
Detection of Algebraic Manipulation
with Applications to Robust Secret Sharing

and Fuzzy Extractors

Ronald Cramer1,2, Yevgeniy Dodis3, Serge Fehr2, Carles Padró4, and Daniel Wichs3

1 Mathematical Institute, Leiden University, The Netherlands
2 CWI Amsterdam, The Netherlands

{cramer,fehr}@cwi.nl
3 New York University

{dodis,wichs}@cs.nyu.edu
4 Universitat Politècnica de Catalunya, Barcelona, Spain

cpadro@ma4.upc.edu

Abstract. Consider an abstract storage device Σ(G) that can hold a single el-
ement x from a fixed, publicly known finite group G. Storage is private in the
sense that an adversary does not have read access to Σ(G) at all. However, Σ(G)
is non-robust in the sense that the adversary can modify its contents by adding
some offset ∆ ∈ G. Due to the privacy of the storage device, the value ∆ can only
depend on an adversary’s a priori knowledge of x. We introduce a new primitive
called an algebraic manipulation detection (AMD) code, which encodes a source
s into a value x stored on Σ(G) so that any tampering by an adversary will be de-
tected. We give a nearly optimal construction of AMD codes, which can flexibly
accommodate arbitrary choices for the length of the source s and security level.
We use this construction in two applications:

– We show how to efficiently convert any linear secret sharing scheme into a
robust secret sharing scheme, which ensures that no unqualified subset of
players can modify their shares and cause the reconstruction of some value
s′ �= s.

– We show how to build nearly optimal robust fuzzy extractors for several nat-
ural metrics. Robust fuzzy extractors enable one to reliably extract and later
recover random keys from noisy and non-uniform secrets, such as biomet-
rics, by relying only on non-robust public storage. In the past, such construc-
tions were known only in the random oracle model, or required the entropy
rate of the secret to be greater than half. Our construction relies on a ran-
domly chosen common reference string (CRS) available to all parties.

1 Introduction

We consider an abstract storage device Σ(G) that can hold a single element x from a
fixed, publicly known finite (additive) group G. Storage is private in the sense that an
adversary does not have read access to Σ(G) at all. However, Σ(G) allows tampering
in the sense that an adversary may manipulate the stored value x by adding some offset
∆ ∈ G of his choice. As a result, Σ(G) stores the element x + ∆ ∈ G. Due to the

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 471–488, 2008.
c© International Association for Cryptologic Research 2008

472 R. Cramer et al.

privacy of the storage device, the value ∆ can only depend on an adversary’s a priori
knowledge of x. For instance, one-time-pad encryption can be understood as such a
storage device: it hides the message perfectly, but an adversary can add (bitwise-xor)
a string to the message without being detected. Of course, by itself, this example is
not very interesting, since it requires some additional private and tamper-proof storage
for the one-time pad key. 1 However, in the two applications discussed below, no other
private or tamper-proof storage is available and hence we will need to use Σ(G) alone
to achieve authenticity.

1.1 Linear Secret Sharing Schemes

In a linear secret sharing scheme (e.g. Shamir’s secret sharing [24] and many others) a
secret s is distributed among n players so that each player gets some algebraic share of
the secret. Any qualified subset of the players can pool their shares together and recover
s by means of a linear transformation over the appropriate domain while any unquali-
fied subset gets no information about s. Unfortunately, the correctness of the recovery
procedure is guaranteed only if all the shares are correct. In particular, if a qualified
subset of the players pools their shares for reconstruction, but the honest players among
them form an unqualified set, then the dishonest players (possibly just one!) can cause
the reconstruction of a modified secret. Moreover, the difference between the correct
secret s and the reconstructed secret s′ is controlled by the corrupted players, due to
the linearity of the scheme. Luckily, this is “all” that the corrupted players can do: (1)
by the privacy of the secret sharing scheme, the noise introduced by the corrupted play-
ers can only depend on their prior knowledge of the secret and (2) by the linearity of
the secret sharing scheme, for any attempted modification of their shares, the corrupted
players must “know” the additive difference between s and s′. In essence, a linear secret
sharing scheme of s can be viewed as storing s on our abstract device Σ(G).

To deal with this problem, we introduce the notion of an algebraic manipulation
detection (AMD) code. This is a probabilistic encoding of a source s from a given set
S as an element of the group G, with unique decodability. The security of the code
ensures that, when the encoding is stored in Σ(G), any manipulation of contents by an
adversary will be detected except with a small error probability δ. The guarantee holds
even if the adversary has full a priori knowledge of the source state s. No secret keys
are required since we rely on the privacy of Σ(G) instead.

Using an AMD code, we can turn any linear secret sharing scheme into a robust
secret sharing scheme [26], which ensures that no unqualified subset of players can
modify their shares and cause the reconstruction of some value s′ �= s. The transforma-
tion is very simple: apply the linear secret sharing scheme to the encoding of s rather
than s itself.

In terms of parameters, we obtain robust secret sharing schemes which are nearly
as efficient as their non-robust counterparts, since the overhead added by encoding a
source will be very small. More precisely, to achieve security 2−κ, we build an AMD
code where the length of the encoding of a u-bit value s is only 2κ + O(log(u/κ)) bits

1 For example, by using a slightly longer secret key containing a key to a one-time MAC in
addition to the one-time-pad key, one can trivially add authentication to this application.

Detection of Algebraic Manipulation with Applications 473

longer than the length of s. This construction is close to optimal since we prove a lower
bound of 2κ on the amount of overhead that an AMD encoding must add to the size
of the source. As a concrete example, in order to robustly secret share a 1 megabyte
message with security level δ = 2−128, our best construction adds fewer than 300 bits
by encoding the message, whereas previous constructions (described below) add nearly
2 megabytes.

Relation to Prior Work on Secret Sharing. Although AMD codes were never for-
mally defined in previous work, some constructions of AMD codes have appeared,
mostly in connection with making secret sharing robust [19,6,20]. Although some of
these constructions are essentially optimal, all of them are largely inflexible in that the
error probability δ is dictated by the cardinality of the source space S: δ ≈ 1/|S|. In
particular, this implies that when the cardinality of S is large, the known constructions
may introduce significantly more overhead than what is needed to achieve a particular
security threshold. In contrast, our constructions can accommodate arbitrary choices of
security δ and message length u.

For example, Cabello, Padró and Sáez [6] (see also [22,21]) proposed an elegant
construction of a robust secret sharing scheme which implicitly relies on the following
AMD code. For any finite field F of order q, the encoding of the secret s ∈ F is a triple
(s, x, x · s), where x ∈R F. This code achieves security δ = 1/q and optimal message
overhead 2 log(q) = 2 log(1/δ) for this value of δ. However, as already mentioned,
it is far from optimal when we only desire a security level δ � 1/q, making this
construction inflexible for many applications.

In the context of robust secret sharing, the inflexibility issue mentioned above has
recently been addressed in a paper by Obana and Araki [18], where a flexible robust
secret sharing scheme (in fact, an AMD code in our terminology) was proposed and
claimed to be “proven” secure. However, in the full version of this paper [8], we give
an attack on their construction showing it to be completely insecure.

1.2 Fuzzy Extractors

A less obvious example comes from the domain of fuzzy extractors [10]. A fuzzy extrac-
tor extracts a uniformly random key R from some non-uniform secret w (e.g., biometric
data) in such a way that this key can be recovered from any w′ sufficiently close to w in
some appropriate metric space.2 To accomplish this task, the fuzzy extractor also com-
putes a public helper string P in addition to the extracted key R, and then recovers R
using w′ and P . In their original paper, Dodis et al. [10] constructed fuzzy extractors for
the Hamming and several other metrics. Unfortunately, the original notion of a fuzzy
extractor critically depends on the value of P being stored on a tamper-proof (though
public) device. As observed by Boyen et al. [5,4], this severely limits the usability of the
concept. To address this problem, [5,4] introduced a stronger notion of a robust fuzzy
extractor, where any tampering of P will be detected by the user, even with an imper-
fect reading w′ of w! Thus, P can be stored on a potentially untrusted server without
the fear that a wrong key R̃ �= R will be extracted.

2 For now and much of the paper, we will concentrate on the Hamming space over {0, 1}n, later
pointing out how to extend our results to related metrics.

474 R. Cramer et al.

Prior Work and Our Result. All of the prior work on robust fuzzy extractors uses
some form of a message authentication code (MAC) keyed by w to authenticate the
public parameters P . Such codes are difficult to construct since w is not a uniformly
random secret, and the authentication information needs to be verifiable using an im-
perfect reading w′ of w.

Nevertheless, Boyen et al. [4] gave a generic transformation which makes a fuzzy
extractor robust in the random oracle model, without considerably sacrificing any of
the parameters. In the plain model, Dodis et al. [11] showed how to achieve robustness
if the initial secret w contains an entropy rate of at least one half (i.e. the entropy of
the secret is at least half the length of the secret). The work of [12] shows that this
requirement is necessary for information theoretic security in the plain model, even if
no errors are allowed (i.e., w = w′). Moreover, when the secret does meet this entropy
rate threshold, robustness in [11] is only achieved at a large cost in the length of the
extracted random key, as compared to the optimal non-robust extractors for the same
entropy threshold.

In this work we take a difference approach and use a portion of the extracted ran-
domness R to authenticate the public parameters P . Of course, using a MAC naively
is insecure since the adversary who modifies P to P̃ will cause the extraction of some
R̃ �= R and we cannot guarantee that the adversary is unable to produce an authentica-
tion tag for P̃ under the key R̃.

We overcome this difficulty by carefully analyzing the effects of modifying the pub-
lic helper P on the extracted randomness R. We construct fuzzy extractors with a spe-
cial linearity property so that any modification of P into P̃ can be essentially subsumed
by giving the attacker the ability to control the difference ∆ between the original key
R extracted from w, P and the “defective” key R̃ = R + ∆ extracted from w′, P̃ .
Thus, on a very high level, storing the public helper P on a public and unprotected
storage can be viewed as implicitly storing the extracted key R on our abstract storage
device Σ(G).

In this application one does not have the freedom of storing some encoding of R on
Σ(G), so AMD codes are not directly applicable. Instead, we introduce a related notion
called a (one-time) message authentication code with key manipulation security (KMS-
MAC). Abstractly, this authentication code is keyed by a random element of some finite
group G, and remains secure even if the key is stored in Σ(G) so that an adversary can
tamper with it by adding an offset ∆. We show how to construct KMS-MACs using
appropriate AMD codes.3 Using a KMS-MAC, we can turn any fuzzy extractor with the
above mentioned special linearity property into a robust fuzzy extractor with essentially
the same parameters and no restrictions on the entropy rate of the secret w. However,
this is (necessarily) done in the Common Reference String (CRS) model, as we explain
below.

COMMON REFERENCE STRING MODEL. Unfortunately, the impossibility result of
[12] guarantees that fuzzy extractors with the special linearity property cannot be con-
structed in the plain model since they imply robust fuzzy extractors for secrets with

3 The idea of a KMS-MAC is implicitly used in [11] with a construction that is indeed quite
similar to ours. However, the construction there is more complicated since the key is not guar-
anteed to be uniformly random.

Detection of Algebraic Manipulation with Applications 475

entropy rate below a half. We overcome this pessimistic state of affairs by building such
fuzzy extractors (and hence corresponding robust fuzzy extractors) in the Common Ref-
erence String (CRS) model. The common reference string can be chosen once when
the system is designed and can be hardwired/hardcoded into all hardware/software im-
plementing the system. Moreover, the CRS can be published publicly and we allow the
attacker to observe (but not modify) it.4 Our CRS is a random bitstring - it has no trap-
doors and we do not require any ability to “program” it. Since most users do not create
their own hardware/software but instead assume that a third party implementation is
correct, the assumption that this implementation also contains an honestly generated
random string does not significantly increase the amount of trust required from users.
We do assume that the probability distribution from which the secret w is chosen is
independent of the CRS. This is a very natural assumption for biometrics and many
other scenarios. However, it also means that our scheme is not applicable in the setting
of exposure resilient cryptography (see [9]) where the attacker can learn some function
of the secret after seeing the CRS.

What our result shows, however, is that this seemingly minor addition not only al-
lows us to achieve robustness without additional restrictions on the entropy rate of
the secret, but also to nearly match the extracted key length of non-robust fuzzy ex-
tractor constructions (or the robust fuzzy extractor constructions in the random oracle
model [4]).

2 Algebraic Manipulation Detection Codes

Definition 1. An (S, G, δ)-algebraic manipulation detection code, or (S, G, δ)-AMD
code for short, is a probabilistic encoding map E : S → G from a set S of size S
into an (additive) group G of order G, together with a (deterministic) decoding function
D : G → S∪{⊥} such that D(E(s)) = s with probability 1 for any s ∈ S. The security
of an AMD code requires that for any s ∈ S, ∆ ∈ G, Pr[D(E(s) + ∆) �∈ {s, ⊥}] ≤ δ.

An AMD code is called systematic if S is a group, and the encoding is of the form

E : S → S × G1 × G2, s 	→ (s, x, f(x, s))

for some function f and x ∈R G1. The decoding function of a systematic AMD code is
naturally given by D(s′, x′, σ′) = s′ if σ′ = f(x′, s′) and ⊥ otherwise.

Intuitively, E(s) can safely be stored on a private storage device Σ(G) so that an adver-
sary who manipulates the stored value by adding an offset ∆, cannot cause it to decode
to some s′ �= s. It is also possible to define a weak AMD code where security only
holds for a random s ∈ S rather than an arbitrary one. We focus of regular (strong)
AMD codes and mention some constructions and applications of weak AMD codes in
the full version of this work [8].

From a practical perspective, it is typically not sufficient to have one particular code,
but rather one would like to have a class of codes at hand such that for every choice u

4 We remark that assuming tamper-proof storage of the CRS, which can be shared by many
users, is very different than assuming tamper-proof storage of a “user-specific” helper string
P . Indeed, the former can be hardwired into the system, and the latter can not.

476 R. Cramer et al.

for the bit-length of the source s and for every choice κ of the security level, there exists
a code that “fits” these parameters. This motivates the following definition:

Definition 2. An AMD code family is a class of AMD codes such that for any κ, u ∈ N

there exists an (S, G, δ)-AMD code in that class with S ≥ 2u and δ ≤ 2−κ.

We point out that in this definition, the group G can be different for every AMD code
in the family and is left unspecified. In our constructions the group G will often be
the additive group of the vector space F

d for some field F. Specifically, we will often
focus on the field F2d (as an additive group, this is equivalent to F

d
2) so addition (and

subtraction) is just bitwise-xor of d bit long strings.
We would like the construction of an AMD code to be close to optimal in that G

should not be much larger than S . We consider the tag size � of a (S, G, δ)-AMD
code defined as � = log(G) − log(S). Intuitively, this denotes the number of bits that
the AMD code appends to the source. More generally we define the efficiency of an
AMD code family as follows.

Definition 3. The effective tag size �∗(κ, u) with respect to κ, u ∈ N of an AMD
code family is defined as �∗(κ, u) = min{log(G)} − u where the minimum is over all
(S, G, δ)-AMD codes in that class with S ≥ 2u and δ ≤ 2−κ.

In the full version of this work [8], we prove the following lower bound on the effective
tag size of an AMD code family.

Theorem 1. Any AMD code family has an affective tag size lower bounded by
�∗(κ, u) ≥ 2κ − 2−u+1 ≥ 2κ − 1.

2.1 Optimal and Flexible Construction

We are now ready to present a construction of AMD codes which is both optimal and
flexible. As noted in the introduction, a similar, but more complicated construction ap-
peared in [11], though it was presented as part of a larger construction, and its properties
were not stated explicitly as a stand-alone primitive. The two constructions were dis-
covered concurrently and independently from each other.

Let F be a field of size q and characteristic p, and let d be any integer such that d + 2
is not divisible by p. Define the function E : F

d → F
d×F×F by E(s) = (s, x, f(x, s))

where

f(x, s) = xd+2 +
d∑

i=1

six
i

Theorem 2. The given construction is a systematic (qd, qd+2, (d + 1)/q)-AMD code
with tag size � = 2 log q.

Proof. We wish to show that for any s ∈ F and ∆ ∈ F
d+2: Pr[D(E(s) + ∆) �∈

{s, ⊥}] ≤ δ. It is enough to show that for any s′ �= s and any ∆x, ∆f ∈ F: Pr[f(x, s)+
∆f = f(x + ∆x, s′)] ≤ δ. Hence we consider the event

xd+2 +
d∑

i=1

six
i + ∆f = (x + ∆x)d+2 +

d∑
i=1

s′i(x + ∆x)i (1)

Detection of Algebraic Manipulation with Applications 477

We rewrite the right hand side of (1) as xd+2+(d+2)∆xxd+1+
∑d

i=1 s′ix
i +∆x ·p(x),

where p(x) is some polynomial of degree at most d in x. Subtracting this term from both
sides of equation (1), xd+2 cancels out and we get

−(d + 2)∆xxd+1 +
d∑

i=1

(si − s′i)x
i − ∆x · p(x) + ∆f = 0 (2)

We claim that the left side of equation 2 is a non-zero polynomial of degree at most
d + 1. To see this, let us consider two cases:

1. If ∆x �= 0, then the leading coefficient is −(d + 2)∆x �= 0 (here we use the fact
that d + 2 is not divisible by the characteristic of the field).

2. If ∆x = 0, then (2) simplifies to
∑d

i=1(si−s′i)x
i+∆f = 0, which is not identically

zero since we assumed that s �= s′.

This shows that (2) has at most d + 1 solutions x. Let B be the set of such solutions so
|B| ≤ d + 1. Then

Pr[D(E(s) + ∆) �∈ {s, ⊥}] = Pr
x←F

[x ∈ B] ≤ d + 1
q

��

Notice, the elements of the range group G = F
d × F × F can be conveniently viewed

as elements of Z
t
p, for some t (recall, p is the characteristic of F). Thus, addition in

G simply corresponds to element-wise addition modulo p. When p = 2, this simply
becomes the XOR operation.

Quantifying the above construction over all fields F and all values of d (such that
d + 2 is not divisible by p), we get a very flexible AMD family. Indeed, we show that
the effective tag size of the family is nearly optimal.

Corollary 1. The effective tag size of the AMD code family is �∗(κ, u) ≤ 2κ +
2 log(u

κ + 3) + 2. Moreover, this can be achieved with the range group G being the
group of bitstrings under the bitwise-xor operation.5

We prove the above corollary in the full version of our work [8].

3 Application to Robust Secret Sharing

A secret sharing scheme is given by two probabilistic functions. The function Share
maps a secret s from some group G to a vector S = (S1, . . . , Sn) where the shares
Si are in some group Gi. The function Recover takes as input a vector of shares S̃ =
(S̃1, . . . , S̃n) where S̃i ∈ Gi ∪{⊥} and outputs s̃ ∈ G ∪{⊥}. A secret sharing schemes

5 We can also imagine situations where the “base” field F
′ of some characteristic p is given to

us, and our freedom is in choosing the extension field F and the appropriate value of d so that
S can be embedded into F

d. Under such restrictions, the effective tag size becomes roughly
2κ + 2 log(u) + O(log p).

478 R. Cramer et al.

is defined over some monotone access structure which maps subsets B ⊆ {1, . . . , n} to
a status: qualified,unqualified, ⊥. The correctness property of such a scheme
states that for any s ∈ G and any qualified set B, the following is true with probability
1. If S ← Share(s) and S̃ is defined to be S̃i = Si for each i ∈ B and S̃i = ⊥ for each
i �∈ B, then Recover(S̃) = s. Similarly, the privacy of such a scheme states that for any
unqualified subset A, the shares {Si}i∈A reveal no information about the secret s (this
is formalized using standard indistinguishability).

Thus, qualified sets of players can recover the secret from their pooled shares, while
unqualified subsets learn no information about the secret. Sets of players which are
neither qualified nor unqualified might not be able to recover the secret in full but might
gain some partial information about its value.

A linear secret sharing scheme has the property that the Recover function is linear:
given any s ∈ G, any S ∈ Share(s), and any vector S′ (possibly containing some
⊥ symbols), we have Recover(S + S′) = s + Recover(S′), where vector addition is
defined element-wise and addition with ⊥ is defined by ⊥ + x = x + ⊥ = ⊥ for all x.

Examples of linear secret sharing schemes include Shamir’s secret sharing scheme
[24] where the access structure is simply a threshold on the number of players, or a
scheme for a general access structure in [15].

We consider a setting where an honest dealer uses a secret sharing scheme to share
some secret s among n players. Later, an outside entity called the reconstructor con-
tacts some qualified subset B of the players, collects their shares and reconstructs the
secret. The security of the scheme ensures that, as long as the set A ⊆ B of players
corrupted by an adversary is unqualified, the adversary gets no information about the
shared secret. However, if the honest players B\A also form an unqualified subset,
then the adversary can enforce the reconstruction of an incorrect secret by handing in
incorrect shares. In fact, if the reconstructor contacts a minimal qualified subset of the
players, then even a single corrupted player can cause the reconstruction of an incorrect
secret. Robust secret sharing schemes (defined in [26,3]) ensure that such attacks can’t
succeed: as long as the adversary corrupts only an unqualified subset of the players, the
reconstructor will never recover a modified version of the secret.

Definition 4. A secret sharing scheme is δ-robust if for any unbounded adversary A
who corrupts an unqualified set of players A ⊆ {1, . . . , n} and any s ∈ G, we have the
following. Let S ← Share(s) and S̃ be a value such that, for each 1 ≤ i ≤ n,

S̃i =
{

A(i, s, {Si}i∈A) if i ∈ A
Si or ⊥ if i �∈ A

Then Pr[Recover(S̃) �∈ {s, ⊥}] ≤ δ.

We note that in a (non-robust) linear secret sharing scheme, when the adversary modifies
shares by setting S̃i = Si+∆i then, by linearity of the scheme, the adversary also knows
the difference ∆ = s̃ − s between the reconstructed secret s̃ and the shared secret s.
This implies that we can think of s as being stored in an abstract storage device Σ(G),
which is private for an adversary who corrupts an unqualified subset of the players,
yet is not-robust in that the adversary can specify additive offsets so that Σ(G) stores
s + ∆. This immediately implies that we can turn any linear secret sharing scheme into
an δ-robust secret sharing scheme using AMD codes.

Detection of Algebraic Manipulation with Applications 479

Theorem 3. Let (Share, Recover) denote a linear secret sharing scheme with domain
G of order G, and let (E , D) be an (S, G, δ)-AMD code with range G. Then the scheme
(Share∗, Recover∗) given by Share∗(s)=Share(E(s)), Recover∗(S̃) = D(Recover(S̃))
is an δ-robust secret sharing scheme.

Proof. Let S = Share∗(S) and let S̃ be a vector meeting the requirements of Def. 4.
Let S′ = S̃ − S. The vector S′ contains 0 for honest players, ⊥ for absent players, and
arbitrary values for dishonest players. We have:

Pr[Recover∗(S̃) �∈ {s, ⊥}] = Pr[D(Recover(S) + Recover(S′)) �∈ {s, ⊥}]
= Pr[D(E(s) + ∆) �∈ {s, ⊥}]

where the value ∆ = Recover(S′) is determined by the adversarial strategy A. By
the privacy of the secret sharing scheme, it is only based on the adversary’s a-priori
knowledge of the shared secret and is otherwise independent of the value E(s). The
conclusion then follows immediately from the definition of AMD codes. ��

For Shamir secret sharing (and similar schemes), where the group G can be an arbitrary
field of size q ≥ n, we can use the optimal and flexible AMD code construction from
Section 2.1. In doing so, each player’s share would increase by roughly 2 log(1/δ) +
2 logu bits (where u in the length of the message) as compared to the non-robust case.

ROBUST INFORMATION DISPERSAL. Systematic AMD codes have an additional ben-
efit in that the encoding leaves the original value s intact. This could be beneficial in
the scenario where players do not care about the privacy of s, but only about its au-
thenticity. In other words, it is safe to use information dispersal on s or, alternatively, s
can be stored in some public non-robust storage. Using a systematic AMD code which
maps s to (s, x, f(x, s)), the players can just secret share the authentication information
(x, f(x, s)) and use it later to authenticate s.Even when the value s is large, the authen-
tication information (x, f(x, s)) remains relatively small. Concretely, to authenticate an
u-bit secret s, we only need to secret share roughly 2(log(1/δ) + log u) bits.

SECURE AND PRIVATE STORAGE / SECURE MESSAGE TRANSMISSION. In some ap-
plications we want to make sure that, as long as the honest players form a qualified
set and the dishonest players form an unqualified set, the correct secret will always be
reconstructed (we do not allow the option of reconstructing ⊥). This problem is known
under the name (unconditional) secure information dispersal [23,16] or non-interactive
secure message transmission [14,13]. There is a generic, though for large player sets
computationally inefficient, construction based on a robust secret sharing [7]: for every
qualified subset of the involved players, invoke the robust reconstruction until for one
set of shares no foul play is detected and a secret is reconstructed. If the robust secret
sharing scheme is 1/2κ+n-secure, then this procedure succeeds in producing the correct
secret except with probability at most 1/2κ.

ANONYMOUS MESSAGE TRANSMISSION. In recent work [2], Broadbent and Tapp
explicitly used the notion of AMD codes introduced in this paper (and our construction
of them) in the setting of unconditionally secure multi-party protocols with a dishonest
majority. Specifically, AMD codes allowed them to obtain robustness in their protocol

480 R. Cramer et al.

for anonymous message transmission. This protocol, and with it the underlying AMD
code, was then used in [1] as a building block to obtain a protocol for anonymous
quantum communication.

4 Message Authentication Codes with Key Manipulation Security

As a notion related to AMD codes, we define message authentication codes which re-
main secure even if the adversary can manipulate the key. More precisely, we assume
that (only) the key of the authentication code is stored on an abstract private device
Σ(G) to which the adversary has algebraic manipulation access, but the message and
the authentication tag are stored publicly and the adversary can modify them at will.
This is in contrast to AMD codes where the entire encoding of the message is stored in
Σ(G).

Definition 5. An (S, G, T, δ)-message authentication code with key manipulation se-
curity (KMS MAC) is a function MAC : S × G → T which maps a source message in
a set S of size S to a tag in the set T of size T using a key from a group G of order G.
We require that for any s �= s′ ∈ S, any σ, σ′ ∈ T and any ∆ ∈ G

Pr[MAC(s′, K + ∆) = σ′ | MAC(s, K) = σ] ≤ δ

where the probability is taken over a uniformly random key K ∈R G.

Intuitively, the adversary get some message/tag pair (s, σ). The adversary wins if he can
produce an offset ∆ and a message s′ �= s along with a tag σ′ such that the pair (s′, σ′)
verifies correctly under the key K + ∆. The above definition guarantees that such an
attack succeeds with probability at most δ. In fact, the definition is slightly stronger than
required, since we quantify over all possible tags σ of the message s (rather than just
looking at a randomly generated one). However, since the above definition is achievable
and simpler to state, we will consider this stronger notion only. We can also think of a
KMS-MAC as a generalization of a standard message authentication code, which only
guarantees security for ∆ = 0.

As with AMD codes, we will consider the notion of a KMS-MAC family. For effi-
ciency, we are interested in minimizing the tag size log(T) and the key size log(G). The
following well known lower bounds on standard message authentication codes (e.g., see
[25]) obviously also apply to the stronger notion of a KMS-MAC.

Lemma 1. For any authentication code with security δ ≤ 2−κ, the key size log(G)
must be at least 2κ, and the tag size log(T) must be at least κ.

We now give a construction of a KMS-MAC out of any systematic AMD code.

Theorem 4. Let E : S → S × G1 × G2, s 	→ (s, x, f(x, s)) be a systematic
(|S|, |S|||G1||G2|, δ)-AMD code. Then the function MAC : S × (G1 × G2) → G2 yields
a (|S|, |G1||G2|, |G2|, δ)-KMS-MAC:

MAC(s, (x1, x2)) = f(x1, s) + x2

Detection of Algebraic Manipulation with Applications 481

Proof. Assume K = (x1, x2) ∈ G1 × G2 is chosen uniformly at random, and consider
arbitrary ∆ = (∆1, ∆2) ∈ G1 × G2, σ, σ′ ∈ G2, and s, s′ ∈ S, where s �= s′.

The event MAC(s, K) = σ is the event f(x1, s) + x2 = σ, which is the same as
x2 = −f(x1, s)+ σ. Let us call this event E1. Similarly, the event MAC(s′, K + ∆) =
σ′ is the event f(x1 +∆1, s

′)+(x2 +∆2) = σ′, which is the same as f(x1 +∆1, s
′) =

−x2 + σ′ − ∆2. Let us call this event E2. Thus, we need to bound Pr[E2 | E1].
Let us denote ∆f = −σ + σ′ − ∆2 and define an auxiliary event E′2 as f(x1 +

∆1, s
′) = f(x1, s) + ∆f . We claim that Pr[E2 | E1] = Pr[E′2 | E1]. Indeed, if

x2 = −f(x1, s) + σ, then

−x2+σ′−∆2 =−(−f(x1, s)+σ)+σ′−∆2 = f(x1, s)+(−σ+σ′−∆2)=f(x1, s)+∆f

Finally, notice that E′2 and E1 are independent. Indeed, since E′2 does not depend on x2,
and x2 is chosen at random from G2, whether or not x2 is equal to −f(x1, s) + σ does
not affect any other events not involving x2. Thus, Pr[E′2 | E1] = Pr[E′2]. Therefore,
we have

Pr[MAC(s′, K+∆) = σ′ | MAC(s, K)=σ] = Pr[f(x1+∆1, s
′)=f(x1, s)+∆f] ≤ δ

where the last inequality follows directly from the security of the AMD code, since
s �= s′. ��

Using the systematic AMD code family constructed in Section 2.1, we get a nearly
optimal KMS-MAC family. In particular, plugging in the systematic AMD code family
from Theorem 2 and using the parameters obtained in Corollary 1, we get:

Corollary 2. There is a KMS-MAC family such that, for any κ, u ∈ N, the family
contains an (S, G, T, δ)-KMS-MAC (with respect to XOR operation) with δ ≤ 2−κ,
S ≥ 2u and

log(G) ≤ 2κ + 2 log (u/κ + 3) + 2
log(T) ≤ κ + log (u/κ + 3) + 1

5 Application to Robust Fuzzy Extractors

We start by reviewing the some basic definitions needed to define the notion of fuzzy
extractors from [10].

MIN-ENTROPY. The min-entropy of a random variable X is
H∞(X) = − log(maxx PrX [x]). Following [10], we define the (average) conditional
min-entropy of X given Y as H̃∞(X | Y) = − log(Ey←Y (2−H∞(X|Y =y))) (here
the expectation is taken over y for which Pr[Y = y] is nonzero). This definition is
convenient for cryptographic purposes, because the probability that the adversary will
predict X given Y is 2−H̃∞(X|Y). Finally, we will use [10, Lemma 2.2], which states
that H̃∞(X | Y) ≥ H∞((X, Y)) − λ, where 2λ is the number of elements in Y .

SECURE SKETCHES. Let M be a metric space with distance function dis. Informally,
a secure sketch enables recovery of a string w ∈ M from any “close” string w′ ∈ M
without leaking too much information about w.

482 R. Cramer et al.

Definition 6. An (m, m′, t)-secure sketch for a metric space M is a pair of efficient
randomized procedures (SS, Rec) s.t.:

1. The sketching procedure SS on input w ∈ M returns a bit string s ∈ {0, 1}∗. The
recovery procedure Rec takes an element w′ ∈ M and s ∈ {0, 1}∗.

2. Correctness: If dis(w, w′) ≤ t then Rec(w′, SS(w)) = w.
3. Security: For any distribution W over M with min-entropy m, the (average) min-

entropy of W conditioned on s does not decrease very much. Specifically, if
H∞(W) ≥ m then H̃∞(W | SS(W)) ≥ m′.

The quantity m − m′ is called the entropy loss of the secure sketch.

As already mentioned in Footnote 2, we will concentrate on the Hamming metric over
{0, 1}n, later extending our results to several related metrics. For this metric we will
make use of the syndrome construction from [10]. For our current purposes, though, we
only need to know that this construction is a linear transformation over F

n
2 .

STATISTICAL DISTANCE. Let X1, X2 be two probability distributions over some space
S. Their statistical distance is SD (X1, X2)

def= 1
2

∑
s∈S | PrX1 [s] − PrX2 [s]|. If

SD (X1, X2) ≤ ε, we say they are ε-close, and write X1 ≈ε X2. Note that ε-close dis-
tributions cannot be distinguished with advantage better than ε even by a computation-
ally unbounded adversary. We use the notation Ud to denote (fresh) uniform distribution
over {0, 1}d.

RANDOMNESS EXTRACTORS FOR AVG. MIN ENTROPY. A randomness extractor, as
defined in [17], extracts a uniformly random string from any secret with high enough
entropy using some randomness as a seed. Here we include a slightly altered definition
to ensure that we can extract randomness from any secret with high enough average
min-entropy.

Definition 7. A function Ext : {0, 1}n × {0, 1}d → {0, 1}� is called a (m, 	, ε)-
extractor if for all random variables X and Y such that X ∈ {0, 1}n and H̃∞(X |
Y) ≥ m, and I ← Ud, we have SD ((Y, Ext(X ; I), I) , (Y, U�, Ud)) ≤ ε.

It was shown by [10, Lemma 2.4] that universal hash functions are good extractors in
the above sense. In particular, the construction Ext : {0, 1}n × {0, 1}n → {0, 1}�,
defined by Ext(x, i) def= [x · i]�1 is a (m, 	, ε)-extractor for any 	 ≤ m − 2 log(1/ε). Here
the multiplication x · i is performed in the field F2n and the notation [z]�1 denotes the
first 	 bits of z.

FUZZY EXTRACTORS. A fuzzy extractor extracts a uniformly random key from some
secret w in such a way that the key can be recovered from any w′ close to w. The notion
was first defined in [10]. Here we alter the definition to allow for a public common
reference string (CRS).

Definition 8. An (m, 	, t, ε)-fuzzy extractor for a metric space M is defined by ran-
domized procedures (Init, Gen, Rep) with the following properties:

Detection of Algebraic Manipulation with Applications 483

1. The procedure Init takes no inputs and outputs a string CRS ∈ {0, 1}∗.
2. The generation procedure Gen, on input w ∈ M, CRS ∈ {0, 1}∗, outputs an

extracted string R ∈ {0, 1}� and a helper string P ∈ {0, 1}∗. The reproduction
procedure Rep takes w′ ∈ M and P, CRS ∈ {0, 1}∗ as inputs. It outputs w̃ ∈
M ∪ {⊥}.

3. Correctness: If dis(w, w′) ≤ t and (R, P) ← Gen(w, CRS), then Rep(w′, P,
CRS) = R.

4. Privacy: For any distribution W with min-entropy m over the metric M , the string
R is close to uniform even conditioned on the value of P . Formally, if H∞(W) ≥
m and (R, P) ← Gen(W, CRS), then (R, P, CRS) ≈ε (U�, P, CRS).

Composing an (m, m′, t)-secure sketch with a (m′, 	, ε)-extractor Ext : M ×
{0, 1}d → {0, 1}� (as defined in Def. 7) yields a (m, 	, t, ε)-fuzzy extractor [10]. The
construction of [10] has an empty CRS and sets P = (SS(w), i) and R = Ext(w; i)
for a random i. However, it is easy to see that the construction would remain secure if
the extractor seed i was contained in the CRS and P was just SS(w). One advantage of
such approach would be that the Gen and Rep algorithms are then deterministic which
might make them easier to implement in hardware. Another advantage is that it would
eventually allow us to overcome the impossibility barrier of robust fuzzy extractors
(defined next) in the plain model.

5.1 Definition of Robust Fuzzy Extractor in CRS Model

Fuzzy extractors allow one to reveal P publicly without sacrificing the security of the
extracted randomness R. However, there are no guarantees when an active attacker
modifies P . To prevent such attacks, robust fuzzy extractors were defined and con-
structed in [4,11]. Here we define robust fuzzy extractors in the CRS model.

For two (correlated) random variables W, W ′ over a metric space M, we say
dis(W, W ′) ≤ t if the distance between W and W ′ is at most t with probability one.
We call (W, W ′) a (t, m)-correlated pair if dis(W, W ′) ≤ t and H∞(W) ≥ m. It
will turn out that we can get more efficient constructions if we assume that the random
variable ∆ = W − W ′ indicating the errors between W and W ′ is independent of
W (this was the only case considered by [4]). However, we do not want to make this
assumption in general since it is often unlikely to hold. We define the family Fall

t,m to be

the family of all (t, m)-correlated pairs (W, W ′) and the family F indep
t,m to be the family

of (t, m)-correlated pairs for which ∆ = W − W ′ is independent of W .

Definition 9. An (m, 	, t, ε, δ)-robust fuzzy extractor for a metric space M and a fam-
ily F of (t, m)-correlated pairs is an (m, 	, t, ε)-fuzzy extractor over M such that for
all (W, W ′) ∈ F and all adversaries A

Pr
[
Rep(P̃ , w′, CRS) �= ⊥

P̃ �= P

∣∣∣∣ CRS ← Init(), (w, w′) ← (W, W ′)
(P, R) ← Gen(w, CRS), P̃ ← A(P, R, CRS)

]
≤ δ

We call the above notion post-application robustness and it will serve as our main
definition. We also consider a slightly weaker notion, called pre-application robustness
where we do not give R to the adversary A.

484 R. Cramer et al.

The distinction between pre-application and post-application robustness was already
made in [4,11]. Intuitively, when a user Alice extracts a key using a robust fuzzy extrac-
tor, she may use this key for some purpose such that the adversary can (partially) learn
the value of the key. The adversary can then mount an attack that modifies P based on
this learned value. For post-application security, we insist that robustness is preserved
even in this setting. For pre-application security, we assume that the adversary has no
partial information about the value of the key.

5.2 Construction

We are now ready to construct robust fuzzy extractors in the CRS model. First, let
us outline a general idea for the construction using an extractor Ext, a secure sketch
(SS, Rec) and a one-time (information-theoretic) message authentication code MAC. A
pictorial representation of the construction is shown in Figure 1 and pseudo-code is
given below.

Init() outputs a random seed i for the extractor Ext as a shared CRS.
Gen(w, i) does the following:

R ← Ext(w, i) which we parse as R = (Rmac, Rout).
s ← SS(w), σ ← MAC(s, Rmac), P := (s, σ).
Output (P, Rout).

Rep(w′, P̃ , i) does the following:
Parse P̃ = (s̃, σ̃). Let w̃ ← Rec(w′, s̃). If d(w̃, w′) > t then output ⊥.
Using w̃ and i, compute R̃ and parse it as R̃out, R̃mac.
Verify σ̃ = MAC(s̃, R̃mac). If equation holds output R̃out, otherwise output ⊥.

The idea is fairly intuitive. First, we extract randomness from w using the public
extractor seed i. Then we use part of the extracted randomness Rout as the output, and
the remaining part Rmac as the key for the one-time information-theoretic MAC to
authenticate the secure sketch s of w.

However, in arguing robustness of the reconstruction phase, we notice that there is
a problem. When an adversary modifies s to some value s̃ then this will force the user
to incorrectly recover w̃ �= w, which in turn leads to the reconstruction of R̃ �= R and
R̃mac �= Rmac. So the key R̃mac, which is used to verify the authenticity of s, will
itself be modified when s is!

To break the circularity, we will need to use a special linearity property of the fuzzy
extractor. Namely, we want yo make sure that an adversary who modifies s to s̃ will
know the offset R∆̃

mac = R̃mac − Rmac. We formalize this as follows.

FUZZY EXTRACTOR LINEARITY PROPERTY: For any w, w′, i, let ∆ = w′ − w,
s = SS(w), R = Ext(w, i). For any s̃, let w̃ = Rec(w′, s̃) and R̃ = Ext(w̃, i). Then,
there is a deterministic function g such that R∆̃ = R̃ − R = g(∆, s, s̃, i).

It is easy to show that, using the syndrome based construction of a secure sketch
and the extractor Ext(x, i) def= [x · i]�1, the resulting fuzzy extractor satisfies the above
linearity property. In the full version of this paper, we give a more general treatment

Detection of Algebraic Manipulation with Applications 485

Rout

Rmac

s
σ PSS s

Mac
Ext

w
i

Rout

macR
~P

��
��
��
��

Rec
s

Ext
~w

w’

~
yes/no

/i
~Rout

~
~ Ver
σ~

Generation Reconstruction

Fig. 1. Construction of Robust Fuzzy Extractor

showing that many other natural secure sketch and extractor constructions produce a
fuzzy extractor with the above property.

Given a fuzzy extractor with the above linearity property, we can can think of Rmac

as being stored in an abstract device Σ(G) which is private but only weakly robust in
that the adversary can specify an additive offset by modifying s. We can then use a
KMS-MAC which remains secure even when the key is stored on such a device. Hence,
the adversary will not be able to come up with a valid pair (s̃, σ̃) where s̃ �= s. We
formalize this intuition in the next section.

5.3 Security of Construction and Parameters

We are now show that the construction outlined in Section 5.2 indeed satisfies the defi-
nition of a robust fuzzy extractor. Let (SS, Rec) be a (m, m′, t)-secure sketch and let u
be an upper bound on the size of SS(w). Let MAC be a (S, G, T, δ)-KMS-MAC, such
that S ≥ 2u. Assume that the keys for MAC come from a group G = {0, 1}k under
the XOR operation so that G = 2k. Let F be a class of (t, m)-correlated variables
(W, W ′) and let m̂ be the largest value such that m̂ ≤ H̃∞(W |SS(W), W − W ′) for
any (W, W ′) ∈ F . Let Ext be a (m̂, 	, ε)-strong randomness extractor seeded by ran-
domness i of length d. Lastly, assume that our secure sketch and randomness extractor
produce a fuzzy extractor which satisfies the above defined fuzzy extractor linearity
property.

Theorem 5. When instantiated with the primitives Ext, MAC and (SS, Rec), our con-
struction yields a (m, 	 − k, t, 2ε, δ + ε)-robust-fuzzy extractor for the family F .

Proof. The correctness property of the fuzzy extractor is guaranteed by the correct-
ness of the secure sketch. The privacy property follows from the security of the ran-
domness extractor. Recall, that the adversary can observe i, s, σ. Since, by definition,
m̂ ≤ H̃∞(W |SS(W)) the distribution (i, s, Rmac, Rout) can be distinguished from
(i, s, Uk, U�−k) with probability at most ε. In particular,

(i, s, Rmac, Rout) ≈ε (i, s, Uk, U�−k) ≈ε (i, s, Rmac, U�−k)

and so (i, s, Rmac, Rout) ≈2ε (i, s, Rmac, U�−k) by the triangle inequality. An ad-
versary given i, s, σ is weaker than an adversary given i, s, Rmac and even this latter
adversary can distinguish Rout from R�−k with probability at most 2ε.

486 R. Cramer et al.

For robustness, consider any pair (W, W ′) ∈ F and any adversary A attacking the
robustness of the scheme. Then

Pr[A succeeds] = Pr

⎡
⎣Rep(P̃ , w′, CRS) �= ⊥

and P̃ �= P

∣∣∣∣∣∣
CRS ← Init(), (w, w′) ← (W, W ′)

(P, R) ← Gen(w, CRS)
P̃ ← A(CRS, P, R)

⎤
⎦

= Pr

⎡
⎢⎢⎢⎢⎣

MAC(s̃, R̃mac) = σ̃

(s̃, σ̃) �= (s, σ)

∣∣∣∣∣∣∣∣∣∣

i ← Ud, (w, w′) ← (W, W ′)
(Rmac, Rout) := Ext(w, i)

s := SS(w), σ := MAC(s, Rmac)
(s̃, σ̃) ← A(i, s, σ, Rout)

w̃ := Rec(w′, s̃), (R̃mac, R̃out) := Ext(w̃, i)

⎤
⎥⎥⎥⎥⎦

Now we use the fuzzy extractor linearity property which defines the deterministic func-
tion g such that

Pr[A succeeds] = Pr

⎡
⎢⎢⎢⎢⎣

MAC(s̃, R̃mac) = σ̃
(s̃, σ̃) �= (s, σ)

∣∣∣∣∣∣∣∣∣∣

i ← Ud, (w, w′) ← (W, W ′)
(Rmac, Rout) := Ext(w, i)

s := SS(w), σ := MAC(s, Rmac)
(s̃, σ̃) ← A(i, s, σ, Rout)

∆ := w′ − w, R̃mac := Rmac + g(∆, s, s̃, i)

⎤
⎥⎥⎥⎥⎦

On the right hand side of the inequality, the pair (w, w′) and the value i determine the
values ∆, s, Rmac, Rout. But the distributions (∆, s, i, Rmac, Rout) and (∆, s, i, U�)
can be distinguished with probability at most ε, by the security of the extractor and the
fact that m̂ ≤ H̃∞(W |SS(W), ∆).

Hence we have:

Pr[A succeeds]

≤ ε + Pr

⎡
⎢⎢⎣

MAC(s̃, R̃mac) = σ̃

(s̃, σ̃) �= (s, σ)

∣∣∣∣∣∣∣∣
i ← Ud, Rmac ← Uk, (w, w′) ← (W, W ′)

s := SS(w), σ := MAC(s, Rmac)
(s̃, σ̃) ← A(i, s, σ, U�−k)

∆ ← w′ − w, R̃mac := Rmac + g(∆, s, s̃, i)

⎤
⎥⎥⎦

≤ ε + max
R∆

mac,s̃�=s,σ,σ̃
Pr

⎡
⎣MAC(s̃, R̃mac) = σ̃

∣∣∣∣∣∣
Rmac ← Uk

σ := MAC(s, Rmac)
R̃mac := Rmac + R∆

mac

⎤
⎦

≤ ε + δ

Where the last inequality follows from the security of the KMS-MAC. ��

The above theorem is stated with generality in mind. We now examine the parame-
ters we get when plugging in the optimal implementation of a KMS-MAC and us-
ing the “multiplication” extractor Ext(x, i) def= [x · i]v1. Recall, we let u denote the
length of the secure sketch and n denotes the length of the secret w. We define m′ =
H̃∞(W |SS(W)) ≥ m − u to be the residual min entropy “left” in w after seing s.
Using Theorem 5 and some simple manipulation, we finally get the following concrete
corollary.

Detection of Algebraic Manipulation with Applications 487

Corollary 3. Let m, t, ε and δ ≥ ε be chosen arbitrarily. Let ρ = 2 log
(

2(u+3)
ε(δ−ε)

)
+ 2.

Let v = t
(
log

(
n
t

)
+ log e

)
be the upper bound on the volume of the Hamming ball of

radius t. We construct an (m, 	, t, ε, δ)-robust fuzzy where the extracted key length 	 is
given by:

– For the family Fall
(t,m) and post-application robustness 	 = m′ − v − ρ.

– For the family Fall
(t,m) and pre-application robustness 	 = m′ − ρ as long as m′ −

v ≥ ρ.
– For the family F indep

(t,m) and both pre/post-application robustness 	 = m′ − ρ.

The corollary is proven by bounding the value H̃∞(W |SS(W), W − W ′) for the two
families F indep

(t,m) and Fall
(t,m). We give a detailed proof in the full version of this work [8].

COMPARISON WITH PREVIOUS CONSTRUCTIONS: Recall that the “non-robust” con-
struction of [10] extracts 	 ≤ m′ − 2 log

(1
ε

)
bits. On the other hand, the robust con-

struction of [11] requires 	 ≤ 1
3

(
2m − n − u − 2t log

(
en
t

)
− 2 log

(
n

ε2δ

))
− O(1).

The bounds achieved in this paper are significantly closer to the non-robust version.

5.4 Extension to Other Metrics

We note that the above construction can be extended for other metric spaces and secure
sketches. For example, we can easily extend our discussion of the hamming distance
over a binary alphabet to an alphabet of size q where Fq is a field. In addition, our con-
struction extends to the set difference metric in exactly the same way as the construction
of [11].

References

1. Brassard, G., Broadbent, A., Fitzsimons, J., Gambs, S., Tapp, A.: Anonymous quantum com-
munication. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, Springer, Heidel-
berg (2007)

2. Broadbent, A., Tapp, A.: Information-theoretic security without an honest majority. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, Springer, Heidelberg (2007)

3. Blundo, C., De Santis, A.: Lower bounds for robust secret sharing schemes. Information
Processing Letters 63(6) (1997)

4. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authentication using
biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 147–163.
Springer, Heidelberg (2005)

5. Boyen, X.: Reusable cryptographic fuzzy extractors. In: 11th ACM Conference on Computer
and Communication Security, ACM Press, New York (2004)

6. Cabello, S., Padró, C., Sáez, G.: Secret sharing schemes with detection of cheaters for a
general access structure. Designs, Codes and Cryptography 25, 175–188 (2002); In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 175–188. Springer, Heidelberg (1997)

7. Cramer, R., Damgård, I.B., Fehr, S.: On the cost of reconstructing a secret, or VSS with
optimal reconstruction phase. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, Springer,
Heidelberg (2001)

488 R. Cramer et al.

8. Cramer, R., Dodis, Y., Fehr, S., Padró, C. Wichs, D.: Detection of Algebraic Manipula-
tion with Applications to Robust Secret Sharing and Fuzzy Extractors. Technical Reports
2008/030, Cryptology ePrint archive, http://eprint.iacr.org/2008/030

9. Dodis, Y.: Exposure Resillient Cryptography. Ph.D. Thesis, MIT (2000)
10. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong

keys from biometrics and other noisy data. Technical Report 2003/235, Cryptology ePrint
archive, Previous version appeared at EUROCRYPT 2004,
http://eprint.iacr.org/2003/235

11. Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust Fuzzy Extractors and Authenticated Key
Agreement from Close Secrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
Springer, Heidelberg (2006)

12. Dodis, Y., Spencer, J.: On the (non-)universality of the one-time pad. In: 43rd Annual Sym-
posium on Foundations of Computer Science, pp. 376–385. IEEE, Los Alamitos (2002)

13. Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, Springer, Heidelberg (1993)

14. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. Journal
of the ACM 40(1) (1993)

15. Karchmer, M., Wigderson, A.: On span programs. In: 8th Annual Conference on Structure
in Complexity Theory (SCTC 1993), IEEE, Los Alamitos (1993)

16. Krawczyk, H.: Distributed fingerprints and secure information dispersal. In: 12th ACM Sym-
posium on Principles of Distributed Computing (PODC), ACM Press, New York (1993)

17. Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer and System
Sciences 52(1), 43–53 (1996)

18. Obana, S., Araki, T.: Almost Optimum Secret Sharing Schemes Secure Against Cheating
for Arbitrary Secret Distribution. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, Springer, Heidelberg (2006)

19. Ogata, W., Kurosawa, K.: Optimum secret sharing scheme secure against cheating. In: Mau-
rer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, Springer, Heidelberg (1996)

20. Ogata, W., Kurosawa, K., Stinson, D.R., Saido, H.: New combinatorial designs and their
applications to authentication codes and secret sharing schemes. Discrete Mathematics 279,
383–405 (2004)

21. Padró, C., Sáez, G., Villar, J.L.: Detection of cheaters in vector space secret sharing schemes.
Designs, Codes and Cryptography 16, 75–85 (1999)

22. Padró, C.: Robust vector space secret sharing schemes. Information Processing Letters 68,
107–111 (1998)

23. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and fault toler-
ance. Journal of the ACM 36(2) (1989)

24. Shamir, A.: How to share a secret. Communications of the Association for Computing Ma-
chinery 22(11) (1979)

25. Simmons, G.J.: Authentication theory/Coding Theory. In: Blakely, G.R., Chaum, D. (eds.)
CRYPTO 1984. LNCS, vol. 196, Springer, Heidelberg (1985)

26. Tompa, M., Woll, H.: How to share a secret with cheaters. Journal of Cryptology 1(3) (1988)

http://eprint.iacr.org/2008/030
http://eprint.iacr.org/2003/235

	Detection of Algebraic Manipulation with Applications to Robust Secret Sharing and Fuzzy Extractors
	Introduction
	Linear Secret Sharing Schemes
	Fuzzy Extractors

	Algebraic Manipulation Detection Codes
	Optimal and Flexible Construction

	Application to Robust Secret Sharing
	Message Authentication Codes with Key Manipulation Security
	Application to Robust Fuzzy Extractors
	Definition of Robust Fuzzy Extractor in CRS Model
	Construction
	Security of Construction and Parameters
	Extension to Other Metrics

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

