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ABSTRACT
The Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) is a well-known, state-of-the-art optimization al-
gorithm for single-objective real-valued problems, especially
in black-box settings. Although several extensions of CMA-
ES to multi-objective (MO) optimization exist, no extension
incorporates a key component of the most robust and general
CMA-ES variant: the association of a population with each
Gaussian distribution that drives optimization. To achieve
this, we use a recently introduced framework for extending
population-based algorithms from single- to multi-objective
optimization. We compare, using six well-known benchmark
problems, the performance of the newly constructed MO-
CMA-ES with existing variants and with the estimation
of distribution algorithm (EDA) known as iMAMaLGaM,
that is also an instance of the framework, extending the
single-objective EDA iAMaLGaM to MO. Results underline
the advantages of being able to use populations. Because
many real-world problems have constraints, we also study
the use of four constraint-handling techniques. We find that
CMA-ES is typically less robust to these techniques than iA-
MaLGaM. Moreover, whereas we could verify that a penalty
method that was previously used in literature leads to fast
convergence, we also find that it has a high risk of finding
only nearly, but not entirely, feasible solutions. We therefore
propose that other constraint-handling techniques should be
preferred in general.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global optimization

General Terms
Algorithms, Performance, Experimentation
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1. INTRODUCTION
Many real-world problems have more than one conflicting

objective that need to be optimized simultaneously. More-
over, many problems require taking a black-box optimiza-
tion (BBO) perspective, i.e. assume that (virtually) nothing
is known about the problem at hand (e.g. complex simula-
tion based real-world models). Studying and understanding
algorithms to tackle optimization problems under such con-
ditions is therefore important.

For single-objective (SO) real-valued optimization prob-
lems, the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) is a well-known, state-of-the-art algorithm, es-
pecially in black-box settings. Several multi-objective (MO)
extensions of CMA-ES exist [1, 2, 3, 4]. However, none in-
corporates a key component of the most robust and general
CMA-ES variant [5]: the association of a population with
each Gaussian distribution to drive optimization. In the
first MO extension of CMA-ES [1], a (1 + λ)-MO-CMA-ES
is introduced. In this approach, each parent generates one or
more offspring solutions. Thereafter, parents and offspring
solutions are selected based on non-dominated sorting. The
search strategy parameters are updated based on a direct
comparison between offspring and respective parents. How-
ever, there is no information-sharing mechanism for different
individuals, even if they are in similar search space areas. In
the second proposed MO-CMA-ES variant, in each genera-
tion only one parent is selected to generate one offspring [2].
The parent may be randomly selected from the entire pop-
ulation or, in a greedy approach, from the subset with the
lowest non-dominated rank. In another MO-CMA-ES vari-
ant, a notion of continuity of the optimization problem was
assumed [3]. Successful offspring then update their covari-
ance matrix taking into consideration information not only
from their parent but also from all the successful offspring
solutions of that generation. In the latest MO-CMA-ES vari-
ant, a new success criterion was introduced: an offspring is
considered successful if it is present in the next parent pop-
ulation. This criterion is broader since offspring are not
compared only with their respective parent, but rather, how
well they perform in the entire population is also evaluated.

All existing MO-CMA-ES extensions are based on the
(1 + λ)-MO-CMA-ES which use populations of size one. Us-
ing larger populations could be beneficial however, since an
increased spread and coverage of the Pareto front would be
expected. Moreover, if all the population information con-
tent is used to drive optimization, the algorithm is less prone
to getting stuck in sub-optimal local minima [1].



Many real-world problems have constraints, making the
performance of BBO algorithms under different constraint-
handling techniques important. All MO-CMA-ES variants
previously introduced use a penalty term to handle box con-
straints. This approach lead to fast convergence speeds for
certain benchmark problems [1, 2, 3, 4]. However, this ap-
proach has drawbacks. For example, it only performs well
with box constraints since these, differently from general
problem constraints, allow an easy mapping to the feasible
space. Furthermore, infeasible solutions may be accepted in
the elitist archive with this constraint handling technique.

The main objectives of this paper stem from the fact that
all existing MO-CMA-ES variants use populations of size
one and that only the penalty approach was used to handle
constraints. Our first goal is to study the benefits of having
a population-based MO-CMA-ES. To do so, we study a com-
bination between a multi-objective optimization framework
that was recently introduced [6] with the most general SO
version of CMA-ES [5]. Our second goal is to assess the per-
formance and robustness of the previously introduced MO-
CMA-ES variants, the novel population-based MO-CMA-
ES and the iMAMaLGaM algorithm [6] under different and
more general constraint handling techniques.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly introduces the key concepts in MO optimiza-
tion. Then, Section 3 describes the most popular MO-CMA-
ES variants. Subsequently, in Section 4 a recently intro-
duced general framework for extending population-based al-
gorithms from single- to multi-objective optimization is de-
scribed. Thereafter, iMAMaLGaM is described in Section 5.
The novel population-based MO-CMA-ES is introduced in
Section 6. Subsequently, the different constraint-handling
techniques are briefly discussed in Section 7. The perfor-
mance of the algorithms is tested in Section 9 on 6 bench-
mark problems and with different constraint-handling tech-
niques. A discussion of the results is given in Section 10,
while final conclusions are presented in Section 11.

2. MULTI-OBJECTIVE OPTIMIZATION
We assume to have m objective functions fi(x), i ∈ {1, 2,

. . . ,m} and, without loss of generality, we assume that the
goal is to minimize all objectives. A solution x1 is said to
(Pareto) dominate a solution x2 (denoted x1 � x2) if and
only if fi(x

1) ≤ fi(x
2) holds for all i ∈ {1, 2, . . . ,m} and

fi(x
1) < fi(x

2) holds for at least one i ∈ {1, 2, . . . ,m}. A
Pareto set of size n is a set of solutions xj , j ∈ {1, 2, . . . , n}
for which no solution dominates any other solution, i.e. there
are no j, k ∈ {1, 2, . . . , n} such that xj � xk holds. A
Pareto front corresponding to a Pareto set is the set of all
m-dimensional objective function values corresponding to
the solutions, i.e. the set of all f(xj), j ∈ {1, 2, . . . , n}. A
solution x1 is said to be Pareto optimal if and only if there
is no other x2 such that x2 � x1 holds. Further, the optimal

Pareto set is the set of all Pareto-optimal solutions and the
optimal Pareto front is the Pareto front that corresponds to
the optimal Pareto set. We denote the optimal Pareto set
by PS and the optimal Pareto front by PF .

3. MO-CMA-ES
The four MO-CMA-ES variants used for testing are briefly

explained here. For more in-depth explanations, the inter-
ested reader is referred to the original works [1, 2, 3, 4].

The so-called generational MO-CMA-ES was the first at-
tempt to construct a MO CMA-ES [1]. A (1 + 1)-CMA-ES
was used to this end. The idea is to maintain a population of
λMO elitist (1 + 1)-MO-CMA-ES instances which are sub-
jected to selection based on non-dominated sorting. The
hypervolume measure, defined as the Lebesgue measure of
the union of hypercubes in the objective space [7], was used
as second level sorting criterion to rank individuals with the
same level of non-dominance.

The so-called Steady-State Selection MO-CMA-ES was
the second attempt. Although, this approach is very similar
to the generational variant, in each generation, only one par-
ent solution generates one offspring [2]. This variant is com-
putationally more demanding than the generational variant
since all the necessary computations to update the parent
pool are performed for each new offspring.

The so-called Recombination MO-CMA-ES [3] was the
first attempt to transfer information between successful off-
spring. Each individual adapts its own covariance matrix
considering not only its parent but also all successful off-
spring generated in the same generation. The underlying
idea is that individuals that are close in the search space
are likely to be similar if a notion of continuity is assumed.
Nonetheless, the influence of successful offspring is weighted
by their distance to the solution to be updated.

In the Improved Step MO-CMA-ES [4], an offspring is said
to be successful if it is present in the next parent population.
This not only reduces computational complexity, but it also
improves performance since the success criterion is broader
since a solution is compared to a set of solutions instead of
solely with the individual from which it originated.

4. MO OPTIMIZATION FRAMEWORK
A general framework for extending population-based al-

gorithms from single- to multi-objective optimization was
introduced in [6]. An overview of the multi-objective opti-
mization framework is depicted in Figure 1. Next, a descrip-
tion of each step of the framework is given.

Figure 1: Flowchart of the multi-objective optimiza-
tion framework.

4.1 Selection
Given a population of size n, �τn� (τ ∈ [ 1

n
, 1]) solutions

with the lowest domination ranks are selected. From the
rank that crosses the boundary of �τn� solutions a subset
must be chosen. For this, the same nearest-neighbor heuris-
tic is used as for selecting cluster leaders (see below).

4.2 Clustering
A nearest-neighbor heuristic is used to select k −m clus-

ter leaders, that are spread as well as possible, from the
selection set. The first leader is chosen as a solution with
a maximum value for a randomly chosen objective. For all



remaining solutions, the nearest-neighbor distance is com-
puted to the first leader and the most distant solution is
chosen as the next leader. The distances for the remaining
solutions are updated by checking whether the distance to
the new leader is smaller than the currently stored nearest-
neighbor distance. This procedure is repeated until all the
necessary cluster leaders are selected.

Next, the distance from each solution in the selection set
to the cluster leaders is computed. These leaders serve as
initial cluster centroids in the subsequent application of the
k-means clustering algorithm. After running k-means clus-
tering, for each cluster, the c closest solutions are to the
final cluster centroid assigned to it, ensuring that each clus-
ter consists of exactly c solutions.

Because the final assignment is done independently for
each cluster, some solutions may be assigned to multiple
clusters whereas other solutions may not be assigned at all.
The probability of this happening can be reduced by in-
creasing the probability that the clusters will overlap by
setting c > 1

k
�τn� . Specifically, we use c = 2

k
�τn� as

proposed in [6], resulting in substantial expected overlap
between neighboring clusters. This increases the expected
density in the usual void between the boundaries of clusters
in the objective space, thereby increasing the probability of
finding a good, uniform spread of solutions faster.

To ensure that spatial separation of the search bias is
obtained in the objective space, clustering is performed on
the basis of objective values. Specifically, the distances are
based on normalized objective values to remove the influ-
ence of differently scaled objectives. To this end, first the
minimum fmin

i and maximum fmax
i values for each objec-

tive i are computed from all selected solutions. A point in
objective space f(x) is then scaled linearly to the observed
ranges, i.e. (f(x)− fmin

i )/(fmax
i − fmin

i ).

4.3 Cluster registration
An important part of state-of-the-art variation operators

are adaptive mechanisms that span multiple generations such
as the Anticipated Mean Shift (AMS) [6] approach in esti-
mation of distribution algorithms (EDAs) and the evolution
path and the estimation of the covariance matrix based on
the mean shift in CMA-ES [5]. The performance of these
mechanisms strongly depends on a correlation between the
solution sets in subsequent generations. By re-applying clus-
tering each generation however, in principle, there is no
spatial relation between clusters in subsequent generations,
i.e. the final enumeration of clusters does not guarantee that
cluster i in generation t− 1 is near cluster i in generation t.

To obtain a smooth evolution of clusters and their paths
over subsequent generations, a registration between clusters
in subsequent generations that minimizes the distance of the
matched clusters is computed [6]. To do so, a matching of
clusters is computed in subsequent generations that mini-
mizes the distance between the matched clusters. Firstly,
the distances between clusters in generations t and t− 1 are
calculated. The distance between two clusters is taken to
be the sum of the smallest pair-wise distance between the
cluster’s solutions. Furthermore, the cluster distances are
computed between the clusters in generation t and between
the clusters in generation t − 1. Then, r ≤ k clusters, from
each generation, are repeatedly selected to be registered. To
this end, first the two still-unregistered clusters in genera-
tion t are determined that are the farthest apart. One of

these two clusters is randomly selected, as well, as the still-
unregistered cluster in generation t − 1 that is closest to
it. The r − 1 nearest neighbors of these clusters are then
determined in the set of still-unregistered clusters of their
respective generations, leading to two subsets of r clusters
to be registered. To register subsets of clusters, all possible
r! permutations for the set of clusters in generation t are
considered. The permutation for which the sum of the dis-
tances between the matched clusters is minimal, is selected.
Subset registration is repeated until all clusters are regis-
tered. The reason for using subset registration with r ≤ k
instead of r = k is that subset registration is performed by
enumerating permutations. As this number grows factori-
ally fast, exhaustive optimization by enumeration can only
be done for small values of r.

4.4 Parameter estimation
After explicit cluster registration, depending on the opti-

mization algorithm being combined with the framework, the
parameters that span multiple generations are updated.

4.5 Elitism
An elitist archive is maintained with all currently non-

dominated solutions. If the objectives are real-valued, there
will be infinitely many non-dominated solutions possible. To
prevent the archive from growing to extreme sizes, the objec-
tive space is discretized into hypercubes. Only one solution
per hypercube is allowed in the archive. Newly generated
solutions are compared to the solutions in the archive. If
a new solution is dominated by any archive solution, it is
not entered. If a new solution is not dominated, it is added
to the archive if the hypercube that it resides in does not
already contain a solution or if it dominates that particular
solution. When a new solution is entered all archive solu-
tions that are dominated by it are removed.

Keeping elitist solutions in the population can improve
convergence. Therefore, each solution in the elitist archive
is associated with its nearest cluster. The distance is com-
puted between the cluster mean to the archive solution. For
each cluster, at most 1

k
�τn� of its associated elitist solutions

are copied to the population. If there are more elitist solu-
tions, the same nearest-neighbor heuristic is used as in selec-
tion. Finally, each cluster generates equally many solutions.
Depending on how many elitist solutions were copied to the
population, at least n− �τn� new solutions are generated.

4.6 New aspects
In this work several changes are made to the optimization

framework presented in [6]. The modifications are as follows:

• The k-means algorithm is not used because the clus-
ters means tend to drift “inwards” in the selection set,
leading to reduced search effort in the vicinity of the
Pareto extremes. Instead, the clusters are grown di-
rectly around the leaders chosen from the selection set;

• The previous framework includedm external, indepen-
dent SO optimizers whose best solutions were infused
into the MO population. Instead, m clusters are added
to the MO population that are constructed by select-
ing solutions from the population in a single-objective
manner. This effectively keeps SO pressure on the
Pareto extremes while ensuring that this pressure in
terms of solutions overlaps with the MO population.



With external SO optimizers there is a larger probabil-
ity of the Pareto extremes becoming fully disconnected
from the population and Pareto front as governed by
the MO population;

• An adaptive gridding technique was employed for the
elitist archive [8]. The main advantage of this is that
only a target size for the elitist archive needs to be
specified while all the gridding details are automati-
cally handled. Initially, all solutions are accepted in
the archive. After an upper bound size is crossed, a
grid adaptation process is triggered to ensure that the
number of elitist solutions stays in the vicinity of the
target size. This method provides the same conver-
gence guarantee as the static grid approach, only po-
tentially losing convergence properties when the grid
is redefined. Furthermore, as shown in [8] grid adap-
tations do not occur often during a run and no loss in
performance was observed in experiments;

• Solutions that share an elitist hypercube and do not
dominate the already existing solution found there but
further extend the front are accepted. Such solutions
were previously discarded. This feature guarantees
that the front is always extended since the granularity
of the grid plays no part in the process.

5. IMAMALGAM
The following is a brief description of the MO-EDA that

we compare our results to. The MO-EDA follows the above
framework and was previously called iMAMaLGaM-X+, in-
dicative of being an extension of an earlier version called
iMAMaLGaM-X and the SO-EDA iAMaLGaM (the inter-
nal mechanisms of which are used in each cluster in the
multi-objective framework). For a more in-depth explana-
tion the interested reader is referred to literature [6, 9]. In
the remainder however, for simplicity, we shall generally
use the acronym iMAMaLGaM to indicate the framework-
leveraged MO version of iAMaLGaM. Moreover, we shall use
iMAMaLGaMOld to denote the use of the previously exist-
ing framework without the above mentioned new aspects.

After clustering and explicit cluster registration, a Gaus-
sian distribution is estimated in each of the clusters and
adapted using the combination of AMS, SDR and AVS as
in [6]. The AMS is computed as the difference between the
means of subsequent generations, i.e. μ̂Shift(t) = μ̂(t)−μ̂(t−
1). If the AMS-altered solutions violate box constraints, a
shrinking factor is used to keep the solution feasible. Specifi-
cally α100% of the newly sampled solutions are moved in the
direction of the AMS: x ← x + 2μ̂Shift(t). The rationale is
that solutions so changed are further down the slope. Select-
ing those solutions as well as solutions not changed by AMS
aligns the distribution estimate better with the direction of
improvement. In a population of size n where �τn� solutions
are selected, nelitist solutions are maintained and n− nelitist

new solutions are generated, proportioning the selected solu-
tions perfectly between unaltered and AMS-altered solutions
requires α(n− nelitist) = 1

2
τn and thus α = 1

2
τ n

n−nelitist .

By estimating the distribution only using the selected so-
lutions of the current generation, the density contours can
become aligned with directions in which only solutions of
similar quality can be found. Methods that only adaptively
scale the covariance matrix, such as SDR-AVS, do no help

much as it almost solely increases search effort in the futile
direction perpendicular to the direction of improvement. In
SDR-AVS, a distribution multiplier cMultiplier is maintained
by which the covariance matrix is multiplied in each genera-
tion. This multiplier is scaled up if improvements are found
that are more than standard deviation away from the mean
and scaled down if no improvements are found.

In iMAMaLGaM memory decay is used in estimating the
covariance matrix and the AMS in generation t as follows:

Σ̂(t) =(1−ηΣ)Σ̂(t−1) + ηΣ 1

|S|

∑|S|−1

i=0
(Si−μ̂(t)) (Si−μ̂(t))T

μ̂Shift(t)=(1−ηShift)μ̂Shift(t−1) + ηShift (μ̂(t)−μ̂(t−1)) .

Values for the learning-rate parameters ηΣ and ηShift were
determined empirically [9]. The cluster sizes computed from
the selected solutions were set according to guidelines from
recent literature on SO [9]: ncluster = τ10l0.5.

6. POPULATION-BASED MO-CMA-ES
A novel population-based MO-CMA-ES was obtained by

combining the most robust and general CMA-ES variant [5],
(μ/μW , λ)-CMA-ES, with the MO optimization framework.
For the solutions in the single-objective clusters, domination
ranks are assigned in a linear way, with the best solution get-
ting assigned rank one, similar to the (μ/μW , λ)-CMA-ES
strategy. For the remaining clusters, the ranks are deter-
mined through a non-dominated sorting scheme per cluster.

The size of each individual cluster is an important parame-
ter. Since recombination may smooth the effect of selecting
erroneous solutions, increasing solely λ is inferior to ran-
domly generating new solutions, whereas increasing both μ
and λ are superior [5]. The cluster size was defined as two
times larger than the default value of the population size of
the single objective (μ/μW , λ)-CMA-ES:

cluster size = �2τ × (4 + �3 lnn�)� (1)

This was done to maintain the cluster size similar to the
population size given as guideline [5] since τ = 0.5. More-
over, all the remaining internal parameters of CMA-ES were
also kept the same as the standard guidelines [5].

7. CONSTRAINT HANDLING
Four different constraint handling techniques were imple-

mented in order to assess their impact on the performance
of the algorithms under study:

• Resampling [10]: a newly generated solution is resam-
pled if it lies outside the variables boundaries. After
100 trials, a new solution is randomly generated;

• Constraint domination: for each constraint, a mea-
sure of the amount by which the constraint is vio-
lated, is used. The total constraint-violation value is
the sum over all constraints. For box constraints, the
constraint-violation value is the distance to the clos-
est feasible solution. Solutions are then ranked us-
ing constraint-domination ranking whereby a solution
with a smaller constraint violation is always preferred.
If two solutions are both feasible, the one with the
lowest domination rank is performed;

• Penalty term: if a solution violates box constraints,
the closest feasible solution is evaluated. A penalty



term is then added to the fitness value. This has been
the constraint handling technique of choice in previous
MO-CMA-ES tests [1, 2, 3, 4].

• Global Competitive Ranking [11]: this ranking ap-
proach aims to create a balance between objective val-
ues and constraint violations, allowing both feasible
and infeasible solutions to preside in the population.
In this way, the algorithm may approach the optimal
front from both the feasible and the infeasible sides,
leading, in theory, to faster convergence speeds. A
weighing factor, Pf , sets the relevance of one ranking
scheme compared to the other. If Pf = 0, this scheme
behaves as constraint domination, whereas if Pf = 1
the constraint violations are neglected and ranking is
purely based on fitness. A value of Pf = 0.45 was used
since it is known to provide good results [11].

The boundary repair technique, by which variables are set
to their closest bound, in case they fall outside of the allowed
range, was not considered. Key reason is that some of the
artificial benchmark functions that we consider have optimal
Pareto fronts which are obtained by setting all variables to
one of the bounds while only one variable defines the front
size and shape. In this way, if boundary repair is carried,
infeasible solutions may be altered and placed automatically
in the optimal front, biasing the results.

8. EXPERIMENTS
For all benchmark problems the algorithms were allowed

one million function evaluations (per objective). However, if
the distance to the front, as measured using the performance
indicator introduced in 8.2, does not improve at least 10−10

after 50 generations, the algorithm is stopped and conver-
gence is deemed to be too slow.

Twenty clusters were used in iMAMaLGaM since it was
previously found to provide good results [6]. For registra-
tion, two subsets of seven clusters (r = 7) and one of six
clusters (r = 6) were used. A similar number of clusters
was used for the population-based MO-CMA-ES. The clus-
ter sizes of the population-based MO-CMA-ES were 10 and
14 for problem dimensions of 10 and 30, respectively. For
iMAMaLGaM the cluster sizes were 11 and 19, respectively.

For all the MO-CMA-ES instances from literature, the
population size was set to λ = 20 and the offspring num-
ber was set to one per population. The population size was
chosen to lead to a similar number of estimated distribu-
tions, per generation, in all algorithms. In the case of the
steady-state algorithm, the variant where all the population
members are potential parents was selected [2].

The selection percentile was set to τ = 0.35 for iMA-
MaLGaM. For the population-based MO-CMA-ES a value
of τ = 0.5 was used since it is the SO-(μ/μW , λ)-CMA-ES
guideline, which corresponds to a maximal step-size for a
given λ [12].

The desired archive size was set to 1000 solutions.

8.1 Test suite
The definitions of the problems in our test suite are pre-

sented in Table 1. We used the well-known problems ZDTi,
i ∈ {1, 2, 3, 6}. The IRs of the ZDTi problems are also con-
straints. For more details about these functions, see [13].
The final two problems are labeled BDi, i ∈ {1, 2} and

were taken from [6]. Both problems make use of the Rosen-
brock function. Premature convergence on this function is
likely without proper induction of the structure of the search
space. Function BD2 is harder than BD1 since the objec-
tive functions overlap in all variables instead of only in x0.
Furthermore, the IR of x0 in function BD1 is also a con-
straint. Finally, we have scaled the objectives of BD2 to en-
sure that the optimum of all problems is in approximately
the same range. By doing so, using the same value-to-reach
for the DPF →S indicator (explained in the next Section)
corresponds to a similar front quality on all problems.

NameObjectives IR

ZDT1

f0=x0, f1 = γ
(
1−

√
f0/γ

)

γ =1 + 9
(∑l−1

i=1
xi/(l − 1)

) [0; 1]30

(l = 30)

ZDT2

f0=x0, f1 = γ
(
1− (f0/γ)

2
)

γ =1 + 9
(∑l−1

i=1
xi/(l − 1)

) [0; 1]30

(l = 30)

ZDT3

f0=x0, f1 = γ
(
1−

√
f0/γ − (f0/γ)sin(10πf0)

)

γ =1 + 9
(∑l−1

i=1
xi/(l − 1)

) [0; 1]30

(l = 30)

ZDT6

f0=1− e−4x0sin6(6πx0), f1 = γ
(
1− (f0/γ)

2
)

γ =1 + 9
(∑l−1

i=1
xi/(l − 1)

)0.25

[0; 1]10

(l = 10)

BD1

f0=x0, f1 = 1− x0 + γ

γ =
l−2∑
i=1

(
100(xi+1 − x2

i )
2
+ (1− xi)

2
) [0; 1]×

[−5.12; 5.12]9

(l = 10)

BDs
2

f0=
1

l

∑l−1

i=0
x2
i

f1=
1

l−1

l−2∑
i=0

(
100(xi+1 − x2

i )
2
+ (1− xi)

2
) [−5.12; 5.12]10

(l = 10)

Table 1: The MO problem test suite.

8.2 Measuring performance
We consider the Pareto set that can be computed from the

elitist archive combined with the population upon termina-
tion to be the approximation set, denoted S . To measure
performance, the DPF →S performance indicator is com-
puted. This performance indicator computes the average
distance over all points in the optimal Pareto front PF to
the nearest point in S :

DPF →S(S) =
1

|PF |

∑
f1∈PF

min
f0∈S

{d(f0,f1)} (2)

where f is a point in objective space and d(·, ·) computes
Euclidean distance. A smaller DPF →S value is preferable
and a value of 0 is obtained if and only if the approximation
set and the optimal Pareto front are identical. This indi-
cator is useful for evaluating performance if the optimum
is known because it describes how well the optimal Pareto
front is covered and thereby represents an intuitive trade-off
between the diversity of S and its proximity (i.e. closeness to
the optimal Pareto front). Even if all points in S are on the
optimal Pareto front the indicator is not minimized unless
the solutions in the approximation set are spread out per-
fectly. Because the optimal Pareto front may be continuous,
there are infinitely many solutions possible on the optimal
Pareto front. Therefore, we computed 5000 uniformly sam-
pled solutions along the optimal Pareto front to use as a
discretized version of PF for a high-quality approximation.

For the problems in our test-suite, given the ranges of
the objectives for the optimal Pareto front configurations, a
value of 0.01 for the DPF →S indicator corresponds to fronts
that are close to the optimal Pareto front.



9. RESULTS
The results are averaged over 100 independent runs and

shown in Figure 2. For each algorithm, averages are shown
both for successful and unsuccessful runs, giving double oc-
currences of lines if some runs were unsuccessful. All com-
binations of algorithms and constraint-handling techniques
are shown, except for iMAMaLGaMOld for which results are
only shown with resampling. The differences between the
old and new versions of iMAMaLGaM have a positive, but
small effect in terms of convergence, leading to similar dif-
ferences when other constraint-handling techniques are used
and making resampling sufficiently illustrative of the impact
of the new aspects described in Section 4.6.

9.1 Unconstrained problems
None of the MO-CMA-ES implementations from litera-

ture were able to solve unconstrained problem BDs
2 as the

algorithms were able to find only one of the Pareto extremes,
solving the Sphere function. Because solving Sphere is much
simpler than solving Rosenbrock, the population is pulled
quickly toward one end of the Pareto front. Due to the lack
of pressure to extend the Pareto front at the edges, i.e. pres-
sure toward improving individual objectives as is present
in the MO framework from which population-based MO-
CMA-ES and the iMAMaLGaM variants are derived, it is
hard for existing MO-CMA-ES implementations to find the
other Pareto extreme, resulting in a very low convergence
speed which led to an early stop of the optimization run.
The population-based MO-CMA-ES and the iMAMaLGaM
variants did solve BDs

2.

9.2 Constrained problems
Besides BDs

2, all benchmark functions are constrained due
to the existence of box constraints.

9.2.1 Resampling
None of the MO-CMA-ES algorithms were able to con-

verge to the optimal Pareto front of any of the benchmark
functions with this constraint-handling technique. An im-
portant factor here is that MO-CMA-ES does not have the
iMAMaLGaM mechanism that employs a shrinking factor
when AMS is applied to better approach constraints. Con-
sequently, MO-CMA-ES has intrinsic difficulties to approach
variable boundaries without triggering resampling, whereby
a randomly generated solution is created and all its internal
parameters are set to guideline values. The knowledge pre-
viously gathered during the optimization run is discarded,
leading to very slow convergence speeds and/or, as in this
case, high failure rates.

The population-based MO-CMA-ES demonstrated to be
more robust than the MO-CMA-ES instances from litera-
ture, obtaining better results on all problems with exception
for the BD1 problem. Moreover, it was able to converge
faster than iMAMaLGaM on ZDT1.

iMAMaLGaM with the new aspects presented convergence
speeds at least as good as the old version in all problems.
Furthermore, iMAMaLGaM was the only algorithm able to
solve all problems.

9.2.2 Constraint domination
No MO-CMA-ES variant obtained successful runs in any

of the problems with this constraint-handling technique, as
opposed to iMAMaLGaM, which was again able to solve

all problems. iMAMaLGaM did present convergence speeds
when compared to the use of resampling. This may ex-
plained by the fact that, with constraint domination, the
shrinking factor of the AMS technique was not applied since
the variables were considered to be unbounded. Moreover,
iMAMaLGaM algorithm presented some unsuccessful runs
for 3 problems.

9.2.3 Penalty function
All the algorithms converged to the ZDT optimal fronts

extremely fast. This is in agreement with previous litera-
ture studies [1, 2, 3, 4]. For all ZDT problems, the solutions
on the optimal front have their variables set at their lowest
boundary, besides the first variable which dictates the size
and shape of the optimal front. With the penalty function,
the benchmark functions are not evaluated with infeasible
solutions but rather the closest feasible solution in parame-
ter space is evaluated. Therefore, this strategy brings advan-
tages to the algorithms to approach the optimal Pareto front
in these test problems. However, for all ZDT problems and
algorithms, the final elitist archives were filled with mostly
infeasible solutions. The reason for this is that all variables
have box constraints and, once again, it is only the first vari-
able that sets the size and shape of the Pareto front. In this
way, solutions with all negative variables besides the first
will be evaluated in the optimal Pareto front, entering, in
this way, in the elitist archive.

Regarding then the only other constrained problem in our
test suite, BD1, none of the MO-CMA-ES instances from
literature were able to solve it. Differently from the ZDT
problems, only the first variable is bounded. In this way,
if a solution is infeasible, the evaluated solution will not
be placed in the optimal Pareto front since only the first
variable is altered. The population-based MO-CMA-ES and
iMAMaLGaM variants demonstrated to be more robust and
were able to solve all problems. Moreover, the final elitist
archives were mostly filled with feasible solutions when BD1

was solved. The first variable is the only one that has box
constraints and it is also the only variable that sets the size
and shape of the optimal Pareto front. Infeasible solutions
present in the final elitist archive of a successful run, are
always mapped only to one of the optimal Pareto extremes.
Therefore, the first variable, in the elitist archive solutions,
has to vary along its entire range.

9.2.4 Global Ranking Procedure
The results were found to be similar to constraint dom-

ination. None of the MO-CMA-ES variants were able to
solve any of the benchmark functions. iMAMaLGaM per-
formed better with this constraint-handling technique than
with constrained domination on ZDT1 since all runs were
considered successful. On the other hand, similar to con-
straint domination, some unsuccessful runs for both ZDT2

and ZDT3 problems were found.

10. DISCUSSION
The CMA-ES-based MO algorithms that we experimented

with, showed a higher susceptibility to non-smooth search-
space adaptations created by the constraint domination and
global ranking approaches to constraint handling. From
the results that we obtained, we can conclude that these
constraint-handling techniques do not suit CMA-ES-based
approaches very well.
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Figure 2: Convergence of all algorithms and all constraint-handling techniques on all problems, averaged over
100 runs. Horizontal axis: number of evaluations (both objectives per evaluation). Vertical axis: DPF →S.



When the penalty term approach was used, all CMA-ES-
based algorithms presented very fast convergence speeds for
all ZDT problems. This may explained by the fact that this
constraint-handling technique does not alter the smoothness
of the functions. It is known that CMA-ES is a very power-
ful SO optimizer for smooth functions [5]. The final elitist
archives contained almost only infeasible solutions, however.
Although the solutions were slowly moving toward to the
feasible area of the search space, it was very difficult to ac-
tually enter it. The same holds for iMAMaLGaM, clearly
making this a property of the penalty term approach itself.
Therefore, if an elitist archive filled with only feasible solu-
tions is desired, this technique is not advised.

The constraint domination and the penalty term tech-
niques enforce different ways in which the search process ap-
proaches the optimal Pareto front. With constraint domina-
tion, the front is approached from the feasible side, whereas
with the penalty term the front is approached from the in-
feasible side. The global competitive ranking approach is
an interesting technique since it allows the algorithms to
approach the optimal front from both sides. However, our
results do not support any substantial performance improve-
ment over the use of constraint domination alone.

Although in the cluster registration procedure the dis-
tance between clusters in subsequent generations is mini-
mized, it is not guaranteed that the cluster means, in sub-
sequent generations, are close to each other. Such phe-
nomenon demonstrated to be counterproductive for the pro-
posed population-based MO-CMA-ES for the benchmark
function BD1. Since the update of the internal parame-
ters, covariance matrix and sigma, depend on the mean shift
in subsequent generations, high values may be obtained for
these parameters, resulting in erratic behavior. Overall how-
ever, the novel population-based MO-CMA-ES was found to
be more robust than existing MO-CMA-ES variants.

The population-based MO-CMA-ES presented faster con-
vergence speeds than iMAMaLGaM on smooth functions.
This was expected since for single-objective optimization of
smooth functions, CMA-ES outperforms iAMaLGaM. How-
ever, iMAMaLGaM was found to be able to reach smaller
distances to the optimal Pareto fronts. It is therefore debat-
able which algorithm performs best. If the number of evalu-
ations are the most important criterion and a non-disruptive
constraint-handling technique can be designed and used, one
might say that population-based MO-CMA-ES is preferable,
whereas otherwise iMAMaLGaM can be preferred.

For future work it would be interesting to extend the
shrinking factor in the AMS technique to also work with
the more general case of constraint domination. One goal in
this paper was to test the multi-objective CMA-ES-based al-
gorithms with the same number of distributions as the iMA-
MaLGaM variants. As future work, it would be interesting
to also assess the performance impact if larger population
sizes are used. Furthermore, problems with than two ob-
jectives should be used in future work and the correlation
between the number of objectives and required number of
clusters should be assessed.

11. SUMMARY AND CONCLUSIONS
In this paper we introduced a novel population-based MO-

CMA-ES algorithm. Experimental results demonstrate that
the proposed approach is, in general, more robust when

compared to the multi-objective extensions of CMA-ES that
were previously introduced in literature.

The performance of several evolutionary multi-objective
optimization algorithms under different constraint-handling
techniques was assessed. The algorithms based on CMA-ES
demonstrated to be very sensitive to the technique applied.
On the other hand, iMAMaLGaM showed to be more robust
since it was able to solve all problems with all constraint
handling techniques.
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