zhiqiang Xie, Beidi Chen, Clark Barrett, Joseph E Gonza-

lez, et al. High-throughput generative inference of large language models

with a single gpu. arXiv preprint arXiv:2303.06865, 2023. 100

111

https://data.neonscience.org/data-products/DP1.20271.001/RELEASE-2021
https://data.neonscience.org/data-products/DP1.20271.001/RELEASE-2021
https://data.neonscience.org/data-products/DP1.00005.001/RELEASE-2021
https://data.neonscience.org/data-products/DP1.00005.001/RELEASE-2021
https://data.neonscience.org/data-products/DP1.00017.001/RELEASE-2021
https://data.neonscience.org/data-products/DP1.00017.001/RELEASE-2021
https://data.neonscience.org/data-products/DP1.00001.001/RELEASE-2021
https://data.neonscience.org/data-products/DP1.00001.001/RELEASE-2021
https://github.com/duckdb/duckdb
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294

REFERENCES

[78] John L Gustafson and Isaac T Yonemoto. Beating floating point at its

own game: Posit arithmetic. Supercomputing frontiers and innovations, 4(2):71–

86, 2017. 102

112

	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Literature Review
	2.1 General Purpose vs. Lightweight Compression
	2.1.1 General Purpose Compression
	2.1.2 Lightweight Compression

	2.2 All-Type Encodings
	2.2.1 Run-Length Encoding (RLE)
	2.2.2 Dictionary Encoding (DICT)

	2.3 Integer Encodings
	2.3.1 Variable Bytes (VByte)
	2.3.2 Bit-[un]packing (BP)
	2.3.3 Frame of Reference (FOR)
	2.3.4 Delta Coding
	2.3.5 FastLanes

	2.4 String Encodings
	2.4.1 Fast Static Symbol Table (FSST).
	2.4.2 Conditional Huffman (CHuff)

	2.5 Floating-Point Encodings
	2.5.1 Predictive Schemes
	2.5.1.1 Delta Predictive Coding (FSD)
	2.5.1.2 Differential Finite Context Method Predictor (DFCM)
	2.5.1.3 Fpzip and Pzip
	2.5.1.4 FPC
	2.5.1.5 Sprintz

	2.5.2 XOR Schemes
	2.5.2.1 Gorilla
	2.5.2.2 TSXor
	2.5.2.3 Chimp
	2.5.2.4 Chimp128
	2.5.2.5 Patas
	2.5.2.6 Elf

	2.5.3 Decimal-based Schemes
	2.5.3.1 BUFF (BoUnded Fast Floats compression)
	2.5.3.2 PseudoDecimals (PDE)

	2.5.4 Other Schemes
	2.5.4.1 SPDP

	2.6 Cascading Lightweight Compression
	2.6.1 Kernel Fusing

	2.7 Storage Layouts: NSM, DSM & PAX
	2.8 Compression and Data Formats
	2.8.1 Parquet
	2.8.2 ORC
	2.8.3 BtrBlocks

	2.9 Compression and Database Engines
	2.9.1 Compression in DuckDB
	2.9.2 Compression in Amazon Redshift
	2.9.3 Compression in MySQL: InnoDB
	2.9.4 Compression in CodecDB

	2.10 Whitebox Compression
	2.11 Pattern Inference Decomposed Storage (PIDS)

	3 Datasets Analysis
	3.1 The Datasets
	3.2 XOR-based Analysis
	3.2.1 Leading and Trailing Zeros
	3.2.2 Towards a SIMD XOR-based encoding

	3.3 Decimal-based Analysis
	3.3.1 Representing Doubles as Integers
	3.3.2 High exponents work for all values
	3.3.3 The 52-bit limit for integers
	3.3.4 Division vs Multiplication
	3.3.5 Towards a SIMD Decimal-based encoding

	3.4 Unexploited Opportunities
	3.4.1 Vectorizing Decimal Encoding
	3.4.2 Use of Long Integers (Cutting trailing 0s with an extra multiplication)
	3.4.3 Limited Search Space
	3.4.4 Front-Bits Similarity

	4 Adaptive Lossless Floating-Point compression (ALP)
	4.1 Compression
	4.1.1 Vectorized Compression
	4.1.2 Fast Rounding
	4.1.3 Handling Exceptions
	4.1.4 Fused Frame-Of-Reference (FFOR).

	4.2 Adaptive Sampling
	4.3 Decompression
	4.4 ALP for Real Doubles
	4.4.1 Encoding
	4.4.2 Decoding

	5 Evaluation
	5.1 Compression Ratios
	5.1.1 When ALP shines
	5.1.2 When ALP struggles

	5.2 [De]compression Speed Microbenchmarks
	5.2.1 ALP on Different Architectures
	5.2.2 Kernel Fusion
	5.2.3 Sampling Overhead
	5.2.4 ALPrd speed.

	5.3 End-to-End Query Performance
	5.3.1 SUM and SCAN
	5.3.2 Compression

	5.4 Single Precision and Machine Learning Data

	6 Discussion
	7 Conclusions
	References

