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A comprehensive investigation of electron transport in N2–O2 mixtures has been carried out using a multi term theory for solving the Boltzmann

equation instead of conventional two term theory often employed in plasma modeling community. We focus on the way in which the transport

coefficients and spatially resolved transport data are influenced by the amount of O2 in the mixture. Emphasis is placed upon the explicit and

implicit effects of non-conservative collisions, ionization and attachment on various transport coefficients. In particular, the effects of three-body

attachment for electrons on various transport data are considered. It is found that the differences between two sets of transport coefficients, bulk

and flux, resulting from the explicit influence of non-conservative collisions is sensitive to the quantity of O2 in the mixture.

# 2011 The Japan Society of Applied Physics

1. Introduction

Streamers are growing filaments of weakly-ionized non-
stationary plasma produced by an ionization front that
moves through non-ionized matter.1) They have applications
in diverse areas of science and technology ranging from their
role in creating lighting and transient luminous events in the
upper atmosphere2) to industrial applications such as the
treatment of polluted gases and water3) and plasma enhanced
vapor deposition in microelectronics.4) There have been
numerous simulations of streamers (see, e.g., ref. 1 and
references therein), but the recent three-dimensional self-
consistent hybrid model of Li et al.,5) is of special interest.
In this model, the fast non-equilibrium electrons in the
leading part of the ionization front are treated by a Monte
Carlo simulation while the low-energy electrons in the rest
of the domain are treated using a fluid model. The fluid part
is based on the local field approximation and requires the
tabulation of electron transport coefficients as a function of
the reduced electric field. The fluid model is coupled with
the Monte Carlo model via a model interface. To ensure the
stable and correct interaction between these two models, the
correct implementation of swarm transport data and the
accuracy of their calculations are critical steps in modeling.
Moreover, in this work we highlight aspects of swarm
transport theory and transport coefficient data that are
important for further improvement of both fluid and hybrid
models of streamers. This is the main avenue we explore in
this work.

In this paper we solve the Boltzmann equation for electron
swarms undergoing ionization and attachment in mixtures
of molecular N2 and O2. Values and general trends in the
profiles of the mean energy, rate coefficients, drift velocity
and diffusion tensor are reported here. The investigation has
resulted in a database of transport data which is applicable
for a wide range of potential applications, although we
focused upon the provision and correct implementation of
swarm data within fluid modeling of a streamer discharge.
Another important issue considered in this work is the
explicit and implicit effects of three-body attachment on
electron transport. Electron attachment in molecular oxygen

is an important process with a variety of applications ranging
from ozone production to the analysis of the streamers and
other types of atmospheric plasmas. This process has usually
been treated through two-body dissociative attachment, and
so far only a limited number of theoretical investigations
from the kinetic theory point of view into the three-body,
pressure dependent attachment process for electrons has
been published.6–8) We feel that a rigorous analysis of the
three-body attachment process in the context of modern
kinetic theory is long overdue, and the present paper takes
the first steps in this direction, particularly for streamer
modeling.9–12) In x2, we discuss the hydrodynamic regime
and identify the difference in the bulk and flux transport
coefficients. A brief description of the theoretical multi
term solution of the Boltzmann equation is presented for
conditions where non-conservative collisions (attachment
and/or ionization) are operative. In x3, we present the results
of a systematic study of electron transport in the mixtures of
molecular N2 and O2. Transport coefficients are presented
for various N2–O2 mixtures as a function of the reduced
electric field E=n0 (where n0 is the gas number density).

2. Theory

The behavior of charged particle swarms in gases under the
influence of electric and magnetic fields is described by the
phase-space distribution function f ðr; c; tÞ representing the
solution of the Boltzmann equation

@f

@t
þ c � @f

@r
þ eE

m
� @f
@c

¼ �Jð f ; f0Þ; ð1Þ

where r and c denote the position and velocity co-ordinates,
e and m are the charge and mass of the electrons and t is
time. The electric field is assumed spatially homogeneous
with magnitude E. Swarm conditions are assumed to apply
and Jð f ; f0Þ denotes the rate of change of f due to binary
collisions with the neutral molecules only. The original
Boltzmann collision operator13) and its semiclassical gen-
eralization14) are used for elastic and inelastic processes
respectively. The attachment and ionization collision
operators employed are detailed by Ness and Robson.15)

2.1 Hydrodynamic regime and definition of transport

coefficients

Experimental investigations of electron swarm behavior are
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generally made by sampling charged particle currents or
charged particle densities:

nðr; tÞ ¼
Z

f ðr; c; tÞ dc: ð2Þ

The connection between experiment and theory is made
through the equation of continuity

@nðr; tÞ
@t

þ r � � ¼ Sðr; tÞ ð3Þ

where � ¼ nhci is the particle flux and Sðr; tÞ represents the
production rate per unit volume per unit time arising from
nonconservative collisional processes.

Far from boundaries, sources and sinks, the hydrodynamic
regime is assumed to apply. In this regime, the spacetime
dependence of the phase space distribution function is
expressible in terms of linear functionals of nðr; tÞ. A
sufficient functional relationship between f ðr; c; tÞ (and
associated velocity moments) and nðr; tÞ in the case of weak
gradients is the well-known expansion

f ðr; c; tÞ ¼
X1
k¼0

f kðcÞ � ð�rÞknðr; tÞ; ð4Þ

where f kðcÞ are tensors of rank k and � denotes a k-fold
scalar product.

Assuming the functional relationship (4) the flux � and
source term Sðr; tÞ in (3) are expanded as

� ¼ Wð?Þnðr; tÞ � Dð?Þ � rnðr; tÞ; ð5Þ
Sðr; tÞ ¼ Sð0Þnðr; tÞ � Sð1Þ � rnðr; tÞ þ Sð2Þ : rrnðr; tÞ; ð6Þ

where Wð?Þ and Dð?Þ define, respectively, the flux drift
velocity and flux diffusion tensor. Substitution of expansion
(5) and (6) into the continuity equation (3) yields the
diffusion equation

@n

@t
þW � rn� D : rrn ¼ �Ran; ð7Þ

which define the bulk transport coefficients

Ra ¼ �Sð0Þ ðreaction rateÞ; ð8Þ
W¼ Wð?Þ þ Sð1Þ ðbulk drift velocityÞ; ð9Þ
D¼ Dð?Þ � Sð2Þ (bulk diffusion tensor): ð10Þ

The basic difference between the bulk and flux transport
coefficients should now be apparent. The bulk drift velocity is
displacement of the mean position of the electron swarm and
it characterizes the motion of the total ensemble of electrons.
The presence of the electric field results in a spatial variation
in the energy throughout the swarm. Under such conditions,
the presence of non-conservative collisions (ionization/
attachment) may lead to a change in the position of the
center-of-mass of the swarm. This effect on the bulk drift
velocity is denoted by Sð1Þ. On the other hand, the flux drift
velocity Wð?Þ represents the rate of change of the position of
the center-of-mass due to the electric field only and can be
interpreted as the mean velocity of the electrons. Likewise the
flux diffusion tensor Dð?Þ represents the rate of spreading of
the swarm due toE andrn. The presence of non-conservative
collisions may result in the variation of rn throughout the
swarm and a subsequent variation in the rate of change of the
mean squared width of the swarm. Such effects are expressed
by the second rank tensor Sð2Þ. Obviously, in the absence

of non-conservative collisions the SðkÞ source/sink terms
describing the production/loss of electrons vanish and the
bulk and flux transport coefficients coincide.

2.2 Spherical harmonic decomposition of Boltzmann

equation

The theoretical foundations for the solution of eq. (1) under
non-conservative conditions are formulated by Robson and
Ness.15,16) In 1993 Ness17) extended the theory and general
formalism for non-conservative charged particle swarms
under the influence of electric and magnetic fields crossed at
arbitrary angle. Dujko et al.18) made a further extension of
the theory and the associated computer code into the domain
of time dependent electric and magnetic fields crossed at
arbitrary angle. Although the methods and techniques are by
now standard and the reader is referred to recent reviews19,20)

for details, in what follows we briefly review the spherical
harmonic decomposition of the Boltzmann equation.

In brief, the hierarchy of kinetic equations is derived
through a series of three expansions:

(a) The angular component of the velocity dependence of
f ðr; c; tÞ is represented in terms of an expansion in spherical
harmonics:

f ðr; c; tÞ ¼
X1
l¼0

X1
m¼0

f ðlÞm ðr; c; tÞY ½l�
m ðĉÞ; ð11Þ

where Y ½l�
m ðĉÞ are spherical harmonics and ĉ denotes the

angles of c.
(b) In the hydrodynamic regime, the spatial dependence

of f ðr; c; tÞ is represented by

f ðr; c; tÞ ¼
X2
s¼0

Xs

�¼0

f ðlmjs� ; cÞGðs�Þ
m nðr; tÞ; ð12Þ

where Gðs�Þ
m is the irreducible gradient operator.

(c) The speed distribution function is represented in terms
of modified Sonine polynomials about a Maxwellian at a
temperature Tb:

f ðlmjs� ; cÞ ¼ !ð�; cÞ
X1
�¼0

Fð�lmjs� ;�ÞR�lð�cÞ; ð13Þ

where

!ð�; cÞ ¼ �2

2�

� �3=2

exp
��2c2

2

� �
ð14Þ

�2 ¼ m

kTb
; ð15Þ

R�lð�cÞ ¼ N�l
�cffiffiffi
2

p
� �l

Sð�Þ
lþ1=2

�2c2

2

� �
; ð16Þ

N2
�l ¼

2�2=3�!

�ð�þ lþ 3=2Þ ; ð17Þ
and Sð�Þ

lþ1=2ð�2c2=2Þ are Sonine polynomials.
Using the orthonormality conditions of the spherical

harmonics and modified Sonine polynomials, the following
hierarchy of kinetic equations follows:X1
�0¼0

X1
l0¼0

½@t���0�ll0 þ n0J
l
��0 ð�Þ�ll0 � Ra���0�ll0

þ ia�ðl0m10jlmÞh�ljjK½1�jj�0l0i
� n0J

0
0�0 ð�ÞFð�l0j00;�Þð1� �s0��0Þ�l00�m0�Fð�0lmjs�;�Þ

¼ Xð�lmjs� ;�Þ; ð18Þ
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where Ra is the reaction rate. The reduced matrix elements
of the collision operator Jl

��0 ð�Þ and velocity derivative
h�ljjK½1�jj�0l0i are defined by eqs. (11) and (12) given in
ref. 15 while ðl0m10jlmÞ is a Clebsch–Gordan coefficient.
The explicit expression for the RHS are given in refs. 15
and 18.

Equation (18) is solved by truncation of the � and l indices
to �max and lmax, respectively. These values are indepen-
dently increased until the desired convergence is obtained.
Tb is not equal to the neutral gas temperature (the two-
temperature method) and is used as a free parameter to
optimize the convergence. After truncation, we have a
hierarchy of coupled complex equations. This sparse system
of equations is solved using standard sparse inversion
routines.

2.3 Transport properties

The transport coefficients of interest [attachment rate ka;
bulk drift velocity W; longitudinal (DL) and transverse (DT)
diffusion coefficients] are related to the calculated moments
via

ka ¼ n0
X1
�0¼0

J0
0�0 ð�ÞFð�000j00Þ; ð19Þ

W ¼ i

�
Fð010j00Þ � in0

X1
�0¼1

J0
0�0 ð�ÞFð�000j11Þ; ð20Þ

DL ¼ � 1

�
Fð010j11Þ � n0

X1
�0¼0

J0
0�0 ½Fð�000j20Þ

�
ffiffiffi
2

p
Fð�000j22Þ�; ð21Þ

DT ¼ � 1

�
Fð011j11Þ

� n0
X1
�0¼0

J0
0�0 Fð�000j20Þ þ 1ffiffiffi

2
p Fð�000j22Þ

� �
; ð22Þ

where the components involving summations constitute the
explicit non-conservative effects on the transport coeffi-
cients, while the remainders constitute the flux contribution.
The spatially homogeneous mean energy is given by

" ¼ 3

2
kTb 1�

ffiffiffi
2

3

r
Fð100j00Þ

" #
: ð23Þ

3. Results and Discussion

3.1 Preliminaries

As discussed in x1, the aim of this work is to derive transport
properties required as input into a fluid model for streamer
discharges. We consider the reduced electric field E=n0
range: 0.01–1000Td (1 Td = 10�21 Vm2). A neutral tem-
perature of 298K is assumed and superelastic collisions are
not allowed for. The cross sections for the electron scattering
in N2 detailed by Stojanović and Petrović,21) and cross
sections for electron scattering in O2 developed by Itikawa
et al.,22,23) are implemented in this work. For elastic
collision processes we use the original Boltzmann collision
operator while for non-elastic conservative processes we
employ the Wang-Chang et al.14) generalization. Attachment
and ionization collision operators are detailed in ref. 15.
We assume that in the division of post-collision energy
between the scattered and ejected electrons in an ionization

process, all fractions are equiprobable. At the high energies
considered in this work, assumptions on the division of
energy may considerably influence transport profiles.15,24)

3.2 Electron transport coefficients in N2–O2 mixtures

In Figs. 1 and 2 we display the variation of the mean energy
and flux drift velocity, respectively, with the reduced electric
field E=n0 for various N2–O2 mixtures. The properties of
the cross sections are reflected in the profiles of the mean
energy. We see that the mean energy, as expected, is greatly
affected by the addition of O2 to N2. In the limit of high
E=n0, the mean energy of electrons is relatively insensitive
to the gas composition. From the profiles of the drift velocity
in Fig. 2 we see that there are no signs of a negative
differential conductivity (NDC) effect, i.e., the drift velocity
is a monotonically increasing function of E=n0 for all
mixtures. However, in the limit of low E=n0, the drift
velocity exhibits a non-linear behavior with respect to the
abundance of O2 in the mixture. On the other hand, in the
limit of high values of E=n0, this transport quantity, like the
mean energy, shows little sensitivity to the O2 concentration
in the mixture. This is a clear sign that collision frequencies
in this energy range are essentially independent of the O2

abundance in the mixture.
In Fig. 3 we show the percentage differences between the

bulk and the flux components of the drift velocity as a

Fig. 1. Variation of the mean energy with E=n0 for various N2–O2

mixtures.

Fig. 2. Variation of the flux drift velocity with E=n0 for various N2–O2

mixtures.
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function of E=n0 for various N2–O2 mixtures. Figure 3
shows that the attachment starts to affect the drift velocity
for E=n0 less than 10 Td. In the range of 5–100 Td, where
attachment is the dominant non-conservative process, the
magnitudes of the flux values are greater than the
corresponding bulk values. The differences are less than
approximately 1.5%. This effect is significantly reduced by
the large inelastic processes in the vicinity of attachment. As
E=n0 increases however, the influence of ionization becomes
clearly evident and in the range of 100–1000 Td, the bulk
magnitudes exceed the corresponding flux values. The rate
coefficients for attachment and ionization cross each other
in the same region (compare Figs. 4 and 7 shown below),
indicating that the production of free electrons by ionization
dominates the loss of electrons through attachment. A
further increase in E=n0 leads to a more pronounced
difference between the bulk and flux magnitudes, up to
almost 30%.

Components of the flux diffusion tensor n0DL (long-
itudinal) and n0DT (transverse) are shown in Figs. 5 and 6,
respectively. The anisotropy of diffusion is considerable at
intermediate E=n0. In pure O2, at 30 Td there is almost a
factor of 3 between the two components of the diffusion
tensor. In the limit of the highest E=n0 considered in this

work, the diffusion becomes more isotropic in nature. The
degree of anisotropy will have a bearing on anomalous
longitudinal diffusion that may be observed in time varying
fields. It is therefore of some concern that it is a common
practice in streamer modeling to assume that diffusion is
isotropic, i.e., D ¼ DL ¼ DT.

3.3 The effects of three-body attachment

In what follows we report on the influence of three-body
attachment on the transport properties of electrons in pure
oxygen. This process has been usually treated through the
studies of two-body dissociative attachment that occurs for
E=n0 < 10Td, and as already emphasized only the limited
number of theoretical investigations into the three-body,
pressure dependent attachment process for electrons has
been published.6–8) In this section we briefly report how the
three-body attachment in pure oxygen affects the transport
data, the origin and mechanisms of transport phenomena
induced by this process and possible physical implications
which arise from its explicit inclusion into streamer
macroscopic models.

It is now well known, that electron attachment to
molecular O2 at low electron energies leading to the
formation of stable O2

� ion, is a three-body process which

Fig. 3. The percentage difference between the bulk and flux components

of the drift velocity as a function of E=n0 for various N2–O2 mixtures.

Fig. 4. Variation of the ionization rate coefficient with E=n0 for various

N2–O2 mixtures.

Fig. 5. Variation of the flux longitudinal diffusion coefficient with E=n0
for various N2–O2 mixtures.

Fig. 6. Variation of the flux transverse diffusion coefficient with E=n0 for
various N2–O2 mixtures.
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proceeds in two stages. In the first stage, the electron is
captured by the molecule into a vibrationally excited
temporary negative ion-state, sometimes called a resonant
state (O2 þ e ! O2

��). This excited molecular ion may
subsequently interact through auto-detachment to give a free
electron and a neutral molecule which may be left in a
vibrationally excited state [O2

�� ! O2ðvÞ þ e]. Alterna-
tively, the excess energy of the molecular ion may be
removed in a collision with a third body, which in the
case of pure O2 is another O2 molecule [O2

�� þ O2 !
O2

�ðstableÞ þ O2]. As a result of this process we have one
stable negative ion and neutral molecule whose internal state
is characterized through a different set of quantum numbers
imposed by energy conservation. It is clear that for a low
concentration of O2 molecules the rate of attachment is
controlled by the stabilizing collisions between vibrationally
excited negative ions and neutral O2 molecules. Therefore,
this process is a pressure-dependent process and it would
be important to understand how this pressure-dependent
non-conservative process manifests itself in the transport
properties.

In Fig. 7 we show the three-body and dissociative
attachment rate coefficients as a function of E=n0 for three
different pressures, as indicated on the graph. We see that
the three-body attachment rate coefficient increases with
pressure in the entire range of E=n0. At the same time,
as expected, the rate coefficient for dissociative attachment
is a pressure-independent quantity. As the gas pressure
increases, the attachment cross section becomes larger and
the effect of electron loss on the distribution function in
the energy region between thermal electron energies and
approximately 1.5 eV, increases. As E=n0 increases, how-
ever, the mean energy also increases and there are fewer
electrons available for attachment. Hence, the effect of
attachment on the electron distribution decreases, and for
high enough E=n0, this effect is insignificant and so the total
attachment rate becomes pressure independent and solely
determined by the dissociative attachment process (see
Fig. 8).

In Fig. 9 we show the quantity k3body as a function of E=n0
for three different pressures. This figure shows that the three-
body attachment rate coefficient decreases with pressure in
the limit of low E=n0, while as expected, for high E=n0

range this quantity becomes pressure-independent. It is clear
that if E=n0 increases (for a fixed pressure), then the mean
energy also increases and the number of electrons that can
be consumed by the attachment processes is significantly
reduced. However, under conditions of varying pressure and
fixed E=n0 the situation is not so simple. It is clear that for
an increasing pressure the cross section for three-body
attachment also increases. If the inverse of the lifetime of
auto-detachment significantly dominates the frequency of
stabilizing collisions, then the cross section for attachment
increases almost linearly with pressure and consequently
there are no variations of the distribution function. Since the
distribution function remains unchanged with the pressure,
k3body is a function of E=n0 only and exhibits typical
hydrodynamic behavior. Conversely, if the inverse of the
lifetime for auto-detachment becomes comparable to the
frequency for stabilizing collision of the three-body process,
then the cross section for attachment does not increase
linearly with pressure and the effect of electron loss on the
distribution function increases. These effects induce pres-
sure-dependence of the distribution function and hence
k3body is no longer a function of E=n0 only. Under these
non-hydrodynamic conditions, k3body becomes pressure-
dependent quantity. Similar observations have been made
by Taniguchi et al.6,7)

Fig. 7. Variation of the dissociative and three-body attachment rate

coefficients with E=n0 and pressures for electrons in pure O2.

Fig. 8. Variation of the total attachment rate coefficient with E=n0 and

pressures for electrons in pure O2.

Fig. 9. Variation of the three-body attachment rate coefficient with E=n0
and pressures for electrons in pure O2.
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The pressure dependence of the transport coefficients
arises through the pressure dependence of the attachment
cross section. Figures 10 and 11 display the variation of the
mean energy and drift velocity with E=n0 and with pressure
for electrons in pure oxygen. From the profiles of the mean
energy we clearly see the regions of attachment cooling and
attachment heating. Similar effects can be observed in the
profiles of the bulk and flux components of the drift velocity.
First we see that the flux is greater than the bulk which is
a clear indication of the attachment cooling and then an
opposite situation occurs: the bulk is greater than the flux
which is a clear sign of the attachment heating. For low
values of E=n0 only the high-energy electrons in the swarm
can undergo attachment. Thus attachment cooling occurs,
and since the higher the pressure, the greater the attachment,
we observe the mean energy to be less for the higher
pressure. Also since attachment predominantly occurs at
the front of the swarm this will cause a backward shift of
the swarm’s centre of mass and then a reduction of the
measurable or bulk drift velocity component follows.
However, since the swarm mean energy increases with
E=n0, we clearly see a point reached where the lower-energy
electrons are preferentially lost due to the attachment.
Attachment heating occurs and mean energy increases with
pressure. At the same time, this phenomenon results in a
forward shift of the swarm’s centre of mass and then an

increase in the measurable drift velocity follows. Other
transport properties including the rate coefficients, gradient
energy parameter and components of the temperature tensor
are available from the authors on request.

4. Conclusions

In this work, we have presented the results of a systematic
investigation of non-conservative electron transport in the
mixtures of molecular nitrogen and oxygen under the
influence of the electric field. We have considered conditions
consistent with the electrons in a streamer discharge with
partial motivation being the provision of transport coeffi-
cients to be employed in fluid modeling of such a discharge.
These coefficients are accurate to within 1%. In addition,
we have examined the explicit and implict effects of three-
body attachment on electron transport. It is found that three-
body attachment induces a non-hydrodynamic behavior in
the profiles of certain transport properties in the limit of
thermal electron energy, e.g., the transport coefficients are
pressure-dependent quantities.
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electrons in pure O2.

Fig. 11. Variation of the bulk and flux drift velocity components with

E=n0 and pressure for electrons in pure O2.
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