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Abstract
Ionization showers are created in the Earth’s atmosphere by cosmic particles or by run-away
electrons from pulsed discharges or by the decay of radioactive elements like radon and
krypton. These showers provide pre-ionization that can play a role for discharge inception or
evolution; radioactive admixtures in plasma technology use the same effect. While the
CORSIKA program provides cross sections and models for cosmic particle showers down to
the MeV level, we here analyze the shower structure below 1 MeV by using a
three-dimensional relativistic Monte Carlo discharge code for the electron dynamics. We
provide a few analytical results to speed up the numerical implementation of the scattering
processes. We derive and analyze the spatio-temporal structure of ionization and electron
energies in the shower for incident electrons with energies of 1 keV to 1 MeV, at air pressures
of 10, 100 and 1000 mbar at room temperature in great detail. We calculate the final density of
O−

2 and O− ions and the average input energy per ion. We show that the average input energy
per ion increases from 20 eV for initial energies of 1 KeV to 33 eV for 250 MeV. We also
derive the electric fields generated by the electrons and residual ions of the particle showers.
Finally, we study how the shower evolution and the electron energy at 1 bar is influenced by
ambient electric fields of 5 or 8 kV cm−1 and see that for 1 keV the electron number decreases,
more slowly than without field, whereas the electron number continuously grows for 1 MeV.
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1. Introduction

1.1. Energetic particles and discharges

Energetic radiation in the atmosphere can contribute to
discharge inception or it can influence discharge evolution.
The primary motivation of our study are high-energy cosmic
particle showers, but the results apply as well to ionization
showers generated by radioactive decay [1] or by run-away
electrons from powerful negative discharges like lightning
leaders [2–5] or megavolt sparks [6, 7].

Cosmic particles with energies up to 1020 eV [8] bombard
our Earth and create extensive air showers. The detection and
identification of the cosmic particles is of high current interest

for astroparticle physics [9–11], but their air showers also
might play a role in lightning inception [12–14] or in triggering
terrestrial gamma-ray flashes [15–17]. The high-energy part
of these particle showers is well characterized by CORSIKA
(COsmic Ray SImulations for KAscade) which is a tool to
simulate extensive air showers initiated by high-energy cosmic
ray particles [18]. The initial incident particles can be protons,
light nuclei up to iron (Z = 26), photons and electrons.
CORSIKA simulates the particle showers they create in Earth’s
atmosphere, taking hadronic and electromagnetic interactions
with air molecules into account [19, 20]. CORSIKA can also
be used to calculate the production of neutrinos and Cherenkov
radiation [21], i.e. radiation of electrons in dense media when
they travel faster than the local speed of light. However, these
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models do not resolve particle dynamics below 1 MeV which
is the limiting energy for electron-positron pair production. On
the other hand, common plasma discharge models and cross
section data bases [22] extend only up to electron energies of
1 keV. Therefore there is a need to fill the gap and to derive
the spatio-temporal distribution of electrons in the eV and the
thermal range created by particles in the keV and GeV regime,
in particular, when we want to study the sensitivity of these
particle showers to ambient electric fields.

The same question arises when discharge inception is
facilitated by radioactive admixtures. The streamer discharge
experiments performed with an admixture of 85Kr in [1] clearly
show that the traces of the emitted β electrons with a maximal
energy of 687 keV and an average energy of 251 keV have
a different influence on discharge morphology than a more
uniform background ionization.

1.2. Simulating showers created by electrons with energies
�1 MeV

For particle energies of 1 MeV or below, the showers consist
predominantly of electrons and positrons. Therefore we
here simulate and characterize ionization showers created by
electrons with initial energies between 1 keV and 1 MeV in air
at room temperature for pressures of 10, 100 and 1000 mbar
which correspond to altitudes in the atmosphere of 32, 16 and
0 km.

We use the Monte Carlo code in three spatial dimensions
that was originally designed for streamer modeling and
described in [23]; in simulations with this code run-away
electrons with energies up to 3.5 keV were found [24]. We
extended this code with relativistic equations of motion for
the electrons and with cross sections for electron–nucleus
bremsstrahlung, elastic scattering and ionization for electrons
up to 1 MeV. We concentrate on electrons with initial energies
of 1 MeV or lower as the high-energy models stop at this
energy.

1.3. Content and organization of the paper

In section 2 we introduce the model. We discuss the collisions
included, especially how we have implemented ionization,
elastic, inelastic and reaction mechanisms. We also describe
briefly how we include thermal effects. The results are
presented in section 3. We plot and discuss the temporal
evolution of the electron number and the spatio-temporal
distribution of the electrons as well as the energy of the
electrons and of the negative oxygen ions. We also calculate
the electric field generated by the space charge separation
within the particle shower. In section 4 we will show how an
ambient field influences the shower. Section 5 summarizes our
results and gives a brief outlook to future research. Details of
our calculations regarding the ionization cross section which
help to speed up calculations, can be found in appendix A
and regarding the speed of oxygen ions in appendix B. In
appendix C we briefly show how results change if we use
different cross sections.

2. Cross sections and air temperature model

As the mass of air molecules is much higher than that of an
electron, we consider them to be immobile and do not trace
them. We implicitly place air molecules at random positions,
thus as a constant background and draw random numbers to
determine whether there is a collision of an electron with an
air molecule and, if so, which collision takes place.

We model the motion of electrons in air which consists of
78.12% N2, 20.946% O2 and 0.934% Ar. In most cases we
do not consider any electric or magnetic field; hence there is
no external energy source. Especially we do not take space
charge effects into account; thus the physics of such showers
do not depend on the initial electron number. For an initial
electron energy of 1 keV and 1 MeV we will also include
an ambient electric field. We include ionization [25], elastic
scattering [22, 26–30], electron-nucleus bremsstrahlung [31,
32], excitations [22, 33] and attachment [33, 34]. We note here
that we ran also simulations where we trace bremsstrahlung
photons and included photoionization. However, we have not
seen any significant changes to the results presented here.

2.1. Elastic scattering

Our particle code was originally developed to study streamer
dynamics [23] where electrons reached energies up to 3.5 keV
in the simulations of [24]. For electron energies below 10 keV,
we use cross sections by [27–30] as distributed by LXcat [22].
For energies above 10 keV, we extended the energy range of
the total cross section for elastic scattering with a screened
Rutherford expression [26, 35]

σ(Ekin) = 2πZ2e4

v2p2η(η + 1)
, (1)

where v, p and η depend on Ekin as

v =
√

c2 − m2
ec

6/(Ekin + mec2)2,

p =
√

(Ekin + mec2)/c2 − m2
ec

2

and

η(Ekin)

= χ2
0

2

[
1 + 4αZχ0

(
1 − β2

β
ln χ0 +

0.231

β
+ 1.448β

)]
(2)

with me ≈ 9.1 × 10−31 kg, β(Ekin) = v/c, α ≈ 1/137,
χ0(Ekin) = h̄µZ1/3/(0.885pa0), e ≈ 4.80 × 10−10 esu and
a0 ≈ 2.82 × 10−13 cm where Ekin is the kinetic energy of
the electron and Z is the atomic number. h̄ ≈ 1.05 J s is the
reduced Planck constant, and µ = 0.635 is a fitting parameter
ensuring a continuous transition from (1) to experimental data
of energies below 10 keV.

For the azimuthal angle we use [35, 36]

dσ

d�
(Ekin, θ) = σ(Ekin)

4π
· 4η1(1 + η1)

(1 − cos θ + 2η1)2
(3)

with η1 = 5.77 · E−1.377
kin . The polar angle ϕ is equally

distributed over [0, 2π).
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2.2. Ionization cross section

To model ionization we use the relativistic binary-encounter
Bethe (RBEB) total cross section σ(Ekin) and the differential
cross section dσ/dW(Ekin, W) [25] where Ekin and W are the
energies of the incident and the ejected electron, respectively.
W can be obtained by solving [37]

R =
∫ W

Emin

dσ

dW̄
(Ekin, W̄ ) dW̄∫ Ekin

2
Emin

dσ

dW̄
(Ekin, W̄ )dW̄

(4)

where R ∈ [0, 1) is a uniformly distributed random number,
and Emin = 0.01 eV is the lower threshold for the energy of
secondary electrons. We have derived an explicit expression
(A.9) for the integrals in (4) that can be found in appendix A.
We solve (A.9) by using the regula falsi method [38].
The scattering direction of the electron is parameterized by
the angles 
sca = �(pi , psca) and ϕsca, and the direction
of the emitted electron relative to the incident electron is

e = �(pi , pe) and ϕe. Here pi is the momentum of the
incident electron before scattering, psca its momentum after
scattering and pe the momentum of the emitted electron. 
sca,e

are given by [37]

cos 
sca =
√

(Ekin − W)(Ekin + 2mec2)

Ekin(Ekin − W + 2mec2)
(5)

cos 
e =
√

W(Ekin + 2mec2)

Ekin(W + 2mec2)
. (6)

The polar angles ϕsca,e are uniformly distributed on [0, 2π).

2.3. Electron attachment

After having lost energy by collisions, electrons can attach
to oxygen through two processes [33, 34, 39]: An electron
can split an oxygen molecule (two-body or dissociative
attachment)

e− + O2 → O− + O (7)

where the binding energy is Ebind = 5.2 eV. The speed of O−

and O is

vO = vO− =
√

me|v|2
2mO

− Ebind

mO
, (8)

where v is the velocity of the incident electron and mO ≈
2.6568×10−26 kg is the mass of an oxygen atom or ion. Details
of the derivation of (8) can be found in appendix B.

An electron can also attach to an oxygen molecule directly,
but only in the presence of a further molecule to conserve
energy and momentum (three-body attachment)

e− + O2 + M → O−
2 + M, (9)

where M is N2 or O2 [33, 34]. Since three-body attachment
needs the presence of two molecules, the rate of this process
depends on air density, not linearly, but quadratically.

2.4. Air temperature

Our first simulations have shown that the energy of electrons
continues to decrease to below 0.025 eV. The lower threshold
energies for two- and three-body attachment are 4.4 eV and
0.07 eV, respectively. Therefore at vanishing air temperature,
there are always very low energy electrons that stay free.
Therefore we have included the thermal energy of the neutral
air molecules at 300 K (corresponding to 0.025 eV) for
collisions with electrons with kinetic energies below 1 keV
with the method described in [40]. Here the energy En of the
neutral is sampled from the Maxwell–Boltzmann distribution

f (ε) =
√

2ε e−ε+ 1
2 (10)

with ε = En/(kBT ) and kB ≈ 1.38 × 10−23 J K−1.

3. Results

3.1. Evolution of electron and ion number in the shower

We performed simulations for incident electrons with energies
of 1, 10, and 100 keV and 1 MeV. In the first three cases
we averaged our results over 100 initial electrons, while for
1 MeV there was already sufficient self-averaging with a single
electron starting the shower. We studied the showers in air at
10, 100 and 1000 mbar at room temperature.

Figure 1 shows the electron number in the shower as a
function of time. Within our simulations the electrons move
only by some 100 µm to 30 cm (see section 3.3 for the shower
length). Thus pressure variations within the simulation volume
are negligible.

In all cases, first the electron number increases while the
shower develops, then it reaches a plateau (except for 1 MeV
where the plateau is less pronounced), and finally the electron
number decreases due to attachment to oxygen. Starting with
an electron with 1 keV at 1 bar, the maximal electron number
within the shower is 37.4 ± 2.6 electrons; for 1 MeV, it is
approximately 34 000. We determined the error in the electron
number for 1 keV by running 20 simulations with one initial
electron and different realizations of random numbers. For
higher initial energies the statistics becomes better and thus
the error becomes smaller. Table 1 shows the initial electron
energy E0 and the maximal electron number Nmax(E0) =
max

t
Ne(E0, t); the average input energy E0/Nmax(E0) per

electron ranges from 27.03 eV for E0 = 1 keV up to 29.52 eV
for E0 = 1 MeV independently of pressure p. For comparison,
the ionization energy of N2 is 15.6 eV, and of O2 12.06 eV.

As expected, the electron density essentially decreases
due to electron attachment to oxygen though recombination
is included. Figure 3(a) shows the production of O−

2 and O−

ions as a function of time for an incident electron with 1 keV
energy. Note that the maximal number of oxygen ions is larger
than the maximal electron number as some electrons continue
to ionize more molecules while other electrons already attach.
For all electron energies and for 1 bar as well as for 100 mbar
the production of O−

2 ions is the dominant process, while the
number of O− increases for smaller pressure until two-body
attachment and the subsequent formation of O− is the dominant
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Figure 1. The electron number in a shower as a function of time generated by one initial electron with an energy E0 of (a) 1 keV, (b) 1 MeV,
(c) 10 keV and (d) 100 keV for 10, 100 and 1000 mbar. For 1, 10, and 100 keV we averaged over 100 runs. In (c) and (d) the plots for
100 mbar (10 mbar) were shifted by a factor 10 (100) on the time axis.

process at 10 mbar. Figure 3(b) shows the electron number and
the added number of electrons and O−

2 ions and of electrons, O−
2

and O− ions for 1 keV and 1 bar. It shows that when the electron
number starts to decrease, first the number of O−

2 ions starts to
increase; after approximately 10 ns there is also an effect of O−

ions. Table 1 shows that the ratio of the initial energy E0 and
the maximal number Ni,max(E0) = max

t
Ni(t, E0) of positive

ions varies from 19.23 eV for 1 keV up to 21.17 eV for 1 MeV.
Figure 2(a) shows the average input energy per ion as a function
of the initial energy E0. It shows that the average input energy
per ion increases with increasing E0. For E0 = 250 MeV,
E0/Ni,max is approximately 33 eV which agrees well with
33.38 eV as given in [41]. Above that energy the average input
energy saturates. Figure 2(b) shows the energy distribution
of secondary electrons from impact ionization as a function
of the energy W of the secondary electron. It shows that
for all shown incident electron energies Ekin,i the maximum
of the distribution lies at approximately 7 eV. For a given
probability which is proportional to the differential cross
section, electrons with small incident energies eject electrons
with higher secondary energies than electrons with high
incident energies. Thus, if secondary electrons have more
energy, they can perform more ionizations and thus the average
input energy per ion decreases. The plot in panel (b) also shows
that the energy distributions for 100 MeV and 1 GeV are alike;

Table 1. The maximal electron number Ne,max, the ratio E0/Ne,max,
the maximal number Ni,max of positive ions and the ratio E0/Ni,max

as a function of the initial energy E0.

E0 Ne,max(E0) E0/Ne,max(E0) Ni,max(E0) E0/Ni,max(E0)

1 keV 37 27.03 eV 52 19.23 eV
10 keV 363 27.55 eV 514 19.46 eV
100 keV 3595 27.82 eV 5000 20.00 eV
1 MeV 33 875 29.52 eV 47 235 21.17 eV

thus the average input energy per ion saturates for energies
above 100 MeV.

The probability P(n) of exactly n subsequent ionizations
by secondary electrons is proportional to

∫ En

En−1

dσ
dW

(Ekin,i , W)

dW/
∫ Ekin,i /2
En−1

dσ
dW

(Ekin,i , W)dW where [En−1, En] is the energy
interval of a secondary electron to produce exactly n

subsequent ions. We can estimate the energy of one more
impact ionization: The ionization energy of N2 which
contributes 80% to air, is approximately 15.6 eV. The average
excitation energy before ionization is approximately 4.2 eV
[42]; thus if the energy of a secondary electrons is below
19.8 eV, there is no expected further ionization. If the energy
is above 19.8 eV there is at least one more ionization. The
most expected value of the tertiary electron is 9.1 eV [25];

4



Plasma Sources Sci. Technol. 23 (2014) 045001 C Köhn and U Ebert
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if this electron has also 19.8 eV, hence in total 48.7 eV, it
could produce 2 subsequent ions. Hence, if the energy of the
secondary electron is between 19.8 eV and 48.7 eV, it will do
exactly one more ionization. If it is above 48.7 eV it will do
more than two subsequent ionizations. Figure 2(c) shows the
ratios of probabilities of subsequent ionizations by secondary
electrons as a function of the incident electron energy. It shows
that more than one subsequent ionization is expected rather for
small incident electron energies than for high incident energies.
Thus more ions are expected for small initial energies and the
ratio of E0/Ni,max decreases.

3.2. Growth and decay rates

Figure 1 also shows the lifetime of the electron swarm. For
1 bar it takes 65 ns until all electrons have attached. For
100 mbar it takes approximately 2 µs and for 10 mbar it
takes 0.5 ms. That is because electrons need time to lose
enough energy through ionization, inelastic scattering and the
production of bremsstrahlung photons to reach the energy
range where attachment can occur.

Figure 4 explicitly shows how the electron number
depends on the initial energy E0 of the incident electron.
The relative electron number per E0 decreases a bit with
increasing initial energy, but is equal for all electron energies
after 10 ns. This is because for high initial electron energies,
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Figure 4. The electron number per initial energy Ne keV/E0 as a
function of time for initial electron energies E0 = 1 keV, 10 keV,
100 keV and 1 MeV for 1 bar.

different subshowers develop at slightly different times and
their maxima will not occur simultaneously. Hence the
maximal electron number in a shower of a 1 keV electron is
larger then 1/1000 times the maximal electron number in a
shower of a 1 MeV electron.

3.2.1. Growth rate. Furthermore figure 1 shows that the
temporal evolution of the electron number depends on pressure.
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Panels (c) and (d) in the figure are explicitly constructed to
show that the growth rate of the electron number depends on
air density (and pressure) according to Townsend scaling

Ne(p/δ, t · δ) = Ne(p, t), (11)

where δ is an arbitrary number. Here Ne(p, t) is the electron
number as a function of pressure and time. This Townsend
scaling is due to the fact that the shower growth is dominated
by impact ionization which is a two-body process, whose rate
scales with the gas density. Hence the intrinsic shower growth
times (for a given electron energy) are inversely proportional
to the gas density.

3.2.2. Decay rate. However, the electron shower does not
decay due to a fixed scaling law. This is related to the fact
that for higher pressures the three-body attachment dominates
whose rate depends quadratically on the air density; while
for lower pressures (below 100 mbar) the two-body process
of dissociative attachment takes over, as discussed above.

Figure 5 shows an example of an exponential fit to the
decay of the electron number for E0 = 1 keV and 1 bar where

Ne(t) = Nmax(E0) e−t/τ (E0,p). (12)

The blue lines shows the difference of the electron number of
the simulation and of the fit; the difference is at most 1 electron.
This exponential fit is very good, mainly because the electrons
approach a rather stationary energy distribution at this stage as
we will show below, hence the energy dependent attachment
rates do not vary in time. (This is also the reason why an
exponential curve does not fit the shower growth well.)

Table 2 shows the values of τ(E0, p) for the smallest and
highest energies and pressures that we have investigated. Both
the table and figure 4 show that the decay of the electron shower
does not depend on the energy E0 of the incident electron.

We finally remark that [1, 43, 44] state that an electron
shower initiated by a 1 keV electron in air at standard
temperature and pressure has an attachment time of
approximately 10 ns, which agrees well with our simulation
result of 8.19 ns.

Table 2. Parameters Nmax(E0) and τ to fit Equation (12) to the
electron number as a function of time as in figure 5.

E0 p Nmax(E0) τ (E0, p)

1 keV 1 bar 37.34 8.19 ns
1 keV 10 mbar 37.34 61.02 µs
1 MeV 1 bar 33 875 8.19 ns
1 MeV 10 mbar 33 875 1.97 µs

3.3. Spatial structure of the shower

3.3.1. Shower at 1 keV and 1 bar. Figure 6 shows structure
and evolution of the electron shower created by an electron with
initial energy E0 = 1 keV moving in z direction from the origin
of the coordinate system. Until all electrons have attached, the
furthest electron moved about 0.5 mm. The extension of the
electron cloud at 1 ns is

(�x, �y, �z) ≈ (90 µm, 80 µm, 100 µm), (13)

where �x is defined as

�x := | max(x) − min(x)|, (14)

and max(x) (min(x)) is the maximum (minimum) of all x

coordinates of all electrons at a given time. �y and �z are
defined in the same manner.

3.3.2. Shower at 1 MeV and 1 bar. For an incident electron
energy of 1 MeV figure 7 shows the electron swarm at
approximately 0.8 ns when the electron number is maximal.
We here started with one (panel (a) and (b) for different
realizations of random numbers) and 20 (panel (c)) electrons
beamed in z direction. Panel (a) shows that the initial electron
moves forward and leaves a trace of secondary electrons
behind. Panel (b) shows the behavior of one single initial
electron for different random numbers. It shows that the strictly
forward motion in panel (a) is just one example; in panel (b) the
initial electron moves a bit to the side leaving residual electrons
behind. Panel (c) shows the position of all electrons projected
onto the xz plane for 20 initial electrons. It shows the different
trajectories of the high-energy initial electrons.

Figure 8 shows the time evolution of the electron number
projected on the z axis for 20 initial electrons. It shows that
the electron number per bin �z increases in time and that
the swarm moves in forward direction. It also shows that for
0.8 ns most electrons are located at z < 12 cm and only a few
electrons lie beyond 12 cm.

3.4. Swarm induced electric field

Since the electrons move, leaving the positive ions behind, an
electric field will be induced by the space charges. This field
can be calculated from the positions rj of electrons and ions
at different time steps as

E(r, t) = e

4πε0

(
−

Ne(t)∑
j=1

r − rj

|r − rj |3 +
Ni+(t)∑
j=1

r − rj

|r − rj |3

−
Ni−(t)∑
j=1

r − rj

|r − rj |3
)

, r �= rj , (15)
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where ε0 ≈ 8.85 × 10−12 A s V−1 m−1 and Ne(t), Ni+(t) and
Ni−(t) are the numbers of electrons, positive and negative
ions at time t . The field strength ranges from approximately
10−5 V m−1 at 0.1 ns when the shower just starts to develop to
approximately 10 V m−1 at 35 ns. Figure 9 explicitly shows
the absolute value |E|(r, t) in the xz plane after 35 ns when
most electrons have already attached.

3.5. Energy of electrons and O− ions

Figure 10 shows the electron energy spectrum after 1 ns for
a shower in 1 bar air started by 100 electrons with an initial
energy of E0 = 1 keV. There is a gap in the energy spectrum
at approximately 0.1 eV; this is the energy range where three-
body attachment dominates over other processes.

Figure 11 shows how the mean electron energy decreases
in time in a 1 MeV shower and that the most energetic
electrons are in the front part of the shower. The

energy of the electrons in the tail tends to approximately
1.0 eV. Thus most of them cannot ionize the background
gas and the electron number does not increase further at
these positions. After 0.8 ns the mean energy is almost
independent of z and amounts to approximately 1.0 eV; this
is the energy regime when attachment dominates over impact
ionization.

Figure 12 shows this evolution on a logarithmic time scale,
with the electron number and the mean energy of the complete
electron shower as a function of time. It also shows explicitly
that the electron number starts to decay when the average
electron energy 〈Ekin〉 approaches 1 eV. As figure 10 shows,
there is a gap in the energy regime of three-body attachment
at 0.1 eV which is more significant at higher pressures. This is
probably the reason why the mean energy saturates to a value
of 1.0 eV for 1 bar and only to 0.9 eV for 100 mbar. Figure 13
shows that O− ions are produced by electrons with kinetic
energy of approximately 10 eV, actually independently of their
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and averaged the electron number over 20 electrons.

Figure 9. The electric field |E| [V/m] induced by space charge
effects at t = 35 ns in a swarm of one initial electron with
E0 = 1 MeV and 1 bar in the xz plane. This is a late stage of the
shower plotted in figure 7(a).

initial energy E0. The kinetic energy of most O− ions is below
1 eV. Thus detachment from O− ions cannot play a significant
role. Detachment from O− would play a role in increasing the
number of electrons at pressures below 10 mbar [34] where
the number of O−

2 is negligible. Even so, an ambient electric
field [34] would be needed.

4. Influence of an ambient electric field

Figure 14 shows the electron number and the mean energy
of electrons in an external field at 1 bar. The initial energies
of the incident electrons are E0 = 1 keV and E0 = 1 MeV.
For 1 keV electrons and for electric fields of 5 or 8 kV cm−1

the friction force through inelastic collisions with molecules
is larger than the electric acceleration force [45]; thus all
electrons eventually attach to oxygen. But for 1 MeV and
5 kV cm−1 as well as 8 kV cm−1 the electric force on average
is larger than the friction force, and the shower grows and

Figure 10. The electron energy spectrum at 1 ns in the low-energy
range from 0 to 2.5 eV. The shower was generated by and averaged
over 100 electrons in 1 bar air if E0 = 1 keV. The hatched area
indicates the gap where three-body attachment is dominant. The bin
size is 0.1 eV.
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Figure 11. The average energy 〈Ekin〉 per bin �z = 0.01 mm as a
function of z for E0 = 1 MeV and 1 bar at t = 0.05 ns (red),
t = 0.1 ns (green), t = 0.5 ns (blue) and t = 0.8 ns (purple). We
started the simulation with 20 electrons.

becomes a relativistic run-away electron avalanche (RREA).
We note here that the breakdown field of classical breakdown
is approximately 3 MV m−1 [46] while the breakdown field for
run-away breakdown is 0.3 MV m−1 [47].

But even if no RREA is formed finally, the electrons gain
more energy in a shower aligned with the electric field, and
the number density and duration of the shower is higher than
without electric field. A 1 keV electron creates 39 electrons in
a field of 5 kV cm−1 and 41 in a field of 8 kV cm−1, rather than
37 without field. For 0 or 5 kV cm−1, it takes approximately
1 ns till the electron number decreases. But for 8 kV/cm the
plateau lasts for approximately 14 ns; thus it takes a factor of
14 longer. Since electrons gain energy from the external field,
the mean electron energy 〈Ekin〉 in the shower is higher as well.
It relaxes to approximately 1.6 eV for 5 kV cm−1 or to 2.0 eV
for 8 kV cm−1. This is considerably higher than the 1.0 eV in
vanishing field (see figure 12).

Figure 15 explicitly shows the low-energy spectrum of
the electrons for 8 kV cm−1 and for a 1 keV electron (the
case of figure 14(b)). In contrast to figure 10 the electron
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number below 0.05 eV is negligible. Thus the gap of figure 10
is not visible in figure 15 although the electron number at
0.1 eV is similar. Without electric field the maximum of
the spectrum lies at approximately 0.5 eV. At 8 kV cm−1 it
lies at approximately 1 eV because of the energy gain by the
ambient field. The average energy of 2 eV, however, is larger
than 1 eV since there are still electrons in the energy tail up
to 100 eV.

Since the number and energy of electrons is higher than in
the case without ambient field, it takes longer till all electrons
attach. Instead of 65 ns, it takes approximately 100 ns (for
5 kV cm−1) and 500 ns (for 8 kV cm−1) for all electrons to
disappear. As stated in section 3.1, the exponential decay time
without field is 8.19 ns. For 8 kV cm−1 it is approximately
80 ns which agrees well with data of [43] where they have
simulated the motion of streamers in air in an ambient field of
10 kV cm−1 with a fluid model.

5. Conclusion and outlook

We have simulated the motion of electrons with initial energies
E0 = 1 keV, 10 keV, 100 keV and 1 MeV at 10 mbar, 100 mbar

and 1000 mbar with and without an ambient electric field and
analyzed the spatial and energy distribution of the shower
electrons as well as the swarm induced electric field in great
detail.

We have seen that the electron number first increases
due to ionization and then decreases because of the two-body
and three-body attachment of electrons at oxygen. We have
seen that the growth rate of the electron number is inversely
proportional to the pressure, but that the decay is not. The
average input energy per ion ranges from approximately 20 eV
for 1 keV till 33 eV for 1 GeV; for 250 MeV we obtain an energy
of approximately 33 eV/ion as given in [41]. We have shown
that more subsequent ionizations of a secondary electron are
more probable for small incident electron energies and thus
the energy per ion pair decreases for decreasing initial electron
energy.

The exponential decay time depends on the pressure and is
about 10 ns for 1 bar as mentioned in [1, 43, 44] and ≈61 µs for
0.01 bar. The mean electron energy tends to 1 eV. The energy
spectrum of electrons shows that there is a gap at ≈0.1 eV
where three-body attachment is dominant. For 100 mbar
and 1000 mbar the production of O−

2 ions through three-body
attachment is dominant; for 10 mbar it is the production of O−

ions.
We have shown that the energy dissipates as a function

of time and space. While the shower propagates, the mean
energy saturates to 1 eV when the maximal electron number
is reached. We have calculated the electric field created by
electrons and residual ions. For 1 MeV we have shown that
the field is at most 10 V m−1 in the vicinity of the origin of the
shower. Thus space charge effects can be neglected for those
energies.

We have also investigated the influence of two different
ambient fields on the maximal electron number and the
exponential decay time for initial electron energies of 1 keV
and 1 MeV. For 1 keV and fields of 5 kV cm−1 and 8 kV cm−1

the friction force on average is larger than the electric force
[45]. Thus there is no continuous growth of the electron
number; however, the electron number and the exponential
decay time are larger than without ambient field; for 8 kV cm−1
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the decay time is about 80 ns. For 1 MeV the friction force is
smaller and thus an electron avalanche forms and the electron
number continues increasing.

In the future high-energy particle models, i.e. for particles
between 1020 eV and 1 MeV, and low-energy particle models
(for energies �1 MeV) should be coupled. Beyond that,
electric fields should be included. Thus the whole physics of a
particle shower starting with particle energies of up to 1020 eV
and propagating through an electric field can be captured. By
coupling these two models, it will be possible to investigate the
correlation between cosmic particle showers and the inception
of lightning and vice versa the influence of thunderstorm fields
on the detection of particle showers.

Acknowledgments

We would like to thank Olaf Scholten from the Kernfysisch
Versneller Instituut (KVI), Groningen, The Netherlands, with
whom we had fruitful discussions to improve this paper.

Furthermore, CK acknowledges financial support by
STW-project 10757, where Stichting Technische Wetenschap-
pen (STW) is part of The Netherlands’ Organization for Sci-
entific Research NWO.

Appendix A. The relativistic binary-encounter Bethe
(RBEB) approach

In this appendix we will derive an explicit expression for
Equation (4). The total cross section for ionization in the
RBEB model is [25]

σRBEB(Ekin) = 4πa2
0α

4N

(β2
t + β2

u + β2
b )2b′

×
{

1

2

[
ln

(
β2

t

1 − β2
t

)
− β2

t − ln(2b′)
] (

1 − 1

t2

)
+ 1 − 1

t

− ln t

t + 1

1 + 2t ′

(1 + t ′/2)2
+

b′2

(1 + t ′/2)2

t − 1

2

}
, (A.1)

where Ekin is the kinetic energy of the incident electron,
a0 ≈ 0.0529 × 10−10 m the Bohr radius, α ≈ 1/137 the
fine structure constant and N the orbital electron occupation
number, e.g. NN2 = 10 and NO2 = 12. The βi are defined as

β2
i := 1 − 1

(1 + i ′)2
, i ∈ {t, b, u} (A.2)

with t := Ekin/B and

i ′ := I

mec2
, I ∈ {T = Ekin, B, U}, (A.3)

where B is the ionization energy and U the kinetic energy
of the bound electron on the shell, me ≈ 9.1 × 10−31 kg the
electron mass and c ≈ 3 × 108 m s−1 the speed of light. The
singly differential cross section is

dσ

dW
= 4πa2

0α
4N

(β2
t + β2

u + β2
b )2b′

×
{

Ni

N
− 2

t + 1

(
1

w + 1
+

1

t − w

)
1 + 2t ′(
1 + t ′

2

)2

+

(
2 − Ni

N

) [
1

(w + 1)2
+

1

(t − w)2
+

b′2(
1 + t ′

2

)2

]

+
1

N(w + 1)

df

dw

[
ln

(
β2

t

1 − β2
t

)
− β2

t − ln(2b′)
]}

,

(A.4)
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where W is the kinetic energy of the emitted electron and
w := W/B. df/dw is the differential dipole oscillator strength
which determines Ni through

Ni :=
∫ ∞

0

df

dw
dw. (A.5)

The integrals in Equation (4) can be calculated analytically:∫ A

Emin

dσ

dW̄
(Ekin, W̄ ) dW̄ = 4πa2

0α
4N

(β2
t + β2

u + β2
b )2b′

×
{

− 1

t + 1

1 + 2t ′(
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(
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]}
(A.6)

with [25, 48]
df

dw
:= Ni

(w + 1)2
. (A.7)

and
Ni

N
≡ 1 (A.8)

for the binary-encounter-Bethe (BEB) model.
Inserting Ekin/2 or W for A, Equation (4) becomes
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Appendix B. Speed of oxygen ions

We will derive an expression in two steps for the speed of O and
O− produced through dissociative attachment. First we will
show that vO = vO− and then we give expressions for vO. To
show that vO = vO− , we start with the conservation of energy
and momentum in the rest frame of oxygen, thus vO2 ≡ 0:

mev
2

2
= mO

v2
O

2
+ mO

v2
O−

2
+ Ebind (B.1)

mev = mOvO + mOvO− (B.2)

where we used non-relativistic expressions for energy and
momentum because of the small velocity of all particles. Since
the electron mass is much smaller than the mass of O and O−

and we are in the non-relativistic regime, we can approximate
mev ≈ 0, thus

0 = mOvO + mOvO− ⇒ vO = −vO− . (B.3)
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Using Equation (B.3), (B.1) leads to

vO = vO− =
√

me|v|
2mO

− Ebind

mO
(B.4)

where v is the velocity of the electron.

Appendix C. Dependence on the cross sections

The results depend sensitively on the cross sections as input
data. Figure C1(a) shows the cross sections for three-body
attachment by Phelps [33] and Biagi [49] normalized to gas
density. It shows that these two cross sections have different
lower and upper threshold energies. Figure C1(b) shows the
cross sections for electronic excitation O2 → O2(a1) from the
SIGLO database [50] and the LXcat database [22], Phelps [33].
Figure C2 compares the time evolution of the electron number
if E0 = 1 keV. Using data for excitation of [50] and attachment
of [49], the maximal electron number is 32 and the attachment
time is approximately 1 ns. However, using data for excitation
of [22] and attachment of [33] yields to a maximum of 37
electrons, the exponential decay time is approximately 8 ns.
Thus we can conclude that the time evolution is different for
different kind of cross sections and that the data of [50] and
Biagi [49] lead to an unphysically short attachment time.
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