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Abstract. Many Estimation–of–Distribution Algorithms use maximum–
likelihood (ML) estimates. For discrete variables this has met with great
success. For continuous variables the use of ML estimates for the nor-
mal distribution does not directly lead to successful optimization in most
landscapes. It was previously found that an important reason for this is
the premature shrinking of the variance at an exponential rate. Reme-
dies were subsequently successfully formulated (i.e. Adaptive Variance
Scaling (AVS) and Standard–Deviation Ratio triggering (SDR)). Here
we focus on a second source of inefficiency that is not removed by ex-
isting remedies. We then provide a simple, but effective technique called
Anticipated Mean Shift (AMS) that removes this inefficiency.

1 Introduction

Estimation–of–Distribution Algorithm (EDAs) are a specific type of Evolution-
ary Algorithm (EA). EDAs are characterized by the way in which new solutions
are generated. The information in all selected solutions is combined at once. To
this end, an interim representation that compresses and summarizes this infor-
mation is used: a probability distribution over the solution space. New solutions
are generated by sampling the distribution.

Efficient optimization is guaranteed under suitable conditions [14]. In practice
it is however impossible to meet these conditions because arbitrarily complex
distributions are required. Hence, practical techniques are required. In this paper,
we focus on optimization of numerical functions using continuous distributions.
The use of the normal distribution or combinations thereof is the most commonly
adopted choice. It has already been so since the first EDAs in continuous spaces
were introduced [4, 11, 17, 18]. An important question is how efficient EDAs are
in the continuous domain using such practical distributions.

Recently, it was shown that without precaution, premature convergence is
likely to occur with these approaches, even on slope–like regions of the search
space [7–9]. The main reason for this is that the variance decreases too fast
at an exponential rate. The current state of the art exists of techniques that



attempt to remedy premature convergence (e.g. adaptive variance scaling [2, 8,
15]). Here we show that another source of inefficiency however exists that cannot
be removed by these remedies. The use of ML estimates results in a distribution
that describes the set of selected solutions well. On a slope however, it is not
the set of selected solutions that is interesting, but it is the direction of descent.
Efficient sampling along the direction of descent is therefore not guaranteed, even
if the covariance matrix is scaled. We shall illustrate this problem further in this
paper and present a remedy that we call AMS (Anticipated Mean Shift). The
use of AMS improves performance, even if no covariances are estimated. Also,
the resulting EDA still only uses ML estimates, which are a well–understood
and sensible way of estimating parameters from data. We call the new EDA
AMaLGaM–IDEA (Adapted Maximum–Likelihood Gaussian Model — Iterated
Density–Estimation Evolutionary Algorithm) or just AMaLGaM for short. We
compare the results of AMaLGaM with CMA–ES, currently the most efficient
evolution strategy for continuous optimization.

2 Maximum–Likelihood Estimations, AVS and SDR

2.1 Maximum–Likelihood Estimations

We introduce a random variable Xi for each real–valued problem variable xi, i ∈
{0, 1, . . . , l − 1} where l is the problem dimensionality. The normal distribution
PN

(µv,Σv)(Xv) for a vector of random variables Xv = (Xv0
,Xv1

, . . . ,Xv|v|−1
) is

parametrized by a vector µv of means and a symmetric covariance matrix Σv:
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In an EDA, the distribution parameters are estimated from the vector of
selected solutions S. Maximum–likelihood (ML) estimation is a principled and
commonly–adopted approach. ML estimates for the mean and covariance matrix
are given by the sample average and sample covariance matrix respectively:

µ̂v =
1
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(Sj)v Σ̂
v

=
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|S|
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To reduce the effort in learning the joint distribution, factorizations are
commonly used. A factorization factors the joint distribution into a product of
smaller joint (possibly conditional) distributions [12]. Learning effort is reduced
the most using the well–known univariate factorization in which all variables
are independent, i.e. the distribution is written as

∏l−1
i=0 P (Xi). In the case of

the normal distribution this means that all covariances are zero. Allowing for all
possible dependencies implies use of the full covariance matrix. As an intermedi-
ate choice, a greedy algorithm can be used to determine and use only the most
important dependencies. To this end, Bayesian factorizations are typically used
in EDAs [13, 16]. To briefly recall Bayesian factorizations, recall that the vector
of random variables indicated by Xπi

on which Xi is conditioned is called the

vector of parents of Xi and that the distribution is written
∏l−1

i=0 P (Xi|Xπi
). Let



W j be the inverse of the symmetric covariance matrix, i.e. W j = (Σj)−1. ML
estimates of PN (Xi|Xπi

) can be expressed in terms of Equation 2 [4]:
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)Ŵ
(i,πi)

(j+1)0

Ŵ
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Because Equation 3 has the form of a single–dimensional normal distribu-
tion, sampling from the Bayesian factorization is again straightforward once all
relevant computations have been performed. Depending on the independencies
expressed by the factorization, the density ellipsoids can be aligned with any axis.
Use of the complete covariance matrix corresponds to a Bayesian factorization
in which each Xi is conditioned on all Xj with j > i.

The full covariance matrix requires the most data to learn properly because
all covariances need to be estimated. Although this argument advocates the uni-
variate factorization, the use of it in an EDA brings about important limitations.
The ellipsoid–shaped density contours can only be aligned with the main axes.

This means that a function such as the Ellipsoid function (
∑l−1

i=0 106 i
l−1 x2

i ) can be
optimized efficiently. However, a rotated version of the same function introduces
strong dependencies between the variables because each quadratic form is scaled
differently. The contours of the function can no longer be matched by the con-
tours of the univariately factorized normal distribution and optimization fails.
Hence, a full covariance matrix is required to ensure rotation–invariance [10].

2.2 AVS

To remedy the problem of the prematurely vanishing variance, the variance can
be scaled beyond its ML estimate [15]. One successful scheme for doing so is
called adaptive variance scaling (AVS) [8]. This scheme allows the EDA to solve
problems that it couldn’t solve without scaling the variance.

In AVS, a variance multiplier cAVS is maintained. For sampling, cAVSΣ̂ is used
instead of Σ̂. If the best fitness value improves, then the current size of the vari-
ance allows for progress. Hence, a further enlargement of the variance may allow
further improvement in the next generation. To fight the variance–diminishing
effect of selection, cAVS is scaled by ηINC > 1. If there is no improvement, the ex-
ploration range may be too large and cAVS. is decreased by a factor ηDEC ∈ [0, 1].
For symmetry, ηDEC = 1/ηINC. As the objective of the AVS scheme is to enlarge
the variance to prevent premature convergence, cAVS ≥ 1 is enforced.

2.3 SDR

With AVS, improvements increase cAVS. If the mean is already near the opti-
mum, no further variance enlargement is necessary however. Let xIMP(t) denote
the average of improvements in generation t. Further enlargement of cAVS in
generation t + 1 is triggered whenever xIMP(t) lies further away from µ̂(t) than



a single standard deviation. To this end, the standard–deviation ratio (SDR)
needs to be computed. The SDR is the ratio a/b of the distance to the mean of

a) xIMP,i(t) and b) the contour line of one standard deviation in the same direc-
tion. The SDR is independent of the sample range and has a fixed, predefined
notion of being “close” to the mean [2].

3 Anticipated Mean Shift

3.1 Motivation
Most EDAs have been benchmarked using initialization ranges (IRs) centered
around the optimum. An EDA based on the normal distribution with ML es-
timates focuses its search by contracting the region of exploration towards the
mean. Hence, problems and the search bias of the EDA are favorably matched,
leading to possibly overenthousiastic conclusions. This is already known to be
the case for other contractive operators such as intermediate recombination [5].
Hence, it is important to specifically investigate the non–symmetric case.

A simple opposite of a symmetric function is the linear slope. Previous re-
search focused on the one–dimensional case [2, 9]. Here, we consider two dimen-
sions, i.e. f(x) = x0 + x1. Use of the univariate factorization on this problem
corresponds to the same situation of a single dimension studied earlier. We there-
fore focus on the case in which covariances are estimated also. The direction u of
steepest descent obeys u0 = u1 and ui ≤ 0. Thus, it is most efficient to have the
density ellipsoids parallel to and elongated along the line x0 = x1. Conversely,
the worst alignment is parallel to and elongated along x0 = −x1.

Figure 1 shows the density contours in the case of the full covariance matrix
for the first six subsequent generations. The density contours shown are the
95% error ellipses. When ML estimates are used only, the normal distribution
quickly contracts. Initially, the population is spread uniformly in a square. On
a two–dimensional slope the selected solutions form a triangle. Fitting a normal
distribution with ML results in density contours aligned in the worst way. Scaling
the covariance matrix almost solely increases search effort in the futile direction
perpendicular to the best direction.

This effect was first noted in [19]. The same study proposed a first remedy.
The remedy employs minimization of cross–entropy in which both the selected
solutions and the population are used. Although the problem at hand was alle-
viated by this remedy, the resulting scaling behavior was reported in that same
study to be inferior to AVS when symmetric initialization is used. Also, the
well–known ML estimates can no longer be used. Here, we provide a simple, yet
elegant and intuitive alternative way to overcome the inefficiency at hand that
ultimately leads even to improvements over the use of SDR–AVS alone in the
case of symmetric initialization.

3.2 Technique
The difference of the means in two subsequent generations indicates the direction
in which the solutions are moved to obtain better fitness. Let µ̂Shift(t) denote for
generation t the mean shift for generations t− 1 and t:

µ̂Shift(t) = µ̂(t)− µ̂(t− 1) (4)



Note that our definition of mean shift differs from the one used in the mean–
shift clustering algorithm that was studied in relation to EDAs elsewhere [6]. A
straightforward anticipation of the mean shift that is required to obtain further
improvements in generation t+1 is µ̂Shift(t). It is therefore sensible to alter 100α%
of all newly sampled solutions x in generation t by moving them a certain fraction
δ in the direction of the previously observed the mean shift, i.e.:

x← x + δµ̂Shift(t) (5)

We call this operation Anticipated Mean Shift (AMS).
When centered over an optimum, µ̂(t) ≈ µ̂(t−1) and therefore µ̂Shift(t) ≈ 0,

leaving the original approach unchanged. On a slope, AMS causes an important
adjustment of Σ̂ that is estimated still using only ML. Solutions are selected from
three sets: I) previously selected solutions (i.e. elitist solutions), II) new solutions
without AMS and III) new solutions with AMS. Since set II is generated from
a model that was estimated with ML from set I, these two sets share a similar
region. Set III is further down the slope. If selection now selects solutions from
both regions, the density contours are re–aligned, see Figure 1. Note that if the
mean is nearing a peak and AMS overshoots the optimum, the mean shift in
the next generation will be much smaller because the mean shift will be caused
again mostly by the non–anticipated solutions. This thus resets the approach.

Number of adaptations (setting α) We assume that the best τn solutions
are selected, where n is the population size. Moreover, the selected solutions
survive and (1− τ)n new solutions are generated to refill the population.

On a slope, all of the α(1−τ)n altered solutions will be better and get selected.
Now, if τ ≥ α only the altered solutions are selected, leaving the orientation of
the density contours unchanged. For a change to occur, the selected solutions
must consist of both unaltered and altered solutions. Ideally, these proportions
are equally sized, which gives α(1 − τ)n = 1

2τn and thus α = τ
2−2τ . As using

information about the anticipated mean shift is still only predictive, we want
to alter no more than 50% of the newly sampled solutions, i.e. α ≤ 0.5. This
restricts the selection percentile: α ≤ 0.5 ⇔ τ

2−2τ ≤ 0.5 ⇔ τ ≤ 0.5.

Adaptation length (setting δ) On a slope, set III in generation t constitutes
50% of the selected solutions in generation t + 1. The other 50% comes from
sets I and II. The mean of the latter two sets is µ̂(t). The mean of set III is
µ̂(t) + δµ̂Shift(t). For the suggested value of α, the mean of the selected set in
generation t+1 is4 µ̂(t+1) = 1

2

(

µ̂(t) + µ̂(t) + δµ̂Shift(t)
)

= µ̂(t)+ δ
2 µ̂Shift(t). The

mean shift in generation t + 1 is then µ̂Shift(t+1) = µ̂(t+1)− µ̂(t) = δ
2 µ̂Shift(t).

Hence, for any δ < 2 the mean shift is expected to become smaller. Because the
newly estimated mean falls in between the two sets, an ML estimate captures
also the variance between the two sets. This causes the density to be aligned
more favorably with the direction of descent. With repetition, the re–aligned
density can result in a larger mean–shift. Hence a value of δ = 2 suffices. The
illustrations in Figure 1 were obtained using δ = 2.

4 Equality only holds for an infinite population size, it is an approximation otherwise.



4 Combining SDR, AVS and AMS: AMaLGaM

On a slope it makes sense to accelerate the search. The AVS scheme provides a
principled way to achieve this. If improvements occur far away from the mean
in subsequent generations, cAVS is enlarged. This relation between cAVS and im-
provements allows cAVS to be seen as a general accelerator. We therefore rename
the variance multiplier cAVS to distribution multiplier cMultiplier. Not only do we
use cMultiplierΣ̂ instead of Σ̂ upon sampling the distribution, we also use

x← x + cMultiplierδµ̂Shift(t) (6)

upon applying AMS. This accelerates descent on a slope. In Figure 1 the effect
of combining AVS with AMS can be seen when traversing the slope in two
dimensions. The distribution gets rotated and elongated along the direction of
improvement much faster than without the use of the distribution multiplier
(note the difference in scale on both axes).
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Fig. 1. Estimated normal distribution in the first 6 generations of typical runs with
(from left to right): ML estimates, SDR–AVS, AMS and AMaLGaM on the two–
dimensional slope f(x) = x0 + x1 with IR [−5; 5]× [−5; 5]. The density contours are
the 95% error ellipses. Also shown are the population and selection in generation 0.

The combination of SDR, AVS and AMS adaptively changes both the covari-
ance matrix and the mean–shift. It prevents premature convergence due to inef-
ficient sampling that results from fitting only the set of selected solutions with-
out considering the direction of descent. We name this composite AMS–SDR–
AVS technique AMaLGaM (Adapted Maximum–Likelihood Gaussian Model).
Pseudo–code may be found in a technical report [3].

5 Guidelines and comparison with CMA–ES

It is important to compare results with literature. It is equally important to
have guidelines to use in subsequent applications and research. We therefore
first derive guidelines and then use them to compare AMaLGaM with CMA–
ES, currently the most efficient evolution strategy for continuous optimization.

5.1 Guidelines
To derive guidelines, we use 10 benchmark functions to be minimized taken from
literature [8, 10]. A function is considered to be optimized if the best solution
has reached a certain value–to–reach (VTR). The VTR for all functions except
the ridge functions is 10−10. For the two ridge functions the VTR is −1010.



Name Definition

Sphere
∑l−1

i=0 x2
i

Ellipsoid
∑l−1

i=0 106 i
l−1 x2

i

Cigar x2
0 +

∑l−1
i=1 106x2

i

Tablet 106x2
1 +

∑l−1
i=1 x2

i

Cigar Tablet x2
0 +

∑l−2
i=1 104x2

i + 108x2
l−1

Name Definition

Two Axes
∑⌊l/2⌋−1

i=0 106x2
i +

∑l−1
i=⌊l/2⌋−1 x2

i

Different Powers
∑l−1

i=0 |xi|2+10 i
l−1

Rosenbrock
∑l−2

i=0

(

100 · (x2
i − xi+1)

2 + (xi − 1)2
)

Parabolic Ridge −x1 + 100
∑l−1

i=1 x2
i

Sharp Ridge −x1 + 100
√

∑l−1
i=1 x2

i

We determined the optimal population size for AMaLGaM in the naive vari-
ant (i.e. univariate factorization), the learning variant (i.e. Bayesian factoriza-
tion) and the full covariance matrix variant (i.e. unfactorized). For the full co-
variance matrix variant we used the functions as provided above as well as their
rotated variants. With rotation each pair of variables in a solution is rotated 45
degrees before function evaluation takes place (for more details, see [3]).

IRs of [−7.5; 7.5] (symmetric around optimum), [−10, 5] (asymmetric) and
[−115,−100] (far–away) were used. We combined all scalability plots and deter-
mined on the basis thereof a guideline for the population size. For each variant,
a minimal population size of 20 for l = 1 was determined. The guidelines and
the combined scalability plots are presented in Figure 2.
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Fig. 2. Observed and guideline population size that leads to the minimum number of
evaluations for AMaLGaM to reach the VTR, averaged over 100 independent runs.
The gray areas are the observed population sizes for all problems.

Because AMaLGaM solves problems that can’t be solved if only SDR–AVS
or ML–estimates are used, no comparison is presented here with SDR–AVS or
ML–estimates. It was found though, that AMaLGaM requires on average 0.67
times the evaluations of SDR–AVS. Hence, not only does AMaLGaM enlarge the
class of problems that can be solved by the EDA, it also improves its efficiency.
We also note that using the full covariance matrix no significant difference could
be detected in solving rotated and unrotated versions of the problems. Hence,
AMaLGaM can be said to be robust to rotations of the search space. More details
on these additional results may be found in the technical report [3].

5.2 Comparisons
We used the guidelines defined in Section 5.1 and ran AMaLGaM 100 indepen-
dent times on each of the benchmark problems. For the parameter settings of the
CMA–ES, we used the guidelines provided in the literature also [10]. To prevent
biased results from symmetric initialization, we used the far–away IR.



Scalability We computed a least–squares fit to αlβ + γ for the number of
required evaluations. The fit was always found to be highly accurate. The results
are summarized in Figure 3.

Function Algorithm β α γ

Sphere AMaLGaM–N 1.23 2.74·102 9.46·100

AMaLGaM–L 1.34 2.46·102 1.63·102

AMaLGaM–F 2.05 1.09·102 4.08·102

CMA–ES 0.94 2.38·102 3.17·102

Ellipsoid AMaLGaM–N 1.24 3.33·102 8.20·100

AMaLGaM–L 1.36 2.90·102 1.31·102

AMaLGaM–F 2.09 1.14·102 4.87·102

CMA–ES 1.92 6.40·101 1.79·103

Cigar AMaLGaM–N 1.25 3.40·102 -2.30·101

AMaLGaM–L 1.35 3.20·102 4.48·101

AMaLGaM–F 2.08 1.30·102 4.14·102

CMA–ES 0.90 7.18·102 -2.16·102

Tablet AMaLGaM–N 1.22 2.95·102 1.12·102

AMaLGaM–L 1.32 2.77·102 1.80·102

AMaLGaM–F 2.04 1.13·102 5.24·102

CMA–ES 1.64 1.17·102 1.59·103

Cigar AMaLGaM–N 1.22 3.54·102 -4.14e-01
tablet AMaLGaM–L 1.34 3.21·102 8.52·101

AMaLGaM–F 2.07 1.23·102 4.93·102

CMA–ES 1.40 2.16·102 1.48·103

Function Algorithm β α γ

Two AMaLGaM–N 1.27 3.06·102 4.62·101

axes AMaLGaM–L 1.37 2.86·102 1.18·102

AMaLGaM–F 2.10 1.11·102 5.08·102

CMA–ES 2.00 7.91·101 1.68·103

Different AMaLGaM–N 1.39 1.49·102 1.98·102

powers AMaLGaM–L 1.41 1.70·102 1.94·102

AMaLGaM–F 2.09 7.75·101 3.78·102

CMA–ES 1.65 1.55·102 1.14·103

Rosenbrock AMaLGaM–N 1.55 5.94·103 -7.59·103

AMaLGaM–L 1.70 2.42·102 1.43·103

AMaLGaM–F 2.57 5.58·101 2.35·103

CMA–ES 1.92 7.25·101 2.52·103

Parabolic AMaLGaM–N 1.02 2.00·102 1.57·102

ridge AMaLGaM–L 1.13 2.75·102 1.14·102

AMaLGaM–F 2.01 1.06·102 3.38·102

CMA–ES 1.01 4.29·102 3.43·102

Sharp AMaLGaM–N 0.95 1.70·102 2.02·102

ridge AMaLGaM–L 1.08 1.57·102 2.20·102

AMaLGaM–F 1.87 7.33·101 3.35·102

CMA–ES 0.78 2.80·103 -9.00·103

Fig. 3. Scalability regression coefficients on all benchmark problems averaged over 100
independent runs using the guidelines. The IR is [−115,−100] for each variable.

Comparing naive, learning and full covariance matrix The naive variant
scales better than the Bayesian variant, which in turn scales better than the vari-
ant that uses the full covariance matrix. However, this only holds for functions
that fit the model used. The naive method for instance cannot solve problems
with many dependencies (e.g. rotated versions of the benchmark problems).

In additional experiments (for details, see the technical report [3]) it was
found that the scalability of AMaLGaM does not change significantly when
moving from asymmetric initialization to far–away initialization. This leads to
the conclusion that AMaLGaM is also robust to translations, a property that
earlier EDAs with ML estimates and even adaptive variance scaling do not have.

Comparing AMaLGaM and CMA The scalability of CMA–ES ranges be-
tween the different variants of AMaLGaM. For some functions (e.g. Sphere),
CMA–ES has a better scalability than even the naive variant of AMaLGaM.
For other functions (e.g. Two axes) it has a scalability similar to the full variant
of AMaLGaM. The scalability results of AMaLGaM are less variable, causing
CMA–ES to be better on some functions and AMaLGaM to be better on other
functions. CMA–ES has the upper hand in the comparison, especially if rotation
invariance is desired. This requires use of the full covariance matrix. AMaLGaM
then however has a scalability that is at most similar (e.g. Two axes).

Runtime The number of required evaluations is important, especially if evalu-
ations are time–consuming. The overall running time is however also important.
With higher model complexity comes a larger learning and sampling time. Use
of the full covariance matrix requires O(l3) time. Assuming bounded complexity
for the Bayesian network, the same asymptotic bound holds for the learning case



with the commonly used greedy algorithm [4, 16]. Hence, room for improvement
exists to increase benefits from learning over using the full covariance matrix.
Modelling time for the univariate factorization is only O(l). Detailed run–times
per benchmark function and per algorithm are given in the technical report [3].

6 Summary, Discussion and Future Work

Using maximum–likelihood (ML) estimates for the normal distribution in an
EDA, premature convergence is likely to occur. Optimization is only performed
properly if the initialization range brackets the optimum. Optimization then
mainly proceeds by contraction. Methods of adaptive variance scaling (AVS)
provide a way to control the rate of contraction and turn it into expansion. Be-
cause ML estimates shape the density similar to the configuration of the selected
solutions, the density contours can however be misaligned with the direction of
descent. The variance then needs to be scaled to excessively large values to still
make progress. We have proposed a simple, yet effective approach called antici-
pated mean shift (AMS) that removes this inefficiency. AMS advances sampled
solutions in the direction of the mean shift of the previous generation. We ana-
lyzed this technique and provided rational settings for its parameters. We called
the resulting EDA Adapted Maximum–Likelihood Gaussian Model — Iterated
Density–Estimation Evolutionary Algorithm (AMaLGaM–IDEA or AMaLGaM
for short). An experimental scalability analysis showed that AMaLGaM is ro-
bust to rotations and translations of the search space and is competitive with
CMA–ES under certain conditions. AMaLGaM therefore makes an important
step in the progression of continuous EDAs for numerical optimization.

Adaptivity in real–valued optimization has long been acknowledged to be
important [1]. Its use in ES has led to the development of CMA–ES. Both
AMaLGaM and CMA–ES adapt a Gaussian model using various techniques.
The view upon the Gaussian model is different however. In CMA–ES directions
are modelled and thus the Gaussian mainly serves as a mutation operator. In
EDAs the region of interest is directly modelled and thus the Gaussian mainly
serves as a recombination operator. The type of adaptation required is therefore
different. It is important to research and take note of results along both lines.

The practical applicability of AMaLGaM and CMA–ES depends on the prob-
lem dimensionality. Using the full covariance matrix, only problems of relatively
small dimensionality can be tackled due to the high required computing time.
This leaves only methods that consider a few dependencies or no dependencies at
all (i.e. the naive AMaLGaM). Certainly, if there are many strong dependencies
in the problem, the algorithm can’t find the optimum. Still, due to its simplicity,
speed, and effectiveness the naive AMaLGaM can well serve as a baseline EDA
to be used for future comparison and for applications with many variables.

One important direction of future work that we are currently pursuing is a
reduction of the required population size. To ensure the full covariance matrix is
well–conditioned for inversion, the required population size is quite large. This
requires many samples in the generation–wise ML estimate. CMA–ES on the
other hand convolutes the covariance matrix over multiple generations. This re-
duces the required population size and directly leads to less function evaluations.
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