
1

Chapter 1. Quick Introduction to
Syntax Analysis

Paul Klint
2007-10-21 15:48:15 +0200 (Sun, 21 Oct 2007)

Table of Contents
Motivation ... 1
Introduction ... 1
Basic concepts .. 3

Lexical grammar ... 3
Context-free grammar .. 3
Lexical versus context-free grammar .. 4
Ambiguous grammars and disambiguation ... 4
Recognizing versus parsing ... 4
Parsing methods ... 5

Extensions of grammars and syntax analysis .. 6
Lists ... 7
Disambiguation methods .. 7
Modular grammars .. 7

The role of syntax analysis in The Meta-Environment ... 8
Further reading ... 8
Bibliography .. 9

Motivation
Syntax analysis or parsing is about discovering structure in text and is used to determine whether
or not a text conforms to an expected format. "Is this a textually correct Java program?" or "Is this
bibliographic entry textually correct?" are typical questions that can be answered by syntax analysis.
We are mostly interested in syntax analysis to determine that the source code of a program is correct
and to convert it into a more structured representation (parse tree) for further processing like semantic
analysis or transformation.

Introduction
Consider the following text fragment from a program (this example is taken from [ASU86]):

position := initial + rate * 60

How can we determine that this is a correct assignment statement? First of all, this is a sequence of
individual characters p, o , s, and so on. This is shown in Figure 1.1, “Text of example” (p. 1).

Figure 1.1. Text of example

It makes sense to first group these character as follows:

• The identifier position.

• The assignment symbol :=.

Quick Introduction to Syntax Analysis

2

• The identifier initial.

• The plus sign.

• The identifier rate.

• Th multiplication sign.

• The number 60.

This process of grouping individual characters is called lexical analysis or lexical scanning, the result
is shown in Figure 1.2, “Lexical analysis of example” (p. 2). Observe that the spaces have
disappeared and are left unclassified (we will come back to this in the section called “Lexical versus
context-free grammar” (p. 4)).

Figure 1.2. Lexical analysis of example

Next, we want to determine that this is a structurally correct statement. This is the main province of
syntax analysis or parsing as it is usually called. The result of parsing is a parse tree as shown in
Figure 1.3, “Parse tree of example” (p. 2). This parse tree reflects the usual meaning of arithmetic
operators: since multiplication is done before addition, the sub phrase rate * 60 is grouped together
as a logical unit.

Figure 1.3. Parse tree of example

The hierarchical structure of programs is usually described by recursive rules like the following ones
that describe expressions:

1. Any Identifier is an expression.

2. Any Number is an expression.

3. If Expression1 and Expression2 are expressions, then so are:

• Expression1+Expression2

• Expression1*Expression2

• (Expression1)

Quick Introduction to Syntax Analysis

3

According to rule (1) position, initial and rate are expressions. Rule (2) states that 60 in an
expression. Rule (3) says that rate * 60 is an expression and finally that initial + rate *
60 is an expression. In a similar fashion, language statements can be defined by rules like:

1. If Identifier1 is an identifier and Expression2 is an expression, then

• Identifier1 := Expression2

is a statement.

2. If Expression1 is an expression and Statement2 is a statement, then

• while (Expression1) doStatement2

• if (Expression1) thenStatement2

are statements.

These rules are called grammar rules and a collection of such rules is called a context-free grammar
or grammar for short.

Basic concepts
We will now discuss the basic concepts that are vital for understanding syntax analysis. While doing
so, we will use examples written in SDF (see ????), the Syntax Definition Formalism used in The
Meta-Environment (see, http://www.meta-environment.org [???])

Lexical grammar
At the lowest level, the lexical notions of a language like identifiers, keywords, and numbers have to
be defined in one way of another. The same holds for the layout symbols (or whitespace) that may
surround the lexical tokens of a language. The common understanding is that layout symbols may
occur anywhere between lexical tokens and have no further meaning. Let's get the boring stuff out of
the way, and let's define the lexical syntax of our example:

[\t\n]* -> LAYOUT
[a-z][A-zA-Z0-9]* -> Identifier
[0-9]+ -> Number

The left-hand side of these rules describes the pattern of interest and the right-hand side defines the
name of the corresponding lexical category. In all these left-hand sides two important notions occur:

• Character classes like [0-9] that describes the characters from 0 to 9.

• The repetition operators * (zero or more) and + (one or more).

The first rule states that all spaces, tabulation or newline characters are to be considered as layout. The
second rules states that identifiers start with a lowercase letter and may be followed by zero or more
letters (both cases) and digits. The last rule states that a number consists of one or more digits. Note
that we have not yet said anything about other lexical tokens that may occur in our example statement,
like :=, + and * and parentheses.

Context-free grammar
It is time to move on to the definition of the structure of our example language. Let's start with the
expressions:

Identifier -> Expression

???
???

Quick Introduction to Syntax Analysis

4

Number -> Expression
Expression "+" Expression -> Expression
Expression "*" Expression -> Expression
"(" Expression ")" -> Expression

Not surprisingly, we follow the rules as we have seen above. Observe, that these rules contain
literal texts (indicated by double quotes) and these are implicitly defined as lexical tokens of the
language. If you are worried about the priorities of addition and multiplication, see the section called
“Disambiguation methods” (p. 7) below.

The final step is to define the structure of the assignment statement:

Identifier ":=" Expression -> Statement

For completeness, we also give the rules for the while and if statement shown earlier:

"while" "(" Expression ")" "do" Statement -> Statement
"if" "(" Expression ")" Statement -> Statement

Lexical versus context-free grammar
Traditionally, a strict distinction is being made between lexical syntax and context-free syntax. This
distinction is strict but also rather arbitrary and is usually based on the implementation techniques
that are being employed for the lexical scanner and the parser. In The Meta-Environment we abolish
this distinction and consider everything as parsing. Not surprisingly our parsing method is therefore
called scannerless parsing.

Ambiguous grammars and disambiguation
The careful reader will observe that we have skipped over an important issue. Consider the expression:

1 + 2 * 3

Should this be interpreted as

(1 + 2) * 3

or rather as

1 + (2 * 3).

The latter is more likely, given the rules of arithmetic that prescribe that multiplication has to be done
before addition. The grammar we have presented so far is ambiguous, since for some input texts more
than one structure is possible. In such cases, disambiguation rules (priorities) are needed to solve the
problem:

context-free priorities
 Expression "*" Expression -> Expression >
 Expression "+" Expression -> Expression

Other disambiguation mechanisms include defining left- or right-associativity of operators, preferring
certain rules over others, and rejection of certain parses.

Recognizing versus parsing
In its simplest form, syntax analysis amounts to recognizing that a source text adheres to the rules
of a given grammar. This is shown in Figure 1.4, “A recognizer” (p. 5). Given a grammar, it
takes a source text as input and generates Yes or No as answer. Yes, when the source text can be

Quick Introduction to Syntax Analysis

5

parsed according to the grammar, and No, when this is not the case. In practice, a recognizer becomes
infinitely more useful if it also generates error messages that explain the negative outcome.

Figure 1.4. A recognizer

Pure recognizers are seldomly used, since the parse tree corresponding to the source text is needed for
nearly all further processing such as checking or compiling. The more standard situation is shown in
Figure 1.5, “A parser” (p. 5). Given a grammar, a parser takes a source text as input and generates
as answer either a parse tree or a list of error messages.

Figure 1.5. A parser

Parsing methods
Syntax analysis is one of the very mature areas of language theory and many methods have been
proposed to implement parsers. Giving even a brief overview of these techniques is beyond the scope
of this paper, but see the references in the section called “Further reading” (p. 8). In the Meta-
Environment we use a parsing method called Scannerless Generalized Left-to-Right parsing or SGLR
for short. The least we can do, is explain what this method is about.

We have already encountered the notion of scannerless parsing in the section called “Introduction” (p.
1). It amounts to eliminating the classic distinction between the scanner (that groups characters
into lexical tokens) and the parser (that determines the global structure). The advantage of this

Quick Introduction to Syntax Analysis

6

approach is that more interplay between the character level and the structure level is possible. This is
particularly true in combination with the "generalized" property of SGLR.

The most intuitive way of parsing is predicting what you expect to see in the source text and checking
that the prediction is right. Complicated predictions ("I want to parse a program") are split into
a number of subsidiary predictions ("I want to parse declarations followed by statements"). This
continues until the lexical level is reached and we can actually check that the lexical tokens that occur
in the text agree with the predictions. This predictive or top-down parsing takes an helicopter view:
you know what you are looking for and check that it is there. This intuitive parsing method has a
major disadvantage: for certain grammars the top-down parser will make endless predictions and will
thus not terminate.

Left-to-Right or LR indicates a specific style of parsing that is more powerful: bottom-up parsing.
Bottom-up parsing is like walking in the forest during a foggy day. You have only limited sight and
step by step you find your way. A bottom-up parser considers consecutive lexical token and tries to
combine them into higher level notions like expressions, statements and the like. LR parsers can parse
more languages than top-down parsers can. However, when combining the pieces together, an LR
parser can only work when there is precisely one way to combine them and has to give up otherwise.
This means that there are still languages that cannot be parsed by an LR parser.

Here comes the generalized in SGLR to the rescue: this removes the restriction that there is only one
way to combine recognized parts. In doing so, it becomes possible that not one but several parse trees
are the result of parsing. The bonus is that all context-free languages can be parsed by the SGLR
parsing algorithm. Figure 1.6, “An SGLR parser” (p. 6) summarizes the use of an SGLR parser.
Using SGLR has three key advantages:

• SGLR recognizes the largest possible class of grammars: all context-free grammars.

• Context-free grammars can be combined to form another context-free grammar. This enables
modular grammars.

• The integration of lexical scanning and context-free parsing gives more control to the grammar
writer to finetune his grammars.

Figure 1.6. An SGLR parser

Extensions of grammars and syntax analysis
There are many extensions to the grammar descriptions we have seen so far. We single out lists,
disambiguation methods and modular grammar for further clarification.

Quick Introduction to Syntax Analysis

7

Lists
Repeated items are pervasive in programming language grammars: lists of declarations, lists of
statements, lists of parameters are very common. Many grammar notations provide support for them.
Here is the list notation used in SDF. If we want to define a list of statements, we could write the
following:

Statement -> Statements
Statement ";" Statements -> Statements

This is a clear description of statements lists, but a shorter description is possible:

{ Statement ";" }+ -> Statements

The pattern defines a list of elements some syntactic category (e.g., Statement), separated by a
lexical token (e.g., ";"), and consists of one or more (indicated the +) elements. In a similar fashion
lists of zero or more elements can be defined (using a * instead of a +). The advantage of the list
notation is twofold: the grammar becomes more compact and the matching of these rules in the
equations becomes more easy.

Disambiguation methods
Many mechanisms exist to disambiguate a given grammar. We mention a few:

• Priorities. When there is a choice, prefer rules with a higher priority. As a result, rules with a
higher priority "bind more strongly". This is, for example, the case when defining the priorities of
arithmetic operators.

• Associativity. In some cases, syntax rules can overlap with themselves. Is 1 + 2 + 3 to be parsed
as (1 + 2) + 3 or rather as 1 + (2 + 3)? In the former case, the plus operator is said
to be left-associative, in the latter case it is called right-associative. In some cases, an operator is
non-associative and the expression has to be disambiguated explicitly by placing parentheses.

• Follow restrictions. Forbid that certain constructs follow each other. Typical example: forbid that
an identifier is followed by letters or digits. In this way we can ensure that all possible characters
are part of the identifier. In other words, we enforce the longest possible match for all characters
that may belong to the identifier.

• Prefer.

• Reject. Reject a parse in which a certain grammar rule occurs. For instance, a text like while
may be a keyword or an identifier. By rejecting the parse with while as identifier we enforce that
while is only used as keyword. This is usual in most languages but not in all (e.g., PL/I).

Modular grammars
As we have seen in the section called “Parsing methods” (p. 5), using an SGLR parser enables
the creation of modular grammars. This is more exciting than it sounds. Consider, a huge language like
Cobol (yes it is still widely used!). In addition to the Cobol language itself there are many extensions
that are embedded in Cobol programs: CICS supervisor calls, SQL queries, and the like. Each of these
grammars works well if we use them with a conventional parser (see Figure 1.7, “Conventional parser
works well with independent grammars” (p. 8)). However, if we attempt to combine the three
grammars in ordere\ to be able to parse Cobol programs with embedded CICS and SQL, then disaster
strikes. Most conventional parsers will complain about the interference between the three grammars
and just refuse to work (see Figure 1.8, “Conventional parser does not work with combined grammars”
(p. 8)). For the technically inclined: shift-reduce conflict galore! However, if we try the same with
an SGLR parser things go smoothly (see Figure 1.9, “SGLR works well with combined grammars”
(p. 8)).

Quick Introduction to Syntax Analysis

8

Figure 1.7. Conventional parser works well with independent grammars

Figure 1.8. Conventional parser does not work with combined grammars

Figure 1.9. SGLR works well with combined grammars

The role of syntax analysis in The Meta-
Environment

Syntax analysis plays a prominent role in The meta-Environment:

• To parse source text. Given a grammar for some language (say Java) and a program in that language
(a Java program) we can parse the program and obtain its parse tree. This is an example of the
approach sketched in Figure 1.6, “An SGLR parser” (p. 6). This parse tree can then be further
processed by applying rewrite rules (equations) defined in an ASF+SDF specification.

• To parse equations. The equations in ASF+SDF specifications can use the grammar rules that are
defined in the SDF part of the specification. The equations have to be parsed first according to that
grammar and then they can be used for rewriting.

Further reading
• The classical work on grammars in natural languages is [Cho56].

Quick Introduction to Syntax Analysis

9

• Another monumental work on grammars in computer science is the first volume of the two volume
series [AU73].

• A more recent overview of parsing techniques is given in [GJ90]. A second edition is in preparation
and will be published by Springer in 2007.

• On www.meta-environment.org [http://www.meta-environment.org] you can find several articles
related to SDF.

Bibliography

[AU73] A.V. Aho and J.D. Ullman. The theory of parsing, translation, and compiling. Prentice-Hall, Englewood
Cliffs (NJ). 1972--73. Vol. I. Parsing. Vol II. Compiling.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools. Addison-Wesley.
1986.

[GJ90] D. Grune and C.J.H Jacobs. Parsing Techniques -- A Practical Guide. Ellis Horwood. 1990.

[Cho56] N. Chomsky. Three models for the description of language. 113--124. IRE Transactions on Information
Theory. IT-2:3. 1956.

http://www.meta-environment.org
http://www.meta-environment.org

