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ABSTRACT
Actian Vector in Hadoop (VectorH for short) is a new SQL-
on-Hadoop system built on top of the fast Vectorwise an-
alytical database system. VectorH achieves fault tolerance
and storage scalability by relying on HDFS, and extends the
state-of-the-art in SQL-on-Hadoop systems by instrument-
ing the HDFS replication policy to optimize read locality.
VectorH integrates with YARN for workload management,
achieving a high degree of elasticity. Even though HDFS is
an append-only filesystem, and VectorH supports (update-
averse) ordered tables, trickle updates are possible thanks to
Positional Delta Trees (PDTs), a differential update struc-
ture that can be queried efficiently. We describe the changes
made to single-server Vectorwise to turn it into a Hadoop-
based MPP system, encompassing workload management,
parallel query optimization and execution, HDFS storage,
transaction processing and Spark integration. We evaluate
VectorH against HAWQ, Impala, SparkSQL and Hive, show-
ing orders of magnitude better performance.

1. INTRODUCTION
Hadoop, originally an open-source copy of MapReduce,

has become the standard software layer for Big Data clus-
ters. Though MapReduce is losing market share as the pro-
gramming framework of choice to an ever-expanding range of
competing options and meta-frameworks, most prominently
Spark [26], Hadoop has established itself as the software
base for a variety of technologies, thanks to its evolution
which decoupled the YARN resource manager from MapRe-
duce and the wide adoption of its distributed file system
HDFS, which has become the de-facto standard for cheap
scalable storage for on-premise clusters. SQL-on-Hadoop
systems allow to connect existing SQL-based business ap-
plications with the results of “big data” pipelines, adding to
their worth, further accelerating the adoption of Hadoop in
commercial settings. This paper describes VectorH, a new
SQL-on-Hadoop system with advanced query execution, up-
datability, YARN, HDFS and Spark integration.
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SQL-on-Hadoop=MPP DBMS? A SQL-on-Hadoop sys-
tem shares certain characteristics with an analytical parallel
DBMS, such as Teradata. First of all, these so-called MPP
systems are used in analytical workloads, which consist of
relatively few very heavy queries – compared to transac-
tional workloads – that perform heavy scans, joins, aggrega-
tions and analytical SQL, such as SQL’2003 window func-
tions based on PARTITION BY, ROLL UP and GROUP-
ING SETS. That said, these workloads are by no means
read-only, and systems must also sustain a continuous stream
of voluminous updates under limited concurrency.

In the past decade, analytical database systems have seen
the rise of (i) columnar stores – which reduce the amount of
IO and memory bandwidth needed in query processing fur-
ther boosted by (ii) integrated data compression and (iii) fa-
cilities that allow data skipping in many queries, e.g. through
lightweight index structures like MinMax indexes that ex-
ploit natural orders and correlations in the data. Such mod-
ern analytical database systems typically (iv) use a query en-
gine that is (re)designed to exploit modern hardware strengths.
Two approaches for this are popular. Vectorwise [27] devel-
oped the first fully vectorized query engine where all opera-
tions on data are performed on vectors of values, rather than
tuple-at-a-time, reducing query interpretation overhead, in-
creasing data and code CPU cache locality and allowing to
use SIMD instructions. The competing approach is to use
Just-In-Time (JIT) compilation, such that a SQL query is
translated into assembly instructions – see Impala [24].

A commonality between SQL-on-Hadoop and MPP sys-
tems is that both run on a cluster of nodes; both systems
must distribute data in some way over this cluster and when
a single query is run it must ideally parallelize over all nodes
– and all their cores – in this cluster. While this shared
goal is obvious, it requires a lot of technical excellence in
data placement, query optimization and execution to achieve
near-linear parallel scalability on complex SQL queries. Both
kinds of system, finally, must be prepared for nodes or links
between them to go down (un)expectedly, and thus replicate
data and take measures to achieve fault tolerance.

SQL-on-Hadoop 6=MPP DBMS. There are also signif-
icant differences between SQL-on-Hadoop and MPP sys-
tems. MPP systems typically run on a dedicated cluster, and
sometimes even on specific hardware (database machines),
whereas SQL-on-Hadoop systems share a Hadoop cluster
with other workloads. The task of dividing the hardware re-
sources between concurrent parallel queries is already hard
in MPP, but when other Hadoop jobs also take cores, mem-
ory, network and disk bandwidth, this becomes even harder.



In order to counter this problem, all members of the Hadoop
ecosystem should coordinate their resource usage through a
resource manager such as YARN.

By basing data storage on HDFS, SQL-on-Hadoop sys-
tems leverage scalability and fault-tolerance for a large part
from their Hadoop infrastructure; whereas MPP systems
must introduce specific and proprietary mechanisms for fault
tolerance (e.g. for adding and removing hardware, reacting
gracefully to failures, monitoring status). MPP systems are
typically more expensive, not only in upfront software and
hardware cost, but also in terms of administration cost; the
required expertise is more rare than that for maintaining a
Hadoop cluster, which has become a standard in this space.

In some analysis scenarios, raw data first needs to be
processed with methods and algorithms that cannot be ex-
pressed in SQL, but better in a programming language.
MPP systems have introduced proprietary UDF (User De-
fined Function) interfaces with differing degrees of expres-
sive power in an attempt to address this, whereas in SQL-
on-Hadoop it is more natural to use parallel programming
frameworks like Spark for such tasks. The advantage of this
approach is that Spark is more powerful and flexible than
any UDF API, and is open, so re-use in creating UDFs is
more likely. SQL-on-Hadoop systems thus must fit seam-
lessly into “big data” pipelines, either through integrated
APIs or through an ability to read and write large datasets
in a number of standard formats (text, binary, ORC, Par-
quet) stored via HDFS on the cluster.

VectorH Features and Contributions. VectorH is a
SQL-on-Hadoop system whose prime contribution is (i) to
provide vastly superior query processing performance. This
higher performance is based on a combination of a truly
vectorized query engine, compressed columnar data formats
with better lightweight compression methods than those used
in common Hadoop formats, and better data skipping statis-
tics than these common formats. Its SQL technology is ma-
ture, which is especially visible in the query plan quality
produced by its cost-based query optimizer, but is also ob-
served in its robust SQL support including analytical SQL,
encryption, authentication, and user role management.

A second system-level contribution is that VectorH (ii)
instruments the HDFS block placement policy to determine
where its compressed columnar blocks are replicated – by
HDFS default on 3 nodes. VectorH uses this locality to
always guarantee local IO, even if the cluster composition
changes, e.g. due to hardware failures. This tight integration
with HDFS is a novelty in SQL-on-Hadoop systems.

VectorH also pioneers (iii) elasticity features in Hadoop,
by tightly integrating with YARN; it is able to scale up
and down its memory usage and core footprint, in order
to accommodate fluctuating workloads needs on a Hadoop
cluster that is shared with many other users and job types.

VectorH further (iv) allows fine-grained updates (inserts,
deletes, modifications) to its columnar compressed tables by
leveraging the Vectorwise’s Positional Delta Tree [12] data
structure, without updates affecting the high performance
of read queries – which still work on the latest up-to-date
state. Integrating its column storage formats and PDTs in
the append-only HDFS environment is another system-level
contribution of the system. Finally, the Spark integration
of VectorH allows it to read all common Hadoop formats
with full HDFS locality and also enables running user code
in parallel on VectorH-resident data efficiently.

2. FROM VECTORWISE TO VECTORH
In this section we first summarize the most relevant fea-

tures of the Vectorwise system, the performance-leading1

single-server Actian Vector product. Then, we provide a
short overview of how this technology was used to architect
the new shared-nothing Actian VectorH SQL-on-Hadoop
product, which also serves as roadmap for the paper.

Relevant Vectorwise Features. Vectorized processing
performs any operation on data at the granularity of vec-
tors (mini-columns) of roughly 1000 elements. This dramat-
ically reduces the overhead typically present in row-based
query engines that interpret query plans tuple-at-a-time [4].
Additionally, instruction cache locality increases as the in-
terpreter stays longer in each function, and memory band-
width consumption is reduced as all vectors reside in the
CPU data cache. Vectorized execution exposes possibilities
to leverage features of modern CPUs like SIMD instructions
in database workloads and increases analytical query perfor-
mance by an order of magnitude. The vectorized execution
model has been adopted by analytical subsystems such as
IBM BLU [20] and SQLserver column indexes [17]; and it is
also being deployed in new releases of Hive [13].

Vectorwise introduced the compression schemes PFOR,
PFOR-DELTA and PDICT, designed to achieve good com-
pression ratios even with skewed frequency value distribu-
tions, as well as high decompression speed [28]. PDICT is
dictionary compression, PFOR is zero prefix compression
when representing values as the difference from a block-
dependent base (the Frame Of Reference). PFOR-DELTA
compresses deltas between subsequent tuples using PFOR,
and has been adopted by the Lucene system to store its in-
verted text index. These schemes represent values as thin
fixed-bitwidth codes packed together, but store infrequent
values uncompressed as “exceptions” later in the block. The
letter P in these stands for “Patched”, since decompression
first inflates all values from the compressed codes; then in
a second phase patches the values that were exceptions by
hopping over the decompressed codes starting from the first
exception, treating these codes as “next” pointers. Thus,
the data-dependent part of decompression is separated in
a short second phase while most work (code inflation) is
SIMD-friendly and branch-free. These decompression for-
mats were recently re-implemented in Vectorwise in AVX2,
yielding a function that decompresses 64 or 128 consecutive
values in a typically less than half a CPU cycle per value.
The Hadoop formats ORC and Parquet, while clear improve-
ments over predecessor formats such as sequence and RCfile,
have not been designed for branch-free SIMD decompression
and are much slower to parse [25].

In data warehouses, fact table order is often time-related,
so date-time columns typically are correlated with tuple-
order. Vectorwise automatically keeps so-called MinMax
statistics on all columns. These MinMax indexes store sim-
ple metadata about the values in a given range of records,
and allow quick elimination of ranges of records during scan
operations (skipping), saving both IO and CPU decompres-
sion cost. Both ORC and Parquet adopted this idea, but
Parquet often cannot avoid IO as it stores MinMax informa-
tion at a block position that can only be determined while
parsing the header – forcing the block to be read [25].

1See www.tpc.org/downloaded result files/tpch results.txt
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Figure 1: Data Format Micro-Benchmarks.

Storage Format Micro-Benchmarks. We performed
micro-benchmarks on the SF=100 TPCH lineitem table
that was sorted on the l_shipdate column, to corroborate
our belief that the Vectorwise data storage is more efficient
than ORC and Parquet implementations. The topmost chart
of Figure 1 shows that Vectorwise is faster on: SELECT

max(l_linenumber) FROM lineitem WHERE l_shipdate<X

queries, where X is varied to test different selection percent-
ages. Such queries can profit strongly from MinMax skip-
ping, given the table order on l_shipdate. While the time
differences can be partly explained by the higher efficiency
of the query processing engine of VectorH, and specifically
its vectorized decompression (whereas the Parquet and ORC
readers decode value-at-a-time), the middle chart shows that
it is also touching much less data. Impala does not do Min-
Max skipping at all while Presto does, but it reads more
data than needed2 (for example, at 90% selectivity data
read is even bigger than the total size of the columns). Par-
quet/ORC split row groups by row count, so compressible
columns may be split into too small chunks [14]. In contrast,
VectorH’s format allows these thin columns to occupy full
512KB blocks. For example, one VectorH block might con-
tain the whole column while with Parquet/ORC this column
could be split into thousands of small pieces depending on
the compressability of the other columns.

A small part of the reduced data reading is in fact not due
to better skipping, but because the PFOR schemes used in
VectorH compress better than both the ORC and Parquet
formats do, as shown by the lowest chart3. Vectorwise data
is almost twice smaller, though Parquet could be close were
it not for its inefficient handling of 64-bits integers.

Vectorwise Physical Design Options. Vectorwise tables
can be stored unordered or as a “clustered index”. Rather

2Profile information showed that the Presto ORC reader
does not skip IO, but it does skip decompression CPU work.
3We omitted l_comment from the comparison as it is not
compressible with lightweight schemes.

than creating some kind of B-tree, this means that Vector-
wise stores the table sorted on the index key. It also pro-
vides unclustered indexes (i.e. real index trees), which can
help queries that access a few tuples to avoid a table scan.
Vectorwise supports horizontal table partitioning by hash,
which can be combined with indexing.

The main benefit of a clustered index is data skipping in
scans for queries with range-predicates on the index keys.
When a clustered index is declared on a foreign key, treat-
ment is special as the tuple order then gets derived from
that of the referenced table, making the tables co-ordered.
This allows merge-joins between them, and is very similar
on the physical storage level to nested Hadoop data formats
such as ORC and Parquet (where, say, an order object may
contain nested lineitems). In the columnar layout used by
ORC and Parquet, this means a table consists of columns
with the same tuple order, and nested tables are co-ordered
and merge-joinable using an also co-ordered “repeat-count”
column. Such a tight, co-ordered, layout is difficult to in-
sert/delete in, a problem solved in Vectorwise with “PDTs”.

Compressed, columnar, ordered, data formats are read-
optimized and direct modifications on these would be costly.
Vectorwise allows high-performance updates nevertheless,
using a differential update mechanism based on Positional
Delta Trees (PDT) [11]. Positional Delta Trees are count-
ing B+-trees that store updates (insert, delete, modify) in
their leaves, where the interior nodes count the amount of
inserts minus the amount of deletes in the sub-tree below
them. PDTs can quickly translate back-and-forth between
the old position of a tuple (the SID - stable ID) and its cur-
rent position (RID). PDTs allow to update ordered tables
(i.e. clustered indexes) as well a co-ordered tables (clustered
index on a foreign key) with logarithmic complexity [11].
Their primary goal is fast merging of differences in a scan,
which happens for each and every query. Merging in dif-
ferences from a PDT is fast because it identifies tuples by
position, rather than by primary key, which saves both key-
comparisons (CPU) and scan work on the key (IO).

VectorH & Paper Roadmap. VectorH is a YARN-based
cluster version of Vectorwise relying on HDFS for storage
and fault-tolerance. HDFS is a global cluster filesystem
where all nodes can read all data, but in order to achieve
good performance, one must read local data mostly. The
VectorH integration with HDFS is discussed in Section 3.

To determine on which nodes VectorH can run, given data
locality but also Hadoop resource availability, it integrates
with YARN, as discussed in Section 4.

The foundation of shared-nothing parallel Vectorwise was
laid by a MSc project [7]. It created a MPP system con-
sisting of Vectorwise processes, adding a MPI-based parallel
query processing infrastructure, “exchange”operators, and a
parallel rewriter. This prototype was significantly extended
in the VectorH product as described in Section 5.

HDFS is an append-only filesystem, but this restriction
does not hinder Vectorwise’s PDT update structure. Sec-
tion 6 describes transaction handling in VectorH, including
distributed logging and 2PC. Section 7 outlines the VectorH-
Spark integration that allows users to run code near their
data in parallel, but also to read and write data in Hadoop
data formats with high performance. VectorH is evaluated
against Impala, Hive, HAWQ and SparkSQL on a 1000GB
TPC-H database in Section 8. We then discuss related work
in Section 9 before concluding in Section 10.



3. STORAGE AFFINITY WITH HDFS
The storage layer of Vectorwise was modified in VectorH

to use the libhdfs JNI library instead of a normal filesys-
tem, for its persistent table storage, and its write-ahead log
(WAL). HDFS files are split into fixed size blocks (typically
128MB to 1GB) which are automatically replicated across
the datanodes in the cluster (by default at R=3 locations)
to provide fault-tolerance. VectorH may optionally also use
HDFS for temporary storage spilling operators though then
it overrides the replication degree to just 1. Vectorwise has
a predictive buffer manager that not only handles immedi-
ate page requests but tries to keep concurrent scan queries
busy by prefetching [23]. Whereas on standard filesystems
Vectorwise uses asynchronous direct IO, for HDFS a thread
pool was added to perform parallel synchronous HDFS block
reads. HDFS provides an efficient way to read local data
called short-circuit reads, through which files can be read
directly from disk, bypassing the datanode. This provides
reasonable performance (say 30% overhead compared to di-
rect IO). VectorH in general achieves the situation that all
table IOs are short-circuited. Its IO scheduler uses HDFS
block location tracking to decide which thread makes each
IO request, with the goal of keeping all local disks busy.

Original Layout. In Vectorwise, the unit of table storage
is a block of fixed compressed size (default 512KB). For IO
efficiency, writing is done in groups of consecutive blocks
(by default 8 groups per block). This makes the effective
IO unit bigger (4MB by default) which is better suited for
rotational disks. Blocks are stored consecutively in files,
where by default one file is used for each column in a table
partition. Each block has a number which determines its
position in a file (e.g. block 0 will be at position 0, block 1
at position 512KB). In memory, a column is a list of blocks,
not necessarily with the same ordering as in the file. This is
because the file space of freed blocks can be reused.

Blocks can be freed as a result of updates (delete, drop
column, etc.) and subsequently reused. However, this re-
quires writing in the middle of a file, which is not supported
by HDFS. In the original layout, space could therefore only
freed by rewriting the table fully elsewhere and deleting its
files – either triggered manually, or automatically in case
when differential updates in PDTs exceed a RAM threshold
and update propagation is triggered. For clustered (ordered)
tables, all updates (delete, insert, modify) go to PDTs, while
for unordered tables inserts are handled as appends. Thus,
workloads consisting of consecutive deletes (which are com-
pact in the PDT) and inserts can lead to significant wasted
disk space. A second problem is that appending to a ta-
ble requires opening many files. For example, a table with
100 columns and 10 partitions, at a replication degree R=3,
requires 3000 open files.

File-per-partition Layout. It is noteworthy that Hadoop
formats such as ORC and Parquet store data of all columns
in the same file; their column orientation is to be understood
as PAX [1] with a huge block size. For instance, ORC uses
1GB chunks that represent a table slice, in which different
segments store the various columns – OLAP queries only
need to read these files partially and skip over the column
segments that are not needed. Even though the HDFS block
size is 128MB or larger, (short-circuit) reads occur on the
actual granularity of the IO, i.e. more fine-grained.

To better suit HDFS, a file-per-partition VectorH layout

node1 node2 node3 node4

R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12

R10a R11a R12a R01a R02a R03a R04a R05a R06a R07a R08a R09a

S10a S11a S12a S01a S02a S03a S04a S05a S06a S07a S08a S09a

R07bR08bR09b R10bR11bR12b R01bR02bR03b R04bR05bR06b

S07b S08b S09b S10b S11b S12b S01b S02b S03b S04b S05b S06b

after node4 failure:

R01a R02a R03 R04 R05 R06a R07 R08 R09

S01a S02a S03 S04 S05 S06a S07 S08 S09

R10 R11 R12 R01 R02 R03a R04a R05a R06

S10 S11 S12 S01 S02 S03a S04a S05a S06

R07bR08bR09b R10bR11bR12b R01bR02bR03b

S07b S08b S09b S10b S11b S12b S01b S02b S03b

R04bR05bR06b R07a R08a R09a R10a R11a R12a re-replicated

S04b S05b S06b S07a S08a S09a S10a S11a S12a partitions

node1 node2 node3

Figure 2: Partition Affinity Mapping for the 12 par-
titions of table R,S before (top) & after (bottom)
node4 failure. Responsible partitions in bold; a/b
are the second/third copy (R=3).

was introduced: all columns of a table partition are stored
in the same file. So, for example, a table with 100 columns
and 10 partitions, at a replication degree R=3 leads to 30
HDFS files.

To reclaim unused space VectorH data files are split hor-
izontally, into fixed-size chunks consisting of 1024 blocks,
similar to Parquet RowGroups. Each block chunk is stored
in a separate HDFS file. Only one block chunk file is open for
writing at a time. Block chunks make it possible to write in
the middle of a table partition, although only at block chunk
boundaries. Thus it becomes possible to free space by delet-
ing a block chunk file when all (or most) of the blocks in
it are unused. At the end of an append, though, the last
blocks are typically only partially filled. Since blocks are
written to files at fixed offsets, these partially filled blocks
would use as much space as full blocks. As a solution to
this, partial blocks are written to a partial chunk file. A
subsequent append merges these blocks with new data into
new blocks and then frees the previous partial chunk file.

Instrumenting HDFS Replication. HDFS by default
replicates data in R=3 locations, and the default replication
policy is that the first copy is stored on the datanode that
issues the write, and the two others are determined by the
namenode – if the cluster is large and topology information
is present, one replica may be in the same rack and the third
in a different rack. The HDFS replication policy determines
this placement per file, hence all the blocks in one file get
spread over the same R=3 datanodes. While all SQL-on-
Hadoop systems so far have left block placement to HDFS,
VectorH specifically influences this.

In VectorH each table partition at any time has one re-
sponsible node. This assignment is currently semi-static and
is changed when a node fails or when the administrator
changes the set of nodes across which VectorH is deployed.
VectorH strives for a responsibility assignment where all
data files of a partition are local to the HDFS datanode
which is responsible for it. VectorH tries to achieve this by
issuing appends only from the responsible datanode, as by
default the first copy ends up with the writer. However,
if this datanode goes down or for some other reason is no
longer available to VectorH, we have to access the second or
third copy of these chunk files, and given the default HDFS
replication policy these could be anywhere. Therefore, node



failures or changes in the node set used by a SQL-on-Hadoop
system will degrade data affinity whenever using the default
policy.

To get control over data placement, VectorH instruments
the HDFS replication policy for its own files. HDFS al-
lows to register a BlockPlacementPolicy class for this, whose
method chooseTarget() gets a filename as a parameter and
delivers a list of datanode names where replicas should be
stored. It is called when a client initiates a file append,
but also during HDFS re-replication and re-balancing ini-
tiated in the background by the namenode. The current
VectorH replication policy initially establishes the affinity
between partitions and nodes by assigning table partitions
to all datanodes running VectorH in such a way that each
partition gets stored evenly at R different datanodes. Each
such partition assignment means that all chunk files of the
partition are stored at that particular datanode. Figure 2
shows a partition affinity mapping example of tables R and
S with 12 partitions (R04 in bold is the primary copy and
R04a and R04b its two replicas). As can be seen, the ini-
tial affinity mapping performed at table creation forms a
round-robin pattern – we discuss node failures in the next
section.

Another benefit of explicit locality control is the co-location
of table partitions that refer to each other over a declared
foreign key. This can be done when the partitioning key of
one table includes a foreign key, and the partitioning key
of the other table includes the primary key that it refers
to, and both tables have the same amount of partitions. In
such cases, the foreign key join between these two tables can
be performed by just joining the matching partitions, and if
these matching partitions happen to be stored on the same
HDFS datanodes, no network communication is needed. In-
deed, in Figure 2 one can see that matching partitions of
tables R,S are always co-located such that the WHERE R.key

= S.key join in SQL queries can be executed by joining the
corresponding partitions on their responsible node.

4. ELASTICITY WITH YARN
Workers and Master. VectorH consists of a set of N
Vectorwise processes, called the worker set that run on the
datanodes of a Hadoop cluster. The VectorH administra-
tor maintains a list of viable machines in a configuration file
to identify these – this may just be a subset of the whole
Hadoop cluster so one can use a set of machines which have
the same hardware, as this leads to better parallel query load
balancing. Before actually starting these processes, VectorH
needs to negotiate with YARN’s resource manager where to
run, and it ends up using a subset of these machines as its
worker set. One of the workers becomes the session-master,
however this node does not possess any specific data struc-
tures, so this role can be easily interchanged. The session
master has a coordinating role in transactions, and performs
parallel query optimization which includes running a query
scheduler that performs DBMS workload management, de-
termining the amount of cores and memory it can use. Cur-
rently, this is done using a policy where table partition scans
are performed at their responsible nodes, and the available
amount of cores is divided equally among them.

Out-of-band YARN. The YARN resource manager (RM)
administers RAM and CPU resources on a Hadoop clus-
ter, for this purpose a NodeManager (NM) daemon runs

on each datanode. Clients communicates with the RM, to
start a first process as their ApplicationMaster (AM). Typ-
ically, the AM starts further containers (processes) on other
nodes by communicating with the NMs, following negoti-
ated resource demands in terms of minimum and maximum
(desired) amounts of RAM and cores. YARN can use dif-
ferent scheduling policies, namely the FairScheduler and Ca-

pacityScheduler where the latter assigns resources to multi-
ple queues having different priorities. Newly arriving high-
priority jobs may cause running jobs to be pre-empted by
YARN, first by asking their AMs to decrease resource usage
and after a timeout by killing their containers.

While YARN is a great step forward for Hadoop and na-
tive applications, SQL-on-Hadoop systems still struggle to
fit into its concepts because they are usually long-running
processes. Equating YARN job submission to query submis-
sion, is not viable because a DBMS needs to run a query on
threads in the already active server processes, rather than
spawn a separate new process for each query, and further-
more the latency of the YARN protocols is high and would
eclipse interactive query running times. Also, even if a Vec-
torwise process would run in a YARN container, the problem
would be that YARN does not allow yet to modify the re-
sources of a container. Stopping and re-starting a Vectorwise
container just to e.g. increase its RAM budget would inter-
rupt the running application for tens of seconds and lose the
contents of its buffer pool to much performance detriments.

Therefore, VectorH runs processes out-of-band, i.e. sep-
arate from its containers. The actual containers are dum-
mies that sleep almost constantly, monitoring once in a while
the co-located VectorH processes to ping back their live sta-
tus to YARN and implicitly to VectorH, i.e. VectorH runs
a dbAgent process that acts as its YARN client. Instead
of running a single container on each datanode with all its
RAM and core resources, it typically runs multiple AMs with
corresponding containers on the worker set, each allocating
a slice of its resources. Hereby, it can gradually increase and
decrease its resource usage (start or stop new AMs/slices)
over time. YARN pre-emption can even kill containers in
which case dbAgent notices this event and then instructs
the session master to adjusts its own resource usage accord-
ingly, by changing the configuration of the DBMS workload
management (e.g. making queries use less cores and mem-
ory, possibly leading to spilling operators).

Min-cost Flow Network Algorithms. When VectorH
initially starts, or when it recovers from node failures4 its
dbAgent must select those N machines with most data lo-
cality (stored blocks), out of all nodes which are on the vi-
able machine list and which have enough free memory and
core resources. To get cluster resource information, dbAgent
asks YARN for the cluster node reports, and for finding Vec-
torH table partition locality it queries the HDFS Namenode
to retrieve block locations for the corresponding chunk files.
It may happen that there are no such nodes available, in
which case the worker set shrinks, which is also the case in
the below part of Figure 2.

After establishing the worker set, dbAgent checks which
partitions are already local to them. Not all partitions may

4Typical VectorH deployments are maximally a few co-
located racks, so node failures are rare and recovery is kept
simple: the system silently restarts, though users will no-
tice at most a minute of non-responsiveness plus transaction
aborts.



Figure 3: The flow network (bipartite graph) model
used to determine the responsibility assignment.

be represented R times already, so the question is which par-
titions should go where – the resulting partition affinity map
steers the behavior of the instrumented HDFS BlockPlace-

mentPolicy class (and hence re-replication). Figure 2 shows
an outcome where partitions 10-12 that were on node4 are
re-replicated to node3, 7-9 to node2 and 4-6 to node1.

This mapping can be computed by solving a min-cost
matching problem on a network flow where the left side rep-
resents the table partitions and the right side the workers,
as illustrated in Figure 3 (a related approach was proposed
in [15]). From the source (s) to each partition, we create
edges with cost 0 and capacity equal to the HDFS repli-
cation degree (RMax=R), and we create edges from each
partition to each worker with capacity 1 and cost C=0 for
local partitions, otherwise C=1. We then create edges from
the workers to the destination node (t), assigning a cost 0
and a capacity equal to the amount of partitions each node
should store (PCap = #partitions/N).

A final step for dbAgent is to compute the responsibility
assignment: which worker is responsible for each partition
(i.e. which partitions should be in bold in Figure 2). To
assign responsibilities to worker nodes, it runs the same min-
cost flow algorithm, with the only difference that the edges
from source (s) to each partition have cost 0 and capacity
1. The lower part of Figure 2 shows an example result of
this, were node1 becomes responsible for partitions 3,10-12;
node2 for 1-2,4-5 and node3 for 6-9 (in bold).

More details about the min-cost algorithms used for (i)
worker set selection, (ii) creating the data affinity mapping,
(iii) responsibility assignment, and even (iv) run-time query
resource scheduling can be found in [5].

Dynamic Resource Management. While VectorH runs,
the amount of cores and memory it uses in the query sched-
uler may change over time – though the worker set currently
must stay the same. At startup, VectorH will negotiate with
YARN to get to its configured target of resources, if this
is not possible, it will start nevertheless as long as it gets
above a configured minimum. If there are higher-priority
jobs, YARN will pre-empt VectorH and reduce its resources,
but VectorH will periodically negotiate with YARN to go
back to its target resource footprint. Using the automatic
footprint option, VectorH can also self-regulate its desired
core/memory footprint depending on the query workload.
In a future release, we intend to also allow to grow and
shrink the worker set (not only cores/RAM) dynamically.

In Figure 2 one can see that after the failure of node4, and
assuming these nodes have 24 cores, a maximal resource
query plan can run on 3x24 cores processing a join query

between R and S5. If in a future release VectorH would
support dynamic shrinking of the worker set, in an idle
workload VectorH could shrink to a minimum resource foot-
print of d#nworkers/Re and still have all table partitions
local at the active workers. In the scenario of Figure 2 we
could imagine that the partition responsibility assignment is
changed such that node1 becomes responsible for all its par-
titions (all in bold), and node2 and 3 for none of theirs (all
a/b versions), as they become inactive workers. A minimal-
resource query plan could just use one thread at node1 – 72
times fewer resources than the maximal plan.

5. PARALLELISM WITH MPI
The shared-nothing parallelism in VectorH builds on the

infrastructure for multi-core parallelism in Vectorwise [2],
which is based on Exchange (Xchg) operators [10]. An Xchg

operator does not modify the data that streams in and out of
it, but only redistributes these streams. It thus encapsulates
parallelism, allowing other query operators (scan, select,
join, aggregation) to be unaware of it. The different Xchg

operator flavors are characterized by specific constraints on
the numbers of producer/consumer streams and the type of
data redistribution performed. For example, XchgHashSplit
hash-partitions the data from n producer streams to m con-
sumer streams, while XchgUnion has a single consumer and
there is no data partitioning involved. We also implement
XchgMergeUnion, XchgBroadcast and XchgRangeSplit. In
our system a stream corresponds to a separate thread that
executes some part of an operator pipeline. Consequently,
an Xchg operator acts as a synchronization point among a
number of producer and consumer threads.

This “Volcano” model with Xchg operators was adopted
in the 1990s by relational DBMS products, which in those
days added multi-CPU parallel capabilities to their existing
designs, allowing all existing query processing operators to
be used as-is. In recent years, new single-server multi-core
systems have been presented [20, 19] that have advocated an
approach where all relational operators are redesigned to be
explicitly aware of parallelism. Ingredients to such designs
are fine-grained shared-memory work-queues, NUMA affin-
ity, and lock-avoidance with atomic instructions or -elision
with hardware transactional memory. However, when con-
sidering MPP parallelism, these approaches do not apply
and Xchg is still a solid basis for MPP parallelism.

Distributed Exchange. Figure 4 depicts the implemen-
tation of a generic Distributed Exchange (DXchg) operator
with two producer nodes (n1 and n2) and two consumer
nodes (n3 and n4). On n4 there are two threads. For network
communication we use MPI (Message Passing Interface),
which is extensively used in the high performance computing
community and offers a rich and well-defined API for collec-
tive and point-to-point communication. It provides a good
balance between efficiency (low latency, high throughput),
portability across various network fabrics found in Hadoop
clusters (e.g. Ethernet, Infiniband) and ease of develop-
ment and maintenance. Specifically, we use the Intel MPI
library, which provides good multi-threading support and
in our experience outperforms all alternatives, particularly

5Even though each node has 4 primary matching join parti-
tions, these joins can be parallelized 6-way each, over mul-
tiple cores to keep all 24 threads busy.
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Figure 4: DXchg Operator Implementation

on high-speed Infiniband networks (where MPI provides a
native binding, avoiding slow TCP/IP emulation).
DXchg producers send messages of a fixed size (>= 256KB

for good MPI throughput) to consumers and use double-
buffering, such that communication overlaps with processing
(i.e. partitioning + serialization). Tuples are serialized into
MPI message buffers in a PAX-like layout, such that Re-
ceivers can return vectors directly out of these buffers with
minimal processing and no extra copying.

It is often the case that the sets of producer and consumer
nodes are overlapping, or even the same. As an optimiza-
tion, for intra-node communication we only send pointers to
sender-side buffers in order to avoid the full memcpy() that
MPI would otherwise need to do behind the scenes.

For the two partitioning DXchg variants, DXchgHashSplit
(DXHS) and DXchgRangeSplit (DXRS), the original im-
plementations, described in [7], used a thread-to-thread ap-
proach. Each DXchg sender partitions its own data with a
fanout that is equal to the total number of receiver threads
across all nodes. For senders to operate independently, they
each require fanout private buffers. Typically, the nodes
in the cluster are homogeneous (same num cores). Hence,
the partitioning fanout equates to num nodes ∗num cores,
and considering double-buffering and the fact that each node
has num cores DXchg threads active, this results in a per-
node memory requirement of 2 ∗ num nodes ∗ num cores2.
As VectorH gets deployed on larger systems with typically
tens and sometimes more than 100 nodes, each having often
around 20 cores, partitioning into 100*20=2000 buffers be-
comes more expensive due to TLB misses. More urgently,
this could lead to buffering many GBs (2∗100∗202 ∗256KB
= 20GB). Not only is this excessive, but the fact that the
buffers are only sent when full or when the input is exhausted
(the latter being likely in case of 20GB buffer space per node,
leading also to small MPI message sizes) can make DXchg a
materializing operator, reducing parallelism.

Therefore, we implemented a thread-to-node approach, where
rather than sending MPI messages to remote threads di-
rectly, these get sent to a node, reducing the fanout to
num nodes and the buffering requirements to 2∗num nodes∗
num cores. The sender includes a one-byte column that
identifies the receiving thread for each tuple. The exchange
receiver lets consumer threads selectively consume data from
incoming buffers using the one-byte-column. The thread-to-
node DXchg is more scalable than the default implementa-
tion, yet on low core counts and small clusters the thread-

to-thread implementation is still used as it has a small per-
formance advantage there.

Query Optimization. Currently it is the session-master
which parallelizes incoming queries. In the future, it will
be relatively easy to distribute this work over all worker
nodes at least for read-queries, but given that updates need
some form of central coordination, and the fact that ana-
lytical workloads have only a limited query throughput, we
settled for this centralized approach for now. Most query
optimization changes were made in the Parallel Rewriter
that already existed in Vectorwise for single-server query
parallelization [2]. It performs cost-based optimization us-
ing a dynamic programming algorithm, and a simple cost
model based on the cardinality estimates taken from the se-
rial plan. A state in this search space is a tuple consisting
of a physical operator label x, some structural properties sp
and a current level of parallelism pl: s = (x, sp, pl). For each
such state, we define as c(s) the best (estimated) cost of a
parallel query plan for the sub-tree rooted at x that satis-
fies the structural data properties sp such that exactly pl6

streams consume the output of x. The structural properties
used in VectorH are partitioning (guarantees that two tuples
with the same value on a set of keys will be output by the
same stream) and sorting (guarantees that tuples from each
stream are sorted on some other keys). The aim is thus to
find c(s = (root, ∅, 1)) where root is the full query tree.

The Parallel Rewriter contains a collection of rewrite rules
that transform a state in a different state. We give three
examples for MergeJoin. The first adds an XchgHashSplit
on top and from a state s1 = (mj, partitioned[keys], pl) re-
curses into s′1 = (mj, ∅, pl), relaxing the requirement for
partitioning since XchgHashSplit (on [keys]) takes care of
it. The second adds an XchgUnion[pl] when at a state
s2 = (mj, ∅, 1) and therefore recurses into s′2 = (mj, ∅, pl).
A final transformation just recurses into mj’s children from
s3 = (mj, ∅, 1) into s′3 = (child1, sorted[keys], 1) and s′′3 =
(child2, sorted[keys], 1). More details on the dynamic pro-
gramming algorithm to traverse this search space is in [2].

The initial MPP prototype of VectorH [7] modified the
Parallel Rewriter to (i) make pl a list (instead of an inte-
ger) that contains the current parallelism level per node,
(ii) adapting transformations to introduce distributed Dxchg

rather than local Xchg operators and (iii) adapting the cost
model for these operators. This was sufficient since the ini-
tial prototype assumed the presence of a global distributed
file system without table partitioning, where everybody can
read everything at equal IO cost. This was a simplifying
assumption only, and is invalid in HDFS even though that
is a global distributed filesystem, since tables have affini-
ties to datanodes. Moreover, with the introduction of hash-
partitioned tables in VectorH there appeared a number of
new optimization opportunities, e.g. certain group by/join
queries on the partition key can be executed without Dxchg

operations. The Parallel Rewriter aims to avoid communi-
cation at all cost, and appropriately adds a high cost for
Dxchg operators in its model. Finally, with the addition of
trickle updates on partitioned tables, ensuring data locality
for update operators becomes a requirement rather than an
optimization opportunity as will be discussed in Section 6.

Detecting locality. We will illustrate some of the VectorH-

6This number is always smaller than the maximum level of
parallelism granted to a query by the scheduler.
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Figure 5: Example Distributed Query Plan

specific transformations through a query on the TPC-H schema,
on tables lineitem partitioned by l_orderkey, orders par-
titioned by o_orderkey and supplier non-partitioned (i.e.
replicated):

SELECT FIRST 10 s_suppkey, s_name, count(*) as l_count
FROM lineitem, orders, supplier
WHERE l_orderkey=o_orderkey AND l_suppkey=s_suppkey AND

l_discount>0.03 AND
o_orderdate BETWEEN ’1995-03-05’ AND ’1997-03-05’

GROUP BY s_suppkey, s_name
ORDER BY l_count

The distributed plan that VectorH generates is shown in
Figure 5. The only network communication is high up in the
query tree (the DXchg operator), namely splitting s suppkeys
that match all the predicates and communicating partial
results before selecting the top 10 suppliers. The Parallel
Rewriter finds this plan using transformations like:
• local join: the opportunity to HashJoin the match-

ing partitions of lineitem and orders is detected by
tracking the origins the join keys, detecting that the
tables are partitioned on the join key.
• replicate build side of a join: in the HashJoin with
supplier, we detect that the build side of the join
operates entirely on replicated tables, and thus splits
both sides of the join only locally (between threads on
the same node). A variant of this would be to forgo
splitting and build a shared hash table – the decision
between these is made based on cost.
• partial aggregation: before the DXchgHashSplit re-

quired by the Aggr on s_suppkey (and s_name but Vec-
torwise knows it is functionally determined), it is often
better to aggregate locally first. Rather than letting
each thread aggregate its stream locally, on medium-
cardinality aggregations, inserting a local Xchg has the
effect of bringing together more duplicate keys, and
thus further reducing the amount of data that needs
to be sent. This strategy is detected here, but Vec-
torH also detects that a XchgHashSplit does not need
to be inserted below the Aggr as the stream is already
partitioned on s_suppkey at that point.

With all three rules applied, on a 6-node cluster with Infini-
band 40Gbit/s for TPC-H SF-500 VectorH runs the example
query in 5.02s. Without partial aggregation this is 5.64s; and
without replication in the build 5.67s. The biggest effect is
from local joins: without this, performance deteriorates to
25.51s; whereas without any of these rewrites it is 26.14s.

Some of the changes that were made to accommodate
these new transformations augmented the state structure
by (i) adding a replicated boolean field to mark that the
entire sub-tree rooted at the state’s operator will be repli-
cated on all nodes, by (ii)extending the partitioning struc-
tural property to include also a mapping of each partition to
streams/nodes7 and (iii) marking whether the partitioning
property is partial or not.

6. TRANSACTIONS IN HADOOP
Vectorwise transaction management is described in [12],

and consists of the following elements:
• as described in Section 3, updates (insert,modify,delete)

are administered as differences, stored in a Positional
Delta Tree (PDT) that is kept for each table (partition)
in RAM. Not all updates go to PDTs, large inserts to
unordered tables are appended directly on disk.
• PDTs can be stacked (differences on differences on ..

on a table). Isolation is provided by sharing among all
queries a slow-moving large Read-PDT that contains
direct differences to a persistent table and stacked on
that a smaller Write-PDT that contains differences to
the Read-PDT. When it starts, a transaction creates
an empty private Trans-PDT stacked on top it all.
• while a transaction runs, it gathers changes w.r.t. the

transaction start in the Trans-PDT. This provides snap-
shot isolation, since commits by concurrent transac-
tions make a copy-on-write of the master Write-PDT.
If such a situation occurs, the old master Write-PDT
is freed as soon as all transactions referencing it finish.
• when a transaction commits, its Trans-PDT is serial-

ized to the global database state, which may have ad-
vanced in the meantime. PDT serialization not only
transforms the Trans-PDT contents but implements
optimistic concurrency control as it will detect write-
write conflicts at the tuple granularity. Such conflicts,
if present, force the transaction to abort.
• during commit, which happens atomically (globally

locked), the serialized Trans-PDT is written into a
Write Ahead Log (WAL) for persistence, and its changes
are propagated into the master Write-PDT; this makes
the system reach the new database state that new in-
coming transactions will see. The changes from Write-
PDT are propagated to the Read-PDT when the size
of the Write-PDT reaches a certain threshold.

Vectorwise uses a single, global, WAL that is also used to
log other meta-data, such as DDL commands, the creation
and deletion of blocks in column files, and changes to the
contents of MinMax indexes.

Distributed Transactions in VectorH. We now summa-
rize how VectorH builds on this for distributed transaction
management. Since the PDTs store all committed updates
in RAM and grow over time, holding them in memory on all
nodes would not scale. Rather than a single WAL, VectorH
uses table partition-specific WALs, and only the node that is
responsible for a table partition (see Sections 3 and 4) reads

7Was needed to ensure correctness in situations where re-
sponsibilities change over time or where the number of
threads allocated to a query does not match the number
of table partitions. This also has the added benefit of be-
ing flexible in concurrency scenarios, i.e. #partitions is not
strongly tied to parallelism level



this WAL at startup, keeps the respective PDTs in memory,
and writes to it as part of the commit sequence. Update
queries get a distributed query plan that ensures that each
table partition is updated at its responsible node, and hence
modifies PDTs on the right node, or if applicable, performs
HDFS appends to the right datanode.

VectorH introduces 2PC (2-Phase Commit) to ensure ACID
properties for distributed transactions, where a much-reduced
global WAL is written to by the session-master, who coor-
dinates transaction processing. The fact that HDFS is a
distributed filesystem, and any worker can read (and poten-
tially write) this global WAL means that the role of session-
master can be taken over by any other worker in case of
session-master failure.

Log Shipping. Not all VectorH tables are partitioned: typ-
ically, small tables will not use partitioning and these can be
scanned and cached in the buffer pool by all workers (there-
fore we consider them as “replicated”). All workers need
to read their PDTs from their WALs on startup (replicated
PDTs) and keep them in RAM in order to ensure that table
scans on these see the latest image. The commit protocol
was extended with log-shipping for these replicated tables,
such that all changes to them are broadcast during trans-
action processing to all workers, who then can apply the
changes (i.e., to the replicated PDTs). We could alterna-
tively have forced a query plan that executes updates on
replicated tables to replicate this work on all nodes. How-
ever, log-shipping consumes less resources and, in the future,
we plan to allow nodes that have a table partition HDFS-
local but are not responsible for it, to also participate in
query processing – for increased parallelism and better load-
balancing. For this functionality, the responsible node will
have to ship its log actions to the (R-1) nodes that also store
the table-partition. Hence, log-shipping is useful. The log
actions sent over the network use the same format as in the
on-disk transaction log, and are applied in a manner similar
to the replay of transaction log on startup, allowing reuse of
existing code and the testing infrastructure.

Update Propagation. The in-memory PDT structures
cannot grow forever. Vectorwise implements a background
process called update propagation that is responsible for flush-
ing PDTs to the compressed column store. Update propa-
gation is triggered based on the size of PDTs as well as the
fraction of tuples that reside in memory. The latter policy
cares for high performance of table scans, which are affected
by merging of the on-disk data with PDT data. The inter-
nal storage of PDTs is column-wise, as this improves mem-
ory access locality and saves bandwidth in table scans. We
found that in practice inserts account for most of the PDT
volume. To make update propagation more efficient, Vec-
torH introduces an algorithm that is able to separate tail
inserts from other types of updates. It also provides a query
option whereby inserts to unordered tables, which normally
would be direct appends, get buffered as PDT inserts, as
for very small inserts this provides better performance (no
IO). In a future release, this decision should become au-
tomatic. Deletes are stored efficiently in PDTs, especially
for contiguous ranges of deleted tuples, while modifies often
concern only one column. Flushing tail inserts only creates
new data blocks and does not modify existing ones. Other
kinds of updates require re-compression of existing blocks
and can be flushed with a lower frequency. In future releases

we will exploit the horizontally fragmented table partitions,
in block chunk files (see Section 3); making the decision for
each chunk-file to either (i) re-write it in a new file with the
PDT changes applied and delete the old one or (ii) to avoid
rewriting it if there are few updates on it – moving these
updates to the new PDTs, rather than fully emptying them.

Referential Integrity. The ability to perform concurrent
updates is provided for schemas with an enforced unique key
or foreign key constraint as well. It must not be allowed for
two transactions to insert the same key if an unique key is
defined. If the table is partitioned and the partition key
is a subset of the unique key, VectorH verifies such con-
straints by performing node-local verification only. Foreign
key constraints also prohibit inserting keys that do not ex-
ist in the referenced table or have been concurrently deleted
from the referenced table. If one of the involved tables is
non-partitioned (i.e. replicated), typically the smaller refer-
enced side, all nodes have a replica of committed PDTs and
it is possible to find possible conflicts if all nodes execute the
verification. If both tables are partitioned, and co-located
at their responsible nodes, VectorH again performs quick
node-local verification. The default policy for integrity con-
straints that cannot be checked without communication is
to reject concurrent updates – though this policy may be
refined in a future release. However, this policy covers all
typical cases, as it is the most natural to partition data on
the primary key and the foreign key referencing it.

MinMax Indexes. MinMax indexes are small table sum-
maries kept for each table partition; it conceptually divides
a table in a limited number of large tuple ranges, where
for each range it keeps the Min and Max value of each col-
umn. Whereas ORC and Parquet store this information
inside their file format, VectorH stores this information sep-
arately as part of the WAL. The rationale is that MinMax
information is intended to help prevent data accesses, there-
fore it is better to store it separately from that data. Because
on VectorH only the responsible nodes have this information,
yet during query optimization this information is consulted
(e.g. by the Parallel Rewriter), a MPI network interface
was developed to allow MinMax indexes to be consulted re-
motely. This interface was engineered such that it is possible
to resolve all MinMax information needed for an entire query
(which may involve multiple selection predicates on multiple
tables) in a single network interaction. MinMax information
is relatively easy to maintain: deletes are ignored, and for
inserts and modifies the Min and Max extremes can just be
widened using the new values, without need to scan the old
values in the table. MinMax indexes are rebuilt from scratch
as part of update propagation, which happens in distributed
fashion in VectorH already.

7. CONNECTIVITY WITH SPARK
Vectorwise has a vwload loader utility for bulk-loading. It

provides a range of features enabling users to load from a
variety of input files and handle errors in a flexible way. For
example, it allows to specify custom delimiters, load only
a subset of columns from the input file, perform character
set conversion, use custom date formats, skip a number of
errors, log rejected tuples to a file, etc. VectorH extends
vwload with a capability to load data from HDFS in parallel.
To achieve high efficiency its functionality was moved into a
vwload operator that runs directly inside the VectorH server.
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Spark-VectorH Connector. SparkSQL [3] is a module
built on top of Apache Spark that enhances it with relational
processing capabilities. It has seen increasing popularity
among data scientists because of its versatility and tight in-
tegration with various systems from the Hadoop ecosystem,
Parquet, Avro or Hive to name a few. In early 2015, its Data
Source API was released, providing users with the ability to
develop their own data source that can export data into
SparkSQL, but that can also ingest data from SparkSQL
into another database system.

For this connector some new operators were needed in
VectorH: ExternalScan is an operator that is able to process
binary data coming from multiple network sockets (in paral-
lel) and ExternalDump that is able to output binary data in
parallel through network sockets. Using these operators, we
were able to implement (i) the insert() and the (i) build-
Scan() methods of the BaseRelation interface exposed by
the Data Source API. A prerequisite for improved perfor-
mance was to implement our own VectorH RDD which ex-
tended Spark’s RDD (Resilient Distributed Dataset) inter-
face. This new RDD has exactly as many partitions as Ex-

ternalScan/ExternalDump operators and overrides the get-
PreferredLocations() method in order to specify the affin-
ity of each RDD partition to the location (hostname) of its
corresponding ExternalScan/ExternalDump operator. Con-
sequently, we instruct Spark’s scheduler where to process
those VectorH RDD partitions to get local Spark-VectorH
transfers. Finally, we add a NarrowDependency between the
VectorH RDD and its parent RDD that defines the mapping
between parent RDD partitions and VectorH RDD partitions,
using an algorithm similar to Hopcroft-Karp’s matching in
bipartite graphs. Figure 6 shows an Input RDD with 5 par-
titions mapped to 2 VectorH ExternalScan operators on 4
nodes. Each input partition has an affinity to exactly two
nodes (e.g. HDFS blocks in a scenario where replication is
set to R=2). The dashed arrows represent these affinities,
the solid arrows represent assignments that respect affin-
ity, while the dot-dash arrow represent assignments that are
forced to ignore affinity information (and therefore possibly
incur network communication).

We are currently able to ingest data into VectorH com-
ing from arbitrary Spark sources: files stored in formats like
Parquet, Avro, ORC, etc, but also perform complex com-
putation in Spark and only load the transformed data into
VectorH. Furthermore, a SparkSQL user can perform com-
putations in Spark on data read (and possibly filtered) from
VectorH. A benefit of loading data into VectorH from Spark
is that Spark(SQL) creates one RDD partition per input
HDFS block. In scenarios where VectorH and Spark run on
the same set of nodes, we can instrument assignments in
such a way that all blocks are read locally with short-circuit

HDFS reads. This is in contrast with the standard vwload

utility, which typically reads remote blocks over HDFS.

Performance. We tested loading 650GB in 72 CSV input
files with 10 uniformly distributed integer columns into Vec-
torH on the same 6-node cluster used for the experiment in
Figure 5. Using the vwload utility this takes 1237 seconds.
However, by distributing the CSV input files in HDFS such
that each node has 12 of them local and tweaking with the
parameter order in vwload to make the VectorH load oper-
ators only read local files, this is reduced to 850 seconds.
Using the Spark-VectorH Connector, this works out-of-the-
box in 892 seconds, which is impressive given that the data
is read and parsed in a different process.

8. EVALUATION IN TPC-H SF1000
We evaluated the performance of VectorH on a Hadoop

cluster on the TPC-H dataset benchmark scale-factor 10008

and compare it with the latest version of Impala, Apache
Hive, HAWQ and SparkSQL. The cluster consists of 10 nodes
with Hadoop 2.6.0 (Cloudera Express 5.5.0) installed. One
node runs runs the Hadoop namenode and other services
(Cloudera Manager, etc), so we used the remaining 9 ma-
chines for the SQL-on-Hadoop experiments. The nodes all
have two Intel Xeon E5-2690 v2 CPUs, at 3.00GHz, totaling
20 real cores (40 hyper-threading) and have 256GB RAM
(1866 MT/s). Each node has a 10Gb Ethernet card, 24
magnetic disks of 600GB (2.5inch 10K RPM) one holding
the OS (CentOS 6.6) and the others for data/HDFS.

VectorH. We tested a pre-release version of VectorH 5.0,
built with Intel MPI 5.1.1. Our DDL resembles that used
in previous audited TPC-H runs of Vectorwise (Actian Vec-
tor): it declares all primary and foreign keys, except for
a PK on lineitem. Clustered indexes are defined for re-

gion and part on their primary keys; orders is clustered
on o_orderdate, and lineitem, partsupp and nation are
clustered on their foreign keys l_orderkey, ps_partkey and
n_regionkey, respectively. We also partition lineitem and
orders on l_orderkey and o_orderkey respectively, as well
as part and partsupp on p_partkey and ps_partkey respec-
tively, as well as customer on c_custkey This partition-
ing scheme, which in all cases uses 180 partitions, means
that joins between lineitem and orders as well as part

and partsupp are co-located mergejoins. The clustered in-
dexes cause selections on date (of any kind) to enable data
skipping thanks to MinMax indexes. Total data size was
327GB (in between Parquet at 347GB and ORC at 327GB
– both using snappy compression), and thus I/O plays no
role. VectorH is CPU-bound on TPC-H, though in Q16 we
measured 45% network cost, in Q2,5,10,14,15 around 30%
and in Q13,20,22 around 20%, caused by exchange operators
with all-to-all communication.

Impala. We tested Impala 2.3 with the official Cloudera
TPC-H queries9, which are more recent than those used
in [8]. lineitem and orders were partitioned by l_shipdate

and o_orderdate, respectively, to trigger Impala’s partition

8This evaluation does not represent an official
score, is not audited, and we omit overall TPC-
H metrics. All DDLs and SQL queries are at:
https://github.com/ActianCorp/VectorH-sigmod2016
9github.com/cloudera/Impala/blob/
34dc5bd210ddb7af23735f831033d769b0134821/testdata/
workloads/tpch
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Hawk Spark Impala Hive

VectorH 1.5 1.14 3.16 0.17 1.94 0.31 2.75 1.31 11.11 1.21 1.69 0.34 3.66 0.83 1.63 1.68 1.24 0.99 1.32 2.15 1.48 2.84

HAWQ 158.2 21.46 32.06 38.21 36.38 20.19 44.74 48.38 766.4 32.97 12.48 31.75 27.97 19.47 31.58 14.17 173.2 87.08 24.82 42.84 84.7 29.44

SparkSQL 155.4 74.98 62.38 68.27 146.5 5.1 180.2 174.6 264.0 56.62 30.28 66.97 47.65 6.92 11.16 33.81 244.9 254.7 24.89 31.56 1614 91.18

Impala 585.4 81.81 167.7 163.18 242.5 1.81 369.0 276.2 1242.9 69.97 35.04 45.67 180.8 13.95 15.19 47.52 581.53 1234 714.7 74.25 880.8 34.81

Hive 490.1 63.57 266.6 59.08 DNF 63.63 721.8 625.6 1077 230.5 246.1 65.78 140.7 53.23 556.5 92.51 711.7 454.5 1010 100.5 247.7 81.11

after executing updates: Hive: RF1=34s RF2=112s GeoDiff=138.2% - VectorH: RF1=17.8s RF2=8.4s GeoDiff=102.8%

VectorH 1.68 0.94 3.21 0.23 1.9 0.27 2.74 1.4 11.62 1.21 1.44 0.37 3.9 0.81 1.57 1.64 1.27 0.95 1.5 2.25 1.78 2.82

Hive 608.4 80.8 335.7 205.4 DNF 128.0 690.7 719.8 1150 334.4 218.7 170.5 143.8 130.7 596.7 101.4 891.2 594.6 1167 153.3 275.6 67.85

Figure 7: Table: TPC-H SF1000 results (seconds). Chart: How many times faster is VectorH?

pruning. In Q19 predicate pushdown is not working, which
appears to be a known issue.

Hive. We tested Apache Hive 1.2.1 using all available per-
formance optimizations such as the Tez execution engine,
vectorization, predicate pushdown, cost-based optimizer and
correlation optimizer [13]. We used ORC file with Snappy
compression. Partitioning with bucketing allows Hive to use
local joins and improves performance of a number of queries.
The tables are bucketed by the same keys as in the VectorH
schema, which leads to the same co-locations. We tuned
Tez and YARN, so the number of containers is equal to the
number of cores and all RAM is used. Also, we tuned the
split size: one mapper is scheduled per container, so the map
phase ends in a single wave. The reduce phase uses Hive’s
auto reducer parallelism feature.

We found some problems: Q5 did not finish in 2 hours,
and in Q17 the correlation optimization did not trigger, so
lineitem gets scanned twice. Finally, we found that decimal
types in columns such as l_extendedprice, l_discount and
l_tax are much slower than 32-bit floats; however we used
decimals to be fair with the other systems and because the
rounding errors inherent to floating point arithmetic are not
acceptable in business queries on monetary values.

HAWQ. We tested HAWQ 1.3.1, with 10 segments per
node, each with 21GB vmem limit, 12GB for work memory,
6GB for query statements, 256MB shared buffers; merge join
optimizations were also enabled. The table schemas were
taken from Pivotal10, in which Parquet storage with snappy
compression for the LINEITEM and ORDERS tables is used.
We tried to further improve the performance by partition-
ing LINEITEM and ORDERS on dates with 1 month intervals,
but this just slowed down many queries.

SparkSQL. We tested SparkSQL 1.5.2 with Parquet stor-
age and snappy compression, and partitioned on o_orderdate

and l_shipdate. SparkSQL was configured to cache tables
in RM when possible. Most queries had to be re-written
to avoid IN/EXISTS/NOT EXISTS subqueries. Also, some
of the queries generated Cartesian Products and had to be
manually rewritten to explicitly define the join order.

Results. The total database sizes achieved are 340GB (ORC),
347GB (Parquet) and 364GB (VectorH); showing that ap-
plying general-purpose compression to all data (ORC and
Parquet use Snappy), which adds significant decompression
cost to all table scans, does not provide much extra space

10github.com/pivotalguru/demos/tree/master/TPC-
H%20Benchmark

savings over doing this only for non-dictionary compressed
string columns (VectorH uses LZ4 in this case). VectorH
provides interactive performance on TPC-H and is at least
one order of magnitude faster than the competition, but
sometimes two or even three. HAWQ has the richest physical
design options, and is a bit faster than the other competitors
(nearest is SparkSQL). We attribute the large difference to
VectorH to its PostgreSQL-based query engine, which can-
not compete with a modern vectorized engine in terms of
CPU efficiency (e.g. see Q1). Impala performance mostly
suffers from its single-core join and aggregation processing.

Impact of Updates. Apart from VectorH only Hive al-
lows updates; this results behind-the-scenes in additional
delta tables for deletions, insertions, and modifications that
must be merged transparently during all subsequent queries.
This merging can have a cost, which we measure by com-
paring the geometric mean of the 22 queries before and after
(“GeoDiff”) the TPC-H refresh functions RF1 (inserts) and
RF2 (deletes). Hive query performance after these updates
deteriorates to be 38% slower than before. In VectorH, the
GeoDiff is 2.8%, which is in range of noise. Therefore, thanks
to PDTs, query performance remains unaffected by updates.

9. RELATED WORK
VectorH builds on previous work in high-performance vec-

torized query engine [27], parallel query optimization using
Xchg operators [2], the preceding Vectorwise MPP project [7],
and a study into creating an elastic DBMS in YARN [5].

The Hadoop formats ORC and Parquet, borrow some
ideas from Vectorwise’s PFOR, PFOR-DELTA and PDICT
compression schemes [28], but are also influenced by Google’s
Dremel [18] which popularized a nested object format –
nested columnar formats as these allow fast mergejoin-like
navigation, and putting multiple tables in one file makes co-
location easy in distributed environments. An interesting
future direction is to use the join-index update algorithms
described in the Positional Delta Trees thesis [11] to support
updates on such nested columnar formats efficiently. Our
micro-benchmarks as well as source-code inspection of the
ORC and Parquet readers across the tested systems found
these to be unnecessarily inefficient, in their implementation
of skipping as well as decompression (e.g., routine use of ex-
pensive general-purpose compression such as Snappy as well
as tuple-at-a-time bitwise value decoding instead of doing so
in vectorized manner exploiting SIMD) [25].

VectorH is the first SQL-on-Hadoop system that instru-
ments HDFS block placement to ensure co-located table par-



titions even as HDFS block distribution evolves over time
– though the idea of instrumenting HDFS was proposed
to co-locate separate column files in [9]. HAWQ [6] has
in common with VectorH that it is a SQL-on-Hadoop sys-
tem that evolved from an analytical database product (i.e.
Greenplum). It provides richer SQL feature support and a
more mature optimizer [22] than the “from-scratch” efforts
SparkSQL[3], Impala [24] and Hive [13]. However, HAWQ
cannot do deletes and modifications to HDFS-resident data
as it lacks a differential update mechanism like PDTs, and
while all other tested systems can deal with failing nodes
quite transparently, manual segment recovery is needed in
HAWQ. Our performance tests with these competing sys-
tems conform with those in [8], though the newer versions
of Hive and Impala we tested need fewer reformulated SQL
queries to run TPC-H, showing optimizer progress.

Impala shares certain virtues of VectorH, such as out-of-
band YARN integration through its Llama component [16],
and a modern query engine – in its case using JIT com-
pilation [24]. Here, each operator is compiled in isolation
and passes tuple buffers from its child-, and to its parent-
operators in the pipeline, on each next() call. Similar to vec-
torization, these next() calls are thus amortized over many
tuples, and intermediate data is stored in memory – poss-
sibly CPU cache resident. Impala’s operator-template-based
JIT compilation is much easier to write, test and maintain
than the more efficient data centric compilation proposed
in HyPer [19] that fuses all operators in a pipeline into a
single tight loop, avoiding in-memory materialization of in-
termediates – these stay in CPU registers. Further, Impala
does not have co-located table partitioning, or control over
HDFS placement, regularly suffers from low-quality query
optimization, and lacks multi-core parallelism.

Recently, an early version of VectorH 11 was benchmarked
on TPC-H SF100 against a distributed version of HyPer [21],
that proposes full communication multiplexing, where all
threads funnel their outgoing data through a single multi-
plexer, to spread the data according to destination and push
it onto a high-speed RDMA network. The experimental re-
sults differ from our measurements here due to the small
dataset and early demo version of VectorH used, yet such
work in the direction of network shuffling optimization is
of immediate interest for VectorH, whose scalability sweet-
spot we soon intend to improve from tens to hundreds of
machines. We did not benchmark against distributed HyPer
here because it does not work in Hadoop – where high-end
RDMA network hardware is seldomly available.

10. CONCLUSION
VectorH is a new SQL-on-Hadoop system built on the

fast analytical Vectorwise technology. It raises the bar in
SQL-on-Hadoop systems in terms of mature SQL support on
many dimensions, elasticity in full cooperation with YARN,
updatability powered by Positional Delta Trees (PDTs) and
absolute performance. In our TPC-H evaluation against
Impala, Hive, HAWQ and SparkSQL on TPC-H, VectorH
proved to be 1-3 orders of magnitude faster, thanks to a
combination of lightweight compression, effective MinMax
skipping, vectorized execution, data partitioning and clus-
tered indexing, control over HDFS block locality, a well-

11The development code-name of VectorH was“Vortex”– this
name is used to identify the system in [21].

tuned query optimizer and efficient multi-core parallel exe-
cution.

In the future, we aim to integrate elements of the Vec-
torH data layout in existing open-source Hadoop formats.
For the integration of VectorH in the Hadoop ecosystem be-
yond HDFS and YARN, the focus is on extending the Spark-
VectorH connector into a seamless external tables, UDF and
query pushdown facility integrated with Spark.
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[21] W. Rödiger, T. Mühlbauer, A. Kemper, and T. Neumann.
High-speed query processing over high-speed networks.
PVLDB, 9(4), 2015.

[22] M. A. Soliman et al. Orca: a modular query optimizer
architecture for big data. In SIGMOD, 2014.
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Appendix

For the perusal of the reader, we provide a graphical performance profile for the SF1000 evaluation by VectorH of
TPC-H Q1. This query has a simple plan: Scan of lineitem followed by Select that evaluates a date constraint (99% of
tuples qualify) then performs computations in a Project on l_tax, l_discount, l_extendedprice etc. followed by GROUP
BY aggregation in Aggr which produces just 4 groups.
This query is parallelized by putting a DXchgUnion (DXU 180:1) on top and then aggregating again.
Between the operators we see arrows with the amount of produced tuples plotted. In the detail-boxes for each operator we
also see the amount of tuples going in and out of the operator, as well as the time spent evaluating the operator itself (time)
and all time spent in the operator and its children together (cum time).
Below the DXU there are 180 threads, above just one. The parallel operations in the profile show for each thread the time,
cum time and number of produced tuples, in a graph where on the X-axis every point is a thread (notation Nxx@yy means:
node xx, thread yy). Here we see that the query spends most time in the lower Aggr, Project and MScan, which is expected,
and there is a slight load balancing problem: cum time in the parallel Aggr varies between 2.95G cycles and 3.64G cycles
(20%). Still, the overall performance penalty for this is less than 15%.

Receive:DXU131072@121
time = 5.4 M (0.15%)

cum_time = 3.64 G (99.95%)
consumer_wait = 3.64 G (99.80%)

active_time = 3.64 G
in = 720 out = 720

hiMem = 548.76 K (1.56%)
tuple_width = 80 rate = 46.26 KB/s

Send:DXU131072 on180threads on 9nodes
time = 222.52 K .. 3.87 M (0.11%)

cum_time = 2.95 G .. 3.64 G (99.88%)
producer_wait = 41.24 K .. 3.43 M (0.09%)

active_time = 187.99 K .. 3.59 M
in = 4 out = 4

hiMem = 544.67 K (1.79%)
build = 266.5 K .. 11.52 M (49.48%)

est_cost = 600   est = 1/2754 x
tuple_width = 80 rate = 1.21 MB/s

720 est = 1/120 x

Aggr(DIRECT)@122
time = 1.49 M (0.04%)

cum_time = 3.64 G (99.99%)
active_time = 3.64 G

in = 720 out = 4
hiMem = 241.41 K (0.69%)
build = 22.28 M (95.70%)

est_cost = 1.23 T est = 825085 x
tuple_width = 80 rate = 263.15  B/s

720

As(__VT_1_0_5F12_1)@123
time = 197.54 K (0.01%)

cum_time = 3.64 G (99.99%)
active_time = 3.64 G

in = 4 out = 4
hiMem = 131.11 K (0.37%)

build = 49.41 K (0.21%)
tuple_width = 80 rate = 263.14  B/s

4 est = 1 x

Project@124
time = 34.8 K (0.00%)

cum_time = 3.64 G (99.99%)
active_time = 3.64 G

in = 4 out = 4
hiMem = 16.28 K (0.05%)
build = 175.47 K (0.75%)

est_cost = 18   est = 1/1933 x
tuple_width = 104 rate = 342.08  B/s

4 est = 1 x

Sort@125
time = 199.97 K (0.01%)

cum_time = 3.64 G (100.00%)
active_time = 3.64 G

in = 4 out = 4
hiMem = 640 K (1.82%)
build = 777.04 K (3.34%)

est_cost = 270   est = 1/740 x
tuple_width = 104 rate = 342.05  B/s

4 est = 1 x

Aggr(DIRECT) on180threads on 9nodes
time = 1.43 G .. 1.73 G (47.43%)

cum_time = 2.95 G .. 3.64 G (99.78%)
active_time = 2.95 G .. 3.64 G

in = 32,780,299 .. 32,850,346 out = 4
hiMem = 241.41 K (0.79%)

build = 829 K .. 5.26 M (22.62%)
est_cost = 6.86 G est = 4 x

tuple_width = 80 rate = 304.38  B/s

720 est = 1/120 x

Project on 180threads on 9nodes
time = 682.65 M .. 892.23 M (24.45%)
cum_time = 1.5 G .. 1.91 G (52.47%)

active_time = 2.95 G .. 3.64 G
in = 32,780,299 .. 32,850,346 out = 32,780,299 .. 32,850,346

hiMem = 16.28 K (0.05%)
build = 246.63 K .. 2.67 M (11.49%)

est_cost = 99.99 M est = 1/7 x
tuple_width = 45 rate = 1.3 GB/s

5,907,953,675 est = 1 x

Project on 180threads on 9nodes
time = 6.56 M .. 10.89 M (0.30%)

cum_time = 812.42 M .. 1.03 G (28.38%)
active_time = 2.95 G .. 3.64 G

in = 32,780,299 .. 32,850,346 out = 32,780,299 .. 32,850,346
hiMem = 114 K (0.38%)

build = 42.08 K .. 1.96 M (8.42%)
est_cost = 99.99 M est = 11 x

tuple_width = 40 rate = 1.16 GB/s

5,907,953,675 est = 1 x

Select on 180threads on 9nodes
time = 76.89 M .. 99.7 M (2.73%)

cum_time = 805.28 M .. 1.02 G (28.08%)
active_time = 2.95 G .. 3.64 G

in = 33,292,883 .. 33,362,380 out = 32,780,299 .. 32,850,346
hiMem = 16.28 K (0.05%)

build = 66.88 K .. 664.27 K (2.85%)
est_cost = 66.66 M est = 1/1 x

tuple_width = 44 rate = 1.27 GB/s

5,907,953,675 est = 1 x

MScan(_actianSlineitem) on180threads on 9nodes
time = 726.19 M .. 926.8 M (25.39%)

cum_time = 726.19 M .. 926.8 M (25.39%)
active_time = 2.95 G .. 3.64 G

in = 0 out = 33,292,883 .. 33,362,380
hiMem = 537.47 K (1.77%)

build = 2.2 M .. 9.57 M (41.12%)
est_cost = 1.19 G est = 1 x

tuple_width = 44 rate = 1.29 GB/s
IO (7 cols): async: 0/83030, sync: 0/83030

5,999,989,709 est = 1 x

Time:
wall clock: 1.29s

CPU: 3.86 G

Memory:
hi Mem: 265.28 MB

end Mem: 257.32 MB
hi VM: 265.75 MB

end VM: 257.79 MB

Network:
total traffic: 60.62 KB
throughput: 49.34 KB/s

Nodes:
n0: usau-padb-c240-02 @ 3.0 GHz
n1: usau-padb-c240-03 @ 3.0 GHz
n2: usau-padb-c240-04 @ 3.0 GHz
n3: usau-padb-c240-05 @ 3.0 GHz
n4: usau-padb-c240-06 @ 3.0 GHz
n5: usau-padb-c240-07 @ 3.0 GHz
n6: usau-padb-c240-08 @ 3.0 GHz
n7: usau-padb-c240-09 @ 3.0 GHz
n8: usau-padb-c240-10 @ 3.0 GHz

STAGE:scanstate
time = 12.9 K (0.00%)

STAGE:parse
time = 1.81 M (0.05%)

STAGE:rewrite
time = 78.19 M (2.02%)

RULE:annotate_the_tr time = 51.82 M (66.3% of rewrite)
RULE:parallelism_ time = 16.93 M (21.7% of rewrite)
RULE:install_tid_ran time = 6.01 M (7.7% of rewrite)

RULE:introduce_and_p time = 668.48 K (0.9% of rewrite)
RULE:derive_scan_ran time = 375.72 K (0.5% of rewrite)

RULE:introducing_lat time = 354 K (0.5% of rewrite)
RULE:dead_code_elimi time = 349.3 K (0.4% of rewrite)
RULE:set_up_exchangi time = 339.54 K (0.4% of rewrite)
RULE:detecting_which time = 273.17 K (0.3% of rewrite)
RULE:push_aggr_throu time = 268.53 K (0.3% of rewrite)
RULE:prepare_ranges_ time = 216.36 K (0.3% of rewrite)
RULE:handling_indice time = 122.19 K (0.2% of rewrite)
RULE:annotate_cols_w time = 83.82 K (0.1% of rewrite)
RULE:add_explicit_de time = 57.1 K (0.1% of rewrite)

RULE:remove_those_tr time = 47.09 K (0.1% of rewrite)
RULE:rewrite_avg_int time = 22.81 K (0.0% of rewrite)
RULE:eliminate_compl time = 18.82 K (0.0% of rewrite)
RULE:force_partition time = 12.46 K (0.0% of rewrite)
RULE:transform_'in'_ time = 12.07 K (0.0% of rewrite)

RULE:apply_sysscan_i time = 10.28 K (0.0% of rewrite)
RULE:replace_the_fir time = 9.98 K (0.0% of rewrite)
RULE:extra_checks_ time = 3.04 K (0.0% of rewrite)
RULE:fix_estimates_ time = 2.8 K (0.0% of rewrite)

RULE:rewrite_modify_ time = 2.26 K (0.0% of rewrite)
RULE:secondary_index time = 1.74 K (0.0% of rewrite)
RULE:add_explicit_en time = 1.53 K (0.0% of rewrite)
RULE:propagate_scan_ time = 1.41 K (0.0% of rewrite)

STAGE:broadcast_plan
time = 86.95 M (2.25%)

STAGE:build
time = 23.57 M (0.61%)

STAGE:execute
time = 3.68 G (95.43%)

STAGE:profile
time = 52.01 M (1.35%)

STAGE:free
time = 40.97 M (1.06%)


