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ABSTRACT

In this work we develop and study a methodology for deformable image registration that overcomes a drawback
of optimization procedures in common deformable image registration approaches: the use of a single combination
of different objectives. Because selecting the best combination is well-known to be non-trivial, we use a multi-
objective optimization approach that computes and presents multiple outcomes (a so-called Pareto front) at once.
The approach is inherently more powerful because not all Pareto-optimal outcomes are necessarily obtainable
by running existing approaches multiple times, for different combinations. Furthermore, expert knowledge can
be easily incorporated in making the final best-possible decision by simply looking at (a diverse selection of)
the outcomes illustrating both the transformed image and the associated deformation vector field. At the basis
of the optimization methodology lies an advanced, model-based evolutionary algorithm that aims to exploit
features of a problem’s structure in a principled manner via probabilistic modeling. Two objectives are defined:
1) maximization of intensity similarity (normalized mutual information) and 2) minimization of energy required
to accomplish the transformation (a model based on Hooke’s law that incorporates elasticity characteristics
associated with different tissue types). A regular grid of points forms the basis of the transformation model.
Interpolation extends the correspondence as found for the grid to the rest of the volume. As a proof of concept we
performed tests on a 2D axial slice of a CT scan of a breast. Results indicate plausible behavior of the proposed
methodology that innovatively combines intensity-based and model-based registration criteria with state-of-the-
art adaptive computation techniques for multi-objective optimization in deformable image registration.
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1. INTRODUCTION

Over the past few decades advances in computer science have led to image processing techniques that have
proven useful for healthcare.1 One particular image processing task that can be of great value for healthcare, is
deformable image registration. Various deformable image registration techniques have been developed.2 However,
despite significant progress, deformable registration is still not broadly used in clinical practice and challenging
problems still remain.3

Existing deformable registration techniques compute the outcome of registration based on a single combina-
tion of different objectives. Typically, these objectives are related to the image similarity and the smoothness
of the transformation. It is, however an unsolved problem how to select the singular optimal combination of
objectives beforehand, making clinical implementation of such algorithms difficult. Different combinations lead
to different outcomes, which can ultimately only be judged in quality by experts.

In this paper, we propose to take a multi-objective optimization approach to deformable image registra-
tion. Such an approach removes the need for a predetermined singular combination of objectives in deformable
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Figure 1. Left: grid of points used as a basis for the transformation model. Right: grid of points with all connections
taken into account in the calculation of the required energy to accomplish a transformation.

registration. By computing and presenting multiple outcomes that represent efficient trade-offs between the ob-
jectives (a so-called Pareto front) at once, a transparent manner of incorporating expert knowledge is obtained
for making the final best-possible decision for the situation at hand.

2. MATERIALS AND METHODS

The general idea of image registration is to find a transformation that transforms a source image to a target
image. For the task of image registration two issues are of prime interest: 1) intensity similarity, i.e. the
degree of similarity between intensity patterns in the target image and the transformed source image, and 2)
transformation effort, i.e. the amount of energy required to accomplish the transformation. In the following we
provide rudimentary, but computationally useful definitions for these issues.

2.1 Transformation model

The transformation model, i.e. the representation of possible transformations, is often based on a regular grid
of points.4 Here, we used a square grid of size ng × ng, although it should be noted that our overall approach
is not restricted to using square grids. The grid overlays the source image in a regular manner, meaning that
it corresponds to a subdivision of the source image into (ng − 1)(ng − 1) equally-sized axes-parallel rectangles
(see Figure 1). The actual transformation then is given by the association of coordinates with each point in the
grid. A means of interpolation is required to extend the so-established correspondence between grids to create
the transformed source image. To this end, in this paper we use bi-linear interpolation in each rectangle.

2.2 Similarity measure

The preferred transformation is one that maximizes similarity between the target image and the transformed
source image. We model similarity in intensity with a measure (to be maximized) that is commonly adopted
in registration literature, namely normalized mutual information: (H(T [s]) +H(t))/H(T [s], t), where H(T [s]),
H(t) and H(T [s], t) denote the entropy of the probability distribution of the grey values in the transformed
source image, the entropy of the probability distribution of the grey values in the target image and the entropy
of the joint probability distribution of the grey values (i.e. for the registered pairs of pixels) in the transformed
source image and the target image, respectively.5
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2.3 Deformation energy

Ideally, only transformations which are physically realistic for the application in mind should be considered.
To associate physical characteristics with transformations, Hooke’s law is used.6 Because we are interested
in non-rigid transformations, transformations such as rotations and translations of the entire grid should not
correspond to an increase in energy. The required energy is therefore computed on the basis of changes in the
lengths of edges in the grid. To ensure that the physical changes we are interested in, i.e. non-rigid deformations
of subrectangles, are always associated with an increase in required energy, we also include the diagonal edges
in each subrectangle (see Figure 1). Now, if we denote the grid coordinates in the source and target images

by vectors �vbefore
i , �vafter

i , i ∈ {0, 1, . . . , n2
g − 1} and the set of considered edges by E, we can define total energy

Utotal−deform to be minimized as follows:

Utotal-deform =
∑

(i,j)∈E
Udeform(i, j) (1)

where

Udeform(i, j) =
1

2
lij

(
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i − �vbefore
j ‖ − ‖ �vafter

i − �vafter
j ‖

)2
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where lij is an elasticity constant associated with the tissue that edge (i, j) crosses.

2.4 Optimization

In theory, the goal now becomes to find the transformation that corresponds to minimal energy while obtaining
perfect similarity between the images, i.e. a constrained single-objective optimization problem. However, in
practice, due to issues such as noise in image acquisition, inaccuracy in the determination of the parameters of
the physical model (i.e. segmentation and values for material properties) and the inability to mathematically
compactly represent all possible transformations, a transformation that results in perfect similarity may not
exist. Also, in registration tasks to be performed in practice there may be inherent differences between the
source and target image that do not correspond to a transformation as a result of deformation only. The source
and target images are typically different image acquisitions that may not represent the exact same anatomy.
Between acquisitions, physical changes may have occurred such as inflammation, new tumor growth or tumor
excision. Furthermore, images may be acquired with different modalities. Moreover, transformations that result
in a larger similarity are not necessarily preferable. Therefore, the underlying problem in practice is actually
multi-objective, i.e. find transformations that on the one hand maximize the similarity between source and target
image (objective 1) and on the other hand minimize the amount of required energy (objective 2).

In this work we therefore take a multi-objective optimization approach. In multi-objective optimization,
the optimum is a set of solutions, called the optimal Pareto set, because many solutions may be equally good,
e.g. solution a may be better in the first objective than solution b, but worse in the second objective. Solutions in
the Pareto set are said to not dominate each other. The benefit of using such a methodology is two-fold. First,
applying linear combinations (as is typically done in image registration) of the similarity and energy objectives
can by definition not find all possible Pareto-optimal solutions.7 Specifically, concave parts in the optimal Pareto
front cannot be found (the Pareto front is the mapping of the solutions in the Pareto set from the solution space
to the space of objective values). Second, even if the entire Pareto front, or the part we are interested in, is
convex, using a uniform selection of combinations does not automatically lead to a uniform spread of solutions
on the Pareto front.

Population-based methods such as evolutionary algorithms (EAs) are among the state-of-the-art in solving
multi-objective optimization problems.7 Due to the use of a population and specialized operators, near-optimal
solutions can be found efficiently and well-spread for both concave and convex parts of the Pareto front. We used
a particular type of EA, known as EDA (Estimation-of-Distribution Algorithm), that aims to exploit features
of a problem’s structure in a principled manner via probabilistic modeling.8–11 This makes this type of EA
typically more robust and capable of solving a large class of optimization problems reliably without using any
problem-specific knowledge.

The specific EDA we use is called MAMaLGaM-X (Multi-objective AMaLGaM miXture).12 MAMaLGaM-
X uses a population of solutions, selects 35% of the best solutions according to a domination-rank ordering,
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Figure 2. Left: axial slice of a CT scan. Center: segmented left breast (source image). Right: artificially deformed left
breast (target image).

estimates a l-dimensional normal mixture distribution (where l is the number of real-valued variables to be
optimized) from these selected solutions and generates new solutions by sampling the estimated distribution.
Using adaptive techniques that scale the covariance matrices of the normal distributions in the mixture according
to improvements found during optimization, the risk of premature convergence is minimized. MAMaLGaM-X was
recently demonstrated to be capable of efficiently approximating the optimal Pareto-front on various well-known
problems to within a predefined high precision, which can be considered equal to finding the optimum.12

The use of such powerful general-purpose optimization algorithms allows us to focus on modeling the problem
without compromising model quality due to an increase of model complexity. Such a compromise is otherwise
typically necessary because an increase in model complexity can prohibit the design of a problem-specific opti-
mization algorithm. We further used a technique known as constraint domination that allows the definition of
constraints in an equally straightforward manner.13 In this way we could easily incorporate well-known important
constraints in deformable registration such as prohibiting transformations that fold the grid.

2.5 Proof of principle

For a proof of principle we selected a 2D slice from a CT image acquired after breast-conserving surgery from a
patient suffering from breast cancer. First, the left breast was segmented. The resulting segmented image served
as the source image. Next, the target image was created by artificially deforming the segmented breast by use
of a different deformation model than what will be used to solve this deformable registration task.

A grid consisting of 25 points (corresponding to l = 50 variables for MAMaLGaM-X) was defined on the
2D slice (Figure 3). In this pilot study, we did not further classify the different tissue types in the breast and
therefore used only one flexibility value. For the normalized mutual information calculation 16 equal-sized bins
between 0 and 255 were used in constructing the histograms that constitute the probability distributions of the
grey values in the images.

3. RESULTS

Figure 3 shows a typical Pareto front found by the EDA together with transformed source images for three of
the solutions on the Pareto front. The plethora of solutions found by the EDA obtained by running it only once
already illustrates one of the advantages that such a method provides. We further note that a small concave
part is visible between energy values of approximately 0.2 and 0.3. Although this illustrates how the method
is capable of covering concave fronts, it should be noted that this does not necessarily mean that the optimal
Pareto front is also partially concave. Overall, although this example is still preliminary, it illustrates plausible
and desirable behaviour of the proposed methodology.

In Figure 4, for the three selected solutions, the source, target, transformed source, difference image between
target and transformed source image, together with the paired objective values associated with the solution are
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Figure 3. Set of solutions that forms the Pareto front as found by the EDA. For three solutions the corresponding
transformed source image is shown. In each image the associated transformed grid is overlaid to give an indication of the
extent of the deformation.

Figure 4. For three solutions from left to right: the source image, the target image, the transformed source image, the
difference image between target and transformed source image, the paired objective values associated with the solution
(transformation effort, similarity). The three solutions correspond to those presented in Figure 3. The initial regular grid
is shown in green. The transformed grid is shown in yellow.
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shown. Given the outcomes, it is clear how an expert could now in a transparent manner select the transformation
that is considered to be the preferred one. Because the algorithmic search effort is now focused on the entire
Pareto front, the diversity that MAMaLGaM-X obtains also includes arguably uninteresting outcomes such
as the top example in Figure 4, i.e. for (relatively) small values of deformation energy. It is however fairly
straightforward to include expert knowledge in steering the algorithm toward parts of the Pareto front that are
more interesting. This allows transformations that are of interest to be found faster and with a higher diversity.

4. DISCUSSION AND CONCLUSION

We present a new approach to deformable image registration based on multi-objective optimization. Existing
methods for deformable registration compute the outcome of registration based on a single combination of
different objectives. There is however no theoretical basis upon which such a single combination can be optimally
selected beforehand. Different combinations lead to different outcomes, which can ultimately only be judged in
quality by experts. We employed a multi-objective optimization approach that removes this predetermined
singular option in deformable registration. The particular type of multi-objective optimization algorithm that
we used is already very efficient, effective and capable of dealing with many different types of problem difficulty
which allows us to focus on defining the objectives and constraints such that the registration task is correctly
modeled and thereby leads to desired outcomes. The objectives can be easily reformulated as required. In other
words, the current model choices (e.g. Hooke’s law and normalized mutual information) are not fixed but can
be easily varied in our methodology. This can be especially important for future extensions of this work that we
are currently working on. For instance, existing deformable registration techniques generally fail to account for
anatomical changes (surgery) between image acquisitions. Only a few publications addressed the issue of tissue
excision between image acquisitions for the purpose of intra-operative guidance.14–18 However, in these methods
the identification of the disappearing structures is considered a separate task, often as part of segmentation.
We consider this challenging problem however to be part of the overall optimization process, thereby letting
the optimization algorithm decide and identify which parts are most likely to have (dis)appeared. We believe
the additional problem complexity that this introduces can be effectively tackled by the chosen optimization
technique.
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