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a b s t r a c t

We recently have presented first physical predictions of a spatially hybrid model that fol-
lows the evolution of a negative streamer discharge in full three spatial dimensions; our
spatially hybrid model couples a particle model in the high field region ahead of the strea-
mer with a fluid model in the streamer interior where electron densities are high and fields
are low. Therefore the model is computationally efficient, while it also follows the dynam-
ics of single electrons including their possible run-away. Here we describe the technical
details of our computations, and present the next step in a systematic development of
the simulation code. First, new sets of transport coefficients and reaction rates are obtained
from particle swarm simulations in air, nitrogen, oxygen and argon. These coefficients are
implemented in an extended fluid model to make the fluid approximation as consistent as
possible with the particle model, and to avoid discontinuities at the interface between fluid
and particle regions. Then two splitting methods are introduced and compared for the loca-
tion and motion of the fluid-particle-interface in three spatial dimensions. Finally, we pres-
ent first results of the 3D spatially hybrid model for a negative streamer in air. Future
applications of the hybrid model lie in effects of electron density fluctuations on inception,
propagation and branching of streamers, and in accurate calculations of electron energies
at and of electron run-away from the streamer head. The last is relevant for hard radiation
from streamer-leader systems and possibly for Terrestrial Gamma-Ray Flashes.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Streamer discharges and single electron dynamics

Streamers are ionized fingers that penetrate into a previously non-ionized region under the action of an electric field; they
pave the way of sparks and lightning, but they also appear without these subsequent stages in corona reactors or in the form
of huge sprites high above thunderclouds; for recent reviews on streamer physics we refer, e.g., to [1,2]. Streamers are char-
acterized by a thin charge layer around their head, which screens the electric field inside the streamer body and enhances it
at the tip. This local enhancement of the electric field allows them to generate additional plasma ahead of the already ionized
channel through impact of accelerated electrons onto neutral atoms and molecules.
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As streamers in air at standard temperature and pressure contain at least of the order of 107 electrons already at the mo-
ment when they emerge from avalanches through the build-up of a space charge layer [3,4], it is extremely challenging to
impossible to follow the growing number of electrons individually inside the streamer discharge during the further evolu-
tion. Therefore most streamer simulations are performed in a density approximation for the electron and ion dynamics in so-
called fluid models. As reviewed below and in another paper in this issue [5], the numerical solution of fluid streamer models
is very challenging as well due to the widely differing length scales of the problem; these simulations give realistic results for
the macroscopic dynamics.

But certain physical phenomena are difficult to impossible to simulate with a fluid model. These are related to either
small electron densities or to high electron energies.
1.1.1. Small electron densities and density fluctuations
Regions with very low electron densities can dominate the macroscopic discharge evolution in two cases, namely during

the initial avalanche regime, and when streamer propagation is unstable and susceptible to branching. In these cases, the
presence or absence of single electrons determines the macroscopic evolution. A single electron can start a discharge; and
the stochastic distribution of discharge inception times at low voltages can probably be traced back to the stochastic distri-
bution of single electrons during the inception phase. Furthermore, recent streamer experiments in very pure gases com-
bined with theoretical estimates gave the first experimental evidence of avalanches created by single electrons [6–8];
these avalanches do not necessarily lead to branching, but rather can give the discharge a feather-like structure with many
‘‘hairs’’ on the main channel. (We remark in passing that avalanches are neither necessary nor sufficient for streamer branch-
ing, as discussed in more detail in [1,9], but they can accelerate the branching of an already unstable streamer head [10].)

To be precise, a small electron density can, e.g., be quantified as one electron in a volume given by the third power of the
electron mean free path. In regions where densities become lower than this critical density, they rather should be interpreted
as probabilities of electron presence, and a deterministic density approach becomes erroneous. How severe the error is, has
to be investigated per case. E.g., when the local field is above the break-down value, the non-ionized state is linearly unsta-
ble, and the density approximation is more likely to fail than in linearly stable regions below the break-down field.

An alternative manner of introducing density fluctuations into a fluid model was developed by Luque and Ebert in [10].
However, that approach is not able to deal with the electron energy distribution, and in particular, with its high energy tail.
1.1.2. High electron energies and electron run-away
The electron energy distribution in the ionization front can develop a long tail at high energies that is not appropriately

modeled by a fluid model, even if the fluid model is extended by additional terms as in [11]. In particular, individual elec-
trons can run away [12–15]. And when the electric field exceeds a threshold, the majority of electrons will run away and the
density or fluid model will break down completely [17–19].

Much recent interest in extreme electron energies comes from the observation of Terrestrial Gamma-Ray Flashes. These
flashes were first detected by the Compton Gamma Ray Observatory satellite in 1994, and soon a correlation with lightning
discharges was found [20]. This energetic radiation is now generally believed to be the bremsstrahlung of electrons with ex-
tremely high energies. Meanwhile, even a considerable content of positrons is found in these flashes [21]. But how the elec-
trons gain these energies in the discharge, is under debate, candidates are either relativistic run-away electron avalanches or
run-away electrons emitted from streamers, leaders or other lightning discharge processes. Hard radiation was also observed
from rocket triggered lightning near the ground [22,23], and from long sparks generated in the laboratory with MegaVolt
pulses [24–26] as well from streamer coronas generated by a pulsed voltage of 85 kV [27]. In the laboratory experiments
and in the approaching lightning leader, it is clear that local field enhancement at electrodes and/or streamer tips is respon-
sible for high electron energies. The same mechanism could be at work in Terrestrial Gamma-Ray Flashes. In particular, we
suggest that a negative streamer initially accelerates electrons into the run-away regime [13], and that the further acceler-
ation to relativistic velocities occurs in the field of the streamer corona ahead of a negative lightning leader.
1.1.3. Why to develop a spatially hybrid model
Discharge inception, streamer feathers and streamer branching on the one hand and the run-away and continued accel-

eration of electrons in streamer discharges on the other hand give plenty of motivation to study the dynamics of single elec-
trons in a streamer. But — as remarked above and further elaborated in the next subsection — neither particle nor fluid model
are presently able to deal with these challenges.

In this paper therefore the next step is taken in the development of a spatially hybrid simulation tool. The hybrid simu-
lation treats the majority of electrons inside the streamer in a density approximation, which is appropriate and efficient as
the densities are high and the local field is low; the fewer electrons in regions with lower densities and high field are treated
in a full particle model. New steps in the present paper concern the consistent density approximation of the particle model,
and the construction and motion of the interface between particle and fluid region in full three dimensions. This model will
allow to calculate how the dynamics of single electrons in the high field region influences the streamer motion, and how this
high field region in turn is generated by the growing streamer body.
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1.2. The state of particle and fluid models of streamers

1.2.1. Particle models
Most particle simulations of plasmas in general, and of streamers in particular, are carried out with a particle-in-cell/

Monte Carlo collision (PIC/MCC) model. The PIC/MCC model follows the free flight of single electrons and treats all the
(important) collisions stochastically [12,28–30].

An important constraint of particle models is the number of electrons they can treat; the electron number can easily ex-
ceed limitations of computer memory and computational power. Particle simulations with real particles can only be per-
formed for the early phase of streamers, such as the avalanche phase or the avalanche-to-streamer transition. To follow
the streamers in later phases, super-particles are typically used, where one computational particle stands for the mass
and charge of many real particles. However super-particles have their own drawbacks, not only through the lower resolu-
tion, but more importantly, because they cause numerical heating and stochastic errors, as shown in [31,4], which can have a
detrimental influence on the simulation results.

Due to the heavy computational cost for a large amount of particles as well as for solving the 3D Poisson equation, a full
3D particle model of a streamer is difficult or in many situations impossible to realize. A compromising approach is to keep
the positions and velocities of the particles defined in 3D space as in the standard PIC/MCC procedure, while calculating the
electric field in 1D [32,28] or 2D [30,29], and then to describe the electron motion in the electric field by interpolation. Run-
away electrons generated by streamers have been addressed in the work of Moss et al. [12] where the 3D electric field is
simplified into a two-step function in 1D: the high field value stands for the field at the streamer head and a low field value
stands for the field far ahead of the streamer head. Chanrion and Neubert [14] recently published runaway simulation results
in a 2D geometry with radial symmetry. Superparticles are used in both simulations, but an energy-dependent re-sampling
technique for the superparticles is developed in [14], and a low weight can be attributed to energetic electrons which allows
to study electron runaway in negative streamers with higher precision.

In our particle model, that constitutes a part of our hybrid model, both the electric field and the electrons are defined and
calculated in 3D.

1.2.2. Fluid models
The fluid model approximates electrons by continuous densities and is therefore computationally much more efficient.

The fluid model is in most cases derived by averaging over the Boltzmann equation [33–35]. The transport coefficients such
as mobilities and diffusion rates, and the reaction rates are approximated as functions of the local electric field or the local
mean electron energy. (More details on the local field approximation and on the energy equation can be found in [36,11].)

3D fluid models have become available only recently [37,38]; progress was from 1D [39] and 1.5D [40] density simula-
tions to various 2D [41–43] fluid descriptions developed in the last 20 years. While in 2D, the radial nonuniformity of particle
densities and the local field enhancement are included in the fluid description, the streamer evolution after branching or the
interaction of streamers with another [38] or with lateral walls requires a model in full 3D.

Most streamer simulations are carried out with fluid models [3,7,41–52]. Solving the fluid equations numerically is not an
easy task due to the multiscale nature of streamers. New simulation techniques have been developed as reviewed in [5]. A
high resolution for the inner structure of the streamer head is needed, where the electron and ion densities decay sharply
and where the electric field changes rapidly in space and time. These numerical challenges have been met by adaptive grid
refinement [3,53,38]. Improvement of the numerical techniques is only one aspect of the recent development in the fluid
models; more physics is included by using more complicated and realistic plasma-chemical models [54–56,51], better tech-
niques of modeling electrode geometries [43,51,52] and efficient descriptions of non-local photo-ionization sources [50,57–
60].

1.3. Developing the hybrid model

To combine the computational efficiency of the fluid model with the detailed physical description of the particle model,
we here take the next steps in the development of a model that is hybrid in space. We identify regions with high field and
low electron density and attribute it to a particle description, while regions with low field and high electron densities are
treated by a fluid description. Most of the paper is devoted to the question how to identify these regions and how to couple
and treat them consistently. We refer to [61,13,11] for more details on the concept of the spatially hybrid model.

In previous work, we have identified deviations between particle and naive fluid descriptions of planar streamer ioniza-
tion fronts [61], and we have described how to construct the numerical interface between a particle and a fluid model in 1D,
and how to perform the hybrid simulation of a 1D streamer front [62,11]. In [13] we have presented first results of hybrid
calculations in full 3D, emphasizing on the acceleration of electrons to energies above 3.5 keV in a streamer head.

In this paper, we focus on two aspects in the model development, namely on the calculation of transport and reaction
coefficients for the fluid model from the particle model, and on the construction of the interface between particle and fluid
model in a 3D simulation.

First, a set of transport coefficients and reaction rates is derived from the particle model for the fluid model; this is done
for air in Section 2.1.3, and for pure nitrogen, oxygen and argon in Appendix A. In our previous papers [61,11], we already had
calculated these coefficients for pure nitrogen, but there we fixed the elastic total cross section rather than the elastic
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momentum transfer cross section. Therefore the calculated coefficients were inconsistent with each other when different
distribution for the scattering angles were used in the electron-neutral collisions.

Second, two splitting methods are developed in Sections 3.2 and 3.3 to determine the interface between the particle and
the fluid region. The first one, the column based splitting, is a 3D extension of the splitting method developed for planar
fronts [11]. The first 3D results of this method were reported in [13], here we give the numerical details. The second splitting
method, the full 3D splitting, is an improvement of the first method. It generates model interfaces wherever needed, e.g., at
both ends of a double headed streamer or even when avalanches or streamers break up in several parts.

We also present new results for the 3D fluid model as well as for the 3D hybrid model in air.

1.4. Organization of the paper

Particle and fluid model are the basic components of the 3D hybrid model. We first give the details of numerical methods
and their implementation in Section 2.1 for the particle model and in Section 2.2 for the fluid model. The coupling of the two
models is discussed in Section 3 in which the general coupling procedure is given in Section 3.1, the methods to split the
simulation domain into particle regions and fluid regions are then discussed in Sections 3.2 and 3.3, the construction of
the buffer region is discussed in Section 3.4, and the distribution of electron energies over particle and fluid region in Sec-
tion 3.5. In Section 4, we present 3D hybrid simulation results for a negative streamer in air, first without and then with
photo-ionization. We finish with some concluding remarks and suggestions for further research in Section 5. Transport coef-
ficients and reaction rates for nitrogen, oxygen, and argon are given in Appendix A.
2. Particle and fluid model

We here lay the basis for constructing the hybrid model in 3D in Section 3. In Section 2.1, we recall the essentials of the
particle model with Monte Carlo procedure and input data for the differential cross sections; and we explain how we calcu-
late transport and reaction coefficients for the fluid model in the most consistent manner from the particle model. We recall
that the fluid model needs an extension in high fields to fit the particle model [11]. In Section 2.2, we discuss the fluid model
and its numerical implementation and how to solve the Poisson equation. Finally, we present first simulation results of the
fluid model in 3D on a Cartesian grid.

2.1. Particle model

2.1.1. The Monte Carlo procedure
The particle model follows the standard procedure of Monte Carlo (MC) particle simulations in plasma physics; it is sum-

marized here. The particle model tracks the motion of all electrons while treating the neutral atoms and molecules as a ran-
dom background. Since the mobility of ions is two orders of magnitude smaller than that of electrons, ions are treated as
immobile. As the ionization density in streamers is low at standard temperature and at standard pressure or below [2], only
collisions with neutrals need to be taken into account. During a collision with a neutral, the electrons change velocity and
energy (in the case of an elastic collision only velocity); the collisions are modeled as instantaneous. Between collisions, elec-
trons follow the equation of motion €x ¼ qE=m; numerically this motion is solved with the leapfrog method
xnþ1 ¼ xn þ Dtvnþ1
2
; ð1Þ

vnþ1
2
¼ vn�1

2
þ Dt

q
m

Eðxn; tnÞ: ð2Þ
Here q and m are elementary charge and electron mass, xn = (x,y,z)n is the electron position at time tn, and
vnþ1

2
¼ ðvx;vy;vzÞnþ1

2
is the electron velocity at time tnþ1

2
.

The collisions of electrons with the neutral background are characterized by probability distributions for the type of col-
lision (elastic, inelastic and ionizing processes) and for their collision times and scattering angles, and in the case of an ion-
izing collision also for the distribution of energy between the two outcoming electrons. The actual collision events are
sampled from the probability distributions through random numbers in a Monte Carlo procedure. The probability distribu-
tions are determined by the differential cross sections for the respective gas composition and by the gas density. The cross
sections used in the present paper are summarized in Section 2.1.2.

The cross sections and therefore the collision frequencies in general depend on the electron energy. But if the next col-
lision time is calculated for each electron individually depending on its present energy, and if the change of energy during
the flight is not taken into account, the calculation is both numerically expensive and inaccurate. Therefore the ‘‘null colli-
sion’’ [63] is used in most MC codes, which is actually a pseudo collision because nothing changes in this collision process.
With the null collision technique, the next collision time is sampled by drawing a random number right after the previous
collision; the probability distribution is based on the maximum of the collision frequency mmax over all reasonably occurring
electron energies. Then when the collision time is reached, the actual energy �c of the incident electron is calculated. Another
random number is drawn to determine the type of collision process (elastic, inelastic, ionizing or null) for an electron with �c.
The null collision accounts for the probability that no collision occurs at the previously determined collision time, because
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the actual collision frequency for electrons with energy �c is smaller than mmax. The loss of electron energy is determined by
the type of collision process, and the scattering angle is determined by the incident electron energy and sampled with an-
other random number. If the collision is ionizing, another random number is drawn to determine the energy distribution
between the two out-coming electrons. The scattering angles of the out-coming electrons are determined by their energies
as described in the next subsection. The electrons then follow their Newtonian (or eventually relativistic) trajectory up the
next collision.

Fig. 1 shows the collision frequencies as a function of electron energy in air (modeled as 78.12% nitrogen, 20.946% oxygen,
and 0.934% argon) at standard temperature and pressure; the frequencies of elastic, rotational and vibrational, different
exciting and finally ionizing collisions are plotted cumulatively, i.e., the uppest line represents the total collision frequency
as the sum of all frequencies of the different processes. This total collision frequency reaches a first peak around � = 2 eV due
to the vibrational collisions. For growing � > 2 eV, it then first drops and then increases again up to a maximum mmax at
� = 150–200 eV, after which it decreases. When the collision frequency decreases, the mean free path length of the electrons
increases. If the electric field is so high, that the mean energy gain between collisions exceeds the mean energy loss during
collisions, the electrons can continuously gain energy and run away. Electron run-away is one of the effects we want to track
with our model.

An important difference with most other PIC/MCC codes is that we use real particles instead of super-particles. Since our
particle model is designed for the region with high field enhancement where the electron density is relatively low, we intend
to use our particle model with real particles. Therefore, as long as one particle is identified with one real electron, the com-
mon problems of a PIC/MCC procedure such as numerical heating, stochastic errors and low resolution at essential regions
cannot occur.

The electric field is calculated using a fast Poisson solver, see more discussion in Section 2.2.3.

2.1.2. Data for differential cross sections
The cross section data can be obtained by one or more of the following means: (1) measurement from single-scattering

beam experiments [64], (2) ab initio quantum theoretical calculations [65,66] or (3) inversion of swarm experimental data
[67,68]. Different cross section databases have been used by different authors, depending also on the stage of streamer devel-
opment, for example, Dowds et al. uses the National Institute of Standards and Technology (NIST) electron impact cross sec-
tion [69] in a particle avalanche model [29], Babich et al. uses the Evaluated Electron Data Library (EEDL) [70] for the
simulation of high energy electron avalanches [71], and Li et al. and Chanrion et al. use the Siglo database in the streamer
simulations [4,30]. None of the cross section databases mentioned above covers the energy range from low energy (less than
1 eV) to very high energy (above 1 MeV).

In our model, the cross sections for electrons with energy up to 1 keV colliding with nitrogen, oxygen or argon particles
are taken from the SIGLO database [72], which includes all important collision processes in the streamer development. Above
1 keV, the Born approximation [73] is used for elastic collisions, a fit formula in [74] is implemented for the electronically
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exciting collisions and the Born–Bethe approximation [75,76] is used for ionizing collisions; these approximations continu-
ously extend the SIGLO database. We mention that Celestin and Pasko recently suggested a different approximation for ion-
izing collisions [77]. The distribution of scattering angles is discussed further below.

In an ionizing collision, the incident electron loses energy to liberate an electron from the neutral molecule or atom. There
are several measurements of the angular and energy distribution, the so called doubly differential cross sections for ioniza-
tion. The energy distribution of the secondary electrons ejected upon ionizing collisions also has a clear influence on the sim-
ulated particle swarms or streamer avalanches [78], since clearly electron run-away is more likely if one electrons carries
away most of the energy after the collision while the other one is slow. The measurements of the secondary electron spectra
by Opal et al. [79] and Gorugnthu et al. [80] have become a standard, and their empirical fitting equation has been widely
used in different simulation groups. Opal’s empirical fitting is used in our calculation as well.

In Fig. 2, we show the probability distribution r(�p,�)/r(�) that the primary out-coming electron carries the fraction r = �p/
(� � �ion) of the available energy, for given incident electron energies � = 10 (solid), 50 (dotted), 100 (dashed), 500 (dash-dot-
ted) eV; here �p is the energy of the primary electron (that takes more energy than the secondary electron), and �ion is the
ionization threshold energy of nitrogen. r(�) is the total ionization cross section for electrons with incident energy �, and
r(�p,�) is the cross section for incident energy � and out-coming primary electron energy �p. The probabilities are normalized
over 100 Dr for r 2 (0,1). The plot shows that an incident electron with high energy is likely to keep most of its energy.

The scattering angles of primary and secondary electron are determined by their energies [63] with
cosvi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i=ð�� �ionÞ

p
; ð3Þ
where i = 1, 2 indicates the primary or secondary electron. If the primary electron takes most of the energy, i.e., cosvi � 1, it
leaves the collision mostly in a forward direction; the secondary electron with low energy cosvi � 0 then flies in a direction
perpendicular to the primary one.

For the distribution of scattering angles in elastic collisions, analytic approximations are used as well in our model due to
the relative lack of experimental data. Okhrimovskyy et al. has derived a formula from the integrated and momentum trans-
fer elastic cross section data from Phelps and Pitchford [67] for nitrogen; it has been implemented in our model for the elec-
tron-N2 elastic collisions
Ið�;vÞ ¼ 1
4p

1� n2ð�Þ
½1� nð�Þ cos v�2

; ð4Þ
where I(�,v) is the normalized differential cross section, � stands for the electron energy in eV and v is the scattering angle
with respect to the direction of the incident electron. An empirical fit of the parameter n for nitrogen is
nð�̂Þ ¼ 0:065�̂þ 0:26
ffiffiffî
�
p

1þ 0:05�̂þ 0:2
ffiffiffî
�
p � 12

ffiffiffî
�
p

1þ 40
ffiffiffî
�
p ; ð5Þ
where �̂ ¼ �=eV is the electron energy in dimensionless units. The formula derived by Surendra et al. [81] has been used in a
particle simulation for electron-O2 and electron-Ar collisions in [81,82], and is also used here in our model for electron-O2

and electron-argon elastic collisions,
Ið�;vÞ ¼ �
4p½1þ � sin2ðv=2Þ� lnð1þ �Þ

: ð6Þ
The experiment has shown that the electron scattering angles are different for different collision processes [64]. A com-
plete particle model could apply different differential cross sections for different excitational collision processes. However,
the differential cross sections are not available for all essential collision processes in the literature, and the available data are
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mostly measured for electrons at a few discrete energies and not in the form ready to be implemented in the particle model.
Therefore, the electron scattering from the rotational, vibrational and electronic excitations is assumed to have the same
scattering probabilities as from the elastic collisions. In an excitational collision, the electron scattering angle is first sampled
based on the incident electron energy, then the energy loss in the excitation collision is subtracted from this energy.

A methodological difference with our previous swarm calculation for nitrogen [61] should be noted. In [61] we used the
elastic momentum transfer cross section
rmð�Þ ¼ 2p
Z p

0
ð1� cosvÞIð�;vÞ sin vdv; ð7Þ
from the SIGLO database, but we fixed it as the total elastic cross section. This lead to inconsistent transport and reaction coef-
ficients between models with isotropic and anisotropic scattering. Now the total elastic cross section rt
rtð�Þ ¼ 2p
Z p

0
Ið�;vÞ sin vdv ð8Þ
is adjusted depending on the applied scattering model, such that a constant momentum and energy transfer rate is obtained
independently of the angular scattering model. The change has negligible influence on the electron transport and reactions
for low energy electrons, but influences become significant for electrons with higher energies, as shown in [83,81] and also
found in our study.

When anisotropic scattering is applied in the particle model, the ratio of elastic momentum transfer cross section rm and
total elastic cross section rt can be obtained from Eqs. (7) and (8). The total elastic cross section can then be calculated from
the elastic momentum transfer cross section with these ratios. The ratio for nitrogen is written as [84]
rmð�Þ
rtð�Þ

¼ 1� nð�Þ
2nð�Þ2

ð1þ nð�ÞÞ ln 1þ nð�Þ
1� nð�Þ � 2nð�Þ

� �
; ð9Þ
where n is given in Eq. (5), and for oxygen and argon the ratio is written as [81,82]
rmð�Þ
rtð�Þ

¼ 2
lnð1þ �Þ 1� lnð1þ �Þ

�

� �
; ð10Þ
where the function I(�,v) from Eq. (4) or (6), respectively, was used.

2.1.3. Calculation of transport and reaction coefficients in air
The electron transport coefficients and reaction rates are calculated in particle swarm simulations and used in the fluid

model to keep the two models consistent. These transport coefficients and reaction rates can be defined in two different
manners, namely as so-called flux coefficients or as bulk coefficients. We remark that when we evaluated these coefficients
from our swarm simulations and used them in hybrid calculations, we found empirically that we had to take care of the dif-
ferent definitions [11]. However, we meanwhile found that there is a whole set of theoretical papers on this question, see,
e.g., [85].

In a constant field E, the bulk coefficients are calculated from the swarm as
lðEÞjEj ¼ hzðt2Þi � hzðt1Þi
t2 � t1

; ð11Þ

aðEÞ ¼ 1
lðEÞjEj

ln Neðt2Þ � ln Neðt1Þ
t2 � t1

; ð12Þ

DðEÞ ¼ hrvi � hrihvi ð13Þ
and the flux coefficients as
l�ðEÞjEj ¼ hvzi; ð14Þ

a�ðEÞ ¼ 1
l�ðEÞjEj

ln Neðt2Þ � ln Neðt1Þ
t2 � t1

; ð15Þ

D�ðEÞ ¼ ðhrðt2Þ2i � hrðt2Þi2Þ � ðhrðt1Þ2i � hrðt1Þi2Þ
2ðt2 � t1Þ

; ð16Þ

k1ðEÞ ¼
lðEÞ � l�ðEÞ
a�ðEÞl�ðEÞ ¼

lðEÞ � l�ðEÞ
aðEÞlðEÞ ; ð17Þ
where E is applied along the z axis, Ne(t) is the total number of electrons at time t, r = (x,y,z) and v = (vx,vy,vz) are the position
and velocity of electrons and h� � �i denotes the average over all particles. k1 is the nonlocal parameter in the extended fluid
model (see Section 2.2 or [11] for the definition of k1). The particle swarm simulations have been performed for electric fields
ranging from E = 5 to 250 kV/cm in air at standard temperature and pressure. By using similarity laws, they can be easily
converted to other temperatures and pressures.
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The flux coefficients represent the real motions of electrons, for example, the flux mobility times electric field lE repre-
sents the mean drift velocity of the existing electrons neglecting creation or loss of electrons. The bulk coefficients describe
the averaged change of the electron bulk as a whole. For example, the bulk drift velocity is the displacement of the mean
position of the electron swarm. The mean displacement of the swarm is not only the result of the electron drift, but also
of the spatially varying mean electron energies, ionization and attachment rates throughout the swarm [61,11]. Bulk trans-
port coefficients are experimentally measurable transport quantities, while the measurement of the flux transport coeffi-
cients is rather difficult for swarms at high electric field at normal pressure. On the other hand, simulations should use
flux coefficients to separate transport and reaction terms consistently. For more discussion of flux and bulk coefficients,
we refer to [85–87,11].

Fig. 3 presents the transport parameters, namely electron mobility l and electron diffusion tensor D, and the ionization
rate ai together with the attachment rate aatt of electron ensembles for bulk coefficients (marked with ‘‘x’’) and flux coeffi-
cients (marked with ‘‘o’’). In Fig. A.15(e) and (f), the mean electron energy �� and the nonlocal parameter k1 are also presented.
For simplicity of notation, we fix standard temperature T0 and vary the pressure p. Quantities overall scale with gas density
n0 = p/kbT as discussed, e.g., in [1,2]. For corrections to scaling, we refer to [88].

For the particle swarm generated coefficients presented in Fig. 3, we generated empirical fits. They are indicated by
dashed lines in Fig. 3. The fitting functions for the bulk coefficients are
lðEÞ=m2V�1s�1 ¼ exp½�3:18� 2:65� 10�2 � ln Eþ 3:44=E� ð4:99=EÞ2�;

aiðEÞ=m�1 ¼ exp 1:14� 10þ 3:73� 10�1 � ln E� 1:88� 102=E
h i

;

aattðEÞ=m�1 ¼ exp 1:63� 10� 1:95 � ln E� 8:32� 10=E
� �

;

DTðEÞ=m2s�1 ¼ 5:43� 10�2 þ 1:24� 10�3 � E� 6:01� 10�6 � E2 þ 1:15� 10�8 � E3;

DLðEÞ=m2s�1 ¼ 1:42� 10�2 þ 1:84� 10�3 � E� 7:46� 10�6 � E2 þ 1:41� 10�8 � E3

ð18Þ
and for the flux coefficients:
l�ðEÞ=m2V�1s�1 ¼ exp �2:30� 2:39� 10�1 � ln E� 6:57� 10�1=Eþ ð6:71� 10�1=EÞ2
h i

;

a�i ðEÞ=m�1 ¼ exp 1:04� 10þ 6:01� 10�1 � ln E� 1:86� 102=E
h i

;

a�attðEÞ=m�1 ¼ exp 1:49� 10� 1:63 � ln E� 7:30� 10=E
� �

;

D�TðEÞ=m2s�1 ¼ 5:47� 10�2 þ 1:19� 10�3 � E� 5:06� 10�6 � E2 þ 1:02� 10�8 � E3;

D�LðEÞ=m2s�1 ¼ 8:87� 10�3 þ 2:26� 10�3 � E� 8:30� 10�6 � E2 þ 1:88� 10�8 � E3;

k1ðEÞ=m ¼ 6:19� 10�7 þ 1:89� 10�2=ðEþ 4:73� 10Þ2:

ð19Þ
where E ¼ E=ðkV cm�1 bar�1Þ is the electric field in dimensionless units, and ai,att are the ionization and attachment rate.
These fitted coefficients will be used in the fluid model to reach optimal agreement between particle and fluid model in
the hybrid computation. In Appendix A, we also compared our calculation with the BOLSIG+ [72,36] generated transport coef-
ficients and reaction rates for air, nitrogen, oxygen, and argon.

We refer to [4] for simulation results of the particle model.

2.2. Fluid model

2.2.1. The extended fluid model with flux coefficients
A fluid model for streamers consists of continuity equations for electron and ion densities ne,p coupled to the electric field

E

@ne

@t
þr � je ¼ S; ð20Þ

@np

@t
¼ S; ð21Þ

je ¼ �lðEÞEne � DðEÞ � rne ¼: �ja � jd
; ð22Þ

r � E ¼ qðnp � neÞ
�0

; ð23Þ
je is the electron flux; it consists of an advection part �ja = �l(E)E ne and a diffusion part �jd = �D(E) � rne. The source term
S accounts for the ionization or attachment reactions that change the density of electrons or ions. The ions are approximated
as immobile on the time scale of electron motion, therefore the total space charge created by different types of positive and
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Fig. 3. Shown are the transport coefficients, ionization and attachment rate, and the mean energy of electrons in air as a function of the reduced electric
field at room temperature. The presented coefficients are the bulk coefficients (marked with ‘‘x’’) and the flux coefficients (marked with ‘‘o’’) calculated from
particle swarm simulations. Their empirical fits are indicated with dashed lines.
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negative ions can be summarized into one ion density np. q is the elementary charge, and �0 is the permittivity of the gas. The
electric field is typically calculated in electrostatic approximation E = �r/.

The source term for impact ionization and attachment is traditionally written in local form as
S ¼ jnelðEÞEjaðEÞ; ð24Þ
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where the Townsend coefficient a(E) (E = jEj) depends on gas density, collision cross sections and the local electric field. It is
also tempting to simply insert transport and reaction coefficients from electron swarm simulations, i.e., the so-called bulk
coefficients from Section 2.1.3, into the fluid equations. However, though this approach generally yields qualitatively reason-
able results, it is theoretically inconsistent [85–87], and it leads to wrong ionization densities behind ionization fronts driven
by high fields (above 75 kV/cm in nitrogen at standard temperature and pressure) and to wrong mean electron energies in
the ionization front [61] and to problems in the construction of a hybrid model where discontinuities are building up in time
at the interface between fluid and particle model [11].

Therefore, the flux coefficients of Section 2.1.3 have to be used, and the fluid model has to be extended by writing the
source term as
S ¼ jnelðEÞEjaðEÞ 1þ k1ðEÞ
E
E
r ln ne

� �
; ð25Þ
to take the higher mean electron energies and ionization rates at the tip of a swarm into account [11]. Instead of extending
the source term, one can also let the source term depend on the mean electron energy and introduce another equation for the
electron energy, as discussed in Appendix of [11]. Although only the source term differs between the classic and the ex-
tended fluid model and the models describe the same experiments, all transport and reaction coefficients are different.

For practical hybrid streamer simulations, the extended fluid model with flux coefficients has two major benefits.
First, the extended fluid model approximates the particle model better than the classic fluid model. The particle density

profiles generated by these three models were compared in [11] for electron swarms as well as for planar ionization fronts.
The electron and ion density profiles are almost identical in the swarm simulations without space charge effects for all three
models, but for the classical fluid model this is due to a cancelation of terms, as the electrons move too fast, but the ionization
rate at the tip of the swarm is too low. For planar ionization fronts, the electron and ion densities behind the ionization front
agree well between particle model and extended fluid model, but they are too low in the classical fluid model, because it
does not account for the higher electron energies and reaction rates at the tip of the front.

Second, the extended fluid model uses the flux coefficients, that characterize the average electron motion. A consistent
definition of electron fluxes is important when coupling particle and fluid model in space. The definitions of (1) the number
of electrons crossing the model boundaries in the particle model and of (2) the electron density flux rate at the model bound-
aries in the fluid model have to be consistent. Since the flux coefficients represent the real motion and reaction rate of elec-
trons, while the bulk coefficients also depend on the macroscopic electron-density-profile, a consistent coupling of particle
and fluid model can only be achieved with flux coefficients.

From now on, the term ‘‘fluid model’’ will refer to the extended fluid model with flux coefficients.

2.2.2. Numerical discretization of densities and fluxes
In our implementation of the fluid model, the electron and ion densities are discretized in space with a finite volume

method based on the mass balances for all cells, and the electron density is updated in time using a third order upwind-
biased advection scheme combined with a two-stage Runge–Kutta method. The numerical algorithm and the spatial discret-
izations of the continuity equations in a 2D radially symmetric system have been discussed in [3,89].

We now focus on the numerical discretization of the electron fluxes in the fluid model in 3D.
The flux of electrons is given in Eq. (22), where the ja = l(E)Ene and jd = D(E) � rne denote the advective and diffusive elec-

tron fluxes through the cell boundaries, and D is a tensor in the form of
DðEÞ ¼ DLðEÞ
EET

E2 þ DTðEÞ I� EET

E2

 !
; ð26Þ
where I is the identity matrix and ET is the transposed electric field.
Electron diffusion in electrostatic fields in gas discharges is frequently approximated as isotropic in fluid simulations

[41,45,43,90–92], while it, of course, is anisotropic [93,94]. For example, in the flux diffusion coefficients presented in
Fig. 3, the longitudinal diffusion rate DL and transversal diffusion rate DT relative to the direction of the electric field differ
due to the anisotropic collision processes in the particle model: DL < DT at low fields E < 50 kV/cm, and DL > DT when the field
strength is above 50 kV/cm. The discretization of the flux terms requires extra care when the diffusion tensor is anisotropic
[95].

Note that the electron and ion densities calculated at cell centers on a uniform grid can also be viewed as averages over
the cell. The electric potential / and the field strength E are taken also in the cell centers, where E determines the electron
and ion growth in the cell. The electric field components E = (Ex,Ey,Ez) are taken on the cell vertices, where they determine
the mass fluxes. The flux coefficients l and D, and ionization rate ai and attachment rate aatt with anisotropic scattering are
from Section 2.1.3.

We first consider the 2D example to explain how the electron flux is numerically discretized. As shown in Fig. 4, we have a
uniform grid with the quantities f evaluated in the centers of the grid cells (f can be ne, / or E). Consider the flux on the
boundary between cell (i, j) and (i + 1, j). The advective flux ja

ðiþ1
2;jÞ;x

can be written as
ja
x;ðiþ1

2;jÞ
¼ nTlðEiþ1

2;j
ÞEiþ1

2;j
ne;iþ1

2;j
ð27Þ



Fig. 4. Evaluation of the electron flux on the boundary between two cells.
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where nT = (1,0), ET
iþ1

2;j
¼ Ex;ðiþ1

2;jÞ
; Ey;ðiþ1

2;jÞ

� �
given by Eq. (29), and ne;iþ1

2;j
is approximated by a third-order upwind-biased

scheme. This gives mass conservation and monotone solutions without introducing too much numerical diffusion [89].
The Koren limiter function is used here. Denote EL = max(�E,0) and ER = min(�E,0) to distinguish the upwind direction

for the field components, the advective flux ja at cell face xiþ1
2
; yj; zk

� �
then can be rewritten as:
ja
x;ðiþ1

2;jÞ
¼ lðEÞEL

x½ne;ði;jÞ þ wðpi;jÞðne;ðiþ1;jÞ � ne;ði;jÞÞ� þ lðEÞER
x ½ne;ðiþ1;jÞ þ wð1=piþ1;jÞðne;ði;jÞ � ne;ðiþ1;jÞÞ�; ð28Þ
where pi;j ¼ ðne;ði;jÞ � ne;ði�1;jÞÞ=ðne;ðiþ1;jÞ � ne;ði;jÞÞ, w is the limiter function wðhÞ ¼max 0;max 1; 1
3þ h

6 ; h
	 
	 


, and here E and Ex are

taken at cell face xiþ1
2
; yj

� �
.

To obtain the electron diffusive flux at the cell boundary xiþ1
2
; yj

� �
, we need the electric field and the electron density

gradients at the boundary. They are calculated using the central difference scheme with second order accuracy. If the poten-
tial or the density are not available at the required boundaries, they are approximated by averaging over the neighboring cell
centers. For example, the electric field is taken as
Ex;ðiþ1
2;jÞ
¼ 1

Dx
ð/ði;jÞ � /ðiþ1;jÞÞ;

Ey;ðiþ1
2;jÞ
¼ 1

2
1

2Dy
ð/ði;j�1Þ � /ði;jþ1ÞÞ þ

1
2Dy
ð/ðiþ1;j�1Þ � /ðiþ1;jþ1ÞÞ

� �
:

ð29Þ
The diffusive flux jd is calculated as:
jd
x;ðiþ1

2;jÞ
¼ nT DLðEÞ

EET

E2 þ DTðEÞ I� EET

E2

 !" #
iþ1

2;j

rne;iþ1
2;j
; ð30Þ
where the field strength is taken at the cell boundaries and the density gradient rne at cell face iþ 1
2 ; j

	 

is defined in the

same way as the electric field,
@ne

@x ðiþ1
2;jÞ
¼ 1

Dx
ðne;ði;jÞ � ne;ðiþ1;jÞÞ;

@ne

@y ðiþ1
2;jÞ
¼ 1

2
1

2Dy
ðne;ði;j�1Þ � ne;ði;jþ1ÞÞ þ

1
2Dy
ðne;ðiþ1;j�1Þ � ne;ðiþ1;jþ1ÞÞ

� �
:

ð31Þ
The flux in the x-direction in 2D therefore can be written as
je;x ¼ �ja
x � jd

x ¼ nT � ð�lðEÞEne � DðEÞ � rneÞ: ð32Þ
In the y-direction, Eq. (32) applies as well with x exchanged by y and with nT = (0 1).
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AMD Athlon 1.6GHz CPU and 1G memory.
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The electron flux on a cell face can be written in the same way for 3D as Eq. (32) for 2D, where D is a tensor defined in Eq.
(26), n is a vector normal to the cell face, ET = (Ex,Ey,Ez), and (rne)T = (@ne/@x,@ne/@y,@ne/@z) are taken at the cell face. For
example, the diffusive flux is calculated with second-order central differences as
jd
x;ðiþ1

2;j;kÞ
¼ 1

E2 ðDLðEÞ � DTðEÞÞEx Ex
@ne

@x
þ Ey

@ne

@y
þ Ez

@ne

@z

� �
þ DTðEÞ

@ne

@x
ð33Þ
where E, E, andrne are taken at the cell face xiþ1
2
; yj; zk

� �
. Here E at the cell face is defined in the same way as in Eq. (29) and

rne is defined as in Eq. (31).
2.2.3. The Poisson equation
In the particle as well as in the fluid model, the electric field has to be calculated at each time step, therefore this must be

done in a very efficient way. A fast 3D Poisson solver FISHPACK has been chosen for this. It uses second-order finite differences.
The FISHPACK is a direct solver, based on cyclic reduction with Fast Fourier Transform (FFT) in the third dimension. Although it
is not versatile (it can only solve Poisson and Helmholtz problems on rectangular grids), it is the fastest Poisson solver on
rectangular grids [98].

The computing times are evaluated for a test problem with a Gaussian source term on various m �m �m grids. In Fig. 5,
we plot the computing time as a function of m, when double precision is used. Since the solution is direct, the actual shape of
the solution does not influence these computing times. Another advantage of FISHPACK is that it needs, apart from arrays to
store the solution, almost no additional memory. For details and additional tests with this solver we refer to [96–98].
2.2.4. Results of a 3D fluid simulation
Here we present 3D fluid simulation results for a negative streamer in air without photo-ionization, propagating in a

background field of �100 kV/cm. Initially 500 electrons and ions are distributed with the same Gaussian distribution around
a spot near the cathode. The simulation was carried out on a grid of 256 � 256 � 512 points with Dx = Dy = Dz = 2.3 lm, on a
system with x 2 [�0.29, 0.29] mm, y 2 [�0.29, 0.29] mm and z 2 [0, 1.17] mm. The time step is Dt = 3 � 10�13 s.

In Fig. 6, the electron density (left column), charge density (middle column), and the electric field in z-direction (right
column) are shown at 0.48 ns (first row), 0.56 ns (second row), and 0.72 ns (third row). The simulation starts with an ava-
lanche of electrons present initially. At t = 0.48 ns, a charge layer is clearly formed and the electric field is altered by the space
charge. From 0.48 ns to 0.72 ns, the maximal electron density increases from 1.6 � 1013 to 7 � 1014/cm3, while the maximal
field strength increases from 160 kV/cm to about 290 kV/cm. The calculation took 10 days on a desktop with 2.66 GHz Inter
CPU and 8 GB memory.
3. Construction of the 3D hybrid model

3.1. General coupling procedure

The simulations begin with a few electron ion pairs followed only by the particle model. As new electrons are generated,
the number of particles eventually reaches a given threshold, after which the simulation switches from particle simulation to
the hybrid approach. If the computation time is not a concern, the threshold number can be set as the maximum allowed by
a real particle simulation. The threshold in our simulation is normally set to 20 million electrons.

When the electron number reaches the threshold, suitable regions to apply the particle or the fluid model have to deter-
mined to initiate the hybrid computing. Most of this section deals with finding appropriate criteria to determine these re-
gions. To ensure a reasonable interaction between the models, buffer regions are built by extending the particle regions



Fig. 6. 3D simulation results of the extended fluid model for a negative streamer developing in air without photo-ionization in a background field of
�100 kV/cm. First row: streamer at t = 0.48 ns, second row: streamer at t = 0.56 ns, third row: streamer at t = 0.72 ns. The columns show from left to right:
electron density, charge density, and electric field Ez in the z direction. Particle densities and fields are represented on two orthogonal planes that intersect
with the 3-dimensional structure.
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into the fluid region. In the buffer region, the particle movements and the particle densities are followed both by the particle
model and by the fluid model.

To update the particle densities and the electric field from one time step to the next, we first follow the movement of
electrons in the particle region and the buffer region, and the number of electrons crossing the model interface is recorded
during this time step. The electron fluxes on the interface are used as the boundary condition to update the densities in the
fluid region. We then map the particles in the particle region to the densities on the fluid grid. The electron and ion densities
are now known in both particle and fluid region, and the new electric field is then calculated. With the updated electric field
and the particle densities, the new model interface is determined. This procedure is repeated in each time step.

The coupling procedure in 3D has some similarities to the 1D coupling treated previously in [11]. As for planar fronts, (i)
we use the zero-order mapping (see [11]) around the model interface in the particle model to avoid particle leaking, and (ii)
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we use forward Euler time stepping instead of two-stage Runge–Kutta method in the fluid model to save computer memory
and time. However, additional problems appear in a real 3D problem. For example, in a planar front, only one point needs to
be specified to determine the position of the model interface; in 3D, the model interface is a 2D surface and extra care is
needed; a strongly fluctuating model interface will create large buffer regions and dramatically increase the computation
cost. The way to count the electron flux over the model interface is also different in 3D. In a planar front, the model interface
is a straight line and all crossing electrons will contribute to the density flux; in 3D, the shape of the model interface is more
complicated, and crossing electrons need to be defined carefully.

In the following sections, we consider a particle simulation that starts with the same initial condition as the fluid simu-
lation in Section 2.2.4, and the simulation is carried out on the same grid. The particle simulation runs until t � 0.46 ns, when
the number of electrons reaches 2 � 107. The particle simulation then switches to the hybrid simulation. Different methods
and criteria to determine the model interface at this instance are discussed and compared in Sections 3.2 and 3.3. Section 3.4
describes the construction of the buffer region and Section 3.5 the energy distribution of the electrons in the particle and the
density region.
3.2. First interface construction: column based splitting

Aiming at following the high energy electrons in a fully developed streamer, fluid and particle model will be applied adap-
tively in suitable regions in the 3D hybrid model. We would like to couple the particle and fluid model in such a way that: (i)
the hybrid model represents the correct physics, (ii) high energy particles will be included in the particle region, and (iii) the
model is computationally as efficient as possible.

The coupling of fluid and particle model was first realized in a planar front as discussed in [62,11]. Two splitting criteria
were studied for the planar front. The model interface can either be set at the position where the electron density reaches
ne = gne,max when approaching from the nonionized region, or where the electric field is E = nEmax (E+ in [11]); here ne,max and
Emax stand for the maximal electron density and electric field, and n and g are real numbers between (0,1), and chosen in
such a manner that the calculation is efficient and the error is small.

A 3D streamer can be decomposed into columns with small transversal area parallel to the streamer axis. For each col-
umn, the previously derived results for the planar front can be used, such as the best position of the model interface for a
given field ahead of the ionization front. When this is implemented numerically, we take a column of mesh cells in the direc-
tion of the background electric field, and try to locate the position of the model interface. Note that the cell-columns near the
streamer axis cross through a rather planar ionization front, while the cell-columns at the streamer edges are further from
this situation.
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Fig. 7. The position of model interfaces for a streamer at t � 0.46 ns. The model interface is at ne = ne,max (a), ne = 0.7ne,max (b) and E = 0.84 Emax (c) along each
cell-column. Far outside of the streamer where no free electrons and ions exist, the particle model is applied and the model interface is set at z = 0. When the
criterion is ne = ne,max, fluctuations are everywhere. When ne = 0.7ne,max the interfaces are rather smooth in the center of the streamer, the fluctuations
appear at the side of streamer. When E = 0.84 Emax, the model interface forms a smooth surface.
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3.2.1. Density criteria
We first try to determine the model interface using the density criterion. But the obtained model interfaces have strong

fluctuations, especially along the side of the streamer. In Fig. 7(a) and (b), we show the position of the model interface when
it is set at ne = ne,max or ne = 0.7ne,max, in which ne,max is the maximum electron density in each column. The particle model is
applied at regions above the model interface and the fluid model is applied beneath. The model interface is set at ne = ne,max

or ne = 0.7ne,max only when ne,max > c, where c = 8.22 � 1010/cm3 is the density value for one electron per numerical cell. Here
the length of the numerical cell is 2.3 lm; this is the average length that an electron travels between ionization events at the
maximal ionization rate. It means that we split a cell-column into particle and fluid region only if it contains electrons; in the
large area without electrons, the particle model is applied. When the model interfaces are placed at ne = ne,max, the fluctua-
tions are almost everywhere. When the model interfaces are placed at ne = 0.7ne,max, the model interface is a rather smooth
surface in the center where ne,max is relatively large, and it fluctuates strongly where ne,max is small.

The density fluctuation is the first problem when we apply the planar front coupling to the cell-columns in 3D. The elec-
tron density fluctuations in a planar front can be suppressed by expanding the planar front in the transversal direction,
which increases the number of electrons and smoothes the density profile. This method can be applied for the planar front
since the particle distributions are uniform in the transversal direction and therefore charged particle densities remain un-
changed. But this trick can not be applied for the cell-column in 3D coupling, while the limited number of electrons or ions
within the cell-column gives rise to strong fluctuations in density profiles along the column.

To reduce the computational cost and save memory for high energy electrons at the streamer head, we would like the
model interfaces of all cell-columns to lie within a smooth surface. A fluctuating model interface requires extra buffer re-
gions and therefore more electrons to be followed by the particle model, and it creates a large volume of the model interface
in the transversal directions where the motions of all electrons close to the lateral model interface have to be traced. It is
therefore not a good idea to relate the position of the model interface to the maximum density within a column.

When the interface is placed at smaller densities, e.g., at cells at position ne = 0.7ne,max, it is rather smooth over z, at least in
the center of the streamer where ne,max is large enough. For planar fronts in fields between 50 and 200 kV/cm, the particle
densities from a hybrid computation with a model interface at ne = 0.7ne,max deviates from the pure particle simulation re-
sults by not more than 4% [11].

To obtain a smooth model interface at the edge of streamer, one possible solution is to find a fitting formula for the inter-
face position near the streamer center and to extrapolate it to the side to calculate the interface position even if no electron
exists in that cell-column. But besides concerns on the asymmetry of the density over the radius and on the difficulties of
fitting, the interface position at the streamer side would not depend on local properties in this procedure, but on the fit
to the streamer center.
3.2.2. Field criteria
In a planar front, there is a clear correlation between the local electric field and the electron density, and the electric field

is always smoother than the electron densities. Therefore in the planar hybrid calculation, also an interface criterion depend-
ing on the field level E = nEmax was tested. The relation between particle density and electric field in 3D is not as clear as in
1D. Therefore a field dependent criterion is tried with several values ‘‘n’’; for the particular value of n = 0.84 the positions are
given in the Fig. 7(c). The field criterion n = 0.84 for the model interface agrees very well with the density criterion g = 0.7 in
the center of the streamer, while model interfaces are much smoother at the side of streamer.

One problem of the field criterion is that at the side of the streamer where the field varies less than in the center, it be-
comes E < 0.84 Emax everywhere along the cell-columns. Because there are only few electrons which occasionally fly out of
the channel in the sidewards direction, we leave them to the fluid model. Therefore from the point where the level E = 0.84
Emax ceases to exist, the model interface is extended horizontally several cells outwards to include all particles at the strea-
mer side into the fluid region.

At the streamer side, we also add one or two extra cells for the density diffusion in the fluid calculation. In the particle
model, the electrons are discrete and the electron density is always N � c (where c was defined at the beginning of Sec-
tion 3.2.1). But in the fluid calculation, diffusion can fill the entire fluid region with a small ne > 0. To avoid a continuous
expansion of the fluid region to the side, the fluid electron density is set to zero if it drops below c.
3.2.3. The splitting result
Having described the procedure for locating the model interface, we now present the splitting results at the moment

when the 3D simulation is transferred from particle to hybrid calculation, based on the field criterion. The transfer takes
place at time t � 0.46 ns when the number of electrons has grown to 2 � 107. In Fig. 8,1 the electron density (upper left),
charge density (upper right), electric field (lower left) and electron mean energy (lower right) at t � 0.46 ns are shown with
the model interface and the buffer region marked with red lines (blue lines for the electron mean energy). Below the model
interface, the fluid model is applied; above the model interface, the particle model is applied. With the column based approach,
the particle model focuses on the electrons at the streamer head where the local electric field is most enhanced. And it leaves
the large remaining region with high electron densities and low electric field to the fluid model.
1 For interpretation of color in Fig. 8, the reader is referred to the web version of this article.



Fig. 8. Electron density (upper left), charge density (upper right), electric field (lower left) and the electron energy (lower right) at t � 0.46 ns when the
particle calculation is transferred into a hybrid calculation. The model interface with buffer region is determined by the column based splitting; it is marked
in red or black.
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The first results of 3D hybrid calculation results based on this approach were reported in the letter [13] for a negative
streamer in N2. However in the situation where (i) more than one streamer propagates in the simulation domain and the
streamers are not in parallel, (ii) a runaway electron runs out of the planar front and creates an avalanche ahead of the strea-
mer, or (iii) a double headed streamer emerges, this column based approach is unable to deal with them. To deal with those
situations, a more flexible splitting algorithm is needed.

3.3. Second interface construction: full 3D splitting

We have developed another splitting method that is simultaneously based on the electric field and on the electron den-
sity. In contrast to the previous splitting method that was based on local column-based quantities, we now develop a global
splitting criterion that operates on the whole 3D domain.

The particle regions are now taken as the regions where the electric fields are higher than a global field threshold and
where electron densities are lower than a global density threshold, and the fluid regions cover the rest. Most of the energetic
electrons, and electrons with the potential to gain high energies are in the region with the strongest electric field.

In Fig. 9, we show the model interfaces (marked with red lines) determined only by a field threshold. The presented strea-
mer is from the same simulation at same time t � 0.46 ns as shown in Section 3.2. The particle model is applied if the electric
field is strong enough, E > nEb, in which Eb is the background field 100 kV/cm and n is a free parameter. Note that we are not
searching a specific model interface anymore, we now search for regions suitable for the particle model. Fig. 9 shows how the
particle and the fluid region change when n changes from 0.7 to 1.0. The fluid region has the smallest volume with n = 0.7 and
the largest volume with n = 1.0. From n = 0.7 to 1.0, the number of electrons in the particle region decreases from 9.6 � 106 to
2.5 � 106.

Thresholds with n < 0.9 are not appropriate to determine the model interface, not only because there would be too many
electrons within the particle region, but also due to the fact that electrons at the side of the streamer can cause a consider-
able increase of the computational cost when they cross the model interface. In both cases n = 0.9 and 1.0, electrons at the
side of streamer are covered by the fluid regions. But n = 1.0 leaves all the lateral region to the fluid model which makes the
model less flexible and computationally more expensive. The fluid model is computationally more efficient than the particle
model only in mesh cells that contain a considerable amount of electrons. Letting the fluid model cover the large open side
regions will increase the computational cost due to the non-zero, but sometimes unphysically small densities at side.



Fig. 9. The model interface based on the electric field only. Electron density (left), charge density (middle), and electric field (right) at t � 0.46 ns are
presented with the model interface marked. The particle model is applied at the region where the E > nEb with n = 0.7–1.0, and the fluid model is applied to
the rest.
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We tested a range of interface positions from n = 0.9 to n = 1.0 and the field criterion n = 0.94 was chosen for the hybrid
simulation. With this threshold, the sides of the streamer are fully covered by the fluid model during the period of interest.
Together with the field criterion, a density criterion is added. The fluid model is applied if the electron density is high enough,
ne > g ne,max, where ne,max is the maximal electron density in the whole simulation domain. In Fig. 10, we present the electron
density, the electric field and the local mean energy of electrons with the model interface indicated with a curved line. The
particle model is applied in the region where the electric field E > nEb and electron density ne < g ne,max, and the fluid model is
applied in the region where the electric field E < nEb or electron density ne > gne,max, where n = 0.94 and g = 0.7 (upper panel)
and 0.9 (lower panel).

As shown in Fig. 9, since the side of the streamer has already been allocated to the fluid region, differences only appear at
the streamer head due to the choice of g in the density criterion. When the density threshold changes from g = 0.9 to a small
value such as g = 0.7, the particle region shrinks and the fluid region expands towards the field enhancement region.



Fig. 10. The location of the model interface here is simultaneously based on a field and a density threshold. Presented are electron density (left), electric
field (middle), and electron mean energy (right) at time t � 0.46 ns when the calculation transfers to the hybrid approach, and the model interface is
marked. The particle model is applied where the electric field E > 0.94Eb and the electron density ne < gne,max with g = 0.7 (upper panel) and 0.9 (lower
panel); the fluid model is applied in the remaining region.
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In contrast to the column based splitting, which can follow only one streamer head, the full 3D splitting approach can
apply the particle model in separate regions. For example, it can follow both the negative and positive ionization fronts when
one simulates a double headed streamer, or a second streamer head if another streamer forms. An example where the fluid
region actually develops several disconnected parts, is discussed in Section 4.2.
3.4. Structure of the buffer region

The interaction of two models is realized through the well know ‘‘buffer region’’ technique which has been employed in
hybrid computations for air flow [100–106], liquid flow [107–109], and also in small scale solid systems [110–112]. A similar
method that is more suitable for streamer simulations has been implemented and tested for planar fronts [62,11]. Here our
implementation in the 3D hybrid model is discussed.
3.4.1. The width of the buffer region
The electrons that cross from the particle region over the model interface will be recorded, since they contribute to the

density in the fluid region. We have explained in [11] that in a planar negative front, since the electrons move on average
slower than the model interface, we only need to remove the electrons from the particle list if they fall into the fluid region,
but we do not need to artificially create new electrons in the buffer region to stabilize the electron flux at the model inter-
face. The same occurs in the (negative) head of a 3D streamer: electrons on average move slower than the model interface in
the propagation direction, and we do not need to add new electrons artificially. The side of the streamer is normally attrib-
uted to the fluid region in our 3D hybrid model; as no electrons are followed by the particle model here, the interface does
not need to be constructed here. At the tail of the streamer, there is no electron flow without photoionization or background
ionization, and the model interfaces are more or less stationary. If photo-ionization is added, at the positive head of the strea-
mer, the electrons propagate into the streamer from the particle into the fluid region. Therefore no new electrons need to be
created artificially at any part of the model interface.

Here we set the length of the buffer region as 3 cells in the z-direction and 2 cells in x- and y-direction with the cell length
Dx = Dy = Dz = 2.3 lm, since the maximum electric field in z-direction is normally much higher than in the x- or y-direction
(see Table I in [11]).

It is important in 3D that for any cell face, cell edge and cell corner shared by the particle region and the fluid region, a
buffer region separates them. A direct contact of particle and fluid model without a buffer region can cause electron leaking,
which creates loss of mass and charge.



Fig. 11. Schematic illustration of the corner problem between the particle and fluid cells around the model interface.
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Fig. 12. Electron energy distribution function (EEDF) of all electrons in the streamer (solid line) and of the electrons in the particle and buffer region (dotted
line) at time 0.46 ns when the model interface is introduced and the simulation transit from particle to hybrid simulation. The EEDF is not normalized and
D� = 0.2 eV. The model interface is defined using fully 3D splitting with E = 0.94E0 and ne = 0.7ne,max. The plot shows that indeed the high energy tail of the
distribution is appropriately included in the particle region of the hybrid calculation.
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3.4.2. The corner problem
The so called ‘‘corner problem’’ [102] is a technical but important issue when calculating the electron flux in the hybrid

model. When an electron passes from the particle region into the fluid region or vice versa, its contribution to the flux on the
cell face is recorded if the cell is in the fluid region, since only the density update in the fluid region needs the electron flux.
The cell face is not necessarily the model interface between particle and fluid region. A 2D cartoon is shown in Fig. 11 to
illustrate the problem. The particle region is in the upper right part and the fluid region is in the lower left corner, the particle
region extends into the fluid region by 2 cells in all directions and creates a buffer region. As illustrated in Fig. 11, when an
electron flies from cell ‘‘a1’’ to ‘‘b1’’, it contributes to the flux on the model interface at cell face ‘‘a1 M b1’’. A more compli-
cated case occurs when an electron flies from cell ‘‘b2’’ to ‘‘c1’’, it contributes not only to the model interface at cell face
‘‘b2 M c2’’, but also to the cell face ‘‘c1 M c2’’. On the other hand, when the electron flies from cell ‘‘c2’’ to ‘‘b3’’, it only con-
tributes to the model interface at cell face ‘‘b2 M c2’’. Finally, consider that the electron flies from ‘‘b3’’ to ‘‘c4’’; it flies over
two model interfaces, but in the model it contributes to neither of them since there is no mass change in the fluid region.

3.5. Electron energy distribution in particle and fluid part of the hybrid model

When the simulation reaches a total number of 20 million electrons, at t � 0.46 ns, we split the simulation domain into a
particle and a fluid region. If we use the column based splitting with model interface at E = 0.84 Emax, 12 million electrons
which are neither in the particle nor in the buffer region are removed from the particle list and translated into particle den-
sities in the fluid region, while 5 million electrons remain in particle region and 3 million electrons remain in the buffer re-
gion. If we define the model interface using the full 3D splitting with E = 0.94Eb and ne = 0.7ne,max, 15.5 million electrons in
the fluid region are removed from the particle list, while 2.5 million electrons remain in particle region and 2 million elec-
trons remain in the buffer region. Both splittings leave most of the ionization front to the particle model.
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Fig. 12 shows whether the spatial splitting into particle and buffer region with the full 3D splitting method indeed assigns
the high energy electrons to the particle region so that electron runaway effects can be studied with confidence. The figure
shows the electron energy distribution function (EEDF) of electrons in the whole streamer and in the particle and buffer re-
gion only. The EEDF is not normalized so one can clearly see in which energy range the electrons are removed from the par-
ticle list. The plot shows that indeed the high energy tail of the distribution is appropriately included in the particle region of
the hybrid calculation while the majority of electrons with low energies is removed and attributed to the density region.
4. First results of our hybrid simulations

We here present two first simulation results derived with our new full 3D splitting approach.
4.1. A negative streamer in air without photo-ionization

In Fig. 13, we show a negative streamer followed by the hybrid model at the same three time steps as in the fluid sim-
ulation in Fig. 6. Initial conditions and applied field are the same as well. The model interface of the hybrid calculation is
determined by the full 3D splitting approach with the field criterion En = 0.94Eb and the density criterion ne,g = 0.7ne,max.
Fig. 13. 3D simulation results of the 3D hybrid model for a negative streamer in air without photo-ioniozation developing in a background field of �100 kV/
cm at times 0.48, 0.56 and 0.72 ns in the consecutive rows; the time steps are the same as in Fig. 6 for the fluid simulation. The columns show from left to
right: equal-density surface of electron bulk with electron density ne = 1013/cm3; electric field on two orthogonal planes that intersect with the 3-
dimensional structure; and electrons with energy larger than 200 eV in 3D. The position of the model interface is indicated in red in the middle column.



Fig. 14. A double headed streamer is developing in air; photo-ionization is now included in the Monte Carlo approach. A surface of equal electron density
(left) and the electric field in color coding (right) are presented; the model interface with the buffer region are marked. Initial conditions and background
field are the same as in the previous figure.
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At time 0.48 ns (upper panel), which is 0.02 ns after the hybrid calculation started, there are 2.8 � 107 electrons in total;
6.0 � 106 electrons are followed by the particle model in the particle and buffer region, and the maximal electric field at that
time is around 150 kV/cm. At time 0.56 ns (middle panel), the maximum of the electric field reaches 180 kV/cm, there are
7.5 � 107 electrons in total; 8 � 106 of them are followed by the particle model. In the bottom panel of Fig. 13, we show
the streamer at t = 0.72 ns. The maximal electric field at that time is around 300 kV/cm. There are 4.5 � 108 electrons in total;
and 2.0 � 107 electrons are followed by the particle model.

At time 0.56 ns, electrons with energies above 200 eV start to appear at the streamer head. But electrons with such ener-
gies can not hold their energy long, they lose their energies very quickly and disappear in the next time step. As the streamer
propagates, the maximal electric field keeps increasing, there are more electrons with energies above 200 eV generated and
the maximal electron energy also increases. At t = 0.72 ns, the maximal electron energy is around 1 keV.

The results of fluid and hybrid simulation are fairly consistent, but only the hybrid simulation is able to trace the electrons
with high energies that have the potential to run-away. We recall that the fluid approximation breaks down when electrons
run away. A more in depth comparison of particle, fluid and hybrid models will be given in a forth coming paper.
4.2. A double-headed streamer in air with photo-ionization

To demonstrate the flexibility of the full 3D splitting approach, two time steps of the hybrid simulation of a double-
headed streamer in air with photo-ionization are shown in Fig. 14. The calculation is carried out in a gap of 1.17 mm in a
background field of �100 kV/cm. The initial condition consists of 500 electron ion pairs near the anode, i.e., initial condition
and background field are the same as in the previous figure. The photo-ionization model is a discrete Monte Carlo version of
Zheleznyak’s model [99], and the implementation for the particle model is the same as in [30]. More details can be found in
[16].

Fig. 14 shows a double-headed streamer which is developing in the middle while several small avalanches appear around
the streamer. On the left we plot the equal-density surface of the electron bulk with electron density ne > 1013/cm3. On the
right we plot the electric field on two orthogonal planes intersecting with the 3D structure, with the model interface and
buffer regions marked with red lines. On the left upper panel, the larger electron bulk is the main streamer, while some other
small avalanches develop around it. These avalanches are caused by photo-ionization; i.e., by photons emitted from the
streamer head that can ionize oxygen molecules further apart. At 0.51 ns, several avalanches already have reached the elec-
tron density threshold, and they therefore have created separate fluid regions within the hybrid model that are disconnected
from the fluid region of the main streamer. One of these avalanches intersects with the xz plane where the electric field is
plotted in the upper right panel. A cross section of the separate model interface of this avalanche can therefore be seen in this
plot.

The lower panel shows the streamer 0.09 ns later. The separate fluid region of the small avalanche has merged with the
main fluid region of the main streamer channel, while a new separate fluid region has formed. Note that not only the upper
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streamer head is followed by the particle model, but that the particle model also follows the field enhanced region of the
downward propagating streamer head.
5. Conclusion

5.1. Numerical technique

The new splitting method, the full 3D splitting, has overall advantages over the old column-based splitting. It adaptively
applies the particle model in the most field-enhanced region and the fluid model in regions where the density is high en-
ough. It is flexible in complicated situations where spatial coupling is required. Moreover, it is easier to add new features
such as local grid refinement in the full 3D splitting than in the column based splitting.

The accurate definition and the evaluation of the electron transport coefficients and reaction rates from the particle model
for the fluid model are essential for the subsequent successful coupling of the models. This is the reason why a large part of
this paper and also our previous papers [61,11] are devoted to the correct calculation of these coefficients. These coefficients
are required for the successful implementation of the hybrid model.

Compared to simulations with the pure fluid or pure particle model, the 3D hybrid model combines the advantages of
both models. It describes the dynamics of a streamer channel in a very efficient way while being able to follow the move-
ment of each single electron in the most active region of the streamer head. The 3D hybrid model is therefore a powerful tool
to study the kinetics of electrons in the important regions of streamers.
5.2. Physical predictions

The 3D hybrid streamer model is a major step forward for several physical problems. First, it correctly traces the high
electron energies in space and therefore can supply correct densities for the many different excited states of molecules; these
distributions determine the further chemical reactions and end products at later times. Second, the model traces both elec-
tron density fluctuations and electron energy fluctuations, and therefore it can correctly trace the influence of fluctuations,
e.g., on streamer branching. These two aspects have not been evaluated yet from the simulations. Third, as shown in [13], it
can predict electron run-away from streamers. We now elaborate on this aspect.

Electrons with energies above 200 eV are shown in Fig. 13 and similarly in [13]; they appear in the regions with high local
field enhancement, and some of them are accelerated up to 3.5 keV before they disappear into the anode. The energy of
200 eV is the threshold value for electron runaway in air. As shown in Fig. 1, above 200 eV, the electron collision frequency
decreases, and the electrons are accelerated further more easily.

The development of run-away electrons has been studied in a range of constant uniform electric fields with particle
swarm simulations [78,28,113,71,18,19], in agreement with [114,12], where it was shown that thermal electrons run away
when electric field exceeds a critical strength of E � 260 kV/cm at standard temperature and pressure, and the runaway rate
increases as the field increases. This is quite reasonable if one considers that in such a field an electron gains 200 eV within
less than 8 lm, which is the range of the mean free ionization length.

However, much lower background fields together with the field enhancement at the streamer tip are sufficient to let elec-
trons run away. In our simulation, the background field is 100 kV/cm and the streamers are quite short (as the simulations do
not have adaptive grid refinement yet). The field in these simulations is eventually enhanced by a factor of 3, but even when
it just exceeds 180 kV/cm locally, electron run-away sets in. Chanrion et al. even observed electrons with 1 keV when the
locally enhanced field reaches 160 kV/cm N/N0 for a negative streamer in air at 70 km altitude [14] (where N0 is air density
at ground level and N at 70 km altitude). The discrepancy between our and Chanrion’s data is probably due to the fact that
the total number of electrons in a streamer scales as 1/N [2], and therefore streamers at high altitudes contain more elec-
trons, and therefore the number of run-away electrons is larger. But how can the different run-away thresholds of
260 kV/cm in homogeneous fields and of 160 or 180 kV/cm in the streamer head be explained?

The answer is two-fold. First, 260 kV/cm is the threshold where the majority of electrons experience more acceleration
than friction and run away, while single electrons in the high energy tail of the distribution can run away earlier. Second,
the electrons in the streamer head are not in equilibrium to the local electric field. Even in a constant field, the electrons
in the tip of a swarm on average have higher energies than at the back end [61,11]. It is these high energy electrons at
the tip of the ionization front that run into the highly enhanced electric field at the streamer tip and are accelerated further.

But if the electrons run away, they run into the region with lower field ahead of the streamer. For example, electrons with
an energy of 200 eV run�6 times faster than the streamer when its maximally enhanced electric field is 250 kV/cm. Depend-
ing on the spatial profile of the electric field and on the energy of the electrons, they will either predominantly loose their
energy ahead of the streamer or accelerate further (if no anode is in their way).

For fully understanding the hard radiation from sparks [24–26] and corona streamer discharges [27], two ingredients are
necessary: the acceleration of thermal electrons to energies above 200 eV in streamers or next to pointed electrodes; and the
profile of the electric field ahead of a streamer corona or next to another strongly curved electrode that supports the further
acceleration of the energetic electrons.
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5.3. Outlook

The size of the system is kept small to obtain sufficient numerical accuracy, while accurate solutions are not required
everywhere. In the future local grid refinement will be incorporated in the hybrid model. It will allow us to study streamer
propagation in a large system, and the generation rate of the runaway electrons can therefore be obtained even for lower
background fields.

We have presented preliminary results for a double headed streamer in air with photo-ionization in Section 3.3. Photo-
ionization is a three-step process where first a nitrogen molecule is excited by electron impact, then it emits a photon, and
the photon ionizes oxygen. In our particle model the nitrogen impact excitation is already included. Therefore it will be pos-
sible to develop the widely-used photo-ionization model further to take the lifetime of the excited species into account. It
may change the position of the photon source and may consequently influence the streamer propagation.
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Appendix A. Comparing transport and reaction parameters of the fluid model for air, nitrogen, oxygen, and argon

The electron transport coefficients, attachment and the ionization rate in air have been presented in Section 2.1. The sim-
ulated air is composed by 78.12% nitrogen, 20.946% oxygen, and 0.934% argon. In this section the generated transport coef-
ficients and reaction rates are compared with the BOLSIG+ package [72]. BOLSIG+ is a Boltzmann solver to calculate electron
transport coefficients in gases or gas mixtures. It is based on the two-term Legendre expansion solution of the Boltzmann
equations [115,36]. And the BOLSIG+ calculated transport coefficients have been widely used as an input of the fluid simula-
tion for various plasma applications.

To compare with each other, both our particle model and the BOLSIG+ package use the same cross section data (SIGLO data-
base [72]) with the same energy splitting mode in ionization collisions. The energy splitting between the primary and the
secondary electrons during an ionization has two different modes in BOLSIG+, ‘‘equal sharing’’ or ‘‘primary electron takes
all’’. In both BOLSIG+ and our particle model, we used ‘‘equal sharing’’.

Both the bulk coefficients and the flux coefficients are calculated from our particle model. For each of them, the particle
swarm simulations are carried out both with isotropic and with anisotropic scattering. Since the momentum transfer cross
section is fixed, as discussed in Section 2.1.2, the electron swarms shall be similar in both cases.

A.1. Air

In Fig. A.15, the transport parameters: electron mobility l, electron diffusion rate D, mean energies ��, and the ionization ai

together with the attachment rate aatt, and the nonlocal parameter k1 of electron ensembles, are presented.
They are generated from BOLSIG+ (solid line), the flux coefficients from our particle simulation with isotropic scattering

(marked with ‘‘h’’), flux coefficients with anisotropic scattering (marked with ‘‘o’’), the bulk coefficients with isotropic scat-
tering (marked with ‘‘+’’), and bulk coefficients with anisotropic scattering (marked with ‘‘x’’). The presented transport
parameters from BOLSIG+ have the same definition as the flux transport coefficients. We also made empirical fittings for both
flux and bulk coefficients from our particle swarm simulations and they are plotted with dashed lines.

As shown in Fig. A.15, the coefficients with isotropic or anisotropic scattering have no difference for low electric field
(E < 50 kV/cm). In the high field range (E > 100 kV/cm), the electron swarm simulated with anisotropic scattering has slightly
larger mean energies and slightly higher mobilities than that of isotropic scattering; the transversal diffusion rate is larger with
isotropic scattering and the longitudinal diffusion rate is larger with anisotropic scattering; the ionization rates are higher with
anisotropic scattering but almost undistinguishable. In general, the transport coefficients obtained with isotropic scattering
are very close to the one with anisotropic scattering. The flux coefficients from our particle swarm simulations is undistin-
guishable from the BOLSIG+ calculated coefficients for low fields, while small differences remain at strong electric fields.

The fitting functions for the bulk coefficients with the anisotropic scattering are
lðEÞ=m2V�1s�1 ¼ exp½�3:02� 6:22� 10�2 � ln Eþ 2:19=E� ð1:67=EÞ2�

aiðEÞ=m�1 ¼ exp½1:13� 10þ 3:81� 10�1 � ln E� 1:85� 102=E�

aattðEÞ=m�1 ¼ exp½1:63� 10� 1:94 � ln E� 8:24� 10=E�

DTðEÞ=m2s�1 ¼ 5:34� 10�2 þ 1:35� 10�3 � E� 6:52� 10�6 � E2 þ 1:38� 10�8 � E3

DLðEÞ=m2s�1 ¼ 6:83� 10�3 þ 2:40� 10�3 � E� 1:00� 10�5 � E2 þ 2:23� 10�8 � E3



 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  50  100  150  200  250

μ
• p

  (
m

2  V
-1

 s
-1

 b
ar

)

E/p (kV cm-1 bar-1)

Bolsig+
isotropic, bulk

anisotropic, bulk
isotropic, flux

anisotropic, flux

(a) Mobility μ(E)

100

101

102

103

104

105

106

 0  50  100  150  200  250

α/
p 

(m
-1

 b
ar

-1
)

E/p (kV cm-1 bar-1)

ionization

attachment

Bolsig+
isotropic, bulk

anisotropic, bulk
isotropic, flux

anisotropic, flux

(b) Ionization and attachment rates α(E)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  50  100  150  200  250

D
T

´•
 p

  (
m

2  s
-1

 b
ar

)

E/p (kV cm-1 bar-1)

Bolsig+
isotropic, bulk

anisotropic, bulk
isotropic, flux

anisotropic, flux

(c) Transversal diffusion DT (E)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  50  100  150  200  250

D
L

´•
 p

  (
m

2  s
-1

 b
ar

)

E/p (kV cm-1 bar-1)

isotropic, bulk
anisotropic, bulk

isotropic, flux
anisotropic, flux

(d) Longitudinal diffusion DL(E)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  50  100  150  200  250

ε 
(e

V
)

E/p (kV cm-1 bar-1)

Bolsig+
isotropic

anisotropic

(e) Average energy ε(E)

10-6

10-5

 0  50  100  150  200  250

k 1
• p

 (
m

 b
ar

)

E/p (kV cm-1 bar-1)

isotropic
anisotropic

(f) Coefficient k1(E)

Fig. A.15. Shown are the transport coefficients, ionization and attachment rate, and the mean energy of electrons in air. The presented coefficients are the
bulk coefficients and the flux coefficients calculated from the particle swarm simulations with both isotropic and anisotropic scattering, and with equal
energy sharing in the ionization collision. The results are compared with results of the Boltzmann solver BOLSIG+ [72,36].
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and for the flux coefficients:
l�ðEÞ=m2V�1s�1 ¼ exp½�2:32� 2:36� 10�1 � ln E� 4:83� 10�1=Eþ ð2:94� 10�1=EÞ2�;
a�i ðEÞ=m�1 ¼ exp½1:03� 10þ 6:25� 10�1 � ln E� 1:80� 102=E�;
a�attðEÞ=m�1 ¼ exp½1:50� 10� 1:65 � ln E� 7:35� 10=E�;
D�TðEÞ=m2s�1 ¼ 5:43� 10�2 þ 1:31� 10�3 � E� 6:69� 10�6 � E2 þ 6:85� 10�8 � E3;

D�LðEÞ=m2s�1 ¼ 1:33� 10�2 þ 1:95� 10�3 � E� 1:17� 10�5 � E2 þ 2:76� 10�9 � E3;

k1ðEÞ=m ¼ 5:58� 10�7 þ 2:94� 10�2=ðEþ 8:44� 10Þ:

ðA:1Þ
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Fig. A.16. The electron energy distribution in the swarm simulations at 200 kV/cm. The ‘‘+’’ marked curve shows the particle simulation results with
anisotropic scattering. The ‘‘x’’ marked curve is obtained from the particle simulation with isotropic scattering. Two subplots zoom into the 0–15 eV and 20–
45 eV of the EEDF. The zoomings show the influences of the different scattering methods: more low energy electrons appear when isotropic scattering is
used, while more high energy electrons are generated when the anisotropic scattering is used.
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We recall that the fitting functions for air in Section 2.1.3 are from particle swarm simulations with Opal’s formula applied to
distribute the electron energies between two out-coming electrons in an ionization, while the functions presented here using
an even spliting between two out-coming electrons in ionization.

Although more or less the same swarm and transport parameters can be obtained for the different scattering models, the
coefficients from the anisotropic scattering are preferred in our hybrid model. Not only because anisotropic scattering is clo-
ser to physical reality, but also because the small variance in the electron mean energy at relatively high fields can make a
difference for the presence of high energy electrons. The choice of the differential cross sections has direct influence on the
electron energy distribution function (EEDF). In Fig. A.16, we show the EEDF in a particle simulation with both isotropic
(curve marked with ‘‘+’’) and anisotropic (curve marked with ‘‘⁄’’) scattering. The two EEDFs in general agree with each other
very well. However, when we zoom into the low energy part 0–15 eV and slightly higher energy part 20–45 eV of the EEDF,
the comparison clearly shows that there are more low energy electrons with isotropic scattering and high energy electrons
are easier to produce with anisotropic scattering. That is, the scattering method influences the generation rate of the high
energy electrons. Since one goal of the hybrid model is to study the generation of runaway electrons, the anisotropic scatter-
ing is used in our particle model, and the parameters from the anisotropic scattering are used in our fluid model.

A.2. Nitrogen

The electron transport coefficients and the ionization rates in nitrogen have been reported in [61], and the parameter k1

has been reported in [11]. However, the previous particle swarm calculation fixed the total elastic cross sections and did not
take into account the corresponding changes when different scattering methods are applied. The previously calculated
parameters with isotropic scattering and anisotropic scattering therefore have noticeable differences, especially at electric
fields above 150 kV/cm. Now the momentum elastic cross section is fixed, therefore we here present a new set of the trans-
port parameters and reaction rates for nitrogen.

In Fig. A.17, the transport coefficients l, D, ionization rate ai, nonlocal parameter k1, and the mean energy of electrons ��
are presented for nitrogen, in which the l, ai, DT, and �� are also compared with the solution of BOLSIG+. As for air, we were also
able to find empirical fittings for the parameters in nitrogen.

The fitting functions for the bulk coefficients are
lðEÞ=m2V�1s�1 ¼ exp½�3:79þ 8:25� 10�2 � ln Eþ 8:24=E� ð2:21� 10=EÞ2�;
aiðEÞ=m�1 ¼ exp½1:17� 10þ 3:06� 10�1 � ln E� 2:11� 102=E�;
DTðEÞ=m2s�1 ¼ 4:85� 10�2 þ 1:10� 10�3 � E� 3:67� 10�6 � E2 þ 6:78� 10�9 � E3;

DLðEÞ=m2s�1 ¼ 7:56� 10�4 þ 2:24� 10�3 � E� 7:73� 10�6 � E2 þ 1:89� 10�8 � E3
and for the flux coefficients:
l�ðEÞ=m2V�1s�1 ¼ exp½�2:58� 1:84� 10�1 � ln E� 9:60� 10�1=Eþ ð4:11=EÞ2�;
a�i ðEÞ=m�1 ¼ exp½1:05� 10þ 5:83� 10�1 � ln E� 2:05� 102=E�;
D�TðEÞ=m2s�1 ¼ 4:79� 10�2 þ 1:16� 10�3 � E� 4:65� 10�6 � E2 þ 8:12� 10�9 � E3;

D�LðEÞ=m2s�1 ¼ 9:08� 10�3 þ 1:72� 10�3 � E� 5:90� 10�6 � E2 þ 1:03� 10�8 � E3;

k1ðEÞ=m ¼ 4:90� 10�7 þ 7:58� 10�2=ðEþ 1:80� 102Þ2:

ðA:2Þ
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Fig. A.17. Nitrogen: transport coefficients, ionization rate, the mean energy of electrons, and k1 presented as in Fig. A.15 for air.

C. Li et al. / Journal of Computational Physics 231 (2012) 1020–1050 1045
A.3. Oxygen

The electron transport coefficients in oxygen are shown in Fig. A.18. The electron mobilities l, ionization rate ai and
attachment rates aatt, transversal diffusion DT, longitudinal diffusion DL, mean energy ��, and the coefficient k1 from Eq.
(25) are presented in Fig. A.18(a)–(f), respectively. As for air and nitrogen, we compared our coefficients with the calculation
results from BOLSIG+ for mobilities, reaction rate, transversal diffusion and the mean energies, and a rather good agreement
has been obtained between the flux coefficients calculated from our particle swarm simulation and the BOLSIG+ except for the
diffusion rates.
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Fig. A.18. Oxygen: transport coefficients, ionization and attachment rates, and the mean energy of electrons presented as in Fig. A.15 for air.
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The difference between transversal diffusion rate DT with the isotropic and anisotropic scattering are already remarkable
at very low electric fields. Similar behaviors have been also observed in DT in argon and the reasons for this are not clear.
Empirical fittings for the fluid parameters are given in the following. The fitting functions for the bulk coefficients are
lðEÞ=m2V�1s�1 ¼ exp½�1:75� 3:02� 10�1 � ln E� 4:34� 10�1=E� ð8:68� 10�1=EÞ2�;

aiðEÞ=m�1 ¼ exp½1:11� 10þ 4:52� 10�1 � ln E� 1:44� 102=E�;

aattðEÞ=m�1 ¼ exp½1:26� 10� 9:71� 10�1 � ln E� 1:53� 10=E�;

DTðEÞ=m2s�1 ¼ 1:56� 10�1 � 1:12� 10�4 � Eþ 1:90� 10�6 � E2 � 4:24� 10�9 � E3;

DLðEÞ=m2s�1 ¼ 1:30� 10�1 þ 1:46� 10�4 � Eþ 2:99� 10�6 � E2 � 8:29� 10�9 � E3
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Fig. A.19. Argon: transport coefficients, ionization and attachment rates, and the mean energy of electrons presented as in Fig. A.15 for air.
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and for the flux coefficients:
l�ðEÞ=m2V�1s�1 ¼ exp½�1:01� 4:89� 10�1 � ln E� 3:16=Eþ ð3:26=EÞ2�;
a�i ðEÞ=m�1 ¼ exp½1:01� 10þ 6:87� 10�1 � ln E� 1:39� 102=E�;
a�attðEÞ=m�1 ¼ exp½1:19� 10� 8:10� 10�1 � ln E� 1:32� 10=E�;
D�TðEÞ=m2s�1 ¼ 1:52� 10�1 þ 1:17� 10�4 � E� 1:04� 10�6 � E2 þ 3:35� 10�9 � E3;

D�LðEÞ=m2s�1 ¼ 1:44� 10�1 � 1:18� 10�4 � Eþ 1:34� 10�5 � E2 � 3:94� 10�8 � E3;

k1ðEÞ=m ¼ 4:17� 10�7 þ 2:36� 10�2=ðEþ 7:07� 10Þ2:

ðA:3Þ



1048 C. Li et al. / Journal of Computational Physics 231 (2012) 1020–1050
A.4. Argon

The same parameters and comparisons for argon can also be found in Fig. A.19, and their empirical fittings are listed here.
For the bulk coefficients, we have
lðEÞ=m2V�1s�1 ¼ exp½�3:87þ 7:69� 10�2 � ln Eþ 2:42=E� ð1:66=EÞ2�;
aiðEÞ=m�1 ¼ exp½9:07þ 7:29� 10�1 � ln E� 3:56� 10=E�;
DTðEÞ=m2s�1 ¼ 1:98� 10�1 � 1:45� 10�3 � Eþ 1:01� 10�5 � E2 � 1:83� 10�8 � E3;

DLðEÞ=m2s�1 ¼ 1:33� 10�1 þ 8:87� 10�5 � Eþ 4:40� 10�6 � E2 þ 1:10� 10�9 � E3
and for the flux coefficients:
l�ðEÞ=m2V�1s�1 ¼ exp½�3:52� 3:86� 10�2 � ln Eþ 3:26� 10�1=E� ð2:57=EÞ2�;
a�i ðEÞ=m�1 ¼ exp½9:67þ 6:46� 10�1 � ln E� 4:18� 10=E�;
D�TðEÞ=m2s�1 ¼ 1:96� 10�1 � 1:38� 10�3 � Eþ 9:19� 10�6 � E2 � 1:80� 10�8 � E3;

D�LðEÞ=m2s�1 ¼ 1:37� 10�1 � 4:20� 10�4 � Eþ 6:93� 10�6 � E2 � 1:56� 10�8 � E3;

k1ðEÞ=m ¼ 6:98� 10�7 þ 1:45� 10�2=ðEþ 6:95� 10Þ2:

ðA:4Þ
Note that the BOLSIG+ results for argon are only presented from 5 kV/cm to 180 kV/cm. Good agreements have been
achieved between our flux coefficients and the BOLSIG+ coefficients in electron mobilities, and ionization rate. A remarkable
difference remains for the transversal diffusion. There is also a good agreement between the two sets for the mean electron
energies at low field, but the difference become to noticeable above 50 kV/cm.
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