X\

MONETDB

Mammals Flourished
Long Before
Dinosaurs Became Extinct

*

VLDB 2009 Lyon - Ten Year Award

“"Database Architecture Optimized For The New Bottleneck: Memory Access” (VLDB 1999)

Stefan Manegold (manegold@cwi.nl)
Peter Boncz (boncz@cwi.nl)
Martin Kersten (mk@cwi.nl)

MICHAEL STONEBRA™ Q
... What I see happer Jata-
base vendors, wh~ Q .ants, are

selling a one-~ old
architecti” newhere 1n the

late 1° Q
@Q

ACM QUEUE May/June 2007

E Mammals

200 MYA

Reptiles

Dinosaur

Mammals

Reptiles

Mamals

Reptiles 200 MYA

Dinosaur

Mammals

Reptiles

Mammels

Reptiles 200 MYA

Dinosaur

Mamals

Reptiles

Mamals

Reptiles 200 MYA

Dinosaur

Mamals

Reptiles

Mammals

Reptiles 200 MYA

Dinosaur

\ CWL_

Large mammals once dined on dinosaurs

Repenomamus
giganticus

Repenomamus
robustus

Yaoming Hu, Jin Meng, Yuanqging Wang and
Chuankui Li149 Large Mesozoic mammals
fed on young dinosaurs Nature (vol 433, p
149, 2005)

\ CWL_

Evolution

It is not the strongest of the
species that survives, nor the
most intelligent, but the one
most responsive to change.
Charles Darwin (1809 - 1882)

\ CWL_

The genes of a species

Mammals sqLss, SQL92,SQL99, SQLO3 é ‘ \

-n-ary storage scheme

-relational algebra + DDL
Reptiles -5+ way indexing schemes
-slotted pages of records
Dinosaur -Volcano-style computation

\ CWL_

The evolution of the Fox

1979-1985
Troll a relational engine to

simplify relational
database programming

SWI Prolog made a much
better relational engine then
my first system and Ingres,
Oracle...

\ CWL_

The evolution of the Fox

1979-1985
Troll d relational engine tO Hector Garcia-Molina, Richard J. Lipton, Jacobo Valdes:
. . . A Massive Memory Machine.
Slmpllfy relational IEEE Trans. Computers 33(5): 391-399 (1984)
database programmlng David J. DeWitt, Randy H. Katz, Frank Olken,

Leonard D. Shapiro, Michael Stonebraker, David A. Wood:
Implementation Techniques for Main Memory
Database Systems.

SWI Prolog made a much SIGMOD Conference 1984: 1-8
better relational engine then

my first system and Ingres,

Oracle...

\ CWL_

The evolution of the Fox

1979-1985 e S 515
Troll a relational engine to E | bytes
simplify relational - I

. —
database programming —
L _|
. el

Non-first-normal-form disease E—

Object-orientation religion ————

IO pages size increase el

1
|
L 1

\ CWL_

The evolution of the Fox

1979-1985 el 51
Troll a relational engine to | B | bytes
simplify relational
database programming ::

|

Non-first-normal-form disease ::

Object-orientation religion S

IO pages size increase I

[]
L _|

\ CWL_

The evolution of the Fox

1979-1985 - 51
Troll a relational engine to - | bytes
simplify relational _A

database programming —
|

|
Non-first-normal-form disease {
S

Object-orientation religion '

IO pages size increase I
E—

L_l

\ CWL_

The evolution of the Fox

1979-1985
Troll a relational engine to
simplify relational
database programming

Non-first-normal-form disease
Object-orientation religion
IO pages size increase

eyttt P A X
-
— 312
ytes
—
—
4

\ CWL

Albert Einstein

“We can't solve
problems by using
the same kind of
thinking we used
when we created
them.”

A DECOMPOSITION

SIGMOD 1985 ...

STORAGE MODEL

Copeland
Setrag N hoshafian
Wiacnmtanbonnian 4ed aaspnblc The DSM offers simplicity Simple systems
i have several major advantages over complex systems
segrc
2 1 Support Of Multivalued Attributes T{,One advantage is that[a set of fewer and simplef

A more comprehensive data model than
normalizad ralatfinne micht allow mnltiovalned

2 2 Support Of Entities

A more comprehensive data model than the
ariginal relatianal mndel micht snnnnart the natinn

2 3 Support Of Multiple Parent Relations

functions, given fixed development resources, can
be either further tuned in software or pushed

further into hardTif::fo improve performance This

is similar to the| RISC| (Patterson and Ditzel 1980)
approach in general purpose architectures A
second advantage is that many alternative cases
with different processing strategies can less often
be exploited, since the cases are not always

recognized
FLUUILES nave Cumparvud Lpe periormance vl Lransposceu

A data model with more generality than
relations might allow multiple parent relations,
where a single record can have more than one parent

2 4 Support Of Heterogeneous Records

A data model with more generality than
relations might allow heterogeneous records, where

recnrde nf a ainela ralatian ran hawva Aiffanant

2 85 Support 0f Directed Graphs

A data model with more generality than
relations might allow a directed graph structure,

storage models with the NSM (Hoffer 1976, Batory
1979, March and Severance 1977, March and Scudder
1984) In this report, we describe the advantages
of a fully decomposed storage model (DSM), which is
a transposed storage model with surrogates
included The DSM pairs each attribute value with
the surrogate of its conceptual schema record in a
binary relation For example, the above relation
would be stored as

al|sur| val| a2|sur| val| a3|sur| val

| si]| vii] | 81| w21] | s1] v31]
| s2| vi2| | s2] v22| | 82| v32|
| 83| vi3| | 83| v23 | 83| v33|

\ CWL_

The genes of a new species

-SQL86, SQLI2, SQL99 SQLO3 % ‘ \

-n-ary storage scheme i \

-relational algebra + DDL

-5+ way indexing schemes ‘
-slotted pages of records
-Volcano-style computation

\ CWL_

The genes of a new species

-SQLS6, SQL92,SQL99,SQLO3
Binary Association Tables [storage scheme
-relational algebra + DDL

Self managing [JJJJJJJJj 1ndexing schemes

Arrays | of records
Materialize operator [N computation

SQL 03

Optimizers

MonetDB 5

MonetDB kernel

=

The MoNeTDB Software Stack

\ CWL_

Cache-Conscious Query Processing in

=

MONETDB

Stefan Manegold (manegold@cwi.nl)
Peter Boncz (boncz@cwi.nl)
Martin Kersten (mk@cwi.nl)

\ CWL_

250 1

Evolution == Progress?

200

150

100

elapsed time per iteration
[nanoseconds]

50

0_
year 1992 1996 1997 1998 2000
system Sun LX Sun Ultra SunUltra DEC Alpha Origin2000
CPU type Sparc UltraSparc UltraSparcll Alpha R12000

CPU speed 50 MHz 200 MHz 296 MHz 500 MHz 300 MHz

\ CWL_

Evolution == Progress?

250 1
200

150

Hardware Evolution (Moore's Law)

1901 BUT Software Stagnation!

elapsed time per iteration
[nanoseconds]

501

0_
year 1992 1996 1997 1998 2000
system Sun LX Sun Ultra SunUltra DEC Alpha Origin2000
CPU type Sparc UltraSparc UltraSparcl| Alpha R12000

CPU speed 50 MHz 200 MHz 296 MHz 500 MHz 300 MHz

\ CWL_

Databases hit The Memory Wall

Detailed and exhaustive analysis for different workloads
using 4 RDBMSs by Anastassia Ailamaki et al. in
“DBMSs On A Modern Processor: Where Does Time

Go?” (VLDB 1999)
CPU is 50%-90% idle, waiting for memory:

L1 data stalls

L1 instruction stalls
L2 data stalls

TLB stalls

Branch mispredictions
Resource stalls

\ CWL_

CPU & Hierarchical Memory System (1999)

Latencies:

TLB miss: 5-60 cycles

L1 cache-line — = L1 Cache

L1 hit: 1-2 cycles

L2 cache-line —

\J

L2 Cache

L1 miss: 6-20 cycles

Y

Memory Page

Main Memory

irtual Memory

swap file
(on disk)

L2 miss:40-100 cycles

2009:
L2 (+L3) on CPU die

Memory access:
up to 1000 cycles

\ CWL_

Required DBMS Evolution

e Memory access has become a significant cost factor

e Database algorithms suffer particularly from latency
(due to random access patterns)

Goal Optimize
e Use cache lines fully = Data structures
e Prevent cache & TLB misses = Memory access / algorithms
e Prevent CPU stalls = Implementation techniques
e Exploit CPU-inherent parallelism = Implementation techniques

\ CWL_

Data Structure Evolution

Row-storage Column-storage

wastes bandwidth exploits full bandwidth
A1 A2 A3 A n A 1 A2 A3 - |AN
| @ ® ® | @ ® ®) e
| @ ® ® | @ ® ®) e
| @ ® ® | @ ® ® ® ®
| @ ® ® | @ ® ®) ®
| @ o ® | @ ® ® ® ®
| @ ® ® | @ ® ®) e
| @ ® ® | @ ® ® ® o
| @ ® ® | @ ® ®) o
(e el e | ® ° | M= | e °
| @ ® ® | o ® @))

requested attribute cache line

\ CWL_

Algorithm Evolution: Joins

= Nested-loop:
+ sequential access to both inner & outer input
-- quadratic complexity
= Sort-merge:
+ single sequential scan during merge (“benefit”)
-- random access during sort (“investment”)
= Hash-join:
+ sequential scan over both inputs
-- random access to hash table (build & probe)

\ CWL_

Algorithm Evolution: Partitioned Hash-Joins

Phase 1: L
= Cluster both input relations

= Create clusters that fit in
CPU cache

= Restrict random data access
to (smallest) cache

= Avoid cache capacity misses
Phase 2:
= Join matching clusters

non-clustered clustered

8

\ CWL_

Partitioned Hash-Join: Joining (Phase 2)
elapsed time |seconds]

L2 TLB L1 256 tuples
700 :_‘ | .,.'I | _'.‘I | ...l | ," | .
- > 64,000,000 —o— 1 Points measured
- .~ 16,000,000 —&—~ /
®. 4000000 —

| Lines modeled

100 E _
' 1 [VLDB2002]

.—'.“.——._. . e

[Fry = Phase 2 solved;
10F 7 but what about Phase 1? -

1 32 1024 32k 1™ 32M

Number of clusters

\ CWL_

Algorithm Evolution: Clustering

Clustered
output

Input

Problem:
= Number of clusters exceeds
number of cache lines / TLB
entries

= => cache / TLB thrashing

Solution:
= Multi-pass clustering

(active)
cache lines

\ CWL_

Algorithm Evolution: Multi-Pass Clustering

= Limit number of clusters per
pass

= Avoid cache / TLB thrashing

= Trade memory cost for CPU cost

Input

Clustered

output

|]| (active)
4 ;":v cache lines

\ CWL_

Partitioned Hash-Join: Multi-Pass Clustering

elapsed time [seconds]
L1

Partitioned Hash-Join

60

¥

LA]

4. -
""/

50

I]

j LI
+...
ja

A

40

.-’-+If'
.-"+ - -

30

Y o

\ > A

* B
L

A
1

y

seconds

20

-~
10 E"‘Elaa@a oo™ —

lllllllllllllllllll

o [1 L 1 L 1 L 1
64M 8M 1M 128k 16k 2k 256 32

cluster size [byte]

— default w simple
— optimized CJ minimum
+ 1 pass m 3 passes

O 2 passes ~ 4 passes

\ CWL_

Joins in Column-Stores: Handling Payload

Problem:

Join result: pairs of tuple IDs; Out-of order
=> random access during projection / tuple-reconstruction

Solutions:

Jive-Join (Li, Ross; VLDB-Journal 1998)

Flash-Join (Tsirogiannis, Harizopoulos, Shah, Wiener, Graefe;
SIGMOD 2009)

Radix-Decluster (Boncz, Manegold, Kersten; VLDB 2004)
(Sideways Cracking (Idreos, Kersten, Manegold; SIGMOD 2009))

=> post-projection / late materialization

R

—

T

Algorithm Evolution: Multi-pass Clustering

1 pass P passes P passes, CPU optimized
20 :I T T : 20 :I P=LI 1 b2 |:
18 | : 18 |- .
16 | : 16 |]
14 [- 14 f]
12 b 1 L 12F .
- -]
o 10 | o 10 |
3 - § -
? 8 8 |
6 F 6 F
- 4 f
4 F 4 F e "
- S [
o L
2 2 & 27
: e -
0 ot 0
2 256 32k 4M 2 256 32k 4M 2 16 128 1k 8k 64k 512k 4M

number of clusters number of clusters number of clusters

Algorithm Evolution: Partitioned Hash-Join
CPU optimized

seconds

|
[
| Bl
|
|
| =
| |
| =
| B
|
| B
| B
]
. |
| !
| B
|

' TS I

seconds

64M 256k 16k 1k 64M 4M 256k 16k 1k 64
cluster size [bytes] cluster size [bytes]

B memory M CPU H memory m CPU

\ CWL_

Cost Model Evolution: Data Access

= Total data access cost is sum over all cache/memory levels

= Cost per level is number of cache misses scored by latency

= Simple tool to measure latency per cache level (“The Calibrator™)
= few simple basic access patterns “sequential”, “random”, ...

= compound access patterns: combinations of basic access patterns

= basic cost functions: estimate number of cache misses of basic
access patterns

= Rules how to create compound cost functions using basic cost
functions

= Describe data access of algorithms using access patterns

\ CWL_

The Bigger Picture:
Evolving Columnar Database Architecture

‘\ @ vectorwise

MONETDB

Stefan Manegold (manegold@cwi.nl)
Peter Boncz (boncz@cwi.nl)
Martin Kersten (mk@cwi.nl)

|\ CWL)
MONETDB

RISC Relational Algebr

cpu ©? Give it “nice” code !

- few dependencies (control,data)
- CPU gets out-of-order execution
- compiler can e.g. generate SIMD

One loop for an entire column Slmple, har

- no per-tuple interpretation coded semanyics

- arrays: no record navigation in operatgrs

- better instruction cache locality

{ MATERIALIZED
for (i=0; i<n; i++) intermediate

res[i] = col[i] - val; results

Materialization vs Pipelining

SELECT id, name
(age-30)*50 AS bonus

102 | ivan 350

oo ROM employee
T \ E age > 30 next()
2 45 = [-)(30)
(wwmafP-g 2 o 102 iyan 37 |7 | 350
9 35 0 7
M PROJECT
- next()
101 | alice | 22 | TRUE
SELECT
MI“R ' L&B next()
intermediate ;
results 102 |ivan | 37 SCAN

sei_age

(oid)

(int)

1

37

45

MonetDB spin-off: Q vectorwise
Materialization vs Pipelining

(select(30,

31

MQ

42

[

(void)

[-1(,30)

(int)

Wl ||

35

intermediate
results

15

R PV IS

D

CPU
cache

@® vectorwise engine
1 1

fax

map_mul_fit_val_fit_col

-
-
-
-
-

lect_It_int_col_int_val

: i !
SCAN narhe lary

J

ColumnBM
(buffer manager)

© vectorwise
Memory Hierarchy

Small
Fast
Expensive
~10 GB/s
2-20 cycles

2-3GB/s
150-250 cycles

40-400 MB/s
millions of cycles

Large
Slow €
Cheap

© vectorwise

The optimal diet?
Vectors start to exceed the §
CPU cache, causing less iterator.next()
additional memory traffic and

gomimates

»w 10 F
g O \eeoten primitive function calls
Q »”
TPCH 3 (“interpretation overhead”)
Q 1 \0-; query without selection —4-2.4
- A
= :
0.60¢
' MonetDB/X100
099 | "vector at a time"
- L] - 5
ngy Coded ' Cache matenaizaton
rogram
0.1 g llllllllllllllllll

1 4 16 64 256 1K _4K 16K 64K 256K 1M 4M 6M
Vector Size »

\ CWL_

More on @ vectorwise

And much more..
14:00-17:00 Tutorial “Column-Oriented DB Systems”

+ Daniel Abadi (Yale) and Stavros Harizopoulos (HP Labs)

\ CWL_

MonetDB Highlights

= Architecture-Conscious Query Processing
= Data layout, algorithms, cost models
Multi-Model: ODMG, SQL, XQuery, .. SPARQL
= Columns as the building block for complex data structures
RISC Relational Algebra (vs CISC)
= Faster through simplicity: no tuple expression interpreter
Decoupling of Transactions from Execution/Buffering
= ACID, but not ARIES.. Pay as you need transaction overhead.
= differential, lazy, optimistic, snapshot
Run-Time Indexing and Query Optimization
= Extensible Optimizer Framework
= cracking, recycling, sampling-based runtime optimization

\ CWL_

MonetDB vs Traditional Architecture

= Architecture-Conscious Query Processing
= vs Magnetic disk I/O conscious processing
= Multi-Model: ODMG, SQL, XQuery, .. SPARQL
= vs Relational with Bolt-on Subsystems
= RISC Relational Algebra
= vs Tuple-at-a-time Iterator Model
= Decoupling of Transactions from Execution/Buffering
= vs ARIES integrated into Execution/Buffering/Indexing
= Run-Time Indexing and Query Optimization
= vs Static DBA/Workload-driven Optimization & Indexing

s

The MoNeTDB Software Stack

SQL 03 Orthogonal extension of SQLO03
Optimizers Clear computational semantics
MonetDB 5 Minimal extension to MonetDB

MonetDB kernel

s

The MoNeTDB Software Stack

XQuery SQL 03 Arrays
Optimizers
SOAP MonetDB 4 MonetDB 5 OGIS

X100 MonetDB kernel compile

s

The MoNeTDB Software Stack

Extensible query lan

Extensible Dynamic
Runtime QOPT
Framework!

Qo SQL 03 RDF || Arrays

O ol Optimizers

MonetDB 4 MonetDB 5

Extensible
Architecture-Consciou
Execution platfor

O vectorwise MonetDB kernel OOO%

Farming new species

==

MONETDB

© vectorwise

@ Cyclotron

Romulo Gongalves

Data cell
Erietta Liarou

Sky server
Milena Ivanova

Armada
Fabian Groffen

MONETDB

Cracking
Stratos Idreos
XRPC
Jenny Zhang
XML pattern search
Nan Tang
RDF Graphs

Lefteris Sidirourgos

Martin Kersten
Peter Boncz

Niels Nes

Stefan Manegold
Fabian Groffen
Sjoerd Mullender
Steffen Goeldner
Arjen de Vries
Menzo Windhouwer
Tim Ruhl

Romulo Goncalves

Acknowledgements

Alex van Ballegooij
Johan List
Georgina Ramirez
Marcin Zukowski
Roberto Cornacchia
Sandor Heman
Torsten Grust

Jens Teubner
Maurice van Keulen
Jan Flokstra

Milena Ivanova
Lefteris Sidirourgos

Jan Rittinger
Wouter Alink
Jennie Zhang
Stratos Idreos
Erietta Liarou
Lefteris Sidirourgos
Florian Waas
Albrecht Schmidt
Jonas Karlsson
Martin van Dinther
Peter Bosch

Carel van den Berg
Wilco Quak

Whoa MonetDB !
Speed lines !

Pos’rgr'eSQL SQLserver swe QNETI/) ;
@ vectorwise
MySQL ?@

