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Summary. In this chapter we focus on the design of real–valued EDAs for the task
of numerical optimization. Here, both the problem variables as well as their encod-
ing are real values. Concordantly, the type of probability distribution to be used
for estimation and sampling in the EDA is continuous. In this chapter we indicate
the main challenges in this area. Furthermore, we review the existing literature to
indicate the current EDA practice for real–valued numerical optimization. Based on
observations originating from this existing research and on existing work in the liter-
ature regarding dynamics of continuous EDAs, we draw some conclusions about the
feasibility of existing EDA approaches. Also we provide an explanation for some ob-
served deficiencies of continuous EDAs as well as possible improvements and future
directions of research in this branch of EDAs.

1 Introduction

One of the main impulses that triggered the emergence of the EDA field has
been the research into the dynamics of discrete GAs. EDAs provide an elegant
way of overcoming some of the most important shortcomings of classical GAs.
In general, for optimization to proceed efficiently, the induced search bias of
the optimizer must fit the structure of the problem under study. From this
point of view, the success of the EDA approach in the discrete domain is
rather intuitive. Because probability distributions are used to explicitly guide
the search in EDAs, the probability distribution itself is an explicit model
for the inductive search bias. Estimating the probability distribution from
data corresponds to tuning the model for the inductive search bias. Because
a lot is known about how probability distributions can be estimated from
data (Buntine, 1994; Lauritzen, 1996) the flexibility of the inductive search
bias of EDAs is potentially large. In addition, the tuning of the inductive
search bias in this fashion also has a rigorous foundation in the form of the
well–established field of probability theory.
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Estimating probability distributions, especially in the discrete case, is very
closely related to the modeling of dependencies between random variables,
specific settings for these random variables, or both. Such dependencies are
clearly embodied in the use of factorized probability distributions (Edwards,
1995; Lauritzen, 1996; Friedman and Goldszmidt, 1996). As a result, the pro-
cessing of these dependencies by the EDA in the discrete domain is also ex-
plicitly ensured under the assumption of a proper estimation of the (factor-
ized) probability distribution. Dependencies in the discrete domain match
exactly with the notion of linkage information or, synonymously, the struc-
ture of the problem. Hence, the competent estimation of probability distribu-
tions in EDAs allows these algorithms to adequately perform linkage learn-
ing and to ensure that such necessary conditions as proper building block
mixing (Thierens and Goldberg, 1993) meets with the positive effects of the
schema theorem (Holland, 1975) and the building block hypothesis (Gold-
berg, 1989; Goldberg, 2002a). Although clearly more computational effort
is required to tune the inductive search bias by estimating the probability
distribution, the payoff has been shown to be worth the computational in-
vestment (e.g. polynomial scale–up behavior instead of exponential scale–up
behavior) (Pelikan, Goldberg and Cantú-Paz, 1999; Etxeberria and Larrañaga,
1999; Pelikan and Goldberg, 2001; Pelikan and Goldberg, 2003).

The use of factorized probability distributions in an EDA works very well
in discrete domain. In general, the EDA approach can be motivated perfectly
from the requirement of fitting the inductive search bias to the structure of
the optimization problem at hand. It is now interesting to investigate how
the approach carries over to the continuous domain. The main important
questions to answer are 1) what does the model (i.e. probability distribution)
for the inductive search bias look like in the continuous domain and 2) can
this model be adapted properly to fit the structure of the problem?

The remainder of this chapter is organized as follows. First, in Section 2
we discuss real–valued numerical optimization problems and point out which
sources of problem difficulty typically exist. Next, in Section 3 we consider
the EDA approach in the continuous domain and show that in theory real–
valued EDAs can be very efficient numerical optimizers. In Section 4 we then
present a literature overview that describes the current state of the continuous
subfield of EDAs. Subsequently, in Section 5 we reflect on the dynamics of the
currently available real–valued EDAs in more depth. We also discuss whether
and how improvements can be made over current approaches. Finally, we
summarize and conclude this chapter in Section 6.

2 Problem difficulty

The degree of difficulty of a numerical optimization problem is in a certain
sense unbounded. Because the search space is by definition infinitely large, the
number of substructures, i.e. the number of local optima and areas with var-
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ious types of dependency, can also be infinite. The structure of a continuous
problem can most generally be seen as the composition of its contour lines.
The shape of these contour lines is unbounded and there are infinitely many
of them. Hence, anything is possible. Fortunately, we are typically not inter-
ested in all possible problems. We assume that there is some form of “logical”
structure, similar to assuming in the binary domain that the function is not
a needle–in–a–haystack function. Hence, the problem structure we typically
expect to be asked to tackle is a composition of simpler structures such as
local optima and some form of dependency between the problem variables.

Still, even assuming “simpler” substructures are present that we can tailor
our EDA to, it should be noted that in the continuous case the actual dif-
ficulty of the problem can still be arbitrary in the sense that the number of
substructures that can be present in the problem is arbitrarily large, even if
the problem has only one variable. This arbitrary problem difficulty in terms
of presence of multiple substructures throughout the search space will play
important role in evaluating the sensibility of the EDA approach as a whole
as well as existing actual EDA instances in the continuous domain.

At the most general level the (sub)structures that are typically to be ex-
pected in the continuous domain are similar to the ones in the discrete domain.
The two basic substructures are multi–modality and dependency. The main
difference with the discrete case is that in the continuous case these structures
can also be viewed upon from a different perspective, namely one that entails
slopes and peaks (i.e. hills or valleys). Since nothing is said about the number
of slopes and peaks or their actual configuration with respect to orientation
and location, this essentially allows for the construction of the same search
spaces with local optima (i.e. multimodality) and dependencies.

Various sources of problem difficulty in continuous spaces are often ex-
plained most effectively by the design of an actual problem and its visualiza-
tion. For the purpose of illustration of problem difficulty and because the dis-
cussion of the results obtained with various continuous EDAs is often related
to existing benchmark problems, we now describe a set of five optimization
problems. These problems represent a variety of difficulties in numerical op-
timization. The definitions of the numerical optimization problems are given
in Table 1. For an intuitive impression of the characteristics of the problems,
two–dimensional surface plots (with the exception of the readily–imaginable
sphere function) are provided in Figure 1.

Sphere

The sphere function is probably the most standard unimodal benchmark prob-
lem for numerical optimization. It involves the minimization of a single hy-
perparabola. The function is unimodal, has no dependencies and has smooth
gradient properties. The sphere function is often used to study convergence.
The minimum value for any dimensionality is 0 which is obtained if all yi are
set to a value of 0.
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Name Definition Range

Sphere Minimize
∑l−1

i=0 y2
i

yi ∈ [−5, 5]

(0 ≤ i < l)

Griewank
Minimize 1

4000

∑l−1
i=0(yi − 100)2−

∏l−1
i=0 cos

(

yi−100√
i+1

)

+ 1

yi ∈ [−600, 600]

(0 ≤ i < l)

Michalewicz Minimize−∑l−1
i=0 sin(yi)sin

20
(

(i+1)y2
i

π

) yi ∈ [0, π]

(0 ≤ i < l)

Rosenbrock Minimize
∑l−2

i=0 100(yi+1 − y2
i )2 + (1 − yi)

2
yi ∈ [−5.12, 5.12]

(0 ≤ i < l)

Summation

Cancellation

Maximize 100/(10−5 +
∑l−1

i=0 |γi|)
where γ0 = y0, γi = yi + γi−1

yi ∈ [−3, 3]

(0 ≤ i < l)

Table 1. Numerical optimization test problems.

Griewank

Griewank’s function is a function with many local optima. Basically, it is a
parabola superimposed with a sine function to obtain many local optima.
As a result, if large steps are taken in Griewank’s function, the so observed
coarse–grained gradient information will quickly lead to a region close to the
minimum of the parabola. However, if only small steps are taken, the many
local optima will prevent efficient optimization of this function, even when a
random restart strategy is used. Furthermore, for a fixed precision, Griewank’s
function becomes easier to optimize as l increases if large steps are taken. The
minimum value for Griewank’s function for any dimensionality is 0, which is
obtained if all yi are set to a value of 100.

Michalewicz

Michalewicz’s function is also a function with many local optima, albeit to
a lesser degree than Griewank’s function. An important difference is that
Michalewicz’s function has many long channels along which the minimum
value throughout the channel is the same. The gradient information in such
a channel therefore does not lead to the better local optima which are found
at the intersections of the channels. Proper optimization of Michalewicz’s
function is therefore only possible if the channels of equal optimization value
are explored or covered fully to find the intersections. The minimum value
for Michalewicz’s function depends on its dimensionality. A description of its
solutions at which the minimum value is obtained for any dimensionality has
not been reported in the literature.
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Fig. 1. Two–dimensional surface plots for four numerical optimization problems.
The ranges for Griewank’s function were zoomed to get a better indication of the
many local optima. Rosenbrock’s function and the summation cancellation function
are shown on a logarithmic scale for a better impression of their problem features.
Note that the summit of the peak for summation cancellation is actually 107, but
the drawing resolution prohibits accurate visualization thereof.

Rosenbrock

Rosenbrock’s function is highly non–linear. It has a curved valley along which
the quality of the solutions is much better than in its close neighborhood.
Furthermore, this valley has a unique minimum of 0 itself for any dimension-
ality of Rosenbrock’s function, which is obtained if all yi are set to a value
of 1. Rosenbrock’s function has proved to be a real challenge for any numeri-
cal optimization algorithm. The gradient along the bottom of the non–linear
valley is very slight. Any gradient approach is therefore doomed to follow the
long road along the bottom of the valley, unless a starting point is provided
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in the vicinity of the optimum. Furthermore, since the valley is non–linear,
simple gradient based approaches will oscillate from one side of the valley
to the other, which does not result in efficient gradient exploitation. For an
IDEA, capturing the valley in a probabilistic model is difficult, even if all of
the points within the valley are known. The reason for this is that the valley
is non–linear in the coding space.

Summation cancellation

The summation cancellation problem was proposed by Baluja and Caruana
(1995). This optimization problem has multivariate linear interactions be-
tween the problem variables. This should allow algorithms that are capable of
modeling linear dependencies to outperform algorithms that are not capable
of doing so. Furthermore, the degree of multivariate interaction is as large
as possible since each γi in the problem definition is defined in terms of all
yj with j < i. Finally, the optimum is located at a very sharp peak, which
implies that the optimization algorithm needs to have a large precision and
needs to be able to prevent premature convergence in order to reach the global
optimum. The minimum value for this function for any dimensionality is 107,
which is obtained if all yi are set to a value of 0.

3 Optimal EDAs

The definition of an optimal algorithm is subject to a certain viewpoint. In
search and optimization, a common definition of optimality is that the algo-
rithm is capable of finding an optimal solution (Russel and Norvig, 2003). A
more refined definition of optimality in the context of a specific class of opti-
mization problem is that for any problem instance there exists no algorithm
that is able to find the optimal solution faster than the optimal algorithm. The
EDA method is driven mainly by the estimation of a probability distribution.
The estimated probability distribution is meant to approximate the true prob-
ability distribution. The true probability distribution is the one that describes
perfectly the set of the selected solutions in the case of an infinitely large pop-
ulation size. If the method of selection is Boltzmann selection, it can be proved
that the resulting EDA using the true probability distribution is optimal in
the sense that it will indeed converge to the optimal solution (Mühlenbein and
Höns, 2005). Hence, we can call an EDA optimal if the estimated probability
distribution equals the true probability distribution.

Drawing samples from the Boltzmann distribution requires exponential
computation time and hence, the optimal Boltzmann EDA is not a practical
search algorithm. In practice, selection methods such as tournament selec-
tion and truncation selection are commonly used. Without loss of generality,
assume that the goal of the EDA is to minimize fitness. Now, the optimal
probability distribution associated with truncation selection is a distribution
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that is uniform over all solutions y that have a fitness F(y) that is at most
the value of the fitness of the worst selected solution. This essentially corre-
sponds to pruning the search space to only those regions that are at least as
interesting as the currently available worst selected solution. The probability
distribution can be imagined as essentially maintaining exactly all solutions
that have a fitness of at most the value of the fitness of the worst selected
solution. Hence, sampling from this probability distribution entails nothing
more than just returning a single solution from the (infinitely large) set of
maintained solutions.

Now observe the series of the fitness values of the worst selected solution in
subsequent generations. Using truncation selection this series is monotonously
decreasing. Moreover, the series becomes strictly monotonously decreasing if
in generation t all solutions with a fitness at least equal to the worst selected
fitness in generation t − 1 are pruned from the selected solutions. To prevent
obtaining an empty selection set, this additional discarding should not be
done for the solution(s) with the best fitness. Using this slight variation to
the truncation selection scheme the EDA approach with the true probability
distribution will clearly converge to the optimum with probability 1 because
optimal solutions are never discarded from the probability distribution and
the worst selected fitness values strictly decreases every generation.

The size of the search space that is still to be regarded, is encoded in
the probability distribution. Using truncation selection and an infinitely large
population, 100(1 − τ)% of all solutions that make up this remaining search
space are discarded. Hence, the size of the search space still to be explored
is reduced exponentially as a function of the generations passed. In practice
however, we don’t have an infinite population size. Still the use of the optimal
probability distribution is likely to be extremely efficient in terms of the num-
ber of evaluations actually required to find a solution of a certain quality. To
illustrate the potential effectiveness of EDAs in continuous spaces, Figure 2
shows the convergence behavior on three of all optimization problems for a
dimensionality of l = 5 if the optimal probability distribution is known and
used in the EDA. The optimal probability distribution is hard to formalize
analytically, hence the method used uses rejection sampling. In other words,
the method generates random solutions and only accepts those that have a
fitness value smaller or equal to the worst selected solution. For Michalewicz’
function and the summation cancellation function we plotted the difference
with the optimal fitness value to be able to plot their convergence graphs as a
minimization procedure that searches for the minimum value of 0. From the
results in Figure 2 we indeed find extremely efficient optimization behavior.
The fitness improves exponentially fast with the number of evaluations re-
quired. Hence, only extremely few evaluations are actually needed to obtain
close–to–optimal results, regardless of the actual optimization problem. Con-
cluding, in theory, as a result of the solid background, EDAs for continuous
domains work well also next to EDAs for discrete domains as long as the true
probability distribution can be closely approximated.
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Fig. 2. Average convergence behavior (100 runs) of the EDA with true density on
a selection of problems and a dimensionality of l = 5.

In practice we in general do not have access to the optimal probability dis-
tribution. Moreover, in the general sense the optimal probability distribution
is arbitrarily complex as the problem itself can be arbitrarily complicated (see
Section 2). This makes that sampling from the true probability distribution
can take up an arbitrary long time. Hence, to obtain an actual EDA to work
with, we must approximate the probability distribution using practical tech-
niques. In the continuous case, the most common approaches are the normal
probability density function (pdf) or combinations thereof. It is not surprising
that the first EDAs in continuous spaces were based exactly on these common
parametric pdfs. The most important question is of course how the extremely
efficient optimization behavior of the EDA using the true probability distri-
bution changes in the continuous domain if we use approximated probability
distributions instead.

4 An overview of existing EDAs

In this section we provide a literature survey of EDAs for continuous domains.
In Section 4.1 we consider factorized probability distributions. In Section 4.2
we consider mixtures of factorized probability distributions. The majority of
the literature concerning EDAs is based on these two types of probability
distribution. We end with Section 4.3 where we consider other classes of prob-
ability distribution.
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4.1 Factorized probability distributions

Similar to the discrete case, estimating a factorization, typically a Bayesian
one as introduced in the previous chapter, makes sense since at the top level it
assists in finding dependencies between the variables (i.e. the use of a joint dis-
tribution versus the use of separate marginal distributions). The same greedy
arc–addition algorithm and scoring metrics such as BIC metric can be used as
in the discrete case. Note that in the continuous domain the nature or shape
of the dependency depends on the actual pdf that is factorized.

Normal pdf

The first real–valued EDAs used maximum–likelihood estimations of the nor-
mal pdf. The use of the normal pdf was a logical first choice since this pdf is
widely used, relatively simple and unimodal.

Definition

The normal pdf PN
(µi,Σi)(Yi) is parameterized by a vector µi of means and a

symmetric covariance matrix Σi and is defined by

PN
(µi,Σi)(Yi)(y) =

(2π)−
|i|
2

(det Σi)
1
2

e−
1
2 (y−µi)T (Σi)

−1
(y−µi) (1)

Parameter estimation

A maximum likelihood estimation for the normal pdf is obtained from a vector
S of samples if the parameters are estimated by the sample average and the
sample covariance matrix (Anderson, 1958; Tatsuoka, 1971):

µ̂i =
1

|S|

|S|−1
∑

j=0

(Sj)i, Σ̂
i
=

1

|S|

|S|−1
∑

j=0

((Sj)i − µ̂i)((Sj)i − µ̂i)
T (2)

To estimate the conditional pdfs PN (Yi|Yπi
) required when constructing

Bayesian factorizations, let W j be the inverse of the symmetric covariance
matrix, that is W j = (Σj)−1. Matrix W j is commonly called the precision

matrix . It can be shown that for a maximum likelihood estimate of PN (Yi|Yπi
)

the maximum–likelihood estimations in equation 2 can be used (Bosman and
Thierens, 2000b):

P̂N (Yi|Yπi
)(y(i,πi)) =

1

(σ̆i

√
2π)

e
−(yi−µ̆i)

2

2σ̆2
i (3)

where















σ̆i = 1
q

Ŵ
(i,πi)
00

µ̆i =
µ̂iŴ

(i,πi)
00 −P|πi|−1

j=0 (y(πi)j
−µ̂(πi)j

)Ŵ
(i,πi)

(j+1)0

Ŵ
(i,πi)
00
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Properties

The number of parameters to be estimated equals 1
2 |i|2 + 3

2 |i|. Different from
the discrete case, the number of parameters to be estimated therefore does
not grow exponentially with |i| but quadratically.

The density contours of a normal factorized probability distribution are
ellipsoids. Depending on the dependencies modeled by the factorization, these
ellipsoids can be aligned along any axis. If there is no dependency between a
set of random variables, the projected density contours in those dimensions
are aligned along the main axes. In either case, a normal pdf is only capable
of efficiently modeling linear dependencies.

EDAs

The first EDA for real–valued random variables was an adaptation of the
original binary PBIL algorithm. The algorithm uses l normal pdfs, one for each
of the l random variables (Rudlof and Köppen, 1996). To accommodate for
these normal pdfs, the probability vector from the original PBIL algorithm is
replaced with a vector that specifies for each variable the mean and variance of
the associated normal pdf. The means are updated using a similar update rule
as in the original binary PBIL. The variances are initially relatively large and
are annealed down to a small value using a geometrically decaying schedule.
New solutions are generated by drawing values from the normal pdfs for each
variable separately.

A second adaptation of PBIL to the continuous case was introduced by Se-
bag and Ducoulombier (1998). Similar to the approach by Rudlof and Köppen
(1996), they proposed to use a normal pdf for each variable. However, the vari-
ance is now updated using the same update rule as for the mean.

For real–valued random variables, Bayesian factorizations using normal
pdfs were proposed simultaneously by Bosman and Thierens (2000b) within
the probabilistic model–building EA framework and by Larrañaga, Etxeberria,
Lozano and Peña (2000) in a variant of MIMIC that uses normal pdfs, termed
MIMICC, and in the Estimation of Gaussian Network Algorithm (EGNA). As
a first approach, Bosman and Thierens (2000b) used an algorithm by Edmonds
(1967) to find a Bayesian factorization of minimal entropy in which each
variable has at most one parent. Also, the optimal dependency–tree algorithm
used in COMIT and the greedy chain–learning algorithm used in MIMIC were
used (Bosman and Thierens, 2000a; Bosman and Thierens, 2000b). In a later
publication (Bosman and Thierens, 2001a), the BIC metric was proposed in
combination with a greedy factorization–learning algorithm. In the work by
Larrañaga et al. (2000), finding a Bayesian factorization starts with a complete
factorization graph. A likelihood–ratio test is then performed for each arc to
determine whether or not that arc should be excluded from the graph. A
greedy factorization–learning algorithm based on the BIC metric that starts
from the univariate factorization was also used.
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The use of univariate factorizations for real–valued random variables
was studied and compared against the use of Bayesian factorizations by
various researchers (Bosman and Thierens, 2000a; Bosman and Thierens,
2000b; Larrañaga et al., 2000; Bosman and Thierens, 2001a). In these studies,
the use of univariately factorized normal probability distributions was shown
to be inferior to the use of multivariate factorized normal probability distri-
butions for optimization problems that have linear interactions between the
problem variables. Specifically, far better results were obtained on the sum-
mation cancellation function. Although on this particular problem the EDAs
even outperformed evolution strategies (ES), improvement over ES was not
observed on all problems described in Section 2. On both the Michalewicz
and the Rosenbrock function the EDA approach was even strongly inferior
to ES. In general, the EDA approach was observed to have good optimiza-
tion performance on problems with linear dependencies and even on problems
with many local optima, in the likes of the Griewank function, of both lower
and higher dimensionality. However, the EDAs cannot efficiently solve opti-
mization problems with non–linear interactions between their variables. The
main reason is that the interactions that can be modeled using the normal
pdf are just linear. Hence, the structure of the problem is not fit well by the
probability distribution. As a result, points surrounding the optimum get lost
during optimization and the EDA is left only with solutions far away from
the optimum. However, by estimating the probability distribution of these
points with maximum likelihood, the EDA suffers from the drawback that it
disregards gradient information. Instead, it keeps sampling points in the same
area where the current selected solutions are while selection continuously de-
creases the size of this area. The EDA can therefore converge even while on a
slope towards the optimum. Hence, even if the problem is unimodal, the EDA
using maximum–likelihood estimations of the normal pdf can fail in finding
an optimal solution. This happens for instance on the Rosenbrock problem,
even for very large population sizes as is illustrated in Figure 3. The success
rate of the EDA using the maximum–likelihood normal pdf was 0% for both
dimensionalities. Conversely however, if the solutions do continue to surround
the optimum, the use of the maximum–likelihood normal pdf is very efficient
as is for instance the case on the sphere function where the initial variable
ranges are centered around the optimum.

Normal kernels pdf

Definition

The normal kernels pdf is obtained by centering one multivariate normal pdf
at each point in the sample vector and by normalizing the sum of the densities:

PNK

(Σi)
(Yi)(y) =

1

|S|

|S|−1
∑

j=0

PN
((Sj)i,Σi)(Yi)(y) (4)
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Fig. 3. Average convergence behavior (100 runs) of various continuous EDAs on
the Rosenbrock function with a dimensionality of l ∈ {5, 25}. The results shown are
the best results from all test settings: n ∈ {25, 50, 100, 200, 400, 800, 1600, 3200, 6400,

12800}, maximum number of evaluations = 106, number of clusters in mixture dis-
tribution = 5. Rates of success for l = 5: normal pdf 0%, mixture of normal pdfs
72%, normal pdf with variance scaling 100%. Rates of success for l = 25: normal
pdf 0%, mixture of normal pdfs 0%, normal pdf with variance scaling 100%.

Parameter estimation

Deciding how to choose the covariance matrix for each normal pdf is hard.
A maximum–likelihood estimate is undesirable because in that estimate the
variances are zero, corresponding to a density of infinity at the mean of each
normal pdf. Therefore, the variances in the covariance matrix that is used for
each normal pdf in the normal kernels pdf should be set in a different manner.

One way of doing so, is to compute the range of the samples in S in each
dimension and to set the variance in the i–th dimension to a valued based
on the range such that it decreases as the number of samples increases, e.g.
α · rangei/|S|. The value of α controls the smoothness of the resulting density
estimation.

Although formulas exist for the univariate conditional form of the normal
kernels pdf that is required to construct Bayesian factorizations (Bosman,
2003), both their computational complexity and the lack of sensibility of using
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maximum likelihood estimates have prevented the use of such factorizations
in continuous EDAs using the normal kernels pdf.

Properties

The main advantage of the normal kernels pdf is that it has a natural tendency
to fit the structure of the sample vector and is thereby capable of express-
ing complicated non–linear dependencies. A related disadvantage however is
that the quality of the density estimation heavily depends on the value of
α. Intuitively, a larger α results in a smoother fit, but it is hard to predict
beforehand what a good value for α would be. The normal kernels pdf has a
tendency to overfit a sample collection. Without proper model selection and
model fitting, the normal kernels pdf is hard to handle although it may be
relatively fast in its use. One other possibility is to set the variances, or even
covariances, for the normal kernels pdf adaptively. If the adaptation is done
for each normal kernel separately, the resulting approach is equivalent to the
use of evolution strategies (Bäck and Schwefel, 1993). Concluding, the normal
kernels pdf certainly has interesting properties and potential to be used in
IDEAs, but it is likely to be hard to handle when perceived as a manner of
describing the structure of the data in a sample set.

EDAs

The normal kernels pdf was initially tried in an EDA by Bosman and Thierens
(2000a) (see also (Bosman and Thierens, 2000b; Bosman, 2003)). The range–
based approach based on the α parameter as mentioned above was used to
set the variances of the normal kernels. Fine–tuning α was found to be highly
problem–dependent. Not only is it difficult to set α to a useful value before-
hand, a proper value for α is apt to change during the run of the EDA. Hence,
good results are hard to obtain with this use of the normal kernels pdf.

Normal mixture pdf

Definition

If we take w normal pdfs instead of only a single one or as many as |S|, we
have a trade–off between the cluster–insensitive normal pdf and the cluster–
oversensitive normal kernels pdf. The normal mixture pdf for random variables
Yi is parameterized by w triples that each consist of a mixture coefficient βj

i

a vector of |i| means and a symmetric covariance matrix of dimension |i|× |i|:
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Parameter estimation

A maximum likelihood estimation cannot be obtained analytically for w > 1.
Therefore, as an alternative approach, the EM algorithm (Dempster, Laird
and Rubin, 1977) can be used. The EM algorithm is a general iterative ap-
proach to computing a maximum–likelihood estimate. For the normal–mixture
pdf, an EM–algorithm first initializes each mixture coefficient, all means and
all covariance matrices to certain values and then updates all of these values
iteratively until the algorithm converges or until a maximum number of itera-
tions has been reached. We refrain from presenting a derivation of the update
equations and refer the interested reader to the literature (Dempster et al.,
1977; Bilmes, 1997).

An alternative manner to estimating a normal mixture pdf is to use clus-
tering (Hartigan, 1975). First, the samples are clustered using a clustering
method and subsequently a normal pdf is estimated in each cluster. The
drawback of this approach is that from a probabilistic viewpoint, the resulting
probability distribution estimation is almost certainly not a maximum likeli-
hood estimate. However, the use of clustering does allow for the modeling of
non–linear dependencies between the variables.

Properties

The main advantage of the normal mixture pdf is that it provides a trade–off
between the normal pdf and the normal kernels pdf. The normal mixture pdf
is able to model non–linear dependencies a lot more accurate than when a
single normal pdf is used (see Figure 4 for an example). Although the normal
mixture pdf doesn’t have a flexibility as great as the normal kernels pdf has,
the normal mixture pdf is much easier to handle. The reason for this is that
the only parameter to set is the number of clusters to construct, which is a lot
more transparent than the value of α to set in the case of the normal kernels
probability distribution.

A maximum likelihood approach is available to estimate the normal mix-
ture pdf parameters. However, especially as the number of variables and the
number of mixture components increases, the result using the EM algorithm
becomes unreliable. Similarly, the usefulness of clustering also decreases as the
number of variables increases. Hence, it makes sense to factorize the probabil-
ity distribution so that the probability distribution over all random variables
is a composition of normal mixture pdf estimates for smaller sets of variables.
Furthermore, the EM algorithm is a time–consuming approach. The cluster-
ing approach on the other hand can be quite fast, depending on the clustering
algorithm that is used.

EDAs

Although the required expressions for computing Bayesian factorizations of
the normal mixture pdf have been derived (Bosman, 2003), the resulting for-
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Fig. 4. Top left : A sample vector that contains non–linear dependencies. Top right :
density contours of a product of two one–dimensional normal pdfs (maximum–
likelihood estimate). Bottom left : density contours of a multivariate joint two–
dimensional normal pdf (maximum–likelihood estimate). Bottom right : density con-
tours of two multivariate joint two–dimensional normal pdfs that have been fit
(maximum–likelihood estimate) after the sample vector was clustered.

mulas are rather involved and not efficient for practical use. Concordantly, no
EDA has been reported in the literature as yet that uses such a factorization.

Gallagher, Frean and Downs (1999) proposed an EDA that uses the adap-
tive mixture pdf by Priebe (1994) for each variable separately (i.e. using the
univariately factorized probability distribution). Although their approach out-
performed other algorithms, the set of test problems consisted only of two
relatively simple two–dimensional problems.

Bosman (2003) experimented with an EDA that uses the EM–algorithm
to estimate a normal mixture pdf. Due to the complicated nature of Bayesian
factorizations when combined with the normal mixture pdf, only the univari-
ate factorization and the unfactorized probability distribution were tested. In
low–dimensional spaces the added flexibility of the normal mixture pdf com-
pared to the single normal distribution resulted in a clear improvement when
solving the Rosenbrock function using an unfactorized pdf. The growth of the
complexity of the non–linear dependency in the Rosenbrock function however
quickly decreases the advantage of the higher flexibility offered by the use of
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the normal mixture pdf. Although good results were also obtained on other
problems in low–dimensional spaces, the additional computational overhead
was found to be considerable.

Although the conditional pdf required for a Bayesian factorization is rather
complex, the approach for constructing a marginal–product factorization as
is done in the ECGA (see the chapter on ECGA) and the resulting factor-
ized normal mixture pdf are rather straightforward. The resulting probability
distribution describes for mutually exclusive subsets of variables a normal
mixture pdf than can be constructed in one of the aforementioned manners.
Ahn, Ramakrishna and Goldberg (2004) developed an EDA that uses exactly
this approach where each normal mixture pdf is estimated using the clustering
approach. Factorizing the probability distribution in this manner can allow
for a more efficient modeling of independent subproblems. Although improve-
ments were obtained over earlier real–valued EDA approaches, the resulting
EDA was still not found to be efficient at solving the Rosenbrock function,
especially as the dimensionality of the problem is increased.

Histogram pdf

Definition

Although conceptually the histogram pdf is arguably the most simple way to
represent a continuous real–valued probability distribution, we refrain from
giving a precise mathematical definition as it is unnecessarily complicated.
The histogram pdf splits up the range of each variable into several parts. A
probability is associated with each hyperbox (commonly called a bin) that
represents the probability of a sample to lie anywhere inside the combination
of ranges associated with that bin. Note that the number of splits per variable
or the relative size of all subranges do not need to be the same although in
the most traditional sense, such a fixed–width version of the histogram pdf is
the most commonly used.

Parameter estimation

A maximum–likelihood estimation is obtained in the same manner as for the
integer (or binary) case, i.e. by computing the proportion of samples that fall
into a certain bin.

Properties

A more detailed estimate of the true underlying probability distribution can
be obtained if more bins are used. However, as the number of bins increases,
the efficiency of modeling dependencies with the histogram pdf rapidly de-
creases as many bins will be empty. Moreover, since often the number of bins
grows exponentially when expressing the joint probability of multiple random
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variables (for instance when using the fixed–width approach), histograms are
actually quite inefficient in expressing dependencies.

Furthermore, as the number of bins is increased, the danger of overfitting
and lack of generalization increases as well. If more bins are used, the number
of empty bins will increase. Drawing more samples from the estimated prob-
ability distribution will thus not produce any more samples in these areas,
even though these areas might very well contain the global optimum.

EDAs

The algorithm by Servet, Trave-Massuyes and Stern (1997) is an adaptation
of the original PBIL algorithm. In the algorithm, a range is stored for each
variable. For each variable then, a histogram pdf with two bins is maintained,
where the first bin corresponds with the first half of the domain and the second
bin corresponds with the second half. The probability vector from the original
PBIL algorithm now specifies for each variable the probability with which a
new value for that variable is generated in the second half of the domain
currently stored for that variable. A domain is resized to contain exactly one
of the two halves of that domain if the histogram starts to converge to that
half of that domain.

Bosman and Thierens (2000a) first investigated the use of an EDA that is
based on a univariately factorized histogram distribution. In their work they
considered the fixed–width variant. Tsutsui, Pelikan and Goldberg (2001) con-
sidered both the fixed–width as well as the fixed–height histogram variants in
their work but also only in combination with the univariate factorization. The
conclusions of both investigations are that the resulting EDAs are quite well
capable of solving problems that do not exhibit dependencies between their
variables. If dependencies do occur, the EDAs are not capable of exploiting
these dependencies efficiently, which severely limits its practical use.

To overcome the exponential growth of the total number of bins as the joint
probability distribution of multiple variables is taken into account, a special-
ized repeated–splitting technique as used in classification and regression trees
can be used (Breiman, Friedman, Olshen and Stone, 1984). The available data
is split in a single dimension. To this end all possible axis–parallel splits are
investigated and the one that is the most beneficial in splitting up the data is
selected. The process is then recursively repeated in the two subsets until no
split significantly improves the quality of the overall probability distribution
anymore. The resulting bins are not identically sized and are specifically tai-
lored to fit the data, thereby reducing the number of empty bins to 0. This
approach was used in an EDA by Poš́ık (2004). Although the EDA is capable
of modeling unfactorized joint probabilities, the approach was found not to
be able to minimize Rosenbrock’s function. The main reason for this is likely
the inability to generalize the probability distribution outside of the current
range of selected solutions. Moreover, the approach was found not to be very
robust against multimodality.
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4.2 Mixture–of–factorizations probability distributions

A mixture–probability distribution is a weighted sum of probability distribu-
tions, each of which is a function of all random variables. The weights in the
sum are all positive and sum up to one to ensure that the summation is itself a
probability distribution. Although we have already encountered mixture prob-
ability distributions when we considered factorized probability distributions
in Section 4.1 (i.e. the normal mixture pdf), in this section we consider the
mixture as the main structure of the probability distribution. In Section 4.1
the main structure was the factorization. The general form of the mixture
probability distribution over all random variables Y is:

P (Y ) =
k−1
∑

i=0

αiP i(Y ) (6)

where k is the number of mixture components, αi ≥ 0 holds for all i ∈
{0, 1, . . . , k − 1} and

∑k−1
i=0 αi = 1.

The mixture probability distribution can be seen as a logical extension of
the factorization approach. It can be viewed upon as a way of using multiple
factorizations by taking each probability distribution in the mixture to be a
factorization. The use of mixture probability distributions intuitively appears
to be an especially useful approach in the presence of multiple local optima
as each component in the mixture can be used to focus on a single local
optimum and thereby distribute the factorization search bias of the EDA over
multiple regions of interest. To a lesser extent one of the virtues of a mixture
probability distribution is that by using a combination of (simpler) probability
distributions, more involved probability distributions can be constructed that
for instance model non–linear dependencies better. However, this is already
the case when using a factorization of a mixture pdf as already demonstrated
in Figure 4 and hence is less of a virtue contributed by the mixture probability
distribution on its own.

By means of clustering

Using clustering to subdivide the set of solutions for which to estimate a
probability distribution followed by the subsequent estimation of probability
distributions for each cluster separately was already discussed when we re-
viewed the normal mixture pdf in Section 4.1. Before its use by Ahn et al.
(2004) in the construction of the factorized normal mixture probability dis-
tribution, the use of clustering to construct mixture probability distributions
in EDAs was initially investigated in the binary domain by Pelikan and Gold-
berg (2000) using the k–means clustering algorithm (Hartigan, 1975). This
approach was concurrently investigated in the context of real–valued EDAs
by Bosman and Thierens (2001a) (see also (Bosman, 2003)). In their work,
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a different, slightly faster clustering algorithm was used, called the leader al-
gorithm (Hartigan, 1975). The probability distributions in the mixture are
factorized normal pdfs. Hence, the resulting probability distribution is actu-
ally a normal mixture probability distribution. The results generally indicate
an increase in optimization performance especially on the Rosenbrock func-
tion (see Figure 3 for an illustration). However, because no means has been
proposed to detect the number of clusters that is actually required, the ap-
proach requires significantly more evaluations on problems where a mixture
probability distribution is not required. Unfortunately, the improvement of
using the mixture of factorized normal pdfs over the use of a single normal
pdf on the Rosenbrock function decreases rapidly as the dimensionality of the
problem increases. The reason for this is that the number of clusters required
to model the non–linear dependencies between the problem variables properly,
increases also with an increase in the problem dimensionality. As this in turn
requires a larger population size to ensure enough solutions in each cluster to
estimate a factorized normal pdf, the increase in search efficiency in terms of
the number of required evaluations to solve the problem, decreases.

The difference with the factorized normal mixture pdf used by Ahn et al.
(2004) is that because in their probability distribution the top–structure is a
factorization, if the number of variables between which non–linear dependen-
cies exist is limited and the groups of such non–linearly dependent variables
are additively decomposable in the problem to be optimized, the factorization
can match this additive decomposability structure whereas the mixture pdf
can match the (smaller) non–linear dependencies. This additive decompos-
ability and the smaller non–linear dependency can clearly not be exploited
effectively by the top–level mixture probability distribution. Indeed, on an
additively decomposable variant of the Rosenbrock function, the approach
by Ahn et al. (2004) outperforms the approach by Bosman and Thierens
(2001a). However, it should be clear that the incentive behind the mixture
probability distribution is inherently different, namely to distribute the search
bias over the search space and thus to be able to cope with multiple regions
of interest in the search space simultaneously. The mixture probability distri-
bution approach is hence more general as it also allows for instance to use the
factorized normal mixture pdf in the EDA by Ahn et al. (2004) in each cluster,
effectively combining the positive features of the EDA by Ahn et al. (2004)
with the incentive behind the approach by Bosman and Thierens (2001a).

4.3 Other probability distributions

Although the use of the parametric pdfs in combination with factorizations
and the use of clustering techniques to obtain mixture probability distributions
as discussed in the previous subsections are representative of the most common
techniques, other, often more involved, techniques exist.
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Top–level discretization and bottom–level continuous modeling

A different use of the normal kernels pdf was proposed by Ocenasek and
Schwarz (2002). In their EDA, a discrete decision tree (Friedman and Gold-
szmidt, 1996) is built for each variable by discretizing all other real–valued
random variables using axis–parallel splits. The variable that is found to influ-
ence the current variable of interest the most is used to split up the data range.
The procedure is recursively repeated after splitting the data. The rationale
behind this approach is that once no more splitting is found to be beneficial,
the leaf nodes in the decision tree correspond to subranges in the data set
that can be properly estimated using univariately factorized pdfs. The pdf
used by Ocenasek and Schwarz (2002) is the normal kernels pdf with α = 1.
Since now the variances are specifically tailored to the subsets constructed by
the decision trees, this particular use of the normal kernels pdf is much more
robust. Although the resulting EDA was found to obtain much better results
on the Rosenbrock function, the overall performance of the algorithm was not
found to be significantly better than previously developed EDAs. Moreover,
the optimum of the Rosenbrock could still not be reached satisfactorily (Kern,
Müller, Hansen, Büche, Ocenasek and Koumoutsakos, 2004).

Probability distributions based on latent variables

A few alternative approaches currently used in real–valued EDAs are based
on the use of latent, or hidden, variables. These techniques attempt to model
the underlying data source by projecting the data onto another domain while
attempting to retain the most important features. Often, the dimensionality
of the data is then reduced.

An example of such techniques is the well–known principal component
analysis (PCA) (Jolliffe, 1986). In PCA, l′ < l vectors are chosen such that
the variance in those vectors is the largest when projecting the l–dimensional
data onto these vectors. The latent variables are the newly introduced vari-
ables that are used to model the data. Another approach in which latent
variables are used, is the Helmholtz machine. A Helmholtz machine is closely
related to neural networks and consists of a layer of input variables repre-
senting the l dimensions of the data and provides for multiple layers of latent
variables. Connections between these layers allow for the learning of a model
that describes the data, as well as the generation of new data.

Bishop (1999) indicated how PCA can be used to estimate probability dis-
tributions and how to generate new samples from the estimated probability
distributions. Using normal pdfs, the PCA–based estimated probability dis-
tribution over the selected solutions, is an l–dimensional normal probability
distribution. This approach has been used for real–valued optimization (Shin
and Zhang, 2001; Cho and Zhang, 2001; Shin, Cho, and Zhang, 2001). The
authors also used Helmholtz machines in combination with normal pdfs. The
results obtained are comparable to those obtained with factorized probability
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distributions, but the number of latent variables is fixed beforehand, whereas
the approaches using factorized probability distributions are able to learn the
structure of the probabilistic model from data.

In the approach by (Cho and Zhang, 2002) a mixture of factor analyz-
ers is used. Standard factor analysis is a latent variable model that is based
on a linear mapping between the random variables and the latent variables,
resulting in a normal distribution that is modeled over the original random
variables. An EM–algorithm is used to find parameter estimates for the latent
variables in each mixture component as well as the mixture coefficients them-
selves. The number of mixture components is fixed beforehand as are again
the number of latent variables. The results for numerical optimization indicate
better performance for the mixture over the single factor analysis and other
non–mixture real–valued probabilistic model–building EAs, but the structures
of the latent–variable models were composed by hand.

The recentmost EDA based on latent variable models was introduced
by Cho and Zhang (2004). The probability distribution used in their EDA
is based on the variational Bayesian independent component analyzers mix-
ture model by Choudrey and Roberts (2003). Although the formal equations
involved are out of scope for this chapter, we note that this recent way of es-
timating probability distributions overcomes many of the problematic issues
that traditional models such as mixture of normal distributions estimated with
EM algorithms have. In principle, the model is capable of modeling any density
function as long as enough components are used in the mixture. Traditionally,
there exists a problem with computing the required number of components.
In the model by Choudrey and Roberts (2003) this problem is solved using
Bayesian inference. The use of this extremely powerful model in an EDA re-
sulted in an improvement over earlier proposed real–valued EDAs. However,
although the approach obtained much better results on the Rosenbrock func-
tion, it was still not able to converge to the optimum for the 10–dimensional
case using a population size of 6400. Although the model is in theory capable
of capturing the structure of the search space, the number of solutions that
is required to actually construct this probability distribution well enough is
extremely large.

5 Analysis and redesign of real–valued EDAs

5.1 Analysis

Following the traditional motivation from discrete spaces and the lessons
learned from discrete GA research (Goldberg, 2002b), one assumes that ini-
tially enough information is supplied to the EDA, i.e. all the building blocks
are initially in the population. This is typically ensured by making the pop-
ulation large enough. All that the EDA is now required to do is to detect
the building blocks and mix them properly. From the previous chapters we
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already know that by using maximum–likelihood estimates for discrete spaces
in combination with factorization selection techniques, EDAs can be built that
very efficiently meet with this requirement and consequently achieve efficient
optimization. By using a proper factorization, the important substructures of
the optimization problem at hand are identified and specific combinations of
bits can be assigned high probabilities of replication when generating new so-
lutions. Hence, the important substructures never get lost during optimization
and are combined effectively to reach the optimal solution.

All real–valued EDAs for numerical optimization that we discussed so
far employ a probability–distribution–estimation technique that is equally
bent on describing the set of selected solutions as well as possible. When-
ever possible, maximum–likelihood estimates are used. An approximation of
the maximum–likelihood estimate is used otherwise. One could validly argue
that this approach thus follows a direct translation of the EDA approach in
the discrete domain into the continuous domain. Alternatively, one can ar-
gue that this approach conforms completely to the design of the optimal EDA
that uses the true probability distribution as discussed in Section 3. Still, real–
valued EDAs so far have made for a far smaller success story than have EDAs
for the discrete domain, even though the range of actual EDA approaches is
wider in the continuous domain. For instance, no EDA discussed so far in this
chapter is able to optimize the Rosenbrock function efficiently even though
this problem is unimodal and smooth. This has recently led researches to take
a closer look at what is happening with EDAs in the continuous domain.

The apparent failure of real–valued EDAs to solve the Rosenbrock function
was first noticed by Bosman and Thierens (2001b) (see also (Bosman, 2003)).
The explanation given for this failure was that because no assumptions are
made on the source of the data from which to estimate the probability dis-
tribution, real–valued EDAs disregard gradient information. In other words,
even part of an interesting region is discovered and the selected solutions
are located on a slope towards the optimum, the EDA can converge on this

slope since it only effectively searches inside the area covered by the selected
solutions. Through maximum–likelihood estimates there is no means of gen-
eralizing the estimated density outside this area. The premature convergence
on the Rosenbrock function was discussed further more recently by Bosman
and Grahl (2005) as well as by Yuan and Gallagher (2005). Premature conver-
gence was also observed by Kern et al. (2004) on the even simpler tilted–plane
function where the optimum is located at a boundary of the search space. For
a real–valued EDA using the normal pdf with maximum–likelihood estimates
it was proved by Grahl, Minner and Rothlauf (2005a) (see also (Grahl, Min-
ner and Rothlauf, 2005b)) that the mean of this EDA can indeed only move
a limited distance through the search space. This distance is dependent on
the selection intensity and the initial variance (i.e. spread of the initial pop-
ulation). Unless the optimum lies within this bounded distance, the variance
will go to 0 too quickly causing the EDA to converge prematurely.
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One could now argue that this is an unfair analysis as it violates the as-
sumption that initially enough data is available, i.e. that the optimum inside
the region covered by the initial population. If this is not the case, one should
consider the analogy of solving the one–max problem with a binary EDA when
for some variables not a single 1 is present in the population. It is however
important to note that in the continuous domain that such essential informa-
tion (i.e. the structure of the problem to be optimized, typically the building
blocks in the discrete case) easily gets lost during optimization. In general,
the reason for loss of essential information is that the problem structure is not
matched by the search bias of the optimizer. For instance, if a binary EDA
is not capable of detecting the individual deceptive trap functions, the addi-
tively decomposable trap function cannot be optimized efficiently because the
building blocks will have a too small probability of surviving variation.

In the continuous domain however, capturing the essential information in
the probability distribution is much more difficult (Bosman and Grahl, 2005).
Problem structure in the continuous domain is exemplified by the contour
lines of the function to be optimized. Hence, the true distribution of the se-
lected individuals can be of virtually any shape. This means that we need both
the universal approximation property of our probability distribution as well
as an infinite sample size to ensure that the problem structure is effectively
exploited by the EDA. However, such universal approximation is computation-
ally intractable. In practice, a continuous EDA will have to rely on tractable
probability distributions such as the normal pdf. This means that the contours
of the probability distribution may no longer match with the contour lines of
the function to be optimized. Consequently, the notion of dependency as ob-
served in the estimated probability distribution does not have to match with
the actual dependency of the variables according to the optimization problem
at hand. Hence, linkage information in the continuous domain cannot by defi-
nition be extracted from the estimated probability distribution. What is even
more important to realize is that by using relatively simple pdfs the property
of having (local) optima inside the area covered by the selected solutions may
easily be lost during optimization. This will put the EDA back in the position
from where it can provably not find the optimum using maximum–likelihood
estimates, even when the selected solutions are located on a slope.

5.2 Redesign

To overcome the problem identified above, three approaches can generally
speaking be taken. We will discuss these three approaches in turn.

More involved probability distributions

The capacity of the class of probability distribution used in the EDA can be in-
creased. As pointed out in Section 4.3, the approach by Cho and Zhang (2004)
is probably the best example of this approach. But even though the model
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used here is extremely flexible, the population size that is generally required
to get the estimated probability distribution right and not lose the encapsula-
tion of optima during optimization is enormous. Moreover, the computational
costs of estimating such involved probability distributions is considerable.

Explicit gradient exploitation

To allow the EDA to search outside of its range the explicit use of gradient
information can be enforced by hybridizing the EDA with local search op-
erators. Although such a hybrid approach can indeed be effective (Bosman
and Thierens, 2001b), such hybridization is possible for all EAs. Hence, we
seek a more specific solution to the problem at hand. Moreover, if desired, the
resulting improved EDA can then still be hybridized.

Variance scaling

The third approach is strikingly simple in its nature, but it is specifically
designed for use in real–valued EDAs and has already been shown to be a
very effective principle (Ocenasek, Kern, Hansen, Müller and Koumoutsakos,
2004; Bosman and Grahl, 2005; Yuan and Gallagher, 2005). The basic idea is
to set the variance of the probability distribution during the search not (only)
according to the maximum–likelihood approach, but (also) according to other
criteria such as the success rate.

In the approach by Ocenasek et al. (2004) the decision–trees combined
with the normal kernels pdf is used (Ocenasek and Schwarz, 2002). In addition
however, a scaling factor is maintained. When drawing new solutions from the
estimated probability distribution, the variance of a normal kernel is scaled by
multiplication with this factor. The size of the scaling factor depends on the
success rate of the restricted tournament selection operator (i.e. the number of
times an offspring solution is better). An adaptive scheme is used that changes
the scaling factor to ensure that this success rate stays in–line with the 1/5
success rule for evolution strategies (ES) (Bäck and Schwefel, 1993).

Yuan and Gallagher (2005) showed that by scaling the variance of the
estimated normal probability distribution by a factor of 1.5, an EDA based on
this variance–scaled normal probability distribution is capable of finding the
optimum of the Rosenbrock function. Although in itself this result is striking, a
fixed scaling factor will in general not be optimal. In the approach by Bosman
and Grahl (2005) a simple, but effective, adaptive–variance–scaling scheme
is proposed for use in an EDA that uses the factorized normal pdf. Similar
to the approach by Ocenasek et al. (2004) a scaling factor is maintained and
upon drawing new solutions from the probability distribution, the covariance
matrix is multiplied by this scaling factor. Updating this scaling factor is done
differently however. If the best fitness value improves in one generation, the
current size of the variance allows for progress. Hence, a further enlargement
of the variance may allow for further improvement in the next generation and
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the scaling factor is increased. If on the other hand the best fitness does not
improve, the range of exploration may be too large to be effective and the
scaling factor is (slowly) decreased. In addition to variance scaling Bosman
and Grahl (2005) also show how a test can be constructed specifically for
the normal distribution that allows to distinguish between situations where
variance scaling is required and where variance scaling is not required. The
test is based on (ranked) correlation between density and fitness.

The results of the above mentioned EDAs that employ the scaling of the
variance are significantly better than those of the earlier EDAs that only em-
ploy maximum–likelihood estimates. The algorithms are for instance capable
of finding the optimum of the Rosenbrock function efficiently. The results of
the algorithm by Bosman and Grahl (2005) on the Rosenbrock function are
shown in Figure 3. The key to their success is that the EDAs without variance
scaling are very efficient if the structure of the problem is not too complicated,
such as is the case for the sphere function. If the structure gets more involved,
there is hardly any means to generalize the probability distribution over the
entire search space. With the variance–scaling approach the EDA is equipped
with the possibility to shift its focus by means of variance adaptation and to go
and find local structures that it can efficiently exploit without the additional
variance scaling.

The results obtained with variance–scaling bring the EDAs in strong com-
petition with one of the leaders in (evolutionary) continuous optimization, the
CMA–ES (Hansen and Ostermeier, 2001; Hansen, Müller and Koumoutsakos,
2003; Kern et al., 2004). Strikingly, the EDA approach using the normal pdf is
at the top level similar to the CMA–ES. Both algorithms compute values for
the parameters of the normal pdf and subsequently draw new solutions from
this normal pdf. Hence, the CMA–ES can validly be argued to actually be
an EDA. The difference between the approaches lies in how the parameters
are set. In the pioneering EDA approaches, maximum–likelihood estimates
are used on the basis of the set of selected solutions. It has been observed
however that this more often than not doesn’t lead to efficient optimization.
The CMA–ES on the other hand has been found to be a very efficient opti-
mizer. The CMA–ES actually uses the same estimate for the mean (i.e. the
center of mass (also called sample average) of the selected solutions). The dif-
ferences lies in the way the covariance matrix is built. Strikingly, it is exactly
in the changing of the covariance matrix (by scaling) that the EDA approach
has recently been found to have room for improvement. In the CMA–ES, the
covariance matrix is built using information about how the mean of the popu-
lation has shifted the previous generation. This information is combined with
the (by multiplication slowly fading) memory or cumulation of shifts in earlier
generations to obtain what is called the evolution path. In this approach there
is no need to explicitly check for success in generating new better solutions as
the shift towards better regions automatically influences the evolution path,
which is subsequently used to determine the covariance matrix.
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As a result of using the mean shift, the CMA–ES is clearly capable of ex-
ploiting gradient properties of a problem, which is exactly what was hypoth-
esized to be lacking in maximum–likelihood EDAs (Bosman and Thierens,
2001b; Bosman, 2003). A final striking correspondence between the CMA–ES
and the EDAs that use variance–scaling is that the covariance matrix in the
CMA–ES is actually factorized into the multiplication of a covariance matrix
and what is called a global stepsize. The global stepsize is also computed on
the basis of the evolution path. This factorization is identical to the variance–
scaling approach in EDAs, the only difference being in terminology and the
way in which the scaling factor (or global stepsize) is computed.

It is interesting to see that although the background and motivation for the
(real–valued) EDA approach and the (CMA–)ES approach are different, the
developments in these areas appear to be converging onto a similar approach.
Future research will have to point out which of the approaches is the overall
best way to go and whether the benefits of both approaches can be integrated
to arrive at even better evolutionary optimizers.

6 Summary and conclusions

In this chapter we have discussed the design of real–valued EDAs for nu-
merical optimization. We have indicated what types of problem difficulty we
typically expect and what the optimal EDA for numerical optimization looks
like. Subsequently we provided an overview of existing EDA approaches and
indicated that already there exists a vast array of approaches as many different
probability distributions have been studied.

Although the capacity of the class of probability distribution used in the
EDA has grown significantly, real–valued EDAs that attempt to estimate the
probability distribution as well as possible (i.e. typically using maximum–
likelihood estimates) from the set of selected solutions seem not to work well on
problems such as the Rosenbrock problem. Although this problem is unimodal
and has nice smooth gradient properties, EDAs tend to converge prematurely
while still on the slope towards the optimum.

The main problem is that in continuous problems, the structure of a prob-
lem is characterized by the contours of the function to be optimized. These
contours can take any shape. Hence fitting the problem structure in the con-
tinuous case requires the intractable universal approximation property and
huge amounts of data, rending the EDA approach inefficient. It is therefore
much more convenient to rely on the use of simpler probability distributions.
However, by doing so, important regions of the search space may get lost
during optimization because they are assigned extremely low densities due
to the mismatch between the density contours of the estimated probability
distribution and the density contours of the fitness function. To still be able
to use simpler probability distributions alternative means of overcoming prob-
lems of premature convergence should be found. To this end it is much more
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convenient to view problem structure as an arrangement of slopes and peaks
in the search space. These simpler substructures are much easier to take into
account and to build inductive search biases for. Actually, the current range
of EDAs is already capable of searching such simpler substructures efficiently.
Hence, what should in addition be provided is the means to shift between
these substructures and ultimately focus on the most interesting one. To this
end variance–scaling approaches have recently been proposed and have been
shown to lead to much improved EDAs.

This significant improvement signals that there is a new open road to
explore for the design of real–valued EDAs for numerical optimization; and
this one has a fast lane.

References

Ahn, C. W., Ramakrishna, R. S. and Goldberg, D. E. (2004). Real-coded Bayesian
optimization algorithm: Bringing the strength of BOA into the continuous
world, in K. Deb et al. (eds), Proceedings of the Genetic and Evolutionary Com-
putation Conference — GECCO–2004, Springer–Verlag, Berlin, pp. 840–851.

Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis, John
Wiley & Sons Inc., New York, New York.
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