Chapter 1. The Syntax Definition
Formalism SDF

Mark van den Brand
Paul Klint
Jurgen Vinju

2007-10-22 17:18:09 +0200 (Mon, 22 Oct 2007)

Table of Contents

AN INrOdUCEION 0 SDIF ...ttt 2
WHY USE SDF? ..ottt ettt et 2
HOW 0 USE SDIF ..ot 4
(= g 1T 0o N 0 To = PP 4
THIS GOCUMENT ...ttt ettt ettt et e e e e eeaans 4
The life-cycle of an SDF definition ... e 6
IMIOTUIES ... e e et et e e et e e ettt e et et e e e eabeneeeenbe e eeenes 7
BasiC MOAUIE SIIUCIUIEttt et e e e e e et e e e e e eees 7
Hiddens and eXPOortS SECHIONSuieuiiit et e e e e e e eeens 7
MOUIE PEIAIMELEY'S ... ettt et e et e et e e et e e e eeaeeeenns 8
DEFINITIONS ...t e ettt ettt e e e e e e e 8
10001001001 01 J TP UPPT PPN 8
SYIMDIOIS e et et et e e e et e eaaaee 9
Literal SYMDOIS e 9
0] Y 101 0o S PP 9
Character class SYMDOISiieei e 10
Optional SYMDOIS ... e 10
SEOUENCE ...ttt ettt e e e et e et ea e aaas 11
Repetition or list SYMbDOIS ... 11
Alternative SYMBOISo.u e 11
Labelled SYMDOIS ... e 12
TUPLE SYMBOIS ... e 12
FUNCLION SYMDOIS ... et et e e e 12
Lifted SYMDOIS .. .o 12
LAY OUT SYMDOI ...ttt e et e e 13
LCTr=T01101 7= £ TP PT PPN 13
Fpg] 00 S PP PPR PP 13
ALTBSES et 14
SOOI AECIAIALIONS ...ttt e e s 14
Lexical and context-free SYNEAXcieu i e 14
Lexical and context-free start-symbolSco.uioiiiii e 17
Lexical and context-free PrioritieScc.u i e 17
VaADIES ... s 18
LexXical VariablES oo 19
RESIICIONS ...ttt e e e e e 19
(D1 0o o [U 7= 1 o] o U 20
INEFOTUCTION ...ttt ettt e ettt e ettt e e e e et e e e e eaa e eeeees 20
PHIOMTEIES ..ttt et e 20
ASSOCTALIVITY ..ttt et e e e a e aaaas 21

The Syntax Definition Formalism SDF

Bracket attriDULEcooueiiiiii e 21
REECES ..t 21
PrEFEIEINCESe it ettt 22
RESIICHIONS ...t ettt e e 22
EXBIMPIES .ttt 22
A SIMPIE TEXICEI SYNEAX ..ttt 23
USING Char@Cler ClaSSESvvuiiiiiiti ettt ettt ettt e e ettt e e e e et e eeeat e eenes 23
A Simple Drawing LANQUBOEcccuuuneiiiiie ettt 24
Lo L= 0 LT £ PP PPPPTTR 25
NUMDEIS ..ttt e e e e et e e et e e e e 26
S {100 PP TRUPP PR 27
L= 0 LN T g T PRSP 27
An Expression Language with Chain RUIESiiiiiiiiiiiiiii e 28
USiNg LabelS in ProdUCTIONSciiiiieiiiii et 29
Groups of ASSOCIAtVE ProdUCTIONScceveiieiiiiie et 29
ASSOCIAIVE PrOJUCLIONS ...t 30
ParameteriZatIONcouuuiiiiii e 31
SYMBOl RENAIMING ...t e et e e s 32
Examples on dealing with lexical ambiguity using restrictions............cccoooevvevinneeiinnnnnn. 33
SOME THICKY CASES ...ttt e et e e 34
WEI-FOMMEANESS ...ttt ettt e et eeeae s 36
ParSE EITOIS ...ttt e 36
Type check WarningS for SDFuuiiiii e 37
Type check errors fOr SDFu e 37
DEITVALIONS ...ttt ettt et e e s 38
HISEOMCEI INOLES ...ttt e ettt e e ettt e et et e e e eaa e eeens 38
BiIDlIOGIAPNY ...t 38
TO DO ittt ettt e 39
Warning

Thisdocument was recently rewritten (May 11th 2007). It isup-to-date with the latest version
of SDF. Referencesto ASF+SDF syntax and semantics have been removed and descriptions
of syntax and semantics of SDF have been brought up-to-date with the current state. Please
contact <rret a- devel -1 i st @wi . nl >if youwould like to contribute to this document.

An Introduction to SDF

If you want to:

* describe the syntax of an existing language like C, C++, Java, or Cobol,

» describe an embedded language and need to combine several language grammars,
» describe the syntax of your newly designed domain-specific language,

 get afront-end for the semantic analysis of programming or application languages,

then SDF may be the right technology to use.

Why use SDF?

The Syntax Definition Formalism SDF is intended for the high-level description of grammars for
programming languages, application languages, domain-specific languages, data formats and other
computer-based formal languages. The primary goal of any SDF definition isthe description of syntax.
The secondary goal is to generate a working parser from this definition. A parser isatool that takes

The Syntax Definition Formalism SDF

a string that represents a program as input and outputs a tree that represents the same program in a
more structured form. SDF is based mainly on context-free grammars, like EBNF is. It has a number
of additions that make it more apt to describe the syntax of really complex programming languages.
Especially the languages that were not originally designed to be formally defined, or to have parsers
generated for, are the ones that SDF is meant to be applicable to.

These are the unique selling points of SDF, from the language definition point of view:

» SDF alows modular grammar definitions. This enables the combination and re-use of grammars
and makesit easy to handle embedded languages or different dialects of acommon base language.
It means that you are allowed to write any grammar in SDF, not just LALR(1) or LL(1) grammars.

» SDF alows more declarative grammars definitions and this results in simpler and more "natural”
grammars that are not polluted by idiosyncrasies of particular parsing techniques. This allows an
SDF definition to be independent of the implementation of SDF.

» SDF dlowsthe integrated definition of lexical and context-free syntax.

» SDF adlows declarative disambiguation. For typical ambiguous constructs in programming
languages SDF allows you to define a disambiguation with mathematical precision. Note however
that SDF does not have a disambiguation construct for every possible ambiguity.

The implementation of SDF is the combination of an SLR(1) parse table generator and a scannerless

generalized LR parser.The goal of thisimplementation isto fully implement all expressivenessthat is

available in SDF, and avoiding any hidden implementation details.

These are the unique selling points of the implementation of SDF, from the parser generation point
of view:

» Thereis no seperate scanner. This prevents all kinds of "lexical ambiguity" to occur at al, simply
because the parser has more context information.

* Itacceptsall context-free grammars, including the ambiguous ones. Many programming languages
do not only have LR(1) conflicts, they truly have ambiguous syntaxes (like C for example).

* It generates all ambiguous derivations, so no implicit choices are made. This is done without
backtracking, and without the possibility for exponential behavior.

* It constructs parse trees automatically, and the optional mapping from parse treesto abstract syntax
treesis also provided.

* It implements the SDF disambiguation constructs as parse treefiltersin an efficient manner.

Note that the language definition point of view, and the parser generation point of view are closely
related. Because of SDF'sfocus on the definition of languagesand explicitly declaring disambiguations
it is particulary well suited for situations that have "language multiplicity":

» Having to deal with many language dialects (such asin reverse engineering COBOL programs)
 Dealing with embedded languages (SQL in COBOL/C)

 Dealing with language extensions (Java with AspectJ)

» Dealing with domain specific languages (many small languages, and DSL evolution)

The basic assumption of SDF is that all derivations of an input string will be produced. This
guarantees that no implicit disambiguation will take place. To disambiguate, the user has to give

explicit (declarative) disambiguation rules. Examples of disambiguation rules are longest-match and
priorities. By making all these language design choices explicit in a concise manner, SDF alowsyou

The Syntax Definition Formalism SDF

to deal with language multiplicity in amore visible (controlled) fashion. In that way high level syntax
definition in SDF is like high level programming.

How to use SDF

On the one hand, SDF can be used to ssimply define a language, in order to communicate it as
documentation. There are tools that support this use case; checking the definition for inconsistencies
and other basic editing support. On the other hand, SDF is often used to obtain a parser for the defined
language. Sometimes, SDF is used for other kinds of processing.

How to define a language
Of course you can define an SDF specification in any editor. Thereisan IDE for SDF called the SDF
Meta-Environment, of which the ASF+SDF Meta-Environment is an extension. This IDE supports

SDF definition with all kinds of user-interface features (syntax highlighting, static checking, parse
forest visualization, metrics and refactoring).

How to generate a parser
To generate a parser from an SDF definition you may use the implementation of SDF. Y ou can use

The SDF Meta-Environment, The ASF+SDF Meta-Environment or the commandline tools sdf2table
and sglr.

Learning more

The following references on SDF may be interesting for you:

Warning
TODO Add links!
» Syntax Analysis, this documents refreshes your knowledge of grammars and parsing in general

» SDF Disambiguation Med kit for Programming Languages, this document focuses on SDF
disambiguation constructs and how to solve common issues when developing SDF grammars

» Guided Tour: Playing with the Booleans, Thisinteractive demonstrations shows some of thefeatures
of SDF in the context of The Meta-Environment

» SDF definition of SDF, thisisthe final reference (and implementation) of the syntax of SDF

This document

In this document we describe the syntax of SDF and its basic semantics. It is a basic but complete
reference manual for SDF based on small examples. This document is loosely structured according
to the syntactic structure of SDF: modules, grammars and symbols. After we have described all of
it, we continue with a set of examples. The document ends with special sections on well-formedness,
disambiguation and the history of SDF. Thisdocument doesnot detail the usage of theimplementations
of SDF (sdf2table and sglr).

The Syntax Definition Formalism SDF

Figure 1.1. The hierarchical structure of the SDF syntax, extracted from the
SDF definition of SDF

As an index to this document, the following example exhibits almost all features of SDF with
references to the appropriate sections. SDF keywords are highlighted in boldface.

nodul e | anguages/ nyl anguage/ MyFunnyExanpl e[Par anil Par an?]
i mports basi c/ Wi tespace
i mports utilities/Parsing[Expr]
i mports | anguages/ nyl anguage/ MyExpr essi ons[Expr essi on => Expr]

exports

sorts ldentifier Expr List Stat

| exi cal syntax
[A-Z][a-z]+ -> |ldentifier

| exi cal restrictions
Identifier -/- [a-2z]

cont ext-free syntax
I dentifier -> Expr {cons("nane")}
Expr * -> List[[Paraml]]
"if" Expr "then" {ParanR ";"}+

"el se" {Paran2 ";"}+ "fi" -> Paran®

"if" Expr "then" {Paran ";"}+ "fi" -> ParanR {prefer}

cont ext-free syntax
“if" | "then" | "fi" -> |dentifier {reject}

context-free priorities
Expr "&" Expr -> Expr {left} >
Expr "|" Expr -> Expr {right}

hi ddens

vari abl es
"1d"[0-9\']* -> ldentifier

| exi cal vari abl es
"Head" -> [A-Z]
"Tail" -> [a-z]+

The Syntax Definition Formalism SDF

The life-cycle of an SDF definition

Every SDF grammar has alife-cycle, just like any other software has. Thisisthelife-cycle of an SDF
grammar (see also this overview figure):

1. A usertypesinthemodulesof an SDF grammar, including the production rules and disambiguation
constructs.

2. The modules are concatenated into one single definition.
3. The syntax definition is given as input to the sdf 2table tool:
a. The syntax definition is checked for trivial errors by the sdf-checker.

b. Thesyntax and the disambiguation constructsin the definition are"normalized” to "kernel SDF",
by removing all syntactic sugar (expanding macros) and some other stuff.

c. Thesyntax isused to generate an SLR(1) parsetable, and the disambiguation constructsare used
to filter some reductions from the parse table

4. The resulting parse table can be used by the sgir tool to parse strings. sgir uses some of the
disambiguation constructs to filter at parse time, and just after it

5. sglr readsin afile containing a program and outputs a parse forest (or possibly asingle parse tree,
or aparse error)

6. Other (back-end) tools take the parse forest and do stuff.

At any point in this process something may be erroneous and the process starts from step 1. Step 2 can
be done manually by the user, or taken care of by The Meta-Environment. Step 3 and its contributing
parts (3.1-3.3) are done by the sdf2table commandline tool, or by the ASF+SDF Meta-Environment.
The steps 4 and 5 are done by the sglr commandline tool, or by the ASF+SDF Meta-Environment.
Step 6 is open to any other tool that can read ATerms (the output format of sgir).

One more thing, SDF definitions are not only used as input to parser generators. There are tools that
generate libraries for syntax tree manipulation, and tools that analyze syntax definitions for example.
Recall that the primary goal of SDF is syntax definition, parser generation is the most important
secondary goal of SDF.

Figure 1.2. Overview of the data flow of an SDF definition

Grammar

Parse Table
Generator

Parse Table |— — —

[Sove e > (G oD

Parse Forest Parse Tree

Although this document is on SDF's syntax and semantics, and not its implementation, the above
overview is important. Especially point 3.2 is an essential step for understanding the semantics of
SDF. This document describesin several places what certain SDF constructs mean by mapping them
to kernel SDF.

The Syntax Definition Formalism SDF

Modules

Basic module structure

An SDF specification consists of a number of module declarations. The sdf2table commandline tool
takes a file with al modules concatenated and the word "definition" in front of them as input. The
ASF+SDF Meta-Environment accepts the modules in separate files, each with the extension ".sdf". In
that case, an SDF module must be in afile named exactly as the name of the module.

Each module may define lexical syntax, context-free syntax and disambiguations. Modules may
import other modules for reuse or separation of concerns. A module may extend the definition of a
non-terminal in another module. A module may compose the definition of a language by importing
the parts of the language.

Note

SDF modules do not hide names in principle, there is no "private/public® mechanism. So
beware of name clashes. Later we will see how the renaming facility can be used to solve
name clashes declaratively. There is an "hiddens/exports’ mechanism however, but it does
not only hide names, it also hides the complete definitions from importing modules. More
on that mechanism later too.

The basic structure of amoduleis this. The module keyword is followed by the module name, then a
series of imports can be made, followed by the actual definition of the syntax:

nodul e <Mbdul eNane>
<I nport Secti on>*
<Export Or H ddenSecti on>*

A <Mbdul eNane> is either a simple <Modul el d> or a <Modul el d> followed by zero or
more parameter symbols, e.g., <Mbdul e>[<Synbol >*], the symbolswill be explained later. The
<Mbdul el d> may be acompound module name (i.e. <Modul el d> separated by forward slashes), the
Modul el d reflectsthe directory structure. For examplebasi ¢/ Bool eans meansthat the module
Bool eans isfound in the subdirectory basi c.

Hiddens and exports sections

An<Export O H ddenSect i on>iseither an export section or ahidden section. Theformer starts
with the keyword expor t s and makes all entities in the section visible to other modules. The latter
startswith the keyword hi ddens and makesall entitiesin the section local to the module. So, hidden
means that when another module imports that module, none of the hiddens sections will be present in
the composition. The effect for parser generation is that only the hiddens sections of top module of an
SDF specification contribute to the parser generation.

An<Export Or H ddenSect i on> hasthus one of the two forms:

exports
<@ ammar >+

or

hi ddens
<G anmar >+

A <G anmar > can be a definition of one of the following:
* Imports.

» Aliases.

The Syntax Definition Formalism SDF

» Sorts.
 Start-symboals.

» Lexical syntax.
 Context-free syntax.
* Priorities.

* Variables.

Each of these entities is described and illustrated in Grammars. Most grammars have Symbols as
their basic building blocks. Symbols are the SDF term for terminals and non-terminals. Note that it is
possible to have hidden imports as well, this means that the full definition of the import definition is
copied in the hiddens section of the importing module.

Module parameters

Modules may have formal symbol parameters, which can be bound by actual symbols using imports.
The syntax of module parametersis:

nodul e <Mbdul eNane> [<Synbol >+]

When the moduleisimported, al occurences of the formal parameterswill be substituted by the actual
parameters.

Definitions

SDF modules may be collected in asingle definition file, for input to the sdf2table tool. The structure
of the definition file isas follows:
definition

<Modul e>+

Comments

The comment convention within an SDF specificationisthat characters between %86and theend of line
is comment as well as every character between two %characters including the newline character. An
exampl e of the use of commentsis given below. This definition also defines the comment convention
in SDF itself. More details on defining layout can be found in the section Restrictions.

Example 1.1. SDF comments

nmodul e basi ¢/ Conmrent s
i nports basi c/ Wi tespace

%Woln this nodul e we define the
%% conment convention for SDF.

exports
| exi cal syntax
"% ~[\n]* "\n" -> LAYOUT
"o ~[\%W+ "% -> LAYOUT

context-free restrictions
LAYOUT? -/- [\%

Note that every line that has a %®omust be ended with anewline (even thelast linein your SDF module
file).

The Syntax Definition Formalism SDF

Symbols

The elementary building block of SDF syntax rulesis the symbol. It is comparable to terminals and
non-terminals in other grammar definition formalisms. The elementary symbols are: literal, sort and
character class.

Sincethereisno real separation between lexical syntax and context-free syntax in SDF, only character
classes are real terminal symbols. Sorts are user-defined non-terminals. All other symbols are short-
hands for non-terminals for which the productions are generated for you by SDF (i.e. not user-defined
non-terminals). You may view these automatic symbols as macros that generate frequently used
grammatical design patterns for you.

Starting with the elementary symbols, more complex symbols can be constructed by way of recursive
symbol application. Examples of the use of the various operatorswill be given in the section Examples.

Remember that complex symbols such as, parameterized sorts, lists and optionals are nothing but
non-terminals. They carry no additional semantics from the SDF point of view. However, there are
back-ends (tools applied after parsing) which attribute special semantics to these kinds of symbols.
ASF+SDF as arewriting language is an example of a back-end that provides additional semantics to
SDF's symbols (but only after parsing).

Symbolsarean orthogonal feature of SDF. All symbolsof SDF are allowed in both lexical and context-
free syntax, priorities and other parts of SDF.

Literal symbols

A literal symbol definesafixed length word. Thisusually correspondsto aterminal symbol in ordinary
BNF grammars, e.g., "t rue” or" &". Literals must aways be quoted, also the literals consisting of
letters only. SDF generates automatically one production for each literal in order to defineit in terms
of terminal symbols.

| exi cal syntax
"definition" -> Definition

will generate:
[difel[fl[i][nI[il[tl[i][o]l[n] -> "definition"

The above obviously generates a case-sensitive implementation of the defined literal. There are also
case-insensitiveliterals. They are defined using single quotes asin 'true’ and 'def-word'. SDF generates
adifferent production to implement case insensitivity:

[dDI[eE][fFI[\-]1[WN[oQ [rRI[dD] -> 'def-word'
In literals, the following characters are specia and should be escaped:
e ": double quote (\")
* \ : escape character (\\).

Warning

TODO, lookup escaping conventions of literals and ci literals.

Sort symbols

A sort correspondsto anon-terminal, e.g., Bool . Sort names always start with a capital letter and may
be followed by |etters and/or digits. Hyphens (-) may be embedded in a sort name. Sort names should
be declared in a sorts section to allow some static consistency checking.

The Syntax Definition Formalism SDF

Sort names can have parameters. Parameterized sorts can be used to implement grammar
polymorphism, and to facilitate grammar reuse without clashing sort names. It provides a way
of distinguishing a Li st of integers from a List of booleans, eg. List[[Int]], versus
Li st[[Bool]] . The sort parameters are usually instantiated via the parameters of amodule or via
renaming. A parameterized sort may have severa parameters, likeLi st[[X, Y]] . See parameters
for more details. Parameterized sorts have the following form:

<Sort >[[<Symbol 1>, <Synbol >, ...]]

Character class symbols

Enumerations of characters occur frequently mostly in lexical definitions. They can be abbreviated by
using character classesenclosed by [and] . A character classcontainsalist of zero or more characters
(which stand for themselves) or character ranges such as, for instance, [0- 9] as an abbreviation for
the characters 0, 1, ..., 9. In a character range of the form c;- ¢, one of the following restrictions
should apply:

* ¢y and ¢, are both lower-case letters and ¢, follows c; in the alphabet, or
* 1 and ¢, are both upper-case letters and ¢, follows c; in the alphabet, or
» ¢y and ¢, are both digits and the numeric value of ¢, is greater than that of ¢y, or

* 1 and ¢, are both escaped non-printable characters and the character code of ¢, is greater than that
of ¢;

Escape Conventions Characters with a special meaning in SDF may cause problems when they are
needed as ordinary characters in the lexical syntax. The backslash character (\) is used as escape
character for the quoting of special characters. Y ou should use\ ¢ whenever you need special character
¢ asordinary character in adefinition. All individual charactersin character classes, except digitsand
letters, are always escaped with a backslash.

Y ou may use the following abbreviationsin literals and in character classes:

* \ n: newline character

» \r: carriagereturn

» \'t: horizontal tabulation

* \ x: anon-printable character with the decimal code x.

Character Class Operators The following operators are available for character classes:
» ~: complement of character class. Accepts all characters not in the original class.

 /: difference of two character classes. Accepts all characters in the first class unless they are in
the second class.

» /\ :intersection of two character classes. Accepts all characters that are accepted by both character
classes.

» \/ :union of two character classes. Acceptsall charactersthat are accepted by either character class.

The first operator is a unary operator, whereas the other three are left-associative binary operators.
Note that the character class operators are not applicable to symbolsin general.

Optional symbols

The postfix option operator ? describes an optional part in a syntax rule. For instance, El sePart ?
defines zero or exactly one occurrence of El sePar t . SDF generates the following syntax:

10

The Syntax Definition Formalism SDF

-> El sePart ?
El sePart -> El sePart ?

Sequence

The sequence operator (. . .) describes the grouping of two or more symbols, e.g., (Bool "&").
Sequences are mostly used to group symbols together to form a more complex symbol using one of
the available operators, eg., (Bool " &") *. It has no effect to construct a sequence consisting of
asingle symbol, because then the (...) brackets are simply brackets. The empty sequence is a special
symbol. SDF generates the following syntax for the (Bool " &") symbol:

Bool "&" -> (Bool "&")
For () it simply generates:
-> ()

Repetition or list symbols

Repetition operators express that a symbol should occur several times. In this way it is possible to
construct flat lists and therefore we usually refer to repetitions as \emph{ lists} . Repetition operators
come in two flavors, with and without separators. Furthermore, it is possible to express the minimal
number of repetitions of the symbol: at least zero times (*) or at least onetime (+). Examples are:

» Bool * (alist of zero or more Bool s).
e {Bool ","}+ (alistof oneor moreBool sseparated by commas).

Note that the separator may be an arbitrary symbol, but that some back-ends do not support parse
trees that contain them. The sdf-checker of the ASF+SDF Meta-Environment will warn you if you
use anything but aliteral as a separator.

Again, to implement lists SDF simply generates afew production for you, i.e.:

-> Bool *
Bool + -> Bool *
Bool -> Bool +

Bool + Bool + -> Bool + {l eft}

-> {Bool ","}*
{Bool ","}+ -> {Bool ","}+
Bool -> {Bool ","}+
{Bool ","}+ "," {Bool ","}+ -> {Bool ","}+ {left}

Note that there are some more productions generated, but they are not shown here. SDF generates
more productionsto allow arbitrary compositions of * and + lists, and al so adds disambiguation filters
to deal with the ambiguity thisintroduces.

Alternative symbols

The dternative operator | expresses the choice between two symbols, e.g., "t rue" | "fal se"

represents that either a "t rue" symbol or a"f al se" symbol may occur here. The alternative
operator isright associative and binds stronger than any other operator on symbols. Thisisimportant
because Bool "," | Bool ";" expressesBool ("," | Bool) ";" instead of (Bool

“,") | (Bool ";"). So,in caseof doubt use the sequence operator in combination with the
alternative operator.

For"," |";" SDF generates:

nown > non | n.on

n.on - > non | n.on

11

The Syntax Definition Formalism SDF

Labelled symbols

It is possible to decorate the symbols with labels. The labels have no semantics in SDF, and will be
removed before parse table generation. Other tools that take SDF definitions as input, such as AP
generators make use of the [abels.

So, labels are removed by replacing the labelled symbol with the symboal, asin:

nylist:{elemStat sep:";"}+
is replaced by
{Stat ";"}+

Tuple symbols

The tuple operator describes the grouping of a sequence of symbols of afixed length into atuple. The
notation for tuplesis< , , >,i.e, acomma-separated list of elements enclosed in angle brackets.
For example, <Bool , 1 nt, | d> describesatuple with three elements consisting of aBool , an
I nt andanl d (in that order). For instance, <t rue, 3, x>isavalid example of such atuple.

Tupleisone of the few symbols that actually introduce afixed syntax, i.e. the angular brackets. You
may consider them as an arbitrary shorthand. To define your own short hand, consider the use of
parameterized sorts and module parameters.

For <A, B> SDF generates:

"<"AT," B "> -> <A B>

Function symbols

The function operator (. . . =>. . .) alowsthe definition of function types. Left of => zero or more
symbols may occur, right of => exactly one symbol may occur. For example, (Bool Int) =>
I nt represents afunction with two argument (of typesBool and | nt , respectively) and aresult type
I nt . The function symbol may be used to mimick a higher order type system. The function symbol
also introduces some arbitrary syntax (the () brackets).

SDF generates the following syntax for (A B => O):
(AB=>0 "(" AB")" ->C

Read this as "something of type (A B => C) may be applied to A and B to become a C". Note that
thisis the only symbol that is not defined by generating productions with the defined symbol on the
right-hand side. The user must still define the syntax for (A B => C) manually like:

"nyfunction" -> (A B => QO

Lifted Symbols

The lifting operator ~ . . . * translates the name of an arbitrary complex symbol to a literal syntax
definition of that name. It makes a symbol a part of the defined syntax. An example: * X?" defines
the syntax (" X" " ?"). The lifting operator is typically used in combination with parameterized
modules, and specifically for applications of SDF that implement concrete syntax. The lifting symbol
isareflexive operator, it generates different syntax for different operators.

Notethat thelifting operator isnot implemented by defining it using production symbols. Thisoperator
isimplemented by replacing it with another symbol. Examples:

“"foo"" is replaced by "\"foo\""
A ?" is replaced by ("A" "?")
B {A n , n } +‘ i S r epl aced by (n { n n AII II\ n , \ nn n } n n +II)

12

The Syntax Definition Formalism SDF

LAYOUT symbol

The LAYOUT symbol is areserved sort name. SDF does not generate any productions for it. Instead
foral cont ext - f ree synt ax grammarsit will distribute LAYOUT? between all members of the
left-hand sides of all productions. Note that the "?* in LAYOUT? will take care of some production
generation. The user must define all alternatives for LAYOUT herself. Example:

[\ \t\n] -> LAYOUT

Note that LAYOUT may only be defined in | exi cal synt ax grammars. The LAYOUT non-
terminal isused by back-ends (independent of SDF) to find out what isirrelevant about aparsetree and
what is relevant. Still, SDF does not attribute any additional semanticsto it. It is just a non-terminal
that is distributed over context-free productions.

Grammars

A grammar isthe entity that can be defined in an export section or hidden section of amodule. It isa
catch-all notion that covers more than pure grammar productions and includes

* Imports: include one module in another one.

* Aliases: abbreviations for complex symbols.

* Sorts: the non-terminals of the grammar.

* Start-symbols: the start symbols of the grammar.

» Lexical syntax: the lexical productions of the grammar.

» Context-free syntax: the context-free productions of the grammar.
* Priorities: the disambiguation rules.

» Variables: definitions of variables.

* Restrictions

An SDF module may contain as many grammars of any kind as you need. We will now describe all
these kinds of grammars. Also see the Section Examples.

Imports

Plain imports

Apart from the import sections at the beginning of each module, there may be an arbitrary number
of import grammar spread through a module. Each <I nport Sect i on> starts with the keyword
i mpor t s followed by zero or more module names:

i mports
<Modul eName>*

When importing modules at the topmost level of a module or when the import section occurs within
the scope of an exports keyword, all exported entities of the imported module (and of all modules that
are imported indirectly by it) become available in the importing module. In addition, they are also
exported by theimporting module. However, if theimport section occurswithin the scope of ahiddens
keyword, the exported entities are only visible in the importing module but they are not exported by
the importing module.

Binding module parameters

When an imported module has formal parameters, imports can be used to bind them to actual
parameters. The syntax is as follows:

13

The Syntax Definition Formalism SDF

i mports nyl anguage/ myModul e[<Synbol >+]
Renamings

Symbol renaming isinfact very similar to parameterization except that it isnot necessary to add formal
parameters to a module. The mechanism of symbol renaming allows the overriding of one symbol or
a set of symbols by another symbol or symbols, respectively. It allows a flexible and concise way of
adapting specifications.

i mports nyl anguage/ myModul e[<Synbol > => <Synbol 2>]

Any number of renamings can be given. Note that renamings and modul e parameters can be combined.
Also note that renamings will not be applied to renamed symboals.

Aliases

Aliases are similar to productions but not quite. An diasis used to define a short hand for a complex
or otherwise cumbersome symbol.

al i ases
<Sort > -> <Sorty>

where the alias Sort; is given to Sort;. An exampleis ("{" | "<:") from the C programming language.
Instead of having to repeat that everywhere you may write:

al i ases
("{" | "<:") -> Bracket Open

Aliases are tricky. There are a number of rules you should adhere to:

* Aliases may not define each other

 Aliased symbols may not be redefined by another alias

» Don't forget that aliases are replaced everywhere, even on the right-hand sides of productions
 Several known other back-ends of SDF deal badly with aliases (see the next point).

» Beawareof thenon-traceability of aliases, becausethey are substituted before parsetable generation
time, you will not find them in your parse trees or abstract syntax trees.

Sort declarations

Sorts are declared by listing their name in a sorts section of the form:

sorts
<Symnbol >*

Only plain Sor t sand parameterized Sor t s should declared inthe sor t s section. The sdf-checker
will generate a warnings. The checker reguires that al sorts that occur in some symbol in the
specification are declared. Note however that the sorts declaration does not carry any semantics other
than simply declaring a name. The checker uses this to warn the SDF user for possible typos.

Lexical and context-free syntax

Lexical syntax describesthe low-level structure of text while context-free syntax describes the higher-
level structure. In SDF, these two aspects of syntax are defined in a very uniform manner. In fact,
production rules are used to describe both lexical and concrete syntax.

The only difference between the two is that context-free productions are pre-processed somewhat
extensively by SDF before parser generation, whilelexical productions are not. And, it isimportant to

14

The Syntax Definition Formalism SDF

note that symbols defined in lexical syntax and symbols defined in context-free syntax are in separate
name-spaces. Example:

| exi cal syntax

"at o> A
context-free syntax
n bll - > A

Here we are defining two different A's: one lexical and one context-free. The two definitions are
automatically linked by SDF by the following transformation:

" g o> <A LEX>
<A-LEX> -> <A-CF>
n bn > <A_ O:>

Lexical Syntax

The lexical syntax usually describes the low level structure of programs (often referred to as lexical
tokens.) However, in SDF the token concept is not really relevant, since only character classes are
terminals. The lexical syntax grammars in SDF are simply a convenient notation for the low level
syntax of alanguage. The LAYOUT symbol should also be defined in a lexical syntax grammar. A
lexical syntax consists of alist of productions.

Lexical syntax is described as follows:

| exi cal syntax
<Pr oduct i on>*

Context-free syntax

The context-free syntax describes the more high-level syntactic structure of sentences in alanguage.
A context-free syntax contains a list of productions. Elements of the left-hand side of a context-
free function pre-processed before parser generation by adding the LAY OUT? symbol everywhere.
Context-free syntax has the form:

cont ext-free syntax
<Pr oduct i on>*

As an example, consider the way SDF pre-processes the following grammar:

context-free syntax
"{" Stat* "}" -> Bl ock

iS pre-processed to:
"{" LAYQUT? Stat* LAYOQUT? "}" -> Bl ock
which will be then wapped as in:

"{" <LAYOUT?- CF> <Stat*-CF> <LAYQUT?-CF> "}" -> <Bl ock- CF>

The resulting definitions may look complex, but in fact there are only non-terminals and production
rules. The complexity stems from the names of the non-terminals.

Productions

The basic building block of a context-free syntax, lexical syntax or variables grammar is the
production. It consists of a left-hand side of zero or more symbols, an arrow symbol -> and a right-
hand side that contains a symbol and an optional list of attributes. Thisis summarized as follows:

<Synbol >* -> <Synbol >

15

The Syntax Definition Formalism SDF

A production is read as the definition of a symbol. The symbol on the right-hand side is defined by
the left-hand side of the production.

The symbols in a production can be arbitrarily complex but the implementation may impose some
limitations on this. Productions are used to describe lexical as well as context-free syntax, variables
and lexical variables. Productions also occur in priority grammars. All productions with the same
result sort together define the alternatives for that symbol.

The most striking (but also most trivial) difference between SDF and EBNF isthe way the production
rules are written in SDF. In EBNF one writes production rules as

P::='b DS'e
whereas in SDF thisiswritten as
"b" DS "e" -> P

So, the left- and right-hand side of the production rules are swapped. Otherwise the meaning of an
SDF production is the same as a BNF production. Notice however that there is a difference with the
| operator. When we write the following in BNF:

A::=C| D| E

We would write thisin SDF:

CcC->A
D->A
E->A

Or, we could use the alternative symbol, but that does generate a different grammar:

C| D| E->A

will generate the foll ow ng granmar:
C| D| E->A

Cc ->C| D| E

D ->C| D| E

E ->C| D| E

Attributes

The definition of alexical, context-free productions and variables may be followed by attributes that
define additional (syntactic or semantic) properties of that function. The attributes are written between
curly brackets after the non-terminal in the right hand side. If a production rule has more than one
attribute they are separated by commas. Productions with attributes have thus the following form:

<Synbol >* -> <Synbol > { <Attributel> <Attribute2> ...}
The following syntax-related attributes exist:

» {bracket} isan attribute without SDF semantics, but is important nevertheless in combination
with priorities. See brackets attribute.

o {left, right, non-assoc, assoc} are disambiguation constructs used to define the
associativity of productions. See associativity.

» {prefer} and{avoid} are disambiguation constructsto define preference of one derivation over
others. See preferences.

» {reject} isa disambiguation construct that implements language difference. It is used for
keyword reservation. See rejects.

» Arbitrary ATerms may also be used as attributes. Another frequently occurring non-SDF attribute
is{cons("<name>")}. There are tools that use this cons attribute to construct abstract syntax trees
or to generated API'sin C or Javato manipulate syntax trees.

16

The Syntax Definition Formalism SDF

Merging productions

An important detail of SDF is that if two productions are equal, they will not lead to ambiguity.
Instead only one of the productions is used to generate the parse table. In other words, the collection
of productions that is used to generate a parse table is a set. The identity of a production is computed
from its left-hand side and its right-hand side. If the attributes are different, the set of attributes will
be merged. Example:

“if" E"then" S -> S {cons("if")}

"if" E"then" S -> S {prefer}

will be nerged to:

"if" E"then" S -> S {cons("if"), prefer}

Prefix Functions

Prefix functions are a special kind of productions. They have a prefix syntax and are an abbreviation
mechanism for productions written as expected. For instance the functionf (X, Y) -> Zisaprefix
function. SDF automatically replaces all prefix productions by anormal productions. Example:

f(X,Y) -> Z {cons("f")}
is replaced by
"f" ll(ll X"'" Yll)ll _> Z{Cons(llfll)}

Lexical and context-free start-symbols

Viathelexical or context-free start symbols section the symbolsare explicitly defined which will serve
as start symbols when parsing terms. If no start symbols are defined it is not possible to recognize
terms. This hasthe effect that input sentences corresponding to these symbols can be parsed. So, if we
want to recognize booleans terms we have to define explicitly the sort Bool ean asastart symbol in
the module Bool eans. Any symbol, also lists, tuples, etc., can serve as a start-symbol. A definition
of lexical start symbolslooks like

| exi cal start-synbols
<Symhol >*

while context-free start symbols are defined as

context-free start-synbol s
<Synbol >*

Start symbols are short-hand notation, for which SDF generates productions as in:

| exi cal start-synbols
I dentifier
gener at es
<l dentifier-LEX> -> <START>
and
context-free start-synbol s
Progr am
gener at es
<LAYQUT?- CF> <Program CF> <LAYQUT?- CF> -> <START>

Lexical and context-free priorities

Prioritiesare one of SDF's most often used disambiguation constructs. A priority 'grammar’ definesthe
relative priorities between productions. Thereisalot of short-hand notation for doing this concisely.
Priorities are a powerful disambiguation construct. The basic priority looks like this:

context-free priorities
<Pr oduct i on> > <Pr oduct i on>

17

The Syntax Definition Formalism SDF

Context-free priorities work on context-free productions, while lexical priorities work on lexical
productions. Theideabehind the semantics of prioritiesisthat productionswith ahigher priority "bind
stronger" than productions with a lower priority. However, strictly speaking the semantics of SDF's
priorities are that they giveriseto parse forest filtersthat remove certain trees. If A > B, then all trees
are removed that have a B node as a direct child of an A node.

Severa priorities in a priority grammar are separated by comma's. Productions may be grouped
between curly braces on each side of the > sign. Groups may have relative associativity labels.
Examples:

context-free priorities
{ left: E"*" E-> E {left}
E"/" E->E{right}
} >
{ right: E"+" E->E {left}
E->E {le

"" E->E>E"+ E->E{left}

Please note the following details on priorities:

» By default, the priority relation is automaticaly transitively closed (i.e.if A > BandB > C
thenA > O

» By default, the priority relation applies to al arguments of the first production (i.e. the second
production can not be a child of any member of the first production)

* Prioritiesfilter regardlessly, and assume you apply them only when there is actually an ambiguity.
Priorities may be used to filter the last remaining tree from aforest, resulting in a parse error.

There are two recent additionsto priorities which make them more flexible. Firstly, priorities can now
be targeted at specific members of the first production: "priorities in specific arguments'. Example:

context-free priorities
E"[" E"]" ->E
<0> >
E"+" E->E {left}

Between the angular brackets a comma separated list of argument indexes indicates to which
arguments the disambiguation should be applied (and implicitly in which not). In fact, in thisexample
applying the filter to all arguments would result in parse errorsfor termssuchas"1 [2 + 3 |".
The semantics of prioritiesin specific argumentsisthusto remove all derivationsthat have the second
production as a child of the first production at the specified positions.

The second addition is non-transitive priorities. In rare cases the automatic transitive closure may be
incorrect. Note however that by not transitively closing the priority relation you may have to write
down a high amount of priorities. Example:

context-free priorities
o E > E >
E"+" E->E

The".", or full stop, makes sure that this relation does not contribute to any transitive closure.

Variables

Variables are declared in the var i abl es section of amodule. Like all other entities in a module,
except equations, variables may be exported (see section Modules). A variables section consists of
a list of variable names followed by a symbol. In fact, a variable declaration can define an infinite
collection of variables by using anaming schemeinstead of asimple variable name. A naming scheme

18

The Syntax Definition Formalism SDF

is aregular expression like the ones allowed in the lexical syntax except that sorts are not allowed.
A variable may represent any symbol. In the specification below, | d, Type3,and 1d-1i st are
examples of variables declared by the naming schemesinthevar i abl es section. Strings that occur
in the left-hand side of variable declarations should always be quoted.

Example 1.2. Variable declar ations using naming schemes

nodul e Var Decl s
i mports basi c/ Wit espace
exports
context-free start-synbols Decl

sorts Id Decl Type

| exi cal syntax
[a-z]+ -> |d

cont ext-free syntax

“decl" {Id ","}+ ":" Type -> Dec
"integer" -> Type
"real " -> Type
hi ddens
vari abl es
"1 d" -> |d

"Type"[0-9]* -> Type
"ld-list"[\'"]* -> {Id ","}*
"ld-ne-list" ->{Id ","}+

Lexical variables

Lexical variables are similar to variables. The differenceisthat they range over non-terminal s defined
in lexical syntax sections, and may range over character classes and symbol operators applied to
character classes.

Restrictions

The notion of restrictions enables the formulation of lexical disambiguation strategies that occur
in the design of programming languages. Examples are "shift before reduce”" and "longest match".
A restriction filters applications of productions for certain non-terminals if the following character
(lookahead) isin acertain class. The result isthat specific symbols may not befollowed by a character
from a given character class. A lookahead may consist of more than one character class (multiple
lookahead). Restrictions comein two flavors:

* lexical restrictions that apply to lexical non-terminals

« context-free restrictions that apply to context-free non-terminals.
The general form of arestriction is:

<Synbol >+ -/- <Lookaheads>

In case of lexical restrictions <Synbol > may be either a literal or sort. In case of context-free
restrictions only a sort or symbol is allowed. The restriction operator - / - should be read as may not
be followed by. Before the restriction operator - / - alist of symbolsis given for which the restriction
holds.

L ookaheads are lists of character classes separated by ".". Note that single character restrictions are
implemented faster then multiple character restrictions. Example:

19

The Syntax Definition Formalism SDF

Identifier -/- [i].[f]
Identifier -/- [e].[1].[s]-[€]

The semantics of arestriction <Synbol > -/ - <Lookahead> arethusto remove all derivations
that produce a certain <Symbol>. The condition for this removal is that the derivation tree for that
symbol isfollowed immediately by something that matches the lookahead declaration. Note that to be
able to check this condition, one must look past derivationsthat produce the empty language, until the
charactersto the right of the filtered symbol are found. Also, for finding multiple lookahead matches,
one must ignore nullable sub-trees that may occur in the middle of the matched |ookahead.

Warning

A note on implementation of restrictions is that follow restrictions with one lookahead
character class are filtered at parse-table generation time. This is a fast implementation.
Follow restrictionswith multiple lookahead areimplemented at parse time, which takes some
moretime. On the whole, the application of follow restrictions can make a generated parser a
lot faster. Sometimesit is used to remove conflicts from the parse table, even if the language
isnhot ambiguous at al. This may improve speed.

Disambiguation

Introduction

Asmentioned before SDF is based on two notions. Thefirst is context-free grammars, and the second
is disambiguation filters. The disambiguation constructs of SDF are:

* Priorities

e Thergject mechanism

» Associativity

* Preference attributes

» Restrictions

Each disambiguation construct gives rise to a specific derivation filter. So, the semantics of SDF
can be seen as two-staged. First, the grammar generates all possible derivations. Second, the
disambiguation constructs remove a number of derivations. This section mainly serves as an index to
the disambiguation constructs found in the the section called “Grammars’(p. 13) and it provides
additional information where needed.

An extensive "How To" on disambiguation can be found in the SDF Disambiguation Med kit for
Programming Languages. In the current document there is only limited "howto" information on this
subject.

Priorities

Priorities are described in the section called “Lexical and context-free priorities(p. 17) Note
that there is a link between associativity and priorities: priority declarations can contain relative
associativities. The {bracket} attribute also plays a role in priorities. The essence of the priority
disambiguation construct isthat certain vertical (father/child) relationsin derivations are removed.

Warning
A note on the implementation of priorities. Although we have defined priorities here to

work on direct father/child relations only, the current implementation of SDF will also filter
deriviations that are directly linked via a chain of injection productions.

20

The Syntax Definition Formalism SDF

Associativity

Associativity declarations occur in two placesin SDF. Thefirst isas production attributes. The second
is as associativity declarations in priority groups. Like with priorities, the essence of the associativity
attribute is that certain vertical (father/child) relationsin derivations are removed:

» The{left} associativity attribute on aproduction Pfiltersall occurencesof Pasadirect child of Pin
the right-most argument. Thisimpliesthat {left} isonly effective on productions that are recursive
ontheright (asinA B C -> C).

» The {right} associativity attribute on a production P filters all occurences of P as a direct child
of Pin the left-most argument. This implies that {right} is only effective on productions that are
recursiveontheleft (asinC A B -> O).

» The{non-assoc} associativity attribute on aproduction Pfiltersall occurrences of Pasadirect child
of Pin any argument. Thisimplement that { non-assoc} is only effective if a production is indeed
recursive (asinA C B -> Q).

e The{assoc} attribute means the same as {|eft}

Note that in general associatity attributes are thus intended to work on production rules with the
following pattern: X ... X -> X

In priority groups, the associativity attribute can also be found. It has the same semantics as the
associativity attributes, except that the filter refers to two nested productions instead of a recursive
nesting of one production. The group associativity attribute works pairwise and commutative on all
combinations of productions in the group. If there is only one element in the group the attribute is
reflexive, otherwiseit is not reflexive.

Notethat associativity does not work transitively. Another way of defining associativity isto translate
associativity attributes to non-transitive prioritiesin specific arguments.

Bracket attribute

It is not used by SDF, but some back-ends use it. For example, the restore-brackets tool uses the
bracket attribute to find productionsto add to a parse tree before pretty printing (when the tree viol ates
priority constraints). Note that most of these tools demand the production with a { bracket} attribute
tohavetheshape: " (" X ")" -> X {bracket} withany kind of bracket syntax but the X being
the same symbol on the left-hand side and the right-hand side.

The connection with priorities and associativity is that when a non-terminal is disambiguated using
either of them, a production rule with the { bracket} attribute is probably also needed.

Rejects

The reject disambiguation construct also filters derivations. For a production <Synbol >+ ->
Synbol {reject} the semantics is that the set of al derivations for <Synbol > are filtered.
Namely, all derivations that derive a string that can also be derived from <Synbol >+ are removed.
Another way of saying this is that the language (set of strings) defined by <Synbol > has become
smaller, namely the set of strings defined by <Synbol +> is subtracted from it.

The reject mechanism effectively definesthe difference operator between two context-free languages.
Assuchit can be used to define non context-free languages such as a'o"c". Thisisnot it'sintended use.

Warning

A noteon theimplementation of { reject} isthat the full semantics are not implemented by the
current implementation of SDF. The {reject} attribute works well for keyword reservation
in the form of productions like "keyword" -> ldentifier {reject}.l.e the

21

The Syntax Definition Formalism SDF

language on the left-hand side is regular. Note that the {reject} attribute implementation is
known to filter incompletely when:

« applied to productions that are empty or right-nullable or recursive.
« the non-terminal on the right-hand side is nullable by another production.

« thereisnested {regject} productions applied to each other.

Preferences

The preferences mechanism is another disambiguation filter that provides a filter semantics to a
production attribute. The attributes { prefer} and {avoid} are the only disambiguation constructs that
compare alternative derivations. They are sometimes referred to as horizontal disambiguation filters.

The following definition assumes that derivations are represented using parse forests with " packaged
ambiguity nodes'. This means that whenever in a derivation there is a choice for several sub-
derivations, at that point a special choice node (ambiguity constructor) is placed with al alternatives
as children. We assume here that the ambiguity constructor is always placed at the location where a
choiceisneeded, and not higher (i.e. aminimal parseforest representation). The preference mechanism
compares the top nodes of each aternative:

 All alternative derivations that have {avoid} at the top node will be removed, but only if other
aternatives derivations are there that do not have {avoid} at the top node.

« If there are derivations that have {prefer} at the top node, al other derivations that do not have
{prefer} at the top node will be removed.

Warning

A note on implementation of preferencesisthat the current implementation of SDF does not
alwaysprovidea"minimal parseforest representation”. Therefore, it issometimes hard to see
where (at which vertical level) the ambiguity constructor will be, and thus which productions
will be at the top to compare the preference attributes.

Restrictions

Restrictions, or follow restrictions, are intended for filtering ambiguity that occurs on alexical level.
They are described in restrictions.

Examples

We will now give a sequence of small examples that illustrate the various constructsin SDF:
» A simplelexical syntax.

» Using character classes.

* A simple drawing language.

o ldentifiers.

* Numbers.

 Strings.

o Identifier lists.

» An expression language.

* Using labelsin productions.

22

The Syntax Definition Formalism SDF

In the Section Some tricky cases, we give examples of definitions that may lead to some confusion.

A simple lexical syntax

Below we give an example of a simple lexical function definition for defining the first three words
that Dutch children learn to read. The three sorts Aap, Noot and M es, each recognize, respectively,
the stringsaap, hoot and ni es. The sort LeesPl ank (areading-desk used in primary education)
recognizes the single string aapnoot ni es.

Example 1.3. Smplelexical productions
nodul e LeesPl ank
i mports basi c/ Wi tespace

exports
context-free start-synbols LeesPl ank
sorts Aap Noot M es LeesPl ank
| exi cal syntax

"aap" -> Aap
"noot " -> Noot
"m es" -> Mes

Aap Noot M es -> LeesPl ank

Using Character Classes

Definitionsfor lower-caseletter (LCLet t er), upper-caseletters(UCLet t er), lower-caseand upper-
case letters(Let t er) and digits (Di gi t) are shown in the first example below} .

Example 1.4. Defining letter (lower-case and upper -case) and digit

nodul e LettersDigitsl
i mports basi c/ Wi tespace

exports
context-free start-synbols Letter Digit
sorts LCLetter UCLetter Letter Digit
| exi cal syntax

[a-z] -> LClLetter
[A-Z] -> UCLetter
[a-zA-Z] -> Letter
[0-9] -> Digit

The next example gives a definition of the sort Lett er Or Di gi t that recognizes a single letter
(upper-case or lower-case) or digit.

Example 1.5. Defining a single letter or digit

nodul e LettersbDigits2
i mports basi c/ Wit espace

exports
context-free start-synbols LetterOrDigit
sorts LetterOrDigit
| exi cal syntax

[a-z] -> LetterOrDigit
[A-Z] -> LetterODigit
[0-9] -> LetterOrDigit

23

The Syntax Definition Formalism SDF

The example below gives the definition of a single letter or digit using the alternative operator \ / .
This definition is equivalent to the one given above.

Example 1.6. Defining a single letter or digit using the alter native operator

nmodul e LettersDigits3
exports
context-free start-synbols LetterOrDigit
sorts LetterODigit
| exi cal syntax
[a-z] \/ [A-Z] \/ [0-9] -> LetterOrDigit

Another exampleis shown below. This definition of characters contains all possible characters, either
by means of the ordinary representation or viatheir decimal representation.

Example 1.7. Example of character classes
nodul e Characters
i mports basi c/ Wi tespace
exports
context-free start-synbols L-Char

sorts Al phaNuneri cal EscChar Deci nmal EscChar EscChar L- Char
| exi cal syntax

"\~ -> Al phaNuneri cal EscChar
"\\" [01] [0-9] [0-9] -> Deci nal EscChar
"\\""2" [0-4] [0-9] -> Deci nal EscChar

"\\" "2" "5" [0-5] -> Deci mal EscChar

Al phaNureri cal EscChar -> EscChar

Deci mal EscChar -> EscChar

~[V0-\31\"\\] \/ [\t\n] -> L-Char
EscChar -> L- Char

A simple Drawing Language
Consider the language of coordinates and drawing commands presented below.
Example 1.8. Simple context-free syntax definition
nmodul e Dr awi ngConmmands
i mports basi c/ Wi tespace
exports
context-free start-synbols CMND

sorts NAT COORD CVND

| exi cal syntax
[0-9]+ -> NAT

context-free syntax
II(II NAT ||,|| NAT II)II ->MD
“line" "to" COORD -> CWMND
“move" "to" COORD -> CWMN\D

24

The Syntax Definition Formalism SDF

An equivalent conventional BNF grammar (and not considering lexical syntax) of the above grammar
isasfollows:

Example 1.9. BNF definition of ssimple grammar

<COORD> ::= "(" <NAT> ", " <NAT> ")"
<CMN\D> = "line" "to" <COORD> | "nove" "to" <COORD>
Identifiers

Lexical tokens are often described by patterns that exhibit a certain repetition. The list symbols
described in List Symbols can be used to express repetitions. The example below demonstrates the
use of the repetition symbol * for defining identifiers consisting of aletter followed by zero or more
letters or digits.

Example 1.10. Defining identifier susing the r epetition operator *

nodul e Identifiers-repetition
i mports basi c/ Wi tespace

exports
context-free start-synbols Id
sorts Letter DigitLetter Id
| exi cal syntax
[a-z] -> Letter
[a-z0-9] -> DigitlLetter

Letter DigitLetter* -> Id

If zero or exactly one occurrence of alexical token isdesired the option operator described in Optional
symbols can be used. The use of the option operator is illustrated below. Identifiers are defined
consisting of one letter followed by one, optional, digit. This definition acceptsa and z8, but rejects
ab or z789.

Example 1.11. Defining aletter followed by an optional number using the option
operator ?

nmodul e I dentifiers-optional
i nports basic/ Witespace

exports
context-free start-synbols Id
sorts Letter Digit Id
| exi cal syntax
[a-z] -> Letter
[0-9] -> Digit

Letter Digit? -> Id

Productions with the same result sort together define the lexical syntax of tokens for that sort. The
left-hand sides of these function definitions form the alternatives for this function. Sometimes, it is
more convenient to list these alternatives explicitly in asingle left-hand side or to list alternative parts
inside aleft-hand side. Thisis precisely therole of the alternative operator. The example below shows
how this operator can be used. It describes identifiers starting with an upper-case letter followed by
one of the following:

e zero or more lower-case | etters,

25

The Syntax Definition Formalism SDF

* Zero or more upper-case letters, or
 zero or moredigits.

According to this definition, Aap, NOOT, and B49 are acceptable, but M ES, B49a and 007 are not.

Example 1.12. Example of alter native operator |

nmodul e I dentifiers-alternativel
i mports basi c/ Wi tespace

exports
context-free start-synbols Id
sorts LCLetter UCLetter Digit Id
| exi cal syntax
[A Z] -> UCLet ter
[a-z] -> LClLetter
[0-9] -> Digit

UCLetter LClLetter* | UCLetter* | Digit* -> Id

Note that the relation between juxtaposition and alternative operator is best understood by looking at
theline defining | d. A parenthesized version of this same line would read as follows:

UCLetter (LCLetter* | UCLetter* | Digit*) ->1d
As an aside, note that moving the * outside the parentheses asin
UCLetter (LCLetter | UCLetter | Digit)* ->1d

yields a completely different definition: it describes identifiers starting with an uppercase letter
followed by zero or more lower-case letters, uppercase letters or digits. According to this definition
M ES, B49a and Bond007 would, for instance, be acceptable. A slightly more readable definition
that is equivalent to the previous oneis shown below. In any case, we recommend to use parentheses
to make the scope of alternatives explicit.

Example 1.13. Example of alter native operator |
nodul e Identifiers-alternative2
i mports basi c/ Wit espace
exports
context-free start-synbols Id

sorts UCLetter LClLetter Digit Id
| exi cal syntax

[A-Z] -> UCLet ter
[a-z] -> LClLetter
[0- 9] -> Digit

(UCLetter LCLetter*) |
(UCLetter UCLetter*) |
(UCLetter Digit*) -> |d

Numbers

Definitions of integers and real numbers are shown below. Note the use of the alternative operator
in the definitions of Unsi gnedl nt and Nunber . Also note the use of the option operator in the
definitions of Si gnedl nt and Unsi gnedReal .

26

The Syntax Definition Formalism SDF

Example 1.14. Lexical definition of Numbers
nodul e Nunbers
i mports basi c/ Wi tespace
exports
context-free start-synbols Nunber

sorts Unsi gnedl nt Signedlnt UnsignedReal Nunber

| exi cal syntax

[0] | ([1-9][0-9]%) -> Unsi gnedI nt
[\+\-]1? Unsi gnedl nt -> Si gnedlI nt
Unsi gnedint "." Unsignedlint ([eE] Signedlnt)? -> UnsignedReal
Unsi gnedl nt [eE] Signedl nt -> Unsi gnedReal
Unsi gnedl nt | Unsi gnedReal -> Nunber

Strings

The specification below, gives the lexical definition of strings which may contain escaped double
guote characters. It definesa St ri ngChar aseither

 zero or more arbitrary characters except double quote or newline, or
 an escaped double quote, i.e., \ ".

A string consists of zero or more St r i ngChar s surrounded by double quotes.

Example 1.15. Lexical definition of String
nodul e Strings
i mports basic/ Wi tespace

exports
context-free start-synbols String
sorts String StringChar

| exi cal syntax
~[\"\'n] -> StringChar
[NNTN"] -> StringChar
"\"" StringChar* "\"" -> String

Identifier Lists

Context-free syntax often requires the description of the repetition of a syntactic notion or of list
structures (with or without separators) containing a syntactic notion. Thelist symbols can be used for
this purpose. Lists may be used in both the | eft-hand side and right-hand side of a context-free function
aswell asin the right-hand side of a variable declaration.

Here is an example of how lists can be used to define the syntax of alist of identifiers (occurring in
adeclaration in a Pascal-like language).

27

The Syntax Definition Formalism SDF

Example 1.16. Definition of alist of identifiers
nodul e Decl s
i mports basi c/ Wi tespace
exports
context-free start-synbols Decl

sorts Id Decl Type

| exi cal syntax
[a-z]+ -> Id

context-free syntax

"decl" {Id ","}+ ":" Type -> Decl
"i nteger" -> Type
"real " -> Type

An Expression Language with Chain Rules

A context-free syntax may contain productions that do not add syntax, but serve the sole purpose of
including asmaller syntactic notioninto alarger one. Thisnotionisalso known asinjections. Injections
are productions without a name and with one argument sort like | d - > Dat a. A typical example
istheinclusion of identifiersin expressions or of natural numbers in reals. Such a chain function has
one of the following forms:

« SMALL -> BIG

« {SMALL SEP}* -> BI G

SMALL* -> BIG

{SMALL SEP}+ -> BIG
« SVALL+ -> BIG

It is a common misconception that chain rules will not be represented in the parse tree that sgir
outputs. An injection production is a production like any other, and will lead to a node in the parse
tree. However, some back-ends are known to interpret chain rules as sub-sort relations. In the example
below the symbols Nat and Var areinjected in Exp.

Example 1.17. Definition of expressionsthat usesinjections
nodul e Exp
i mports basi c/ Wi tespace
exports
context-free start-synmbols Exp

sorts Nat Var Exp

| exi cal syntax
[0-9] + - > Nat

[XYZ] -> Var
context-free syntax

Nat -> Exp

Var -> Exp

EXp n +II EXp _> EXp

28

The Syntax Definition Formalism SDF

Using Labels in Productions

See below for an example of an SDF specification containing labels. Remember that |abels do not
have semanticsin SDF.

Example 1.18. Themodule basi ¢/ Bool eans decorated with labels
nodul e Bool eans
i mports basi c/ Wi tespace
exports
context-free start-synbols Bool ean
sorts Bool ean
context-free syntax

| hs: Bool ean "|" rhs: Bool ean -> Bool ean
| hs: Bool ean "&" rhs: Bool ean -> Bool ean

Groups of Associative Productions

Groups of associative productions define how to accept or reject trees containing related occurrences
of different productions with the same priority. They are defined by prefixing a list of context-free
productionsin a priority declaration with one of the following attributes:

» | ef t : related occurrences of F and Gassociate from left to right.

» ri ght: related occurrences of F and Gassociate from right to | eft.

* non- assoc: related occurrences of F and Gare not allowed.

where F and G are productions appearing in the list. Below is an example of the use of grouped
associativity.

29

The Syntax Definition Formalism SDF

Example 1.19. M ore complex associativity and priority definitions
nodul e Conpl exExpr

i mports basi c/ Wi tespace
i mports basi c/ Nat Con

exports
context-free start-synbols E

sorts E

context-free syntax

Nat Con -> E

E"+" E ->E {left}
E"-" E -> E {non-assoc}
E"*" E ->E{left}
E"/" E ->E {non-assoc}
E"" E ->E {right}
"(" E")" -> E {bracket}

context-free priorities
E"A" E->E >
{non-assoc: E "*" E -> E
E"/" E->FE >
{left: E"+" E->E
E"-" E->FE

Associative Productions

Associativity attributes can be attached to binary productions of the form S op S - > S, where
op is a symbol or empty. Without associativity attributes, nested occurrences of such productions
immediately lead to ambiguities, as is shown by the sentence S-string op S-string op S

st ri ng whereS- st ri ng isastring produced by symbol S. The particular associativity associated
with op determines the intended interpretation of such sentences. We call two occurrences of
productions F and G related, when the node corresponding to F has a node corresponding to G as
first or last child. The associativity attributes define how to accept or reject trees containing related
occurrences of the same function, F:

| ef t : related occurrences of F associate from left to right.
e ri ght: related occurrences of F associate from right to | eft.
» assoc: related occurrences of F associate from left to right.
* non- assoc: related occurrences of F are not allowed.

Currently, thereisno syntactic or semantic difference between| ef t andassoc, but we may change
the semantics of the assoc attribute in the future. Isthisreally true?

Below we give an example of a definition of simple arithmetic expressions with the usua priorities
and associativities.

30

The Syntax Definition Formalism SDF

Example 1.20. Simple context-free priority definition
nodul e Si npl eExpr

i mports basi c/ Wit espace
i mports basi c/ Nat Con

exports
context-free start-synbols E
sorts E

context-free syntax
Nat Con -> E
E"+" E ->E {left}
E"*" E ->E {left}
"(" E")" -> E {bracket}

context-free priorities
E"*" E->E >
E"+" E->E

Parameterization

Module parameterization alows the definition of generic modules for lists, pairs, sets, etc. The
operations defined in these modules are independent of a specific type. When importing a
parameterized module and instantiating the formal by actual parameters the operations become sort
specific. Modules can have formal parameterswhen defining them. The module nameisthen followed
by alist of symbals, representing the formal parameters of this module. The specification below
shows an example of a parameterized module. In this example the formal parameters are used in
the parameterized sorts as well, in order to increase readability and to avoid name clashes between
different instances of the same module.

Example 1.21. Definition of generic pairs
nodul e Pair[X Y]

i mports basi c/ Wi tespace
i mports basi c/ Bool eans

hi ddens
sorts XY

exports
context-free start-synbols Pair[[X Y]]
sorts Pair[[X Y]]

context-free synt ax
XY -> Pair[[X Y]]

make-pair (X, Y) -> Pair[[X Y]]
first(Pair[[X Y]]) -> X
second(Pair[[X Y]]) ->Y
is-pair(Pair[[X Y]]) -> Bool ean

When importing a parameterized module the formal parameters have to be replaced by
actual parameters. The specification below shows an example of a rather complicated
import of a parameterized module. The symbols Pai r[[Bool ean, Bool ean]] and

31

The Syntax Definition Formalism SDF

Pair[[I nteger, | nteger]] arethe actual parameters of the module Pai r[X Y] in the last
import.

Example 1.22. Use of generic pair module
nodul e Test Pai r

i mports basi c/ Bool eans

i mports basic/lntegers

i mports Pair[Bool ean Bool ean]

i mports Pair[lnteger Integer]

i mports Pair[Pair[[Bool ean, Bool ean]] Pair[[|nteger,|Integer]]]

Symbol Renaming

The specification below shows an example of the Pai r module without parameters. The idea is to
achieve the same effect as parameterization by explicitly renaming X and Y to the desired nameswhen
Pai r isimported.

Example 1.23. Definition of generic pairs
nodul e Pair

i mports basi c/ Wi tespace
i mports basi c/ Bool eans

hi ddens
sorts XY

exports
context-free start-synbols Pair[[X Y]]
sorts Pair[[X Y]]

context-free syntax
XY -> Pair[[X Y]]

make-pair (X, Y) -> Pair[[X Y]]
first(Pair[[X Y]]) -> X
second(Pair[[X Y]]) ->Y
is-pair(Pair[[X Y]]) -> Bool ean

During import such module symbols can be renamed via symbol renaming. The specification below
shows an example of arather complicated import of the module Pai r using renamings. Renaming X
to Bool ean is, for instance, written as X => Bool ean.

Example 1.24. Use of generic pair module
nodul e Test Pai r

i mports basi c/ Bool eans

i mports basic/lntegers

i mports Pair[X => Bool ean Y => Bool ean]

imports Pair[X => Integer Y => |nteger]

i mports Pair[X => Pair[[Bool ean, Bool ean]] Y => Pair[[|nteger,|nteger]]]

32

The Syntax Definition Formalism SDF

Examples on dealing with lexical ambiguity using
restrictions

In the example below both | et and i n may not be followed by a letter. This example shows how
lexical restrictions can be used to prevent the recognition of erroneous expressionsin asmall functional
language. The lexical restriction deals with the possible confusion between the reserved words | et
andi n and variables (of sort VVar). It forbids the recognition of, for instance, | et aspartof| etter.
Without thisrestriction | et t er would be recognized as the keyword | et followed by the variable
t er . The context-free restriction forbids that a variable is directly followed by a letter. It does not
forbid layout characters between the letters, e.g. a b isalegal recognizable string.

Example 1.25. Usingrestrictionsin thedefinition of asimplefunctional language
nmodul e Functi onal
i nports basi c/ Wi tespace

exports
context-free start-synbols Term
sorts Var Term
| exi cal syntax
[a-z]+ -> Var
context-free syntax

Var -> Term
Term Term -> Term {left}
"let" Var "=" Term"in" Term-> Term

| exical restrictions
Illetll Ilinll _/_ [a_z]

context-free restrictions
Var -/- [a-z]

The next example illustrates the use of restrictions to define a safe way of layout. Recall that optional
layout, represented by the symbol LAYOUT?, may be recognized between the members of the | eft-
hand side of a context-free syntax rule. However, if a such amember recognizes the empty string, this
givesrise to aan ambiguity. This problem is avoided by the definition given below: it simply forbids
that optional layout is followed by layout characters.

Example 1.26. Safe way of defining LAYOUT
nodul e basi c/ Wi t espace

exports
| exi cal syntax
[\ \t\n] -> LAYQUT

context-free restrictions
LAYOUT? -/- [\ \t\n]

The example shown below illustrates the use of restrictions to extend the previous layout definition
with C-style comments. For readability we give here two restrictions whereas the first one is already
imported from module basic/Whitespace. The repetition of thisfirst restriction is redundant and could
be eliminated.

33

The Syntax Definition Formalism SDF

Example 1.27. Definition of C comments
nodul e Comrent
i mports basi c/ Wi tespace

exports
sorts Com\rd Conment
| exi cal syntax
~[\ \n\t\/]+ -> Conmrd

context-free syntax
“/*" ComWrd* "*/" -> Coment
Comment -> LAYQUT

context-free restrictions
LAYQUT? -/- [\ \t\n]
LAYOQUT? -/- [\/].]*]

A frequently asked question iswhen to uselexical restrictionsand when to use context-freerestrictions.
In one of the previousexamplesthelexical restrictionson| et andi n cannot be defined using context-
free restrictions because these keywords do not "live" at the context-free level. Isit possible to put a
lexical restriction onVar ?Yes, but it will have no effect, becauseinternally thelexical Var isinjected
in the context-free Var . The general ruleisto define the restrictions aways on the context-free level
and not on the lexical level unless a situation as will be discussed in the next paragraph occurs. The
specification below is an example of an erroneous use of context-free expressions, because it prevents
therecognition of (abc) def . If wewant to enforcethe correct restriction, it isnecessary to transform
this context-free restriction into alexical restriction.

Example 1.28. Erroneous use of restrictions in the definition of smple
expressions

nodul e RestrictedExpressi ons
i mports basi c/ Wi tespace
exports
context-free start-synmbols Expr

sorts Expr

| exi cal syntax
[a-z]+ -> Expr

context-free syntax
Expr Expr -> Expr {left}
"(" Expr ")" -> Expr {bracket}

context-free restrictions
Expr -/- [a-2Z]

Some Tricky Cases

In Symbols anumber of sophisticated operators, like alternative, option, function, sequence, and tuple
are discussed. These operators allow a concise manner of defining grammars. There are, however, a
number of issues to be taken into consideration when using this operators.

The Syntax Definition Formalism SDF

Definition of Lists

In the example below, two different lists are defined, Li st 1 represents alist of naturals separated
by commas whereas Li st 2 represents a list of naturals separated by commas and terminated by a
comma.

Example 1.29. Definition of two list variants
nodul e Lists
i mports basi c/ Wi tespace
exports
context-free start-synbols Listl List2

sorts Nat Listl List2

| exi cal syntax
[0-9] + - > Nat

context-free syntax

{Nat ","}+ -> Listl
(Nat ",")+ -> List2

Alternative Alternatives

The choice between two symbols can be defined in two different ways: by two separate syntax rules
or by asingle syntax rule using an alternative operator. Both styles are shown below. The definition
of the binary operators | and & can be made more concise as shown by Bool 2, however, it is how
impossible to express that & has a higher priority than | , see Priorities for more details on priority
definitions.

Example 1.30. Two ways of defining | and &
nodul e Bool
i mports basi c/ Wi tespace
exports
context-free start-synbols Bool 1 Bool 2

sorts Bool 1 Bool 2

context-free syntax

"true" -> Bool 1
“fal se" -> Bool 1
Bool 1 "|" Bool 1 -> Bool 1 {left}
Bool 1 "&" Bool 1 -> Bool 1 {left}
“true" | "false" -> Bool 2
Bool2 ("|" | "&") Bool2 -> Bool 2 {left}

Lists in combination with optionals or empty producing sorts

The combination of listsand optionalsor empty producing sortsleadsto cyclesin the parsetree. Cycles
are considered parse errors. The parser will produce an error message whenever during parsing acycle
is detected. No parsetreeis constructed in such a case. Cycleswill not lead to non-termination during
parsing. See below for an example of such a specification.

35

The Syntax Definition Formalism SDF

Example 1.31. Danger ous combination of listsand optionals}
nodul e Cycl e
i mports basi c/ Wi tespace
exports
context-free start-synbols T
sorts AP T
cont ext-free syntax
"a" -> A
A? -> P
"I P+ "] > T
Sometimes commenting out parts of a production rule may lead to cycles, because a non-terminal

becomes an empty producing non-terminal. This in combination with lists may then produce
unexpected cycles.

Well-formedness

In order to improve the quality of the written specifications, anumber of checks are performed before
an SDF specification is transformed into a parse table. The checks are performed on two levels: the
first level are SDF specific checks, the second level are ASF+SDF specific checks. There are various
categories of messages in The Meta-Environment

» Parseerrors.

» SDF type check warnings.

» SDF type check errors.

We will briefly discuss each of the error messages and indicate what is exactly wrong in the
specification. Furthermore we will hint at how the error can be fixed.

Parse Errors

There are three different types of parse errors:
» A syntax error, which is reported by pinpointing the exact location in the file and a message like
Parse error near cursor

or

Parse error: character 'c' unexpected
or
Parse error: eof unexpected
This means that the parser detected a syntax error in the text to be parsed and cannot proceed its
parsing process. Clicking on the error in the Er r or s pane moves the cursor to the exact error
location and launches if needed the editor.

» A cycleisreported whenever the parser detectsanon-terminating chain of reductions; the messageis

Cycle: <list_of production_rul es>

36

The Syntax Definition Formalism SDF

An ambiguity is reported whenever the parser was able to recognize a (part of) the input sentence
in different ways and gives the message:

Anbi guity: <list_of production_rul es>

Type check warnings for SDF

Warning

It would be nice to rewrite this and the next section in the style:
e Error message

» Explanation

e Example of error.

» Example of correction.

Warnings do not break the specification, but it is advisable to fix them anyway. Often they point out
some not well-formed part in the specification.

undecl ared sorts: Thiswarning indicatesthat a sort is used which is not explicitly declared,
or it is declared but in a hidden section.

doubl e decl ared sort: Thiswarning points out that the sort is already declared somewhere
in this module, or in one of the imported modules.

doubl e decl ar ed st art - synbol : Thiswarningindicatesthat the start-symbol ispreviously
defined as start-symbol aswell. Thiscan beinthe current module or in one of theimported modules.

illegal attribute: {bracket, left, right, assoc, non-assoc}: This
warning is generated because the syntactic form of the production rule and the attribute do not
match. Given this mismatch the intended behaviour will not be effective.

used in priorities but undefined: Thiswarningisgenerated whenever a production
rule is used in a priority section which is not defined in this module or in one of the imported
modules. It is possible that this production rule will be defined in one of the modules which imports
this module. Normally, this indicates a typo.

inconsistent rhs in priorities: Thiswarningis caused by aproduction rule which
has not the same right-hand side as the other production rules in the priority relation. Whenever
this occurs the effect of the expressed priority relation will be ignored. This check is performed
modulo injections.

unknown constructor used in priorities: Thiswarning indicates the use of a
constructor which is not used in the corresponding set of production rules with the same right-hand
side. Thisisavery weak check on consistent use of constructor information.

sort CHAR used in production rule:
deprecated tuple notation:

deprecat ed unquot ed synbol notati on:
deprecated non-plain sort definition:

al i ased synbol al ready decl ared:

Type check errors for SDF

modul e not avail abl e:

37

The Syntax Definition Formalism SDF

e start-synbols in <Mddul eName> not defined in any right-hand:
e literal in right-hand-side not allowed

e only sort allowed in right-hand-side of |exical-function

* doubl e used | abel:

» constructor has already been used: The combination of right-hand symbol and the
constructor information should be unique. Thiswarning pointsthis out. It is advisable not to ignore
this warning. In fact, for the parser these double constructors are no problem, but there are tools
based on SDF for which thisis problematic.

Derivations

Any parser generated from an SDF definition should output a representation of all derivations. For
example, aparseforest containing all parsetrees, or any other representation which encodes/serializes
all derivations. A derivation shouldincludeall characters of theinput and also atrace of all productions
that are recursively applied to obtain the derivations. A common representation that is used is parse
forest with ambiguity packing nodes serialized as ATerms.

Note that cyclic derivations should also be represented.

The essence of this requirement for SDF derivations is that no information should be thrown away.
A derivation represents exactly the grammar that was used to generate it, and the input sentence that
was parsed.

Historical Notes

The main publications on SDF are (in historical order):
» [HK86] describes the initial motivation and design of SDF.
» [HHKR89]Jisthefirst reference manual for SDF.

* [Vis97] describes a redesign of SDF that adds modularization (modeled after the modularization
constructs of ASF), unifieslexical and concrete syntax, and proposes a normalisation procedure.

The main publications on implementation techniques related to SDF are:

* [HKR90]Jand [HKR92] describe our variant of Generalized LR parsing aswell as the just-in-time
generation of scanners and parsers.

» [Rek92] gives adetailed description of the GLR algorithm.

» [BVSV02] describes current disambiguation methods that are used in combination with scannerless
parsing.

Bibliography

[BVSV02] M.G.J. van den Brand, J.J. Vinju, J. Scheerder, and E. Visser. Disambiguation filters for scannerless
generalized Ir parsers. 143--158. Proceedings of the 11th International Conference on Compiler
Construction (CC'02). . 2002.

[HK86] J. Heering and P. Klint. A Syntax Definition Formalism. 619--630. ESPRIT'86: Resultsand Achievements.
North-Holland. 1986.

[HHKR89] J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax definition formalism SDF - reference
manual. 43--75. S GPLAN Notices. 24. 11. 1989.

38

The Syntax Definition Formalism SDF

[Vis97] E. Visser. Syntax Definition for Language Prototyping. PhD thesis. University of Amsterdam. 1997.

[HKR92] J. Heering, P. Klint, and J. Rekers. Incremental generation of lexical scanners. 490--520. http://
doi.acm.org/10.1145/133233.133240. ACM Trans. Program. Lang. Syst.. 14. 4. 1992.

[Rek92] J. Rekers. Parser Generation for Interactive Environments. PhD thesis. University of Amsterdam. 1992.
ftp://ftp.cwi.nl/pub/gipe/reports/Rek92.ps.Z. ftp://ftp.cwi.nl/pub/gipe/reportsyRek92.ps.Z.

[HKR90] J. Heering, P. Klint, and J. Rekers. Incremental generation of parsers. 1344--1350. |EEE Transactions
on Software Engineering. 16. 12. 1990.

To Do

Needed:
» Check error messages for correctness and add explanatory text to error messages.

» Check al examples.

39

