Hierarchical Problem Solving with the
Linkage Tree Genetic Algorithm

Dirk Thierens
Universiteit Utrecht
Utrecht, The Netherlands
D.Thierens@uu.nl

ABSTRACT

Hierarchical problems represent an important class of nearly
decomposable problems. The concept of near decomposabil-
ity is central to the study of complex systems. When little a
priori information is available, a black box problem solver is
needed to optimize these hierarchical problems. The solver
should be able to learn linkage information, and to preserve
and test partial solutions at different levels in the hierar-
chy. Two well known benchmark functions - shuffled Hi-
erarchical If-And-Only-If (HIFF) and shuffled Hierarchical
Trap (HTRAP) functions - exemplify the challenges posed
by hierarchical problems. Standard genetic algorithms are
unable to solve these problems, and specific methods, like
SEAM and hBOA, have been designed to address them. In
this paper, we investigate how the recently developed Link-
age Tree Genetic Algorithm (LTGA) performs on these hi-
erarchical problems. We compare LTGA with SEAM and
hBOA on HIFF and HTRAP functions. Results show that,
although LTGA is a simple algorithm compared to SEAM
and hBOA, it nevertheless is a very efficient, reliable, and
scalable algorithm for solving the randomly shuffled versions
of HIFF and HTRAP, two hard, hierarchical problems.

Categories and Subject Descriptors

1.2 [Artificial Intelligence]: Problem Solving, Control Meth-

ods, and Search

General Terms

Algorithms, Performance, Experimentation

Keywords

Evolutionary Computation, Estimation-of-Distribution Al-
gorithms, Hierarchical Problems, Linkage Learning, Opti-
mal Mixing, Linkage Tree Genetic Algorithm.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’13, July 6-10, 2013, Amsterdam, The Netherlands.

Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

877

Peter A.N. Bosman
Centrum Wiskunde & Informatica (CWI)
Amsterdam, The Netherlands
Peter.Bosman@cwi.nl

1. INTRODUCTION

Hierarchical systems are composed of subsystems which
are hierarchies by themselves until one recursively reaches
a basic element. Interactions within each subsystem at a
certain level are stronger than the interactions between the
different subsystems. The subsystems can also be viewed
as partial solutions to a complex problem. By recursively
constructing partial solutions, hierarchy represents an orga-
nizational method to address large, complicated problems
in a scalable and efficient way. Simon’s classical book, The
Sciences of the Artificial, discusses the role of hierarchy and
modularity to achieve what he called near decomposability
[15]. It is through near decomposability that complex sys-
tems can be build, whether they are engineering systems,
social systems, economical systems, or biological systems.

Since hierarchical systems are so ubiquitous, it is impor-
tant to study how evolutionary algorithms can solve these
types of problems. Watson and Pollack did pioneering work
on this subject and introduced the well known HIFF prob-
lem. They also designed an evolutionary algorithm, SEAM,
based on symbiotic composition - as opposed to sexual re-
combination - to solve HIFF problems [20][21]. Pelikan and
Goldberg also recognized the importance of hierarchy early
on, and defined an even more challenging hierarchical prob-
lem, HTRAP [9][10][11]. They also designed hBOA which is
capable of solving HIFF and HTRAP efficiently. De Jong,
Watson and Thierens delineated the class of hierarchical
problems and analyzed a framework for hierarchical genetic
algorithms [4][5].

When studying computational methods to solve hierar-
chical systems it is important that we focus on black-box
approaches. The problem solvers should be able to identify
the near decomposable and hierarchical structure by itself -
this is, without being given this problem information a pri-
ori. It is only when we treat the problem this way that we
obtain computational tools that are widely applicable to Si-
mon’s important class of complex problems. Therefore, we
focus in the experimental analysis on the shuffled versions
of HIFF and HTRAP. In the shuffled version all problem
variables are randomly shuffled over the entire problem rep-
resentation so the problem solver has no clue about what
problem variables belong together in a subsystem of the hi-
erarchy. It should be noted that standard genetic algorithms
are incapable of solving such systems.

In recent years, we have introduced a very efficient link-
age learning evolutionary algorithm, called the Linkage Tree
Genetic Algorithm (LTGA) [16][19]. The purpose of this
paper is to see whether LTGA can solve the shuffled ver-

sions of the HIFF and HTRAP problems. We also compare
LTGA with SEAM and hBOA. The next Section discusses
LTGA, SEAM, and hBOA. Section 3 specifies the HIFF and
HTRAP hierarchical functions. In Section 4 we show exper-
imental results of LTGA on HIFF and HTRAP, and com-
pare them with SEAM and hBOA. Section 5 discusses how
LTGA handles key aspects of hierarchical problems. Finally,
Section 6 concludes the paper.

2. BACKGROUND

2.1 LTGA

The Linkage Tree Genetic Algorithm is a population-based,
stochastic local search algorithm that identifies which vari-
ables should be treated as a dependent set during the explo-
ration phase [16][19][3] . LTGA represents this dependence
information in a hierarchical cluster tree of the problem vari-
ables. The linkage tree of a population of solutions is the
hierarchical cluster tree of the problem variables built by
an agglomerative hierarchical clustering algorithm. The dis-
tance measure D (X1, X2) represents how much dependency
there is between two sets of variables X; and Xs. We use
as distance measure the mutual information I.

An agglomerative hierarchical clustering algorithm pro-
ceeds bottom-up. First, each problem variable is assigned
to a single cluster. Then, the clustering algorithm recur-
sively joins the closest clusters until only one cluster is left.
A fast clustering technique is the average linkage cluster-
ing or unweighted pair group method with arithmetic mean
(UPGMA) that only looks at distances between pairs of vari-
ables: D(X1,X2) = 17 Lxex; Lvex, [(X,Y). This
distance measure can be computed very efficiently because
all required information-theoretic measures between pairs
of variables can be calculated beforehand [6, 17, 19, 13].
Efficient implementations of hierarchical clustering run in
O(nl?) time, with n the population size and £ the problem
length [7].

The linkage tree has £ leaf nodes (the clusters having a sin-
gle problem variable) and ¢ — 1 internal nodes. Each node
of the linkage tree divides the set of problem variables into
two mutually exclusive subsets. One subset is the cluster of
variables at that node, while the other subset is the comple-
mentary set of problem variables. LTGA uses this division
of problem variables as linkage sets and samples their values
as a group. Sample values are obtained by taking a random
solution of the current population as donor, and copying the
corresponding variable values to the current parent solution.

Each generation LTGA builds a linkage tree of a selected
set of individual solutions from the current population. The
selection process is standard tournament selection with tour-
nament size s = 2. Note that the selected solutions are only
used to build the linkage tree, the rest of the algorithm pro-
ceeds with the current population. New solutions are gener-
ated by greedily exploring the neighborhood of each solution
in the current population. This neighborhood is defined by
the linkage tree. LTGA traverses the tree in the opposite
order of the merging of the clusters by the hierarchical clus-
tering algorithm. New solutions are only accepted when they
have a bette, or equal, fitness value than the original solu-
tion. When the tree is completely traversed, the solution
obtained is copied to the population of the next generation.

878

This tree traversal process is done for each solution in the
current population.

It should be noted that half of the variable samples are
single bit values, so LTGA is also performing a partial 1-
bit local search. As an efficiency gain, LTGA always checks
whether the offspring solutions are actually different from
their parent solution, if not no call to the fitness function
is done, and the algorithm simply proceeds with its tree
traversal.

2.2 SEAM

The Symbiogenic Evolutionary Adaptation Model (SEAM)
differs from standard genetic algorithms in three key compo-
nents [20][21]. First, SEAM uses symbiotic combination as
an alternative to sexual recombination. Whereas sexual re-
combination extracts and reassembles gene-subsets from the
parents in new combinations, symbiotic combination sim-
ply joins whole individuals. Second, since the individuals
in SEAM are partially specified, a template is needed to fill
in the blanks. Sets of other, partially-specified individuals
are chosen from the population in order to build a template
and to evaluate two competing individuals within this con-
text. Third, SEAM applies Pareto coevolution to preserve
population diversity.

2.3 hBOA

The Hierarchical Bayesian Optimization Algorithm (hBOA)
and its predecessor, BOA, belong to the class of Estimation-
of-Distribution (EDA) algorithms [9][10][11][12].

BOA and hBOA construct, each generation, a Bayesian
network to model the probabilistic dependencies between the
problem variables of the most promising solutions in the cur-
rent population. This Bayesian network is then sampled to
generate new candidate solutions. In order to address hard,
hierarchical functions, BOA was extended to hBOA. One
extension was the use of decision trees in order to make the
representation of the large number of conditional probabil-
ities tractable. Another extension was the use of restricted
tournament replacement as niching technique in order to en-
sure diversity maintenance in the population.

3. HIERARCHICAL PROBLEMS

There are two well known hierarchically decomposable
benchmark functions in the EC literature: the Hierarchical
If-And-Only-If (HIFF) function and the Hierarchical Trap
(HTRAP) function. In this paper we are only interested in
the randomly shuffled versions of HIFF and HTRAP, so even
when not explicitly stated, we always refer to these versions
when talking about HIFF or HTRAP problems.

3.1 HIFF

The Hierarchical If-And-Only-If function is structured as
a balanced binary tree. Each node X in the tree is at a dis-
tance height(X) from its leaf nodes. Leaf nodes contribute
1 to the fitness and have a value 0 or 1 as specified by the
input string. Actually, we could as well assign no fitness
contributions to leaf nodes, but we stick here to the origi-
nal formulation. Internal or parent nodes contribute to the
fitness by 2" (%) if and only if their children have both
a value either 0 or 1. Otherwise, the fitness contribution is
0. It should be noted that due to the exponentially scaled
fitness contribution each level in the tree has the same mag-
nitude to the fitness contribution. The value of a parent

node is 0 (resp. 1) when both its children are 0 (resp. 1),
and value NIL otherwise.

3.2 HTRAP

The Hierarchical Trap function is structured as a balanced
k-ary tree with k£ > 3. Similarly to HIFF, internal nodes
have a value 0 (resp. 1) if all their children nodes have value
0 (resp. 1), and value NIL otherwise. The contribution
of the internal nodes to the overall fitness is a function of
unitation, meaning it is depending on the number of ones
and zeroes in the children nodes. If there is one or more
child node with value NIL, then the fitness contribution of
the parent node is 0. The fitness contribution function of
an internal node X is f(u(X)) x k""" where f(u(X)) is
the classical trap function with u the number of ones (and
k — u zeroes) at the children nodes of X:

if u=k
otherwise.

fhigh

flow —Uu j]:lilf

o ={

At the root node frign = 1 and fiow = 0.9, while for all
other internal nodes frigh = flow = 1. The global optimal
solution is thus the string of all ones. However, HTRAP
biases the search to the solution of all zeroes on each but the
top level. In addition, the top level is fully deceptive with
the all zeroes solution as deceptive attractor. In the shuffled
version all problem variables are randomly positioned on the
string representation. Clearly, this is a very hard function to
optimize. Not only should the linkage groups be identified,
but also the alternative partial solutions at each level need
to be preserved in the population until the problem can be
solved at the highest level.

4. EXPERIMENTAL RESULTS

The experimental results reported here are all measuring
the first hitting time of the global optimal solution - this
is, the number of fitness evaluations required to generate
the global optimum for the first time during a run. The
associated population size is determined by starting from a
very small population and letting the algorithm run until
the population is fully converged. If the optimum has not
been found, the next trial will use a population size twice
as large. When the optimum is encountered the minimal
population size is searched for by performing a bisection
search between the current population size and the previous
size which is half as big [14]. All experimental results are
averaged over 30 runs, and the success criterion is that all
30 runs find the global optimum. Reported experimental
results of SEAM [20] and hBOA [10] use the same success
criterion which facilitates the comparison.

4.1 HIFF

We have run experiments on the HIFF function for string
lengths respectively ¢ = 16, 32,64,128,256,512. Figure 1
plots the number of function evaluations and the associated,
minimal population size. The smallest HIFF problem, ¢ =
16, can be solved reliably by LTGA in about 500 function
evaluations with an average population size of 24, while the
largest HIFF problem, ¢ = 512, is solved in a little less than
300000 function evaluations with an average population size
of 112.

The SEAM algorithm, as reported in [20], required about
220000 function evaluations for the HIFF problem of length

¢ = 64. The population size was started at 1000 and is
reduced during run time. No experimental results for larger
string lengths are reported.

Figure 1 also shows the results for hBOA taken from [9]. It
is truly remarkable that the number of function evaluations
needed by hBOA are almost indistinguishable from those
of LTGA. Although both algorithms learn linkage structure
while optimizing the problem, they are fundamentally dif-
ferent in the way they learn linkage information, and in the
way they use this structural information to generate new
solutions. As a result of these differences LTGA requires
much smaller populations sizes than hBOA. Unfortunately,
no population sizes have been reported in [9], but in gen-
eral hBOA - and other entropy-based model building EDAs
- require a order of magnitude larger population sizes than
LTGA [22].

HIFF (30/30,FHT)

1e+07
1e+06 |
g I * l/
o
S 100000
| n
©
s /{/"
5 L
£ 10000 | s
=1 S
] /
1000 | /
100
10 100 1000
Dimensionality
LTGA hBOA - e SEAM @
HIFF (30/30,FHT)
10000
1000
2
>
S
=
=
=3
o
100 /I/IT//I
10
10 100 1000
Dimensionality
LTGA —s
Figure 1: Results on HIFF problems of different

879

length with LTGA, hBOA, and SEAM.

4.2 HTRAP

We have run experiments on the HTRAP function with
k = 3 and string lengths respectively ¢ = 27,81, 243, 729.
Figure 2 plots the number of function evaluations and the
associated, minimal population size. The smallest HTRAP
problem, ¢ = 27, can be solved reliably by LTGA in about

8500 function evaluations with an average population size of
100, while the largest HTRAP problem, ¢ = 729, is solved
in about 1130000 function evaluations with an average pop-
ulation size of 320. It can also be seen that the variation of
the first hitting time is small, indicating a consistent con-
vergence behavior.

Figure 2 also shows the results for hBOA taken from [9].
For the smaller HTRAP function hBOA needs around half
the number of function evaluations than LTGA. However,
the number of function evaluations seems to scale worse for
hBOA than for LTGA. No experimental results where re-
ported for hBOA on a problem with length ¢ = 729, but by
extrapolating the curve in Figure 2 we can see that hBOA
appears to need about double the amount of function eval-
uations than LTGA. It should also be noted that the com-
putational run time for building a hierarchical tree is much
lower than for building a Bayesian network.

SEAM has not been applied on the HTRAP function, but
considering the result on HIFF it is safe to assume that it
would be significantly less efficient than hBOA and LTGA.
Due to the deceptive nature of HTRAP it is even doubtful
if SEAM could solve these functions at all.

HTRAP1 (30/30,FHT)
1e+07

1e+06 o
E=3 T
& 100000 =
= -
< -
4 .
> -
S o
2 10000 P
= "
= -
-
1000
100
10 100 1000
Dimensionality
LTGA teeeet hBOA 1101 e
HTRAP1 (30/30,FHT)
10000
1000
@
N
>
=
=3
: /R/I
=
a
S
& 1___—
100 iy
10

100
Dimensionality
LTGA rt

1000

Figure 2: Results on HTRAP problems of different
length with LTGA and hBOA.

880

4.3 Alternative Initialization

LTGA requires a much smaller population size than the
typical Genetic Algorithm or Estimation-of-Distribution Al-
gorithm. For small population sizes, the way the initial, ran-
dom population is constructed becomes an influencing fac-
tor. Although it gets hardly ever reported in the literature,
it is safe to assume that most researchers create an initial
random population by flipping a fair coin for each bit value
of each solution in the population, and thus approximating
a binomial distribution. However, for small populations it
is more beneficial to initialize the population by enforcing
that for each problem variable there are exactly half of the
population size zeroes and the other half ones. Such a ran-
dom population can easily be constructed by starting from a
population with half of the solutions consisting of all zeroes
while the other half are all ones, and then shuffle the bit val-
ues. Care should be taken that enough shuffling iterations
are performed to completely decorrelate the bit values (here
we applied 15 shuffling iterations). Figure 3 shows experi-
mental results on the HIFF problem. The minimal required
population size and the number of function evaluations are
now both noticeably smaller. For the HTRAP function, the
required population sizes are larger, therefore the random
initialization method has less impact.

4.4 Child Node Filtering

LTGA builds a linkage tree by using a bottom-up, hier-
archical clustering algorithm. Cluster trees have ¢ terminal
nodes and ¢ — 1 internal nodes, so the number of linkage
groups of size at least 2 is always £—2 (note that the top node
in the cluster tree covers all problem variables and therefore
is not used as a linkage group). However, enforcing this
fixed amount of linkage groups can cause some redundant
fitness function evaluations and therefore decrease the per-
formance. To see when this is the case let us consider a small
example. Assume we have a problem with length 6 and a
population of size 5, P = {000000, 000111, 0000111, 111000,
111000}, resulting in a linkage tree T' = {(0), (1), (2), (3),
(4), (5), (01), (012), (34), (345)}. The linkage group (012)
has only the partial solutions {000***} and {111***} present
in the population, similarly the linkage group (345) has only
{***000} and {***111}. Since the population has converged
to this state, we can assume that the missing partial so-
lutions {100%**, Q10***, QO1*** 110%** 101%** Q11***}
and {***100, ***010, ***001, ***110,***101, ***011} are
deemed no longer useful in the search process. Therefore,
it would be inefficient to let the exploration operators cre-
ate these partial solutions anew. Clearly, this is exactly
what LTGA would do when using one of the linkage groups
(0), (1), (2),(3),(4), (5), (01), (34) during the mixing process.
We can eliminate this redundant exploration by recognizing
that this situation occurs whenever we have a linkage group
G with entropy H(G) and all its children linkage groups have
the same entropy H(G). In the example above the linkage
group (012) has entropy H(012) = —2In 2—£1n 1 = 0.6365.
All its children linkage groups (0),(1),(2), and (01) have the
same entropy value and are therefore redundant.

During the construction of the linkage tree we are already
computing the entropy values of the linkage groups, so it
requires little extra effort to check whether some linkage
groups can be eliminated. When the hierarchical clustering
algorithm wants to merge two clusters F; and F; with equal
entropy H(F;) = H(Fj;), and the entropy of the joint cluster

HIFF (30/30,FHT)

1e+07
1e+06
2
E=3
k5] 100000
=
<
=
>
S
2 10000
=
=
1000
100
10 100 1000
Dimensionality
LTGA #————t ALT_INIT imimim=ii
HIFF (30/30,FHT)
10000
1000
=
>
=
=3
=
=
a
S
a
100
10
10 100 1000

Dimensionality
LTGA =——— ALT_INIT === .

Figure 3: Results on HIFF problems of different
length with LTGA using different initialization pro-
cedures.

F;; is also equal to this value H(F;;) = H(F;) = H(F}),
then we remove the clusters F; and F; from the linkage tree
and add the joined cluster Fj;.

Figure 4 shows the reduction in function evaluations due
to the filtering of redundant linkage subsets in case of the
HIFF function. For the largest problem considered, ¢ = 512,
the number of function evaluations is reduced from approx-
imately 300000 to 200000. The filtering does not have any
effect on the minimal population size required. For the
HTRAP function the gain is relatively less significant.

It should be noted that the filtering criterion we use here
is rather stringent: the entropies of the merged clusters and
their joined cluster need all to be equal. This only happens
during the last generations so the impact of the filtering
is somewhat limited. A more relaxed way of filtering, and
additionally, ways to filter parent nodes, are discussed in [2].

5. DISCUSSION

LTGA and hBOA are both capable of solving difficult hi-
erarchical and nearly decomposable problems in a scalable
way. Pelikan and Goldberg discussed three important chal-
lenges that must be considered for the design of robust and

Number of evaluations

HIFF (30/30,FHT)

1e+07

1e+06 |-

100000 |

10000 |

1000 |

10 100 1000
Dimensionality
LTGA #=————i CHILDREN_FILTER =======s

HIFF (30/30,FHT)
10000

1000

Population size

100

10

10 100 1000
Dimensionality
LTGA ¥ CHILDREN_FILTER #======s

Figure 4: Results on HIFF problems of different
length with LTGA using child node filtering.

scalable solvers for these problems [11][12]. They identified
‘Three Keys to Hierarchy Success’:

1. Decomposition. A competent hierarchical optimizer
must be capable of decomposing the problem at each
level properly by identifying most important interac-
tions between the problem variables and modeling them
appropriately.

2. Chunking. A competent hierarchical optimizer must
be capable of representing partial solutions at each
level compactly to enable the algorithm to effectively
process partial solutions of larger order (this becomes
most important for highest levels).

3. Diversity maintenance. A competent hierarchical op-
timizer must be capable of effective diversity mainte-
nance to preserve alternative partial solutions until it
becomes clear which partial solutions may be elimi-
nated.

In hBOA, decomposition is obtained by learning, each gen-
eration, a Bayesian network from a selected set of good so-
lutions. Chunking is achieved by the use of decision trees to

compactly represent the conditional probability tables. Fi-
nally, diversity maintenance is ensured by applying a nich-
ing technique: restricted tournament replacement (RTR). In
RTR, a newly generated solution competes directly against
its most similar solution in a randomly chosen set W of solu-
tions from the current population. If the new solution is bet-
ter it replaces the similar solution, otherwise it is discarded.
Similarity is based on the Hamming distance between the
solutions.

An interesting question is how LTGA handles these ‘Three
Keys of Hierarchy Success’ ?

1. Decomposition: the hierarchical cluster tree uses the
mutual information between (sets of) problem vari-
ables to identify and represent important interactions
between variables at each level.

2. Chunking: learning a Bayesian network requires build-
ing a dependency graph and computing the conditional
probability values. The latter can lead to a very large
number of parameters which could make the learning
of interactions between a large set of problem vari-
ables intractable. That is why hBOA needs a chunk-
ing mechanism in the form of decision trees. LTGA
however does not build a probability model and there-
fore does not need to estimate conditional probabili-
ties. The linkage tree is simply the result of the ag-
glomerative hierarchical clustering. This cluster tree
is a very compact way of representing linkage informa-
tion so no specific chunking mechanism is required.

3. Diversity maintenance: LTGA has no explicit mecha-
nism to preserve niches in the population, and it might
look surprising that it nevertheless can preserve alter-
native partial solutions in the population. The reason
this happens is due to the optimal mixing technique:
change in the population only comes from replacing a
partial solution by another partial solution from the
current population as specified by the linkage sets in
the linkage tree. These local changes are immediately
evaluated and if the result is a decrease in fitness then
they are undone. This mechanism is sufficient to main-
tain the required diversity in the population.

Both HIFF and HTRAP have a tree structure. LTGA
also represents the linkage it induces from the promising so-
lutions as a tree. Obviously, this raises the question whether
this structural correspondence is responsible for the excel-
lent performance of LTGA. Clearly, there must be some in-
fluence, although it is not clear how big this influence is. It is
instructive to recall that LTGA has shown excellent perfor-
mance on the nearest-neighbor NK-landscape, even though a
tree cannot represent the overlapping dependencies present
in this problem [19]. In addition, it has been shown that
a static linkage grouping that mirrors the overlapping in-
teraction structure of the nearest-neighbor NK-landscape is
outperformed by LTGA even though it can only represent
linkage information as a tree [18]. On the other hand, exper-
imental results on 2D spin glass problems do indicate that
the inability of representing overlapping interactions by a
tree can hinder the performance of LTGA [13]. Therefore,
we also looked at alternative linkage models like the Linkage
Neighbor GA [1]. There are currently no studies on hierar-
chical problems with overlapping sub-functions, but this is
definitely an interesting future research topic.

882

6. CONCLUSIONS

Hierarchical decomposable systems are at the heart of Si-
mon’s near decomposability view of complex systems, both
natural and man-made. Black-box optimization methods
that solve such systems are therefore of the uttermost im-
portance. We have shown that the Linkage Tree Genetic
Algorithm is a very efficient, reliable, and scalable algorithm
for solving the shuffled versions of HIFF and HTRAP, two
hard, hierarchical problems. On the HIFF function, LTGA
behaves remarkably similar than hBOA. Both algorithms
are much more efficient than SEAM. On the HTRAP func-
tion, LTGA needs more function evaluations than hBOA
on small problems, however LTGA appears to have better
scaling behavior, and requires less function evaluations than
hBOA for larger problem lengths. The key advantage of
LTGA however is that it is an extremely fast and simple al-
gorithm, but nevertheless capable of solving some very hard,
nearly decomposable hierarchical problems, like HIFF and
HTRAP.

7. REFERENCES

[1] P. A. Bosman and D. Thierens. Linkage neighbors,
optimal mixing and forced improvements in genetic
algorithms. In Proceedings of the fourteenth
international conference on Genetic and evolutionary
computation conference, GECCO ’12, pages 585-592,
New York, NY, USA, 2012. ACM.

P. A. Bosman and D. Thierens. More concise and
robust linkage learning by filtering and combining
linkage hierarchies. In Proceedings of the fifteenth
international conference on Genetic and evolutionary
computation conference, GECCO ’13, New York, NY,
USA, 2013. ACM.

P. A. N. Bosman and D. Thierens. The roles of local
search, model building and optimal mixing in
evolutionary algorithms from a BBO perspective. In
N. Krasnogor and P. L. Lanzi, editors, GECCO
(Companion), pages 663-670. ACM, 2011.

E. D. de Jong, D. Thierens, and R. A. Watson.
Hierarchical genetic algorithms. In X. Yao, E. K.
Burke, J. A. Lozano, J. Smith, J. J. M. Guervés, J. A.
Bullinaria, J. E. Rowe, P. Tifio, A. Kaban, and H.-P.
Schwefel, editors, PPSN, volume 3242 of Lecture Notes
in Computer Science, pages 232—241. Springer, 2004.
E. D. de Jong, R. A. Watson, and D. Thierens. On the
complexity of hierarchical problem solving. In
Proceedings of the 2005 conference on Genetic and
evolutionary computation, GECCO ’05, pages
1201-1208, New York, NY, USA, 2005. ACM.

T. S. Duque and D. E. Goldberg. A new method for
linkage learning in the ECGA. In GECCO ’09:
Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, pages 1819-1820, New
York, NY, USA, 2009. ACM.

I. Gronau and S. Moran. Optimal implementations of
UPGMA and other common clustering algorithms.
Inf. Process. Lett., 104(6):205-210, 2007.

N. Krasnogor and P. L. Lanzi, editors. 13th Annual
Genetic and Evolutionary Computation Conference,
GECCO 2011, Proceedings, Dublin, Ireland, July
12-16, 2011. ACM, 2011.

[9] M. Pelikan and D. E. Goldberg. Hierarchical problem

2]

3]

[4]

[5]

[6]

[7]

8]

[10]

[11]

[12]

solving and the bayesian optimization algorithm. In
L. D. Whitley, D. E. Goldberg, E. Cantu-Paz,

L. Spector, I. C. Parmee, and H.-G. Beyer, editors,
GECCO, pages 267-274. Morgan Kaufmann, 2000.
M. Pelikan and D. E. Goldberg. Escaping hierarchical
traps with competent genetic algorithms. In
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO2001, pages
511-518. Morgan Kaufmann, 2001.

M. Pelikan and D. E. Goldberg. A hierarchy machine:
Learning to optimize from nature and humans.
Complezity, 8(5):36-45, 2003.

M. Pelikan and D. E. Goldberg. Hierarchical Bayesian
optimization algorithm. In M. Pelikan, K. Sastry, and
E. Cantu-Paz, editors, Scalable Optimization via
Probabilistic Modeling, volume 33 of Studies in
Computational Intelligence, pages 63—90. Springer,
2006.

M. Pelikan, M. Hauschild, and D. Thierens. Pairwise
and problem-specific distance metrics in the linkage
tree genetic algorithm. In Krasnogor and Lanzi [8],
pages 1005-1012.

K. Sastry. Evaluation-relaxation schemes for genetic
and evolutionary algorithms. Technical Report
Master’s Thesis. IlliGAL Report No. 2002004,
Department of General Engineering, University of
Illinois at Urbana-Champaign, January 2002.

H. Simon. The Sciences of the Artificial. MIT Press,
1968.

D. Thierens. The linkage tree genetic algorithm. In
R. Schaefer et al., editors, Parallel Problem Solving
from Nature — PPSN XI, pages 264-273, Berlin,
2010. Springer—Verlag.

883

(17]

(18]

(19]

20]

(21]

(22]

D. Thierens. Linkage tree genetic algorithm: first
results. In Proceedings of the 12th annual conference
companion on Genetic and evolutionary computation,
GECCO 10, pages 1953-1958, New York, NY, USA,
2010. ACM.

D. Thierens and P. Bosman. Predetermined versus
learned linkage models. In Proceedings of the
fourteenth international conference on Genetic and
evolutionary computation conference, GECCO ’12,
pages 289-296, New York, NY, USA, 2012. ACM.

D. Thierens and P. A. N. Bosman. Optimal mixing
evolutionary algorithms. In Krasnogor and Lanzi [8],
pages 617-624.

R. A. Watson and J. B. Pollack. Symbiotic
combination as an alternative to sexual recombination
in genetic algorithms. In M. Schoenauer, K. Deb,

G. Rudolph, X. Yao, E. Lutton, J. J. M. Guervés, and
H.-P. Schwefel, editors, PPSN, volume 1917 of Lecture
Notes in Computer Science, pages 425-434. Springer,
2000.

R. A. Watson and J. B. Pollack. A computational
model of symbiotic composition in evolutionary
transitions. Biosystems, 69:187-209, 2003.

T.-L. Yu, K. Sastry, D. E. Goldberg, and M. Pelikan.
Population sizing for entropy-based model building in
discrete estimation of distribution algorithms. In
GECCO °07: Proceedings of the 9th annual conference
on Genetic and evolutionary computation, pages
601-608, New York, NY, USA, 2007. ACM.

