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Abstract Quantum cryptography makes use of the quantum-mechanical behavior of
nature for the design and analysis of cryptographic schemes. Optimally (but not al-
ways), quantum cryptography allows for the design of cryptographic schemes whose
security is guaranteed solely by the laws of nature. This is in sharp contrast to stan-
dard cryptographic schemes, which can be broken in principle, i.e., when given suf-
ficient computing power. From a theory point of view, quantum cryptography offers
a beautiful interplay between the mathematics of adversarial behavior and quantum
information theory. In this review article, we discuss the traditional application of
quantum cryptography, quantum key distribution (QKD), from a modern perspective,
and we discuss some recent developments in the context of quantum two-party coop-
eration (2PC). QKD allows two distant parties to communicate in a provably-secure
way in the presence of an outside eavesdropper, whereas 2PC is concerned with pro-
tecting information against possibly malicious insiders. We show the basic idea of
constructing quantum cryptographic schemes, but we also show some connections
to quantum information theory as needed for the rigorous security analyses, and we
discuss some of the relevant quantum-information-theoretic results.

Keywords Quantum cryptography · Quantum information theory · Hilbert space
formalism · Key distribution · Secure cooperation

1 Introduction

CRYPTOGRAPHY aims at providing tools for securing private information and pre-
venting critical information-processing operations from adversarially provoked mal-
function. These are very crucial objectives in today’s society where information plays
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a fundamental role. As such, great effort is put into designing and implementing cryp-
tographic schemes that offer privacy-protecting solutions for various tasks. Whereas
traditional cryptography is concerned with secure communication, i.e., the transmis-
sion of private messages over a (potentially) insecure communication channel, with
the advent of widespread electronic communication, new cryptographic tasks have
become increasingly important. We would like to be able to do e-voting, on-line auc-
tions, Internet gambling, data-mining etc. in a secure way. These tasks involve parties
with different and possibly conflicting interests, and we want that the correctness of
the outcome is guaranteed while at the same time the privacy of individual users
remains protected.

However, the security of most of the cryptographic schemes currently used re-
lies on unproven computational complexity assumptions (like the assumed hardness
of factoring large numbers), combined with an assumed bound on a potential at-
tacker’s computing power. This complexity-theoretic approach of designing crypto-
graphic schemes leads to very practical solutions but obviously has its downside: one
cannot be fully certain about the security of the scheme! Indeed, the underlying com-
putational complexity assumption might be broken from one day to another (e.g. by
an efficient factoring algorithm being discovered) since complexity theory is still far
from being able to prove some computational problem to be “hard” in the sense as
needed. Furthermore, it is known that the standard complexity assumptions used in
practice (factoring and computing discrete-logs) break down as soon as a quantum
computer can be built. Finally, even if it is computationally infeasible for an attacker
to extract sensitive data from the information available to him at the time the cryp-
tographic scheme is used, the attacker can still store, say, an intercepted ciphertext
and wait until computer technology has advanced enough so that he eventually can
recover the data that was to be protected. This clearly poses a serious threat to long-
term highly-sensitive data.

QUANTUM CRYPTOGRAPHY offers a beautiful approach to overcome the above
drawbacks. The idea behind quantum cryptography is to make use of the quantum-
mechanical behavior of nature for the design and analysis of cryptographic schemes
that do not have to rely on unproven complexity assumptions. This adventurous ap-
proach goes back to ideas by Wiesner from the late sixties, but they were unnoticed
for about a decade. Optimally, but not always, quantum cryptography allows for the
design of cryptographic schemes that can be proven secure under the sole assumption
that the laws of quantum mechanics are correct—or that they at least describe suffi-
ciently well the behavior of certain particles like photons or spin- 1

2 particles, which
would be used to implement the quantum-cryptographic schemes.

However, quantum cryptography not merely uses the theory of quantum mechan-
ics as a tool box, but rather there is a fruitful interplay between the design and
analysis of quantum cryptographic schemes and the development of the information-
theoretical understanding of quantum mechanics. For instance, the search for a rig-
orous analysis of one of the first quantum cryptographic schemes led to important
insights into quantum information theory, which in turn proved to be useful for the
design of new quantum cryptographic schemes.

Let us give some intuition why quantum mechanical effects could indeed prove
useful for designing cryptographic schemes. Consider two parties, called Alice and
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Bob, who can produce and exchange quantum-mechanical particles, for instance sin-
gle polarized photons or spin- 1

2 particles. However, we assume that this quantum
communication is under the control of an attacker Eve. Thus, Eve has full access to
the exchanged particles. Nevertheless, the laws of quantum mechanics restrict the
information accessible to Eve! Indeed, Heisenberg’s uncertainty principle, and its ex-
tension by Robertson, guarantees that Eve cannot obtain full information on the state
of the transmitted particles: if Eve measures the linear polarization of a photon then
its circular polarization becomes unpredictable and vice versa, and, similarly, if Eve
measures the spin of a spin- 1

2 particle along one axis then its spin along either of
the other two axes becomes unpredictable. This not only means that Eve may get at
most limited information on the state of any exchanged particle, but even more im-
portantly, any attempt to obtain information inevitably causes the state of the particle
to change; if cleverly set-up, this can be detected by Alice and Bob, so that they can
abort before any harm is done. This is in sharp contrast to classical means of commu-
nication (e.g. over the phone or the Internet) where in principle an eavesdropper can
listen into the conversation without actively affecting it, and thus without any chance
of being detected.

IN THIS ARTICLE, one the one hand, we would like to give the basic intuition
behind the design and the security of quantum cryptographic schemes. As the reader
will see, the quantum cryptographic schemes we show and the intuitive reasoning
why they should be secure are rather simple and can be appreciated even by laymen
with a very limited (and possibly wrong) understanding of quantum mechanics.

On the other hand, we also want to present quantum cryptography as an exact
mathematical science that combines elements from classical cryptography, informa-
tion theory and quantum mechanics. Therefore, besides the quantum-cryptographic
schemes we show, we also discuss the theoretical foundations needed to rigorously
understand and prove their security. These are quantum-information-theoretic results,
specifically developed for the analysis of quantum-cryptographic schemes, but can
be appreciated in their own right as providing interesting insight into the theory of
quantum information. For instance, we show a meaningful way to measure the uncer-
tainty that some piece of classical (meaning non-quantum) data contains when given
a correlated quantum state, and we show that this measure determines the number
of nearly-random-and-independent bits that can be extracted from the classical data.
Also, we show a variant of the uncertainty principle that expresses the amount of
uncertainty in terms of the above measure.

As of specific quantum cryptographic results, we focus in this article on the
question of tackling classical (i.e. non-quantum) cryptographic tasks by quantum-
cryptographic means, like how to securely communicate a classical private mes-
sage by using a quantum channel. Specifically, we focus on quantum-key distribution
(QKD), which is the traditional application of quantum cryptography, and on recent
new developments in the context of quantum two-party cooperation (2PC).

QKD allows two parties, Alice and Bob, to agree on a secret key K by public
communication, i.e., even if an attacker Eve can access the complete conversation
between Alice and Bob. By the laws of quantum mechanics, it is guaranteed that the
agreed-upon secret key K is (close to) random-and-independent of Eve’s (quantum)
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view. As such, K can then be safely used for instance as encryption key for a (possibly
perfectly-secure) encryption scheme to securely communicate a private message via
the public communication channel.

2PC, on the other hand, is concerned with protecting information against inside at-
tackers. Unfortunately, quantum cryptographic 2PC schemes whose security is guar-
anteed by the laws of quantum mechanics alone do not exist (unless one settles for a
very low level of security), but in addition, some “technological restriction” needs to
be assumed about the attacker: for instance, that he cannot reliably store arbitrarily
many, say, photons without affecting their polarization. While the theory of quantum
physics permits to store quantum states, doing so in the form of photons, for instance,
is technically very challenging and essentially impossible with current technology. It
is thus reasonable to base security upon it.

Another direction of quantum cryptography, which is not covered here, is to spec-
ify and study quantum-cryptographic tasks, like how to encrypt or authenticate a
quantum state; this direction leads to questions and results that are interesting from
a theoretical point of view but so far lack a practical significance. On the other hand,
there is promising progress in the development of the technology needed to actually
implement the quantum cryptographic schemes discussed in this article, with actual
devices already being sold on the market. Nevertheless, this article is of theoretical
nature and does not discuss implementational issues; for a more practical-oriented
treatment of the topic, we refer to the excellent review article by Gisin, Ribordy,
Tittel and Zbinden [31].

THE STRUCTURE of the article is as follows. The upcoming Sect. 2 provides some
information on the history of quantum cryptography as of interest for the topics cov-
ered in this article, and in Sect. 3 we introduce the notation that we use throughout.
In Sect. 4 we discuss and construct schemes for QKD, and in Sect. 5 we develop the
tools we then use to rigorously prove security of the QKD schemes in Sect. 6. Finally,
in Sect. 7 we discuss the recent developments of quantum cryptography in the context
of 2PC, and we conclude in Sect. 8.

2 A Brief History of Quantum Cryptography

The history of quantum cryptography starts off in 1970 when Stephen Wiesner wrote
Conjugate Coding. In this highly innovative article, he explains how in principle
the laws of quantum mechanics can be used to produce bank notes that would be
impossible to counterfeit, and how to implement a multiplexing channel, a notion
that was re-invented more than 10 years later under the name of oblivious transfer
[30, 48]. However, Wiesner’s manuscript was not accepted for publication. Fortu-
nately, Wiesner knew Charles H. Bennett quite well and told him about his work;
otherwise his pioneering ideas might have been lost forever. In the subsequent years,
Bennett mentioned Wiesner’s work to various people, but without raising anyone’s
interest.

Quantum cryptography was revived in 1979 when Bennett approached Gilles
Brassard and explained to him Wiesner’s approach to use quantum mechanics in
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order to design unforgeable banknotes. Brassard was very excited about such an ap-
proach, and they combined the (at this time new) concept of public-key cryptography
with Wiesner’s quantum approach,1 resulting in a Crypto 82 paper by Bennett, Bras-
sard, Breidbart and Wiesner [8], which coined the term quantum cryptography. This
also brought Wiesner’s manuscript back to life, and it was subsequently published in
Sigact News [60].

At this point in time, quantum cryptography was considered pure science fiction,
because the technology required to implement the suggested schemes was (and actu-
ally still is) out of reach. For instance the proposed unforgeable bank notes require
to store a single polarized photon or spin- 1

2 particle for days without significant ab-
sorption or loss of polarization. As such, quantum cryptography was considered to be
doomed from the start as being unrealistic.

This changed when, as Brassard has expressed it in [17], “we [Bennett and Bras-
sard] realized [. . .] that God had meant photons to travel rather than to stay put!”
Although it has to be said that already Wiesner’s multiplexing scheme was based on
traveling photons, with no need for storing them. Driven by this motivation, Bennett
and Brassard started to look for quantum cryptographic schemes that were based on
the transmission of quantum states via a quantum channel. They first came up with a
one-time-pad-like quantum encryption scheme that allows the key to be re-used [7];
the scheme, however, was still not very practical. They submitted this result to several
major theoretical-computer-science conferences, but failed to get it accepted.

In 1983, Bennett and Brassard abandoned their quantum encryption scheme when
they realized that it would be much simpler to use the quantum channel to securely
transmit a random key, rather than the actual message to be securely communicated.
And once the key is securely transmitted, it can then be used to one-time-pad encrypt
and securely communicate the actual message in a standard way. Quantum key dis-
tribution (QKD) was born! Their new finding got accepted to an information-theory
conference in 1983 [5]; however, this conference only published one-page abstracts.
Shortly after, Brassard was invited to present and publish a paper on a topic of his
choice at the 1984 IEEE International Conference on Computers, Systems, and Sig-
nal Processing, which took place in India. Having experienced how hard it was at that
time to get these kinds of results published, Brassard took the opportunity to publish
the full description of their QKD scheme [6], which then became known as the BB84
QKD scheme.

We note that at this point in time, the BB84 QKD scheme could at best be proven
secure against “feasible” individual attacks, where the attacker, Eve is assumed to
interact with each communicated photon individually, but BB84 was conjectured to
be secure against general attacks that are only restricted by the laws of quantum
physics, and where for instance Eve may interact with the communicated photons
collectively.

Quantum cryptography was also picked up by other researchers, for instance by
Claude Crépeau, and a lot of effort was put into designing quantum-cryptographic

1From today’s perspective, it looks odd to mesh public-key cryptography, which inherently can only be
computationally secure, with quantum cryptography, whose goal is to obtain security guaranteed by the
laws of nature.
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schemes for other cryptographic tasks. In particular, a lot of effort was put into try-
ing to design schemes for bit-commitment (BC) and for oblivious transfer (OT), two
important building blocks for secure 2-party cooperation (2PC) [10, 16, 18]. Also
for those schemes, security could be argued only for individual attacks, and security
against general attacks was typically conjectured.

However, in the following years, all the proposed schemes for BC and OT got
eventually broken by sophisticated quantum attacks. And in 1996, it was then proven
by Mayers and independently by Lo and Chau that bit commitment, and essentially
any interesting 2PC (including OT), cannot be implemented by means of a quantum-
cryptographic scheme with security only relying on the correctness of quantum me-
chanics [41, 42, 46]. This negative result came as a shock for the quantum cryptogra-
phy community. Not only was the belief shattered that quantum cryptography could
provide unconditionally-secure solutions for any reasonable cryptographic problem,
but since the BB84 scheme was still not rigorously proven to withstand sophisticated
quantum attacks, also the confidence in QKD was undermined. As a result, in the
subsequent years, little work was done in the context of secure 2PC,2 and a lot of
effort was put into proving QKD unconditionally secure.

In the meantime, some variants of the original BB84 QKD scheme had been pro-
posed. Most notably is the scheme by Ekert [29], which is based on entangled par-
ticles (like so-called EPR pairs [28]) and on Bell’s theorem [3], and its modification
due to Bennett, Brassard and Mermin, which avoids the use of Bell’s theorem and
was shown to be equivalent to the original BB84 QKD scheme from a security point
of view. Although technically more challenging to implement, entanglement-based
QKD schemes play an important role because they provide a convenient handle for
proving QKD schemes secure against general attacks.

The very first QKD security proofs (for BB84) against general attacks were given
by Mayers [45, 47] and, subsequently, by Biham, Boyer, Boykin, Mor and Roy-
chowdhury [14]. However, their security proofs were very complicated and have only
been reluctantly accepted. Lo and Chau proposed a security proof that was easier to
understand, but was for a new entanglement-based QKD scheme that required the
honest participants of the scheme to have quantum computers. It was then up to the
seminal work of Shor and Preskill in 2000 [57], more than 15 years after the invention
of QKD by Bennett and Brassard, to give a fully-satisfactory security proof against
general attacks for the original BB84 QKD scheme.3

2There was some work on BC and OT secure against computationally-bounded quantum attacks; however,
this approach goes somewhat against the main motivation of quantum cryptography, which is to avoid
relying on the assumed hardness of some computational problem.
3Another reason why, from today’s perspective, the early security proofs by Mayers and Biham et al.
are not fully satisfactory, is that they implicitly assume the adversary Eve to measure all her information
at the end of the execution of the QKD scheme. This was later realized (see e.g. [39]) to cause a lack
of composability, meaning that even though the QKD scheme is secure when executed in isolation, it
may actually become insecure as soon as the key is used in another application (and what’s the point in
producing a key when it cannot be used?). Although the original proof by Shor and Preskill also makes
this implicit assumption, it does not crucially rely on it, and a security proof that does imply composability
can be obtained by obvious modifications.
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In the recent years, our understanding of the security of BB84 and other QKD
schemes has significantly increased, mainly due to new insights into quantum infor-
mation theory, put forward to a great deal by the work of Renner [21, 49–51]. In a
sequence of works, he showed that for typical QKD schemes, security against gen-
eral attacks follows “for free” from security against individual attacks, which is much
easier to prove.

In the meantime, the problem of designing quantum-cryptographic schemes for
2PC tasks was picked up again. Clearly, there was no hope to construct fully-fledged
unconditionally-secure quantum-cryptographic scheme: the impossibility result by
Mayers and Lo and Chau implies that for every candidate scheme there exists an
attack that breaks the aspired security of the scheme. However, even though such at-
tacks exist in principle, they would be hard to execute in practice as they typically
involve perfect storage of large quantum states. The technological hardness of launch-
ing these attacks had been folklore knowledge for some time, but no one had given
it much attention, until 2005 when Damgård, Fehr, Salvail and Schaffner realized its
potential. They were able to design quantum-cryptographic schemes for certain 2PC
tasks for which they could prove that any attack that would break security necessar-
ily must involve large quantum-storage capacities. In a sequence of works [23–26],
they showed the existence of practical quantum-cryptographic schemes for a variety
of 2PC tasks, provably secure in the above sense in the bounded-quantum-storage
model.

The success of this approach gave new life to the problem of designing quantum-
cryptographic schemes for 2PC tasks, after the set-back in the late nineties, and it
motivated other researchers to look for extensions and alternatives, like the noisy-
quantum-storage model, where the dishonest participant has the ability to store all
the communicated photons, but the storage is assumed to be noisy [59].

3 Notation and Basic Concepts

We assume the reader to be familiar with the basic concepts of quantum mechan-
ics and with its Hilbert-space formalism. For completeness, and since the view we
take and the terminology and notation we use might be slightly different from what
the reader is used to, we briefly recall the basic concepts of quantum mechanics as
understood from a quantum-information-processing point of view.

3.1 Dirac’s Bra-ket Notation

Let H be a complex Hilbert space. We use Dirac’s bra-ket notation as commonly
used in quantum physics. This means vectors in H are denoted as ket’s |·〉, and for
any |ϕ〉 ∈ H, the corresponding bra-vector is defined as the linear functional 〈ϕ| :
H→C that maps |ψ〉 ∈ H to the inner product of |ϕ〉 and |ψ〉, which is denoted
as 〈ϕ|ψ〉; hence, by definition, 〈ϕ||ψ〉 = 〈ϕ|ψ〉. Furthermore, for |ϕ〉, |ψ〉 ∈ H, the
outer product of |ϕ〉 and |ψ〉 is defined as the linear function |ϕ〉〈ψ | : H→H that
maps |η〉 ∈ H to |ϕ〉〈ψ |η〉; hence, by definition, |ϕ〉〈ψ ||η〉 = |ϕ〉〈ψ |η〉.

Throughout, we only consider finite-dimensional Hilbert spaces, so that we always
may assume that H = C

d for some (finite) dimension d , and any operator in End(H)
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is bounded and can be thought of as a (d×d)-matrix with entries in C. Also, a vector
|ϕ〉 ∈ H can be thought of as a column vector with entries a1, a2, . . . , ad ∈ C and 〈ϕ|
as the corresponding transpose complex-conjugate row vector |ϕ〉† = (ā1, . . . , ād ),
and 〈ϕ||ψ〉, |ϕ〉〈ψ | etc. can be understood as matrix multiplication.

Finally, for two (and similarly for more) vectors |ϕ〉 ∈ H and |ψ〉 ∈ H′, we often
write |ϕ〉|ψ〉 as well as |ϕ,ψ〉 (or even |ϕ ψ〉) as a short hand for the tensor product
|ϕ〉 ⊗ |ψ〉 ∈ H⊗H′ of |ϕ〉 and |ψ〉.

3.2 Quantum Systems

A (quantum) system is associated with a complex Hilbert space H, the state space
of the system, and the state of the system is described by a positive semi-definite
operator ρ ∈ End(H) with trace tr(ρ) = 1. Such an operator is called density operator
(or matrix). We write D(H) for the set of all density operators ρ ∈ End(H), and
we write ρ ≥ 0 to express that the operator ρ is positive semi-definite. We typically
identify a quantum system by an abstract name, e.g. A, and then by default denote
the state space of A by HA and the density matrix describing the state of A by ρA.

A quantum state is pure if its density matrix ρ ∈ D(H) has rank 1, which is equiva-
lent to saying that there exists |ϕ〉 ∈ H such that ρ = |ϕ〉〈ϕ|, where the trace condition
on ρ implies that |ϕ〉 is normalized, i.e., ‖|ϕ〉‖2 = 〈ϕ|ϕ〉 = 1. In case of a pure state
ρ = |ϕ〉〈ϕ|, we may also use the state vector |ϕ〉 to describe the state.

From a geometric point of view, the pure states are given by the extremal points
of the convex set D(H), in particular, any ρ ∈ D(H) can be written as a convex-
linear-combination ρ = ∑L

�=1 ε�|ϕ�〉〈ϕ�| (i.e. ε1, . . . , εL ≥ 0 and
∑

� ε� = 1) of pure
states. Such a system can alternatively be understood to be in pure state |ϕ�〉 with
probability ε�.

The state space of the joint quantum systems AB , which consist of two (or
more) subsystems A and B , is given by the tensor product HAB = HA ⊗ HB of
HA and HB . If the state of the joint system is given by ρAB , then the state of the sub-
system A when considered as a “stand alone” system is given by the reduced density
matrix ρA = trB(ρAB) ∈ D(HA), where the partial trace trB : End(HA ⊗ HB) →
End(HB) is the (well-defined) linear operator with trB(|ϕA〉〈ψA| ⊗ |ϕB〉〈ψB |) =
|ϕA〉〈ψA| tr(|ψB〉〈ϕB |) = |ϕA〉〈ψA|〈ψB |ϕB〉 for all |ϕA〉, |ψA〉 ∈ HA and |ϕB〉,
|ψB〉 ∈ HB . Similarly, the state of B is given by ρB = trA(ρAB).

Here, as is common in quantum information processing, we consider the quantum
state of a system to be static, meaning that it does not change over time, unless it is
actively operated on. A quantum system A can be operated on by means of applying a
unitary transformation U ∈ End(HA); as a result, the state ρA ∈ D(HA) of A evolves
to the new state ρ′

A = UρAU†. We write U (H) for the set of all unitary operators
U ∈ End(H). In case of a pure state described by its state vector |ϕA〉 ∈ HA, the state
evolves as |ϕ′

A〉 = U |ϕA〉.
The only way to gain information on the state of a quantum system A is by means

of a measurement. A measurement is described by an observable, which is given by
a (finite) collection {Πi}i∈I of orthogonal projections Πi ∈ End(HA) that satisfy the
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condition
∑

i Πi = IA, where IA denotes the identity in End(HA).4,5 For quantum
system A in state ρA ∈ D(HA), measuring A with respect to {Πi}i∈I has the fol-
lowing effect. (1) An outcome i ∈ I is observed, with the probability that a specific
i ∈ I is observed given by pi = tr(Πi ρA); and (2) after the measurement, the state
ρ has collapsed to ρ′

A = ΠiρAΠi
†/pi where i is the outcome observed. If A is part

of a joint system AB , then measuring A with respect to {Πi}i∈I ⊂ End(HA) acts as
measuring AB with respect to {Πi ⊗ IB}i∈I .

We often consider measurements where the Πi ’s are projections onto an ortho-
normal basis {|i〉}i∈I of HA: Πi = |i〉〈i|.6 In this case, we say that A is measured in
basis {|i〉}i∈I . If the state of A is pure, given by state vector

|ϕ〉 =
∑

i∈I

αi |i〉

(where by the normalization condition
∑

i |αi |2 = 1), then it follows from the above
that measuring A in basis {|i〉}i∈I has the effect that i ∈ I is observed with probability

pi = |αi |2,
and the state collapses to |i〉. Furthermore, if the state of a joint system AB is pure,
given by state vector |ϕ〉 = ∑

i αi |i〉|ψi〉 with normalized |ψi〉 ∈ HB , then measuring
A in basis {|i〉}i∈I has the effect that i ∈ I is observed with probability pi = |αi |2,
and the state collapses to |i〉|ψi〉.

To simplify the language, we will sometimes be somewhat sloppy in distinguish-
ing between a quantum system, its state, and the density matrix or state vector de-
scribing the state. For instance, we may speak of “measuring a state ρ” when we
actually mean that a system A whose state is given by the density matrix ρ is mea-
sured.

A qubit is a quantum system with state space H = C
2. {|0〉, |1〉} denotes the com-

putational basis |0〉 = [ 1
0

]
and |1〉 = [ 0

1

]
of C

2 and {|+〉, |−〉} the Hadamard basis

|+〉 = 1√
2

[
1

1

]

= 1√
2

(|0〉 + |1〉) and |−〉 = 1√
2

[
1

−1

]

= 1√
2

(|0〉 − |1〉).

Note that one can write |+〉 = H |0〉 and |−〉 = H |1〉, where H is the Hadamard
transform H = ( 1 1

1 −1

)
/
√

2. Thus, Hb{|0〉, |1〉} = {Hb|0〉,Hb|1〉} denotes the compu-
tational basis if b = 0 and the Hadamard basis if b = 1. An n-qubit systems consists
of n qubits, i.e., is a quantum system whose state space is the n-fold tensor product
(C2)⊗n = C

2 ⊗ · · · ⊗ C
2.

4Equivalently, an observable can be given by a Hermitian operator O in End(HA), such that the Πi ’s are
the projections into the eigenspaces and the i’s (encoded as real numbers) the corresponding eigenvalues:
O = ∑

i iΠi .
5There actually exists a more general notion of measurements, so-called POVM’s; however, the Von Neu-
mann (also known as projective) measurements considered here are sufficient for our purposes.
6Note that we are using the indices i ∈ I as the “names” of the basis vectors; indeed we will often name
basis vectors by numbers, like {|0〉, |1〉}, but the index set I may just as well consists of other “symbols”.
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The trace distance of two density operators ρ,σ ∈ D(H) is defined as δ(ρ,σ ) :=
1
2 tr |ρ − σ |, where |ρ − σ | is the unique positive semi-definite square root of
(ρ − σ)(ρ − σ)†. In other words, δ(ρ,σ ) = 1

2

∑
i |λi |, where the λi ’s are the (not

necessarily distinct) real eigenvalues of ρ − σ . One can show that for any physical
processing, the two states ρ and σ behave in an indistinguishable way except with
probability at most δ(ρ,σ ). Thus, informally, if δ(ρ,σ ) is very small then, without
making a significant error, the quantum state ρ can be considered to be equal to σ .

3.3 Hybrid Systems: Combining Classical and Quantum Information

Consider a situation where the state of a quantum system E is randomized: with
probability PX(x) system E is in state ρE|X=x ∈ D(HE), where X is a random vari-
able with finite range X and PX is its probability distribution (i.e. PX(x) = P [X=x]
for any x ∈ X ). Such a situation occurs naturally when subsystem A of a joint sys-
tem AE is measured in a basis {|x〉}x∈X ⊂ HA, where the random variable X then
captures the observed value and ρE|X=x denotes the state E collapses to when x is
observed. Or, it occurs when an “experimenter” tosses some coins to determine x and
then prepares system E to be in a state that depends on his choice x.

For an observer that only has access to system E but is ignorant of the value of the
index x, the state of E is given by

ρE =
∑

x

PX(x)ρE|X=x.

By “encoding” the choice of x into a quantum state |x〉, where {|x〉}x∈X is a fixed or-
thonormal basis of HX = C

|X | (typically the canonical basis), and where “decoding”
works by measuring in basis {|x〉}x∈X , we may understand the hybrid system XE,
consisting of the random variable X and the quantum system E, as a joint quantum
system XE whose state is given by the density matrix

ρXE =
∑

x

PX(x)|x〉〈x| ⊗ ρE|X=x.

We also say that the state ρXE has a classical X (with respect to {|x〉}x∈X ). Finally,
we write ρX = trE(ρXE) = ∑

x PX(x)|x〉〈x| for the random variable X understood
as a quantum state. This formalism naturally extends to states that depend on several,
possibly dependent, random variables X, Y etc. To simplify notation, we often write
ρx

E instead of ρE|X=x .

The random variable X is independent of the quantum system E in that ρx
E = ρx′

E

(and thus = ρE) for all x, x′ ∈ X , if and only if

ρXE = ρX ⊗ ρE.

This in particular implies that no information on X can be obtained from having
access to the quantum system E. Similarly, X is random-and-independent of the state
of E if and only if

ρXE = μX ⊗ ρE
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where μX denotes the completely mixed state μX = 1
|X |

∑
x |x〉〈x| = 1

|X | IX in
D(HX). This is the situation we aim for in cryptography, where X is intended to be
used as a cryptographic key and E collects the information the attacker has. Typically,
one needs to allow a small “error probability” and has to settle for δ(ρXE,μX⊗ρE)

being sufficiently small. By the properties of the trace distance, this then implies that
no matter how X is used, it behaves like being perfectly random-and-independent of
E except with small probability.

4 Quantum Key Distribution (QKD)

4.1 Problem Description

The classical problem in cryptography concerns secure communication. Consider two
parties, named Alice and Bob, who are geographically separated but can communicate
over a given communication channel. However, the communication channel is public
in the sense that an attacker, named Eve, can read the complete communication that
takes place over the channel.7 How can Alice still communicate a message M to Bob
in such a way that only Bob learns M but not Eve? How can Alice “scramble” M so
that it looks like nonsense to Eve yet Bob can recover M?

Technically, this is done by means of an encryption function enc, which takes as
input a key K and the message M , and which outputs a ciphertext: C = enc(K,M).
Not knowing the key K (but possibly enc), it should be impossible for Eve to obtain
M (or any partial information on it) from C; on the other hand, Bob, who knows
K , should be able to recover M from C by means of a suitable decryption function:
M = dec(K,C).

However, encryption does not fully solve the problem, it only reduces it; namely
to the problem of Alice and Bob establishing a common key K that is secret to Eve.
For instance the so-called one-time-pad encryption scheme8 enjoys perfect security
in the sense that C is statistically independent of M , but requires a fresh random
key K , known to Alice and Bob but secret to Eve, for every new message M to be
encrypted.

One approach to establish K would be to have Alice produce K and try to commu-
nicate it securely to Bob over the public channel, but then we are obviously back to
our initial problem. Another approach is to look for a “physical” solution: for instance
Alice and Bob could meet at a safe place to agree on K , or use a trusted courier to se-
curely transfer K . However, these kinds of solutions are typically very inconvenient
and not acceptable in many cases. It would be much more convenient if Alice and
Bob could generate a common secret key K “on the fly” simply by communicating
over the public channel. But can this be possible at all? Can Alice and Bob agree on
a secret key when Eve can follow the whole conversation?

7It is irrelevant if the communication can easily be read by any outsider (like for radio broadcast), or if
Eve needs to—but indeed does—possess sophisticated eavesdropping devices that allow her to listen into
the conversation (like for e-mail).
8The one-time pad encrypts message M ∈ {0,1}� as C = M ⊕ K where K is a secret key in {0,1}� and ⊕
denotes bit-wise addition modulo 2.
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If we relax the requirement that Eve should have no information on K and “only”
require that it is computationally infeasible (but possible in principle) for her to com-
pute (any information on) K , then, under certain unproven computational complex-
ity assumptions, this can be done by means of public-key cryptography techniques,
one of the greatest inventions of modern cryptography. However, without any break-
through result in computational complexity theory and in particular without solving
the famous P ?= NP problem, such an approach needs to rely on an unproven com-
putational complexity assumption (like the conjectured hardness of factoring large
integers), which we want to avoid.

What if we do not want to rely on unproven computational complexity assump-
tions and want K to be secret in an information-theoretic sense? Is it still possible for
Alice and Bob to agree on a secret key K by public communication? Surprisingly, the
answer is still yes: by means of a so-called quantum key distribution (QKD) scheme.
Such a scheme makes clever use of the quantum-mechanical behavior of some par-
ticles, like photons, in order to allow Alice and Bob to jointly produce a secret key
K by public communication. The secrecy of K solely relies on the correctness of the
laws of quantum mechanics, and not even infinite computing power allows Eve to
obtain any information on K : as long as Eve is constrained by the laws of quantum
mechanics, the key K is provably secret.9

In Sect. 4.2 below, we give some ideas on how quantum mechanics could be useful
in order to allow Alice and Bob to agree on a secret key by public communication.
These ideas will then be worked out to fully-fledged QKD schemes in the subsequent
sections. But first, we formally specify the communication infrastructure, which, to-
gether with the problem description, is depicted in Fig. 1.

We assume that Alice and Bob can communicate via a classical communication
channel, which allows them to send bit strings to each other. This channel is pub-
lic in the sense that the attacker Eve may read all communication over it; however,
we assume that she cannot insert or modify messages sent over the channel (as indi-
cated by the one-way arrow from the channel to Eve in Fig. 1). If this is not per se
guaranteed, then it can be achieved by means of information-theoretic message au-
thentication [58].10 Note that without (implicit or explicit) authentication, there is no
way to prevent Eve from simply impersonating Bob, so that Alice unwittingly shares
her key with Eve.

9However, from a practical point of view, one has to be aware that such a security proof is always with
respect to a mathematical model that is assumed to capture reality, and as such security is only guaranteed if
the model correctly captures reality. For instance in the security proof for QKD we assume that the devices
Alice and Bob use to produce and measure the particles work according to their description. Obviously, a
security proof is meaningless if, say, Alice’s computer is infected by a virus that sends K to Eve by some
hidden means. Thus, even a provably secure cryptographic scheme should not be trusted blindly, and one
has to be aware of the possible failures.
10This comes at the price of requiring Alice and Bob to share a short secret one-time authentication key,
so that, at first glance, we again seem to run into a circularity: in order to produce a secret key, Alice and
Bob need a secret key to start with. However, for authentication, a relatively short secret key is sufficient,
even for large messages. Thus, it suffices for Alice and Bob have a short secret key to start with in order
to produce a much larger secret key. Of this larger key, a small part can then be used as authentication key
for the next round etc.
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Fig. 1 Quantum key distribution by public communication

In addition to the classical communication channel, we assume that Alice and
Bob are connected by a quantum channel, which allows Alice to send qubit systems
to Bob. Also this channel is accessible to Eve; in fact, we allow Eve to have com-
plete control over it. This means that when Alice sends qubit systems A1, . . . ,An

to Bob, then Eve can intercept A1, . . . ,An, apply an arbitrary unitary transformation
U ∈ U (C2 ⊗· · ·⊗C

2 ⊗ HE) to A1, . . . ,An and E, where E is a quantum system con-
trolled by Eve (in some default initial state), and forward the transformed A1, . . . ,An

to Bob while keeping system E.
We would like to point out that Eve can in particular “block” the quantum com-

munication (by forwarding default qubits to Bob). In this case, the quantum channel
is useless for Alice and Bob, and one can show that it is impossible for Alice and Bob
to produce a common secret key. Thus, the best we can hope for, is that Alice and
Bob do agree on a common key if no Eve is present, and that if Eve is present and
Alice and Bob manage to agree on a common key, then this key is secret to Eve.

4.2 Towards QKD

Consider a pure state |ϕ〉 = ∑
i αi |i〉. Measuring |ϕ〉 in basis {|i〉}i∈I has the effect

that i is observed with probability pi = |αi |2. Furthermore, this randomness is fresh
and as such the outcome i of the measurement is secret: anyone who has not observed
the outcome of the measurement has no information on which i was observed (be-
yond knowing its probability distribution). We stress that for this to hold, it is crucial
that the initial state |ϕ〉 is pure.

As an example, measuring the qubit state |+〉 = H |0〉 = (|0〉 + |1〉)/√2 (or simi-
larly |−〉 = H |1〉 = (|0〉−|1〉)/√2 ) in the computational basis {|0〉, |1〉} has the effect
that 0 is observed with probability 1

2 and 1 is observed with probability 1
2 . Thus, a

secret random bit is obtained. Equivalently, measuring |0〉 (or |1〉) in the Hadamard
basis {|+〉, |−〉} = H {|0〉, |1〉} has the effect that “+” and “−” are observed each with
probability 1

2 . Thus, identifying “+” with 0 and “−” with 1, which we do from now
on, again a secret random bit is obtained. Repeating this procedure, i.e. measuring
|0〉 · · · |0〉 qubit-wise in the Hadamard basis, can be used to produce a secret random
bit string.
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However, this does not really address our problem yet: it shows e.g. how Alice
can produce a key K about which Eve has no information, but also Bob will have
no information about K! In order to obtain a procedure that allows Alice and Bob to
obtain a common secret key, consider now the 2-qubit state

|Φ〉 = 1√
2

(|00〉 + |11〉) ∈ C
2 ⊗ C

2,

called an EPR pair [28]. Recall that |00〉 is short for |0〉 ⊗ |0〉 etc. Measuring |Φ〉
in the basis {|00〉, |01〉, |10〉, |11〉} has the effect that 00 is observed with probabil-
ity 1

2 and 11 is observed with probability 1
2 . Thus, yet again, a secret random bit is

produced. However, measuring in the product basis {|00〉, |01〉, |10〉, |11〉} can also
be understood as measuring both qubits individually (and in whatever order) in the
computational basis {|0〉, |1〉}. Thus, if the first qubit subsystem of |Φ〉 is under Al-
ice’s control and the second under Bob’s, and both measure their respective qubit in
the computational basis, then they both observe the same random bit. And again, it
is guaranteed that this bit is secret: any third party who has not observed the out-
come of Alice or Bob’s measurement has no information on the bit obtained. From
the equality |00〉+ |11〉 = |++〉+|−−〉, which is straightforward to verify, it follows
immediately that the same also holds when Alice and Bob measure their respective
qubit subsystems of |Φ〉 both in the Hadamard basis; this will be important later on.
Thus, when given n EPR pairs, Alice and Bob can obtain a random common secret
key K ∈ {0,1}n by measuring within each EPR pair the two respective qubits in the
same basis (computational or Hadamard).

What remains to be solved is: where do the EPR pairs come from, and in particular
how can it be ensured that these indeed are EPR pairs? Note that if instead of an
EPR pair Alice and Bob use for instance the first two qubits of the 3-qubit state
(|000〉 + |111〉)/√2 ∈ C

2 ⊗ C
2 ⊗ C

2 and measure them in the computational basis,
where the third qubit is controlled by Eve, then Eve will also learn the random bit,
simply by measuring her qubit. Thus, for the secrecy of K it is crucial that the ought-
to-be EPR pair is really (close to) an EPR pair.

4.3 A QKD Scheme

Alice and Bob can try to obtain a list of shared EPR pairs as follows. Alice locally
prepares n EPR pairs, i.e. 2-qubit quantum systems AiBi that are in state |Φ〉 =
(|00〉 + |11〉)/√2, and sends the second qubit, Bi , of each pair to Bob. However,
since Eve has full control over the quantum channel, there is no guarantee that the
common state is not disturbed by Eve.

For instance, Eve could apply a so-called controlled-NOT 11 to Bi and Ei , where
qubit Ei is in default state |0〉, such that the state of AiBiEi evolves from |Φ〉 ⊗ |0〉
to (|000〉 + |111〉)/√2. As discussed in the previous section, if Alice and Bob now
decide to measure Ai and Bi in the computational basis, then the resulting common

11The controlled-NOT is given by the unitary transformation CNOT defined as CNOT|b〉|c〉 = |b〉|b ⊕ c〉
for b, c ∈ {0,1}, with ⊕ denoting addition modulo 2.
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bit is completely insecure (Eve can learn it by measuring Ei in the computational
basis). On the other hand, it is not hard to see that if, instead, Alice and Bob decide
to measure Ai and Bi in the Hadamard basis, then they observe two random and
independent bits, so that with probability 1

2 the two bits are distinct. Recall from the
previous section that when Alice and Bob hold a correct EPR pair, then they obtain
the same random bit also when they measure in the Hadamard basis. Similarly, by
applying a different suitable operation, Eve can enforce that Alice and Bob observe
the same, yet insecure, bit when they use the Hadamard basis; but in this case, Alice
and Bob observe independent bits when they use the computational basis instead.

This suggests the following procedure. For each qubit-pair AiBi , Alice and Bob
decide at random and after Bob has received Bi , whether they should both use the
computational or both the Hadamard basis to obtain the presumably common secure
bit. Then, Alice and Bob compare the two n-bit strings X and Y that they respectively
obtain at a randomly chosen subset of positions. If there are too many errors, meaning
that X and Y differ at too many positions (within the chosen subset of positions),
then Alice and Bob conclude that Eve has been heavily interacting with the quantum
communication and they abort. Otherwise, if there are only a few errors, they proceed
(see the preparation and error-estimation phase in Fig. 2).12

Intuitively, this seems to guarantee that Eve cannot have too much information
on X, and similarly on Y (or else Alice and Bob abort). Indeed, at the time she
can interact with Bi , she does not know yet the basis Alice and Bob will use, and
therefore if she tries to entangle herself as in the above example to try to learn the
key bit Alice and Bob obtain, she is likely to introduce an error. Thus, the number of
errors between X and Y should indicate the amount of information Eve may have,

EPR-QKD:

Preparation: Alice creates n EPR pairs, and sends the second half of each pair
to Bob, who confirms the receipt of the qubits. Then, Alice picks a random
Θ ∈ {0,1}n and sends it to Bob. For j = 1, . . . , n, Alice and Bob measure their re-
spective parts of the j -th EPR pair in basis HΘj {|0〉, |1〉} to obtain Xj on Alice’s
side and Yj on Bob’s side. (We expect Xj = Yj for all j .)

Error estimation: Alice chooses a random subset Test ⊂ {1, . . . , n} of linear size
and sends it to Bob. Then, Alice and Bob exchange and compare XTest =
(Xi)i∈Test and YTest = (Yi)i∈Test. If they differ at too many positions, Alice and
Bob abort.

Error correction: Alice sends suitable error correcting information U to Bob that
allows him to correct the remaining errors in Y and thus to recover X.

Key extraction: Alice and Bob apply a suitable function, chosen by Alice and an-
nounced to Bob, to X to obtain their common key K .

Fig. 2 An EPR-based QKD scheme

12The reason why Alice and Bob allow some errors is to tolerate a certain amount of noise in the quantum
communication, which is inherent to current technology.
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and it follows from sampling theory that the errors in a random subset reflects the
number of errors on the whole. We stress, however, that up to this point, this is only
intuition and no proof, as Eve may use a different strategy to attack the scheme than
the very specific one considered here. Indeed, Eve may arbitrarily interact with the
qubits communicated from Alice to Bob, and it is not clear that the above is her best
strategy (and actually it is not). We will discuss later how to analyze this rigorously.

After the checking, and if Alice and Bob decide to proceed, they are still con-
fronted with two problems. First, the two strings X and Y that Alice and Bob hold
may still contain some limited number of errors, and, second, Eve may still have
some limited amount of information. To correct the errors between X and Y with-
out leaking too much information to Eve, a standard technique can be used: Alice
chooses a random codeword C ∈ {0,1}n from a suitable error correcting code and
sends U := C ⊕ X to Bob, and Bob decodes C′ := U ⊕ Y to the closest codeword,
Ĉ, within the code and computes X̂ := Ĉ ⊕ U as his guess for X. It is easy to see
that if X and Y differ in only a small number of positions, then this also holds for C

and C′, and thus the error-correcting code guarantees that Ĉ = C from which X̂ = X

follows.
Taking care of the problem that Eve may have some limited information on X

is done by means of privacy amplification. The purpose of privacy amplification is
to transform a weakly-secret key X, by applying a suitably chosen function, into a
fully-secure key K about which Eve has essentially no information. More details on
how privacy amplification works is given in Sect. 5.3. The resulting EPR-based QKD
scheme EPR-QKD is summarized in Fig. 2 above.

4.4 The BB84 QKD Scheme

The above QKD scheme requires Alice to produce EPR pairs, and it requires Bob
to have quantum memory in order to store his parts of the EPR pairs until he learns
Θ . Producing EPR pairs is feasible with current technology but more involved than
producing single (unentangled) qubits. However, storing quantum states, e.g. in the
form of polarized photons, turns out to be technically extremely difficult, such that
even though scheme EPR-QKD can be implemented in theory, it is, to the best of our
knowledge, not possible using current technology.

Here, we briefly show how to modify scheme EPR-QKD—without weakening its
security—so that no quantum memory is needed and no EPR pairs have to be pro-
duced; Alice and Bob only need to prepare, send and measure-upon-arrival qubits.
These tasks can be implemented using current technology. The resulting scheme co-
incides (up to some details) with Bennett and Brassard’s original BB84 scheme.

The first modification we apply to scheme EPR-QKD is as follows. First of all,
we denote the number of EPR pairs transmitted by N rather than by n. Furthermore,
instead of using Alice’s choice for Θ , Bob chooses “his own” Θ ′ ∈ {0,1}N at random

and measures the j -th qubit in basis H
Θ ′

j {|0〉, |1〉} to obtain Yj , and then Alice and
Bob exchange their respective choices Θ and Θ ′, and only keep the positions j with
Θj = Θ ′

j . We argue that this modification does not weaken security. Indeed, if we
blind out the transmissions of the qubits corresponding to the positions j with Θj 
=
Θ ′

j , then the modified scheme coincides with the original scheme EPR-QKD, with



Found Phys

n = |{j : Θj =Θ ′
j }| ≈ N/2. As such, if Eve could break the modified scheme, then

she could also break the original scheme EPR-QKD.
As a next modification, we let Alice and Bob choose Θ and Θ ′ respectively, and

let them do their measurements as early as possible. This means, Bob measures his
qubits upon arrival, and Alice measures each of her qubits as soon as she has prepared
the corresponding EPR pair. Changing the points in time where Alice and Bob do
their local measurements does not change the outcome nor Eve’s view of the scheme,
and as such has no influence on its security. The resulting scheme coincides in spirit
with the scheme by Bennett, Brassard and Mermin [11], which is a modification of
Ekert’s original EPR-based scheme [29], and does not require any quantum memory
anymore.

To avoid the usage of EPR pairs, note now that measuring the first qubit of the
j -th EPR pair in basis HΘj {|0〉, |1〉} has the effect that Alice observes a random bit
Xj and the qubit to be sent to Bob collapses to HΘj |Xj 〉. Therefore, Alice could just
as well choose Xj ∈ {0,1} at random and prepare and send qubit HΘj |Xj 〉 to Bob.
This then result in scheme BB84-QKD, summarized in Fig. 3, which is at least as
secure as scheme EPR-QKD, but requires Alice and Bob to only prepare, send and
measure-upon-arrival single qubits.

We would like to point out that from an intuitive point of view, BB84-QKD can
also be appreciated directly, without the detour via EPR-QKD. Indeed, if Eve tries
to obtain information on the transmitted qubits HΘj |Xj 〉 by measuring (some of)
them, then, because she does not know the “right” basis, she inevitably disturbs some
of the qubits, which will be detected by Alice and Bob. The more information she
tries to obtain the more qubits she disturbs, so that either Alice and Bob abort be-
cause they observed too many errors, or then Eve has gained only little information
(which is taken care of by privacy amplification). This intuitive reasoning falls short
of providing a rigorous security proof because it assumes Eve to treat the transmit-
ted qubits individually, whereas quantum mechanics allows Eve to act on all of them
collectively, as explained at the end of Sect. 4.1.

In Sect. 6, based on some tools developed in Sect. 5, we show how to rigorously
analyze the EPR-pair-based scheme EPR-QKD. The provable security of the easier-
to-implement scheme BB84-QKD then follows automatically.

BB84-QKD:

Preparation: Alice chooses random strings X,Θ ∈ {0,1}N and sends the qubits
HΘ1 |X1〉 · · ·HΘN |XN 〉 to Bob. At the same time, Bob chooses a random
Θ ′ ∈ {0,1}N and for j = 1, . . . , n measures the j -th qubit upon arrival in basis

H
Θ ′

j {|0〉, |1〉} to obtain Yj , and he confirms the receipt of the qubits. Alice and
Bob exchange Θ and Θ ′, and they update X and Y , respectively, by restricting
them to the coordinates in J = {j : Θj = Θ ′

j }.
Error estimation etc. as in EPR-QKD, with n = |J |.

Fig. 3 The BB84 QKD scheme
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4.5 The Tolerable Noise

As briefly mentioned in footnote 12, current technology does not offer noise-free
quantum communication. This means that in EPR-QKD, as well as in BB84-QKD
for j ∈ J , even if Eve is not interacting with the communicated qubits and thus Xj is
supposed to be equal to Yj , it happens that Xj 
= Yj with some positive probability
β◦ < 1

2 . Then, in the error-estimation phase, Alice and Bob need to accept (slightly
more than) a β◦-fraction of errors; otherwise, the scheme is aborted and thus no secret
key is produced even when no Eve is attacking. As we will see in Sect. 6, allowing
a β◦-fraction of errors implies that Eve has potentially h(β◦)n bits of information (in
a well-defined sense) on the n-bit string X. Here and throughout the article, h is the
binary entropy function h(p) = −(p · log(p) + (1 − p) · log(1 − p)) for 0 < p < 1,
and h(p) = 0 for p = 0 or 1, and log denotes the binary logarithm. Furthermore, it
follows from coding theory that the error correction step leaks essentially another
h(β◦)n bits of information on X, so that Eve may possibly have up to 2 h(β◦)n bits
of information on the n-bit string X. Thus, if 2 h(β◦) ≥ 1 then Eve potentially knows
all of X and as such it is not possible anymore to extract a strongly-secret key K

from X. Therefore, for protocols EPR-QKD and BB84-QKD to work, it is needed
that the error probability of the quantum communication satisfies h(β◦) < 1

2 , which
evaluates to β◦ � 11%.

4.6 Other Variants

Since the introduction of QKD with the BB84 scheme, a large variety of alternative
QKD schemes has been proposed. Some of them offer a better secret-key rate, i.e.,
the number of key bits that can be generated per quantum-channel use, others tolerate
a larger amount of noise than the 11% BB84-QKD can cope with, or are by some
other means better suited for implementations. These schemes typically still follow
the original construction design of BB84-QKD (or EPR-QKD in their respective EPR
versions), but incorporate some modification. We give here a few examples (which
can also be combined with each other) without trying to be exhaustive. The first one
we mention is obtained by using a different set of designated states (rather than the
four states induced by the computational and the Hadamard bases). For instance the
six-state scheme [19] uses a set of three mutually-unbiased bases (resulting in six
designated state vectors), or the B92 scheme [4] uses just two but non-orthogonal
states. Another variant of BB84-QKD is obtained by having Alice and Bob choose
each Θi and Θ ′

i , respectively, in {0,1} not uniformly at random, but biased towards,
say, 1. This increases the probability that Θi = Θ ′

i and thus the number of positions
Alice and Bob can keep [43]. Finally, one can add an interactive so-called advantage-
distillation step right after the preparation phase, which increases Bob’s reliability in
X without increasing Eve’s. This then leads to a larger amount of noise that can be
tolerated [32].
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5 Some Quantum-Information-Theoretic Tools

5.1 Subset Sampling—Classical and Quantum

The Hamming weight W(X) of a bit-string X = (X1, . . . ,Xm) ∈ {0,1}m is defined
to be the number of 1’s occurring within X. Similarly, the relative Hamming weight
ω(X) of X is given by its Hamming weight divided by its bit-length m: ω(X) =
W(X)/m. We say that the relative Hamming weight of X is ε-close to β , denoted as
ω(X) ≈ε β , if |ω(X)−β| ≤ ε. For any subset T ⊆ {1, . . . ,m} of size k, we write XT

for the restriction of X to the positions in T : XT = (Xi)i∈T ∈ {0,1}k .
Consider the following problem: we want to estimate the (relative) Hamming

weight of an unknown but fixed string X ∈ {0,1}m (of known bit-length m) by only
looking at a small number of positions in X. A canonical way to do so is as follows:
choose at random a sample subset T ⊂ {1, . . . ,m} of linear size (i.e. size αm for some
constant 0 < α < 1), and take ω(XT ) as estimate for ω(X). Very generally, we allow
the following kinds of estimation strategies: choose a sample subset T ⊂ {1, . . . ,m}
according to some fixed probability distribution PT , and compute the estimate for
ω(X) as some (possibly randomized) function estim(XT ) of XT .

We want to measure the reliability of such a general estimation strategy, i.e., how
well it predicts the (relative) Hamming weight of the string X. Actually, for technical
reasons (and because the positions within the sample subset T are anyway revealed),
we want to measure how well such a general strategy predicts the (relative) Hamming
weight of XT̄ ∈ {0,1}n (where n = m − |T |), i.e., of X restricted to the positions
T̄ = {1, . . . ,m} \ T outside of the sample T (see Fig. 4, top). Therefore, for any
ε > 0, we introduce the error probability

errε(m) := max
x∈{0,1}m

P
[
ω(xT̄ ) 
≈ε estim(xT )

]

where the probability is over the choice of T according to PT .13 By definition, for any
choice of X ∈ {0,1}m: ω(XT̄ ) ≈ε estim(XT ) except with probability at most errε(m).
Using classical sampling theory (see e.g. [35]), one can e.g. show that for the above

Fig. 4 Estimating ω for a string (top) and a quantum state (bottom)

13If the computation of estim is randomized, then the probability is also over this randomness.
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canonical example with a random T of size αn with α ≤ 1
2 : errε(m) ≤ 2e−ε2αm/2,

and as such is exponentially small in m for fixed ε,α > 0.
We now turn to the corresponding quantum problem. Consider a n-qubit system

A = A1 · · ·An, possibly entangled with another system E, and we want to estimate
in a similar way as above how far away the state of A is from the all-zero state
|0 · · ·0〉, by measuring only a small number of the qubits. An estimation strategy as
used above in the classical setting, defined by the distribution PT and the function
estim, can also be applied here: choose T ⊂ {1, . . . ,m} according to PT , measure
the qubits AT = (Ai)i∈T qubit-wise in the computational basis to obtain XT , and
compute estim(XT ) as estimate for the “relative Hamming weight” of the remaining
system AT̄ (see Fig. 4, bottom). It remains to discuss what it should mean to have
an estimation of the Hamming weight of a multi-qubit quantum system, and how to
define and compute the reliability of a general strategy in this context. Formally, this
is given by the following proposition; its proof is given in [15].14

Proposition 1 Let AE be in pure state |ϕAE〉, and let ρT AE = ρT ⊗ ρAE =∑
t PT (t)|t〉〈t | ⊗ |ϕAE〉〈ϕAE | be the hybrid state obtained by including the (indepen-

dent) choice T . Then for any ε > 0 there exists ρ̃T AE = ∑
t PT (t)|t〉〈t |⊗ |ϕ̃t

AE〉〈ϕ̃t
AE |

with

δ(ρT AE, ρ̃T AE) ≤ √
errε(m)

and such that for any t ⊂ {1, . . . ,m}
∣
∣ϕ̃t

AE

〉 ∈ span
{|x〉 ∈ HA : ω(xt̄ ) ≈ε estim(xt )

} ⊗ HE.

Informally, this guarantees that if the estimation strategy behaves well in the clas-
sical setting, in that errε(m) is small, then it also behaves well in the quantum set-
ting, in that we are guaranteed to be close to an ideal situation where the estimate
β = estim(XT ) predicts with certainty the approximate Hamming weight of the re-
maining qubits AT̄ . The latter is to be understood in that after the measurement of
AT , the state of AT̄ E is of the form |ϕAT̄ E〉 = ∑

y αy |y〉⊗|ϕy
E〉 where the sum is over

all y ∈ {0,1}n with ω(y) ≈ β . What will be important for us is that β allows us to
bound the number of y’s occurring in the sum. Indeed, it is known that for any β ≤ 1

2 ,
the number of y ∈ {0,1}n with ω(y) ≈ε β is upper bounded by 2h(β+ε)n, where h is
the binary entropy function as introduced in Sect. 4.5.

5.2 (Conditional) Min-Entropy

The objective of information theory is to be able to quantify information, or the lack
thereof, called uncertainty or entropy. A notion that proved to be useful in that it
characterizes important operational quantities (for instance by how much data can be

14For simplicity, we implicitly assume here in Proposition 1 the function estim to be deterministic, but
the corresponding also holds in case it is randomized (by also including the randomness used to compute
estim into the hybrid state).
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compressed, or how much information can be reliably sent over a noisy communica-
tion channel), is the Shannon entropy H(PX) = −∑

x PX(x) logPX(x) (and the re-
sulting Shannon information) [56], and its quantum information-theoretic analogue:
the von Neumann entropy S(ρ) = − tr(ρ logρ).

For cryptographic purposes, however, the Shannon entropy (respectively von Neu-
mann entropy) is usually a too weak uncertainty measure, and in the context of clas-
sical cryptography, the stronger15 notion of min-entropy

H∞(PX) = − log
(

max
x

PX(x)
)
,

and its conditional version H∞(PXY |Y) = − log(
∑

y PY (y)maxx PX|Y (x|y)),16

turned out to be a much more useful measure for uncertainty. The (conditional) min-
entropy captures how hard it is to guess the value described by the random variable X.
Indeed, the min-entropy H∞(PX) of a random variable X equals the negative-log of
the success probability of predicting X from scratch when using an optimal strategy
(which obviously predicts the most likely outcome). Similarly, the conditional min-
entropy H∞(PXY |Y) equals the negative-log of the success probability of predicting
X from Y .

In quantum cryptography, we typically need to measure or lower-bound the uncer-
tainty the attacker, holding a quantum system E, has on some classical piece of data
X, held by the “good guy”. We thus need a corresponding notion of min-entropy of
a random variable conditioned on a quantum system: H∞(ρXE |E) for a hybrid state
ρXE = ∑

x PX(x)|x〉〈x| ⊗ ρx
E ∈ D(HX ⊗ HE) with classical X; such a notion was

introduced by Renner [49].17 The formal definition, given by

H∞(ρXE |E) := sup
σE

max{h ∈ R : 2−h · IX ⊗ σE − ρXE ≥ 0}

where the supremum is over all density matrices σE ∈ D(HE), is not very relevant
to us; we merely rely on some elementary properties, which we will mention below.
When PX (respectively ρXE) is clear from the context, we may speak of the min-
entropy of X (conditioned on E), and we may write H∞(X) instead of H∞(PX)

(respectively H∞(X|E) instead of H∞(ρXE |E)).
Similarly to the min-entropy H∞(PXY |Y) conditioned on a random variable,

H∞(ρXE |E) equals the negative-log of the success probability of predicting X when
using an optimal strategy and having access to the quantum system E [40]. This
in particular implies (but can also be directly deduced from the above definition of
H∞(ρXE |E), see [49]) that 0 ≤ H∞(X|E) ≤ log |X |, with equality on the left if and
only if there exists a measurement of E that allows X to be predicted with certainty,
and with equality on the right if and only if X is random-and-independent of E (i.e.
ρXE = μX ⊗ ρE).

15Stronger in the sense that H(PX) ≥ H∞(PX).
16In some literature one may also find a different definition for the conditional min-entropy:
H∞(PXY |Y ) = −∑

y PY (y) log(maxx PX|Y (x|y)); this version, though, turned out to be less useful.
17Actually, Renner’s definition also allows X to be quantum.
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In the following section, we argue that the (conditional) min-entropy also captures
how many nearly-random bits can be extracted from X; this was actually the original
motivation behind the definition proposed by Renner in [49].

But first, we state the following two useful properties (proven in [49]). The first
one is the so called chain rule, which guarantees that getting additionally access to a
t-qubit quantum system E reduces the min-entropy by at most t :

Lemma 1 For any ρXEF ∈ D(HX ⊗ HE ⊗ HF ) with classical X:

H∞(ρXEF |EF) ≥ H∞(ρXF |F) − log(dim(HE)).

The second one relates the (conditional) min-entropy of a superposition with the
(conditional) min-entropy of the corresponding mixture:

Lemma 2 Let |ϕAE〉 ∈ HA ⊗ HE and ρ̃AE ∈ D(HA ⊗ HE) be quantum states of the
form

|ϕAE〉 =
∑

i∈J

αi |i〉
∣
∣ϕi

E

〉
and ρ̃AE =

∑

i∈J

|αi |2|i〉〈i| ⊗
∣
∣ϕi

E

〉〈
ϕi

E

∣
∣,

respectively, where {|i〉}i∈I is a basis of HA and J ⊆ I . Furthermore, let ρXE (re-
spectively ρ̃XE) be the state obtained by measuring A of |ϕAE〉 (respectively of ρ̃AE)
in some basis {|x〉}x∈X , where the random variable X describes the outcome of the
measurement. Then,

H∞(ρXE |E) ≥ H∞(ρ̃XE |E) − log |J |.

Informally, this means that if X is obtained by measuring a state that can be written
as a “small” superposition of orthogonal states, then the corresponding mixture be-
haves similarly, in that the entropy of X is close to the entropy obtained by measuring
the mixture instead.

5.3 Privacy Amplification

Consider a common situation in cryptography where the “good guys” hold some
(classical) information, say a uniformly distributed n-bit string, given by a random
variable X, and the attacker controls some quantum system E, which may contain
some information on X. However, we assume that the amount of information E con-
tains on X is limited. Using the above introduced entropy measure, this is formalized
by requiring that H∞(X|E) is lower bounded by some value t > 0. For instance, E

may actually be classical and consist of n − t arbitrary positions of the bit-string X,
or, more generally, of an arbitrary (n− t)-bit-output function applied to X. Or, E may
be quantum and arbitrarily depend on X but log(dim(HE)) ≤ n − t . However, in its
full generality of the problem, we do not put any restriction on how E’s information
on X is limited, only that it is and by how much it is.

The goal in such a situation is to transform the good guys’ weak key X into a
secure key K that is close to random and independent of E, i.e., from the adversary’s
point of view. Such a process is called privacy amplification. We stress once more that
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the resulting secure key K should be secure no matter how X and E are correlated,
as long as H∞(X|E) ≥ t for some (known) bound t > 0.

It is easy to see that privacy amplification, as described above, cannot be done by
means of a deterministic transformation K = f (X), even if f extracts just one bit.
Indeed, for any candidate function f with a 1-bit output, the (limited) information
E the adversary is allowed to have on X may actually consists of f (X), so that
H∞(X|E) ≥ t := H∞(X) − 1, but nevertheless the extracted key K = f (X) is far
from random-and-independent of E. However, as we see below, privacy amplification
is possible by means of a randomized transformation; this means K is computed from
X as K = f (S,X), where S, called the seed, is randomly chosen from some finite
domain S . For such a randomized transformation, we will require K to be close to
random-and-independent of S and E: ρKSE ≈ μK ⊗ ρSE ; in other words, we allow
the adversary to learn S. Otherwise, the problem would be trivial (simply by using the
function f (S,K) = S) and thus not interesting,18 and would not capture the typical
situation where the adversary indeed does learn S.

As we argue below, privacy amplification can be done by means of universal hash
functions. A function f : S × X → K is called universal if

P
[
f (S, x) = f (S, x′)

] ≤ 1

|K|
for all x 
= x′ ∈ X , where the seed S is uniformly distributed over S .19 Since for
the following result to be meaningful it is needed that |K| < |X |, i.e., the function
(for any fixed seed) is compressing, one also speaks of a universal hash function.
An example of a universal hash function from X = {0,1}n to K = {0,1}� is given by
f (A,x) = Ax, where the seed A is a uniformly random (�×n)-matrix A ∈ {0,1}�×n,
and where the computations are done modulo 2. More efficient examples (in terms of
the size of the seed, e.g. with a seed of bit-size n instead of �n) exist.

Universal hash functions were originally introduced by Carter and Wegman [20]
(though they use the terminology “universal2”). The initial application was to storage-
and-retrieval problems, but universal hash functions turned out to be useful for vari-
ous other problems, like authentication or, as we discuss here, privacy amplification.

The possibility of doing privacy amplification in the classical setting, and of doing
it by means of universal hashing, was pioneered by Bennett, Brassard and Robert in
[12] and further worked out in [9, 13, 33, 36]. The generalization to the quantum
setting (Theorem 1) is due to Renner and König [49, 52].

Theorem 1 Let X be a random variable and E a quantum system with joint state
ρXE ∈ D(HX ⊗ HE). Let f : S × X → {0,1}� be a universal hash function, and
let S be uniformly distributed over S , independent of X and E. Then K = f (S,X)

18The problem becomes non-trivial again by requiring K to be larger in bit-size than S; solutions to this
problem are called extractors, which play a very important role in theoretical computer science.
19Equivalently, instead of a fixed function f : S × X → K that takes a random seed s ∈ S as additional
input, one can also think of a family {fs = f (s, ·) : s ∈ S} of functions from which one member is then
chosen at random.
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Fig. 5 Size of the key extracted
by means of privacy
amplification

satisfies

δ
(
ρKSE,μK ⊗ ρSE

) ≤ 1

2
· 2− 1

2 (H∞(X|E)−�),

where μK is the completely mixed state μK = 1
|K| IK .

This means that for any 0 < � < H∞(X|E), an �-bit key K = f (S,X) can be
extracted, such that K is ε-close to random and independent of S and E where ε is
exponentially small in H∞(X|E) − � (see Fig. 5).

6 QKD Security Proof: Putting Things Together

With the above tools, we are now well equipped to do a rigorous security proof for the
QKD scheme EPR-QKD in Fig. 2, which then also implies security for BB84-QKD.
The proof we present here follows the approach of [15]; it uses elements from the
quantum-information-theoretic approach proposed by Renner, but instead of reducing
the security against general collective attacks to security against individual attacks
(which is then much easier to analyze) as e.g. in [21, 49, 51], security against general
attacks is proven directly with the help of Proposition 1.20

Formally, what we need to prove is the following. Given that the extracted key
K has bit-length �, the state ρKCommE is close (in terms of the trace distance δ) to
2−�

I ⊗ ρCommE , where Comm = (Θ,Test, . . .) consists of the classical communica-
tion between Alice and Bob (which is potentially known to Eve), and E denotes Eve’s
quantum state at the end of the execution of EPR-QKD. We would like to point out
that the value of � depends on the course of the protocol and may be influenced by
and known to Eve.21 What the above guarantees is that if � > 0 then � is (essentially)
the only information Eve can have on the key K . Furthermore, by the properties of the
trace distance, it follows that the real key K behaves (up to a small error probability)

20The downside of this approach is that it seems to be somewhat tailored to BB84-like QKD schemes. For
instance, it does also apply to the scheme by Lo, Chau and Ardehali [43], which works similar to standard
BB84 except that Alice and Bob choose their bases (computational or Hadamard) with some bias, but we
do not know yet if this approach can be used to prove the six-state scheme [19] secure.
21For instance by fully blocking the quantum communication between Alice and Bob, Eve can always
enforce � = 0; thus, there is no way to ensure that Alice and Bob obtain a key of positive length when
under attack.
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like an ideal key of the same bit length � that is (fully) random-and-independent of
Eve’s view, no matter how K is used (e.g. as an encryption key); thus, composability
as discussed in footnote 3 is guaranteed.

First we would like to analyze the error-estimation step in EPR-QKD. This step
can be understood in that Alice and Bob try to estimate how far away their common
state is from n copies of an EPR pair |Φ〉. By a straightforward generalization of the
observations from Sect. 5.1 on estimating the (relative) Hamming weight, where we
replace the qubits by 2-qubit systems and the computational basis by the so-called
Bell basis, this can be done by measuring a subset of the ought-to-be EPR pairs in
the Bell basis. However, this is not what Alice and Bob do in scheme EPR-QKD, and
this with good reasons: Alice and Bob are geographically separated and thus can only
act locally on their qubits. Thus, the observations from Sect. 5.1 cannot be directly
applied to analyze the error-estimation step in scheme EPR-QKD, but some twist is
needed.

Let |ψABE〉 be the state, shared between Alice, Bob and Eve, after the quantum
communication and before Alice and Bob measure their parts. Note that we may
indeed assume this state to be pure, since if not, it can be purified by increasing the
dimension of E sufficiently. Furthermore, let ρΘXYE be the hybrid state, consisting
of Alice’s choice Θ , of Alice and Bob’s respective measurement outcomes X and Y ,
and of Eve’s quantum system E. Recall that Xi and Yi are obtained by measuring Ai

and Bi , respectively, in basis HΘi , as illustrated in Fig. 6 (left). By introducing the
additional random variables S = (S1, . . . , Sn) and W = (W1, . . . ,Wn), defined as

Si = Xi ⊕ Yi and Wi =
{
Xi if Θi = 0,

Yi if Θi = 1,
(1)

where ⊕ denotes addition modulo 2, we obtain the hybrid state ρΘXYSWE . Below,
we show how to obtain the very same hybrid state by a different “experiment”, which
will be more convenient to analyze.

Consider the unitary transformation U ∈ U (C2 ⊗ C
2) defined by

U |b〉|c〉 = H |b〉|b ⊕ c〉
for b, c ∈ {0,1}; in other words, U is a controlled-NOT followed by a Hadamard
transform on the first (i.e. the control) qubit. It is straightforward to verify that, simi-

Fig. 6 Obtaining X and Y from |ψABE〉 (left), and from |ϕABE〉 (right). White and grey ellipses corre-
spond to measurements in the computational and the Hadamard basis, respectively
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larly, U(H |b〉H |c〉) = |b ⊕ c〉H |c〉. Let |ϕABE〉 be obtained from |ψABE〉 by apply-
ing U to each pair AiBi , and let σΘSWE be the hybrid state obtained by choosing
Θ at random in {0,1}n, and obtaining S and W as follows. For every i ∈ {1, . . . , n},
if Θi = 0 then Si is obtained from measuring Bi in the computational basis and Wi

from measuring Ai in the Hadamard basis, and if Θi = 1 then Si is obtained from
measuring Ai in the computational basis and Wi from measuring Bi in the Hadamard
basis, as illustrated in Fig. 6 (right). Defining X and Y such that (1) holds then de-
termines the hybrid state σΘXYSWE . From the properties of U , and from the way
σΘXYSWE is obtained, it is not hard to see that σΘXYSWE = ρΘXYSWE .

This means that when analyzing the error-estimation step in scheme EPR-QKD in
Fig. 2, we may assume X, Y etc. to be obtained as described in the above experiment,
by measuring |ϕABE〉 appropriately. Furthermore, we may also assume that first the
qubits that produce the Si ’s are measured (in the computational basis), and only after-
wards, the qubits that produce the Wi ’s are measured (in the Hadamard basis). Recall
that in the error-estimation step in scheme EPR-QKD in Fig. 2, Alice and Bob choose
a small subset Test ⊂ {1, . . . , n} and count the (relative) number of errors between
XTest and YTest; obviously, this equals the (relative) Hamming weight of STest. But
now, this fits perfectly into the setting of Sect. 5.1: decide for each i, by choosing
Θi ∈ {0,1} at random, whether to measure Ai or Bi to observe Si—this determines
the sample subset T using the notation/terminology from Sect. 5.1—and then com-
pute estim(S) as ω(STest) for a randomly chosen subset Test ⊂ {1, . . . , n}. Note that
here the function estim is randomized with Test as randomness.22 It therefore follows
from Sect. 5.1, that we are close to an ideal situation where with certainty the state of
the remaining n qubits has relative Hamming weight approximately β (in the sense
as discussed in Sect. 5.1), where β = estim(S) = ω(STest) equals the error-rate Alice
and Bob compute; furthermore, closeness is given by (the square-root of) the error
probability of this estimation strategy in the classical case. From classical sampling
theory, it follows that this error probability is exponentially small in n (for a subset
Test of linear size |Test| = αn).

Thus, we make only a small error when we conclude the following: for any pos-
sible choices of Θ and Test and for every possible outcome S when measuring the
corresponding qubits (as illustrated in Fig. 6, right), the resulting state of the n qubits
from which W is obtained—by measuring them in the Hadamard basis—and of E is
of the form

∑
z αz|z〉 ⊗ |ϕz

E〉, where the sum is over all z ∈ {0,1}n with ω(z) ≈ε β .
Now we are in good shape. From Lemma 2 it follows that H∞(W |ESΘTest) can

be lower bounded with the help of the entropy of the measurement outcome when
measuring the corresponding mixture.23 Furthermore, measuring the corresponding
mixture in the Hadamard basis produces a fully random and independent outcome.
From the observation that the number of z ∈ {0,1}n with ω(z) ≈ε β is upper bounded
by 2h(β+ε)n, it thus follows that

H∞(W |ESΘTest) ≥ n − h(β + ε)n.

22It is important here that we consider all the positions that are measured to obtain an Si as the measured
subset T , and not only the ones that are used to actually compute the estimate.
23The additional conditioning on S etc. follows since the claim holds for any fixed choices for S etc.
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Since X is uniquely determined when given Θ and S, the same bound also holds for
the entropy H∞(X|ESΘTest). Furthermore, by using the chain rule (Lemma 1), addi-
tionally conditioning on XTest reduces the entropy by at most |Test| (and conditioning
on YTest comes “for free” as it is determined by S and XTest):

H∞(X|ESΘTestXTestYTest) ≥ n − h(β + ε)n − |Test|.
Furthermore, one can show that the error-correcting information U decreases the
entropy by at most n − k, where k is the log of the number of codewords in the
code. This is easy to see in case of a linear code: instead of sending U = C ⊕ X as
described at the end of Sect. 4, Alice could equivalently send the syndrome of X. The
claim then follows by noting that the bit size of the syndrome is given by n − k, and
applying the chain rule. Thus, it follows that

H∞(X|ES . . . YTestU) ≥ n − h(β + ε)n − |Test| − (n − k) ≈ (1 − 2h(β))n,

where the approximation follows by choosing ε > 0 as well as α > 0 with |Test| =
α · n small enough, and by using an error-correcting code that approaches the bound
n − k ≥ h(β) · n for correcting a β-fraction of errors. It now follows from privacy
amplification that an �-bit key K can be extracted from X for � = λn with 0 ≤ λ <

(1 − 2h(β)), such that ρKCommE and 2−�
I ⊗ ρCommE are close, as required.24

Thus, we can indeed conclude that for a small enough error rate β observed by
Alice and Bob in the error-estimation phase (specifically β � 11% such that 1 −
2h(β) > 0), a secure key of positive bit-length is obtained in the key-extraction phase
of EPR-QKD (whereas otherwise Alice and Bob abort). Since BB84-QKD is at least
as secure as EPR-QKD, as demonstrated in Sect. 4.4, we can also conclude security of
BB84-QKD, with a secure key of positive bit-length under the same condition on β .

7 Secure Cooperation in the Bounded-Quantum-Storage Model

7.1 Beyond Secure Communication: Secure Cooperation

Whereas secure communication provides the means to control the information flow to
a potential “outside” attacker Eve, when interacting with not necessarily trustworthy
parties, we might also want to control the information flow to (possibly dishonest)
“insiders”. This is what secure cooperation tries to achieve. In the case of two mutu-
ally distrustful parties, Alice and Bob, this is referred to as secure 2-party cooperation
(2PC).

In a very general form, the 2PC problem is as follows. Given that Alice holds X

and Bob holds Y , how can they jointly compute f (X,Y ) and g(X,Y ) for some fixed
(possibly randomized and possibly identical) known functions f and g, simply by
communicating with each other and doing local computations, in such a way that Al-
ice learns f (X,Y ) and Bob learns g(X,Y ) but neither party learns anything beyond.

24It is straightforward, but somewhat tedious and not of importance for us, to compute the exact “error”.
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Fig. 7 Secure two-party cooperation

In particular Alice does not learn anything on Y beyond what she can deduce from
X and f (X,Y ), and similarly for Bob; see Fig. 7. Furthermore, Alice should not be
able to influence Bob’s outcome g(X,Y ) beyond choosing her input X, and similarly
for Bob. These properties should hold even if one of the parties, say Bob, is dishonest
and actively attacks the scheme by arbitrarily deviating from the prescribed behavior
in order to try to gain additional information on Alice’s input X.

For instance, in the so-called millionaires’ problem (as initially proposed by
Yao [61]), Alice and Bob want to find out which of the two has more money, but
neither of them is willing to reveal his/her actual wealth to the other party. In another
example, Alice and Bob represent two companies that want to find out if it makes
sense for them to merge, and as such they would like to find out how big the over-
lap between their respective customer sets is, but neither of them is willing to reveal
his/her list of customers to the other company.

Is it possible, like for QKD, to design provably-secure quantum-cryptographic
schemes for 2PC problems, whose security relies on the correctness of quantum me-
chanics alone? Unfortunately, here the answer is “no!” as follows from work by May-
ers, Lo and Chau [41, 42, 46]. Nevertheless, as we argue in the sections below, it
is still possible to design quantum-cryptographic 2PC schemes with interesting and
strong security guarantees.

It is interesting to point out that even though quantum mechanics alone does not
allow for (fully) secure 2PC schemes, it does allow for (certain) 2PC schemes, like
Ambainis’ oblivious transfer or coin flipping schemes [1, 2], whose security proper-
ties are stronger than what can be achieved in the classical (non-quantum) setting, but
which are still (by far) too weak for typical applications.

7.2 The Bounded-Quantum-Storage Model

From the above no-go result we know that against any possible quantum-cryptogra-
phic scheme trying to solve a typical 2PC problem there exists a successful attack.
However, it turns out that for cleverly designed schemes, the attacks implied by the
no-go result do exist in principle but are hard to launch in practice because they
require the attacker to reliably store a large number of quantum systems without af-
fecting their respective states. Such an attack is indeed hard to launch since with
current technology, we do not know how to store, say, photons without affecting their
polarization. This motivates the study of whether it is possible to design quantum-
cryptographic 2PC schemes that can be broken in principle (this is unavoidable),
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but cannot be broken in practice since breaking them would necessarily require
large quantum-storage capacities. In other words, is it possible to design quantum-
cryptographic schemes for 2PC problems, provably-secure under the assumption that
an attacker can only store a certain number of photons (and that quantum mechanics
is correct)? We show here that the answer is indeed yes!

We note that the bounded-quantum-storage model, as the above approach is called,
departs somewhat from the original motivation for studying quantum cryptography,
which was to obtain cryptographic schemes whose security relies on the correct-
ness of the laws of quantum mechanics alone. Nevertheless, when compared with the
complexity-theoretic approach discussed in the introduction, security in the bounded-
quantum-storage model still offers several advantages. First of all, it still avoids to
rely on an unproven complexity assumptions (whereas the assumed bound on the
attacker’s computing power is traded by a bound on his quantum storage capacity).
Furthermore, in contrast to the complexity-theoretic approach, secure schemes in the
bounded-quantum-storage model cannot be broken “in retrospect”: if the attacker
fails to store a large enough quantum state during the execution of the scheme, then
the information needed to break the scheme is lost forever, and cannot be recovered at
a later point in time even with unbounded quantum memory. This property is some-
times referred to as everlasting security. Finally, in order to get a very high level
of security, one can combine the bounded-quantum-storage with the computational-
complexity-theoretic approach and design cryptographic schemes that can be broken
only if the attacker can efficiently solve some computational problem and has large
quantum memory (as e.g. in [22]).

Formally, we specify the bounded-quantum-storage model as follows (see also
Fig. 7). Like in the QKD setting, Alice and Bob can communicate via a quantum and
via a classical communication channel.25 In contrast to the QKD setting, we assume
now that Alice and Bob have limited quantum storage capacities. In particular, we
allow a dishonest party attacking the scheme to only store a certain number, q , of
qubits—actually, we will only need this for dishonest Bob. We will express q as
q = γ n, where n denotes the number of qubits transmitted in the scheme. The 2PC
scheme we discuss here can be proven secure for any constant γ < 1

4 ; this means that
for the scheme to be secure it suffices that the number of transmitted qubits is larger
than four times the number of qubits a dishonest Bob can store. Other schemes for
other 2PC tasks may provide provable security for other values of γ .

When designing quantum cryptographic schemes in the bounded-quantum-storage
model, we aim for schemes for which the faithful execution by the honest parties re-
quires no quantum storage at all. In contrast to QKD where this feature is “only”
aimed for because of practicality reasons (as explained in Sect. 4.4), here it is neces-
sary for the model to make sense to have an as strong as possible separation between
the quantum storage capacity of dishonest Bob and of the honest participants, since
we must expect the dishonest party to be (much) better equipped. The scheme we dis-
cuss here and other schemes proposed in the literature (see Sect. 7.8) indeed require
no quantum storage capacities from the honest parties, they merely need to prepare,
communicate, and measure-upon-arrival qubits.

25Since here we deal with a malicious Alice or Bob but not with an outside attacker, there is no issue
regarding security or authenticity of these channels.
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Fig. 8 Oblivious transfer (left) and randomized oblivious transfer (right)

7.3 (Randomized) Oblivious Transfer

The specific 2PC problem we study here is known as oblivious transfer (OT). In OT,
Alice has as input two messages M0 and M1 in {0,1}�, and Bob has a “choice bit”
C; as a result of the cooperation, Bob is supposed to learn the message MC of his
choice but nothing more, whereas Alice should learn nothing at all; see Fig. 8 (left).
OT is interesting since it is conceptually simple, yet it is very strong: one can show
that OT is complete for secure 2PC, meaning that in principle one can implement any
secure 2PC when given an OT [37, 38].

Actually, we consider and construct a randomized version (see Fig. 8, right), where
the two messages M0 and M1 are not input by Alice, but they are produced as part
of the OT and then output to Alice (and as such denoted as W 0 and W 1), where we
still require that Bob only learns one of them, WC , whereas the other is completely
random to him. It is easy to see that given such a randomized OT, the ordinary OT
can be obtained simply by running the randomized OT and having Alice send the
one-time-pad encryptions E0 := E0 ⊕ W 0 and W 1 := M1 ⊕ W 1 to Bob, who then
can compute MC as EC ⊕ WC (where ⊕ is bit-wise addition mod 2), whereas he
learns no information on M1−C due to the randomness of W 1−C . Thus, it suffices to
construct a scheme for such a randomized OT.

7.4 Towards Quantum OT

In order to try to construct a randomized OT with the help quantum mechanics, let us
again start with an EPR pair, which turned out to be a useful stepping stone towards
QKD. As discussed in Sect. 4.2, if the two qubits of an EPR pair |Φ〉 = (|00〉 +
|11〉)/√2 are both measured in the computational basis or both in the Hadamard
basis, then a common random bit is observed. However, it is easy to see that if the two
qubits are measured in “opposite” bases, i.e., one in the computational and the other
in the Hadamard basis, or the other way round, then two random and independent
bits are observed. Indeed, if the first qubit is measured, say, in the computational
basis, then the second qubit collapses to |0〉 or |1〉, depending on the bit observed,
and as such produces a random and independent outcome when being measured in
the Hadamard basis.

Consider that, as in Sect. 4.2, Alice and Bob share a sequence of EPR pairs, i.e.,
of each pair, Alice controls one and Bob the other qubit. For instance Alice, or Bob,
could produce the EPR pairs and of each pair keep one qubit and send the other to
the other party (as in EPR-QKD). Even though we may give the impression here that
Alice and Bob store their qubits, we actually mean that they will measure each of their
qubits immediately upon generation/arrival, in order to avoid the need for quantum
storage; the bases to be used are described below. Note that here, we do not have
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Fig. 9 Measuring EPR pairs in
random (for Alice) and fixed
(for Bob) bases

to worry that the qubits may get disturbed during the communication (in the setting
we consider here there is no adversarial Eve), but rather that the sender of the EPR
pairs is not honest and might send qubits in a different state. Now, assume that Alice
measures some of her qubits in the computational basis and some in the Hadamard
basis, and that the bits obtained from measuring in the computational basis, let us call
them X0, determine her outcome W 0 of the randomized OT, and the remaining bits,
X1, obtained by measuring in the Hadamard basis, determine W 1. Obviously, Bob
should not know for which positions Alice used the computational and for which the
Hadamard basis, since otherwise he could do the exact same measurements on his
side and learn the exact same information as Alice, and thus would learn both W 0

and W 1. Note, however, that Bob can learn the information needed for one of the
two: for instance if he is interested in learning W 0, then he can simply measure all
qubits in the computational basis. This guarantees that he gets all the bits from X0

right, whereas he gets randomness for the remaining bits (see Fig. 9). However, he
does not know at which positions he finds the “good” bits. Thus, at this point, Alice
needs to tell Bob for which positions she had used which basis, so that Bob can “filter
out” the correct bits to obtain X0 and compute W 0.

It is easy to see that if Alice and Bob act as described above, then Alice indeed
learns W 0 and W1 and nothing more, and Bob learns WC but not W 1−C . But what if
one of Alice and Bob is dishonest and deviates from the prescribed actions in order
to try to obtain more information than allowed? It is obvious that Alice cannot learn
any information on C, even if she is dishonest and actively attacks the scheme, since
there is no information sent to her at all, except maybe for her parts of the EPR pairs,
which do not depend on C. Arguing security against dishonest Bob is more delicate.
For instance, dishonest Bob may not measure all the qubits in the same basis as
required; this allows him to learn partial information on X0 and on X1. In order to
take care of this, we let W 0 and W 1 be extracted from X0 and on X1, respectively, by
means of privacy amplification, so that partial information on, say, X0 is not sufficient
to learn significant information on W 0. A more serious problem is that Bob may not
measure all the qubits when he is supposed to. Indeed, if he could store all his qubits
and delay his measurements until he learns the bases used by Alice, then he could
measure every qubit in the same basis as Alice and would learn both X0 and X1,
and thus W 0 and W 1, correctly. The crucial point now is that, by assumption, he
cannot store all his qubits but is forced to do some (possibly collective) measurement
on (some of) them. Intuitively, since at this point he does not know yet the bases
that Alice will use for her measurements, one expects that this forces Bob to lose
some information on X0 or X1. This intuition is indeed true, and thus guarantees
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security for this approach; however, formally proving this intuition in a rigorous and
quantitative way is non-trivial.

7.5 OT in the Bounded-Quantum-Storage Model

The scheme for randomized OT follows the approach sketched above, except that we
specify that the quantum communication is done from Bob to Alice. Furthermore,
similar to the transition from EPR-QKD to BB84-QKD, we avoid the need for EPR
pairs: instead of preparing an EPR pair and measuring one part in basis HC{|0〉, |1〉},
with the result that Bob observes a random bit Yi ∈ {0,1} and the other part collapses
to HC |Yi〉, Bob chooses Yi at random and prepares and sends to Alice qubit HC |Yi〉;
and Alice measures all qubits immediately upon arrival. The resulting scheme, which
is due to Damgård, Fehr, Renner, Salvail and Schaffner [23], is given in Fig. 10.26

It follows by trivial inspection that if Alice and Bob honestly follow the scheme,
then Bob’s output indeed coincides with his “string of his choice” WC . It is also
easy to see that a dishonest Alice, no matter in what way she may deviate from the
scheme, learns no information on Bob’s input bit C. Indeed, the only information
Alice obtains are the qubits in step 1; however, this n-qubit state is described by the
density matrix 1

2n I ∈ (C2)⊗n, independent of C, and thus contains no information
on C.

QOT(C):

1. Bob picks a random string Y = (Y1, . . . , Yn) ∈ {0,1}n and sends the qubits
HC |Y1〉 · · ·HC |Yn〉 to Alice.

2. Alice picks a random string Θ = (Θ1, . . . ,Θn) ∈ {0,1}n, and she obtains X =
(X1, . . . ,Xn) ∈ {0,1}n by measuring the i-th qubit that she receives in basis
HΘi {|0〉, |1〉} (where i = 1, . . . , n).

3. Alice sends Θ to Bob. Alice divides X into sub-strings X0 and X1 by collecting
those Xi ’s with Θi = 0 and with Θi = 1, and Bob computes the sub-string YC

of Y by only keeping those Yi with Θi = C. (Note: we expect YC = XC .)

4. Alice chooses random, independent seeds S0, S1 for suitable universal hash
functions f 0 and f 1, sends S0 and S1 to Bob, and she takes W 0 := f 0(S0,X0)

and W 1 := f 1(S1,X1) as her output strings.

5. Bob takes WC := f C(SC,YC) as his output.

Fig. 10 The OT scheme in the bounded-quantum-storage model

26Actually, via the above EPR-pair based version, it is easy to see that the quantum communication could
just as well be from Alice to Bob, with Alice sending HΘ |X〉 for random X,Θ ∈ {0,1}n and Bob mea-
suring all qubits in basis HC {|0〉, |1〉}. It is interesting to note that in case of an imperfect quantum source,
which produces two (or more) identical qubits in one time slot with some probability (like when using a
weak coherent-pulse implementation), then the scheme from Fig. 10 actually becomes insecure, whereas
the version with the quantum communication from Alice to Bob remains secure (with an appropriate adap-
tation of the parameters). However, we chose to present the scheme as given in Fig. 10 since its security
proof (assuming an ideal quantum source) works more directly.
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It remains to argue that a dishonest Bob with a bounded quantum memory can
only learn one of the two strings, and has essentially no information on the other
(and neither does he have any joint information on the two strings). This is non-
trivial because we have no control over the n-qubit state that dishonest Bob sends
in step 1; it may be an arbitrary n-qubit quantum state, possibly entangled with an
auxiliary quantum state that Bob holds. Yet, still we need to argue quantitatively that
Bob cannot have full information on both X0 and X1. We do this in Sect. 7.7; the
main ingredient is a specific quantum uncertainty relation, where the uncertainty is
expressed in terms of min-entropy.

7.6 Tool: Entropic Quantum Uncertainty Relation

Heisenberg’s uncertainty principle [34] and its generalizations due to Robertson [53]
and Schrödinger [55] state that for any two non-commuting observables, there exists
no quantum state for which the measurement outcome for both observables is certain.
In these original uncertainty relations, uncertainty is measured by the standard devi-
ation of the outcome. Deutsch [27] proposed to express uncertainty relations using
Shannon entropy H instead. Maassen and Uffink then proved a tight entropic un-
certainty relation for any pair of observables [44]. Maassen and Uffink’s uncertainty
relation in particular implies the following bound on the (conditional) Shannon en-
tropy of the outcome when measuring a qubit in the computational or the Hadamard
basis.

Theorem 2 Let ρ◦ ∈ D(C2) be an arbitrary qubit, and let X◦ ∈ {0,1} be obtained by
measuring ρ◦ in basis HΘ◦ {|0〉, |1〉} for a random Θ◦ ∈ {0,1}. Then H(X◦|Θ◦) ≥ 1

2 .

This bound is tight; e.g. the qubit ρ◦ = |0〉〈0| reaches it: H(X◦|Θ◦ =0) = 0 and
H(X◦|Θ◦=1) = 1 so that indeed H(X◦|Θ◦) = 1

2 .
By the chain rule for Shannon entropy, this scales up to H(X|Θ) ≥ 1

2n when an ar-
bitrary n-qubit state is measured qubit-wise in random basis HΘi {|0〉, |1〉} to obtain
X = (X1, . . . ,Xn). However, as pointed out in Sect. 5.2, Shannon entropy is typi-
cally not a strong enough uncertainty measure for cryptographic purposes. In [23],
Damgård et al. showed that, for large n, Theorem 2 (and similarly any uncertainty re-
lation expressed in terms of Shannon entropy) scales up to essentially the same bound
1
2n, also for the min-entropy: H∞(X|Θ) � 1

2n, up to some small loss and except with
small error probability. The formal statement is as follows.

Theorem 3 Let ρ be an arbitrary n-qubit state. Let Θ be uniformly distributed over
{0,1}n (independent of the state), and let X ∈ {0,1}n be obtained by measuring ρ

qubit-wise in bases HΘi {|0〉, |1〉}, i = 1, . . . , n. Then, for any ε > 0 there exists an
event E such that

H∞(X|ΘE ) ≥
(

1

2
− ε

)

n

and the probability P [E ] of E is exponentially (in n) close to 1.

The proof is highly non-trivial; it is given in (the full version of) [23].
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7.7 Security Against Dishonest Bob

The security of the scheme QOT against a quantum-memory-bounded dishonest Bob
can now be proven quite easily. The goal is to show that there exists C ∈ {0,1} so that
X1−C has high min-entropy from dishonest Bob’s point of view, even when given
C and WC , so that privacy amplification (Theorem 1) implies that W 1−C is close
to random-and-independent for Bob, even when given C and WC . We point out that
giving C and WC to Bob “for free” in the security definition ensures that Bob can
also not learn any joint information on W 0 and W 1, like their bit-wise XOR.

First, note that the entropic uncertainty relation of Theorem 3 is tailored to the
way Alice obtains X in QOT. It follows that no matter what n-qubit state Bob sends
in step 1, the string X Alice obtains satisfies

H∞(X|Θ) ≥ 1

2
n,

up to an arbitrary small linear loss and except with exponentially small error proba-
bility in the sense of Theorem 3 (which we ignore for simplicity). Since, for given Θ ,
X is uniquely determined by X0 and X1, it follows that

H∞(X0X1|Θ) ≥ 1

2
n.

From this one can show that there exists a random variable C such that

H∞(X1−C |ΘC) ≥ 1

4
n − 1.

The intuition here is that if the pair (X0,X1) carries t bits of entropy then one expects
at least one of X0 and X1 to carry t/2 bits of entropy. This intuition is indeed true if
the choice of which of the two has t/2 bits of entropy is allowed to be randomized
and one sacrifices 1 bit of entropy. A slightly differently formalized version of this
claim, called entropy-splitting lemma, can be found in [23].

Note that so far we have not taken into account that the n-qubit state Bob has sent
in step 1 may be entangled with Bob’s quantum system E, and as such Bob may have
quantum information on X1−C . However, the assumed bound on the dimension of
E limits the amount of quantum information Bob may have. Indeed, from the chain
rule, Lemma 1, it follows that

H∞(X1−C |ΘCE) ≥ 1

4
n − log

(
dim(HE)

) − 1.

By the independent choice of the seeds, and by again using the chain rule, we further
conclude that

H∞(X1−C |ΘCSCWCE) ≥ 1

4
n − log

(
dim(HE)

) − � − 1,

where � denotes the bit-size of W 0 and of W 1. It follows that if the qubit-size q of E

is upper bounded by γ n for some 0 ≤ γ < 1
4 , and if � is chosen to be upper bounded
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by λn for some 0 < λ < 1
2 ( 1

4 − γ ), then

H∞(X1−C |ΘCSCWCE) ≥ � + εn − 1

for some ε > 0. It follows by the privacy amplification theorem that W 1−C =
f 1−C(S1−C,X1−C) is indeed exponentially close to random-and-independent from
dishonest Bob’s information (S0, S1,Θ and E) and C and WC :

δ
(
ρW 1−CWCCS0S1ΘE,μW 1−C ⊗ ρWCCS0S1ΘE

) ≤ 2−εn/2.

This proves security of QOT against a dishonest Bob whose quantum memory is
bounded by γ n with γ < 1

4 . In other words, if q denotes the qubit-size of Bob’s
quantum memory, then it suffices to communicate n > 4q qubits in order to have
provable security.

Note that, intuitively, one would expect QOT to be secure as long as q < n with a
linear gap: if Bob cannot store all the qubits then he inevitably misses some informa-
tion. However, proving this rigorously is still an open problem. As a matter of fact,
for any q between 1

4n and n, it is not know whether QOT is secure or not: no attack
but also no security proof is known.

7.8 Variants of QOT, and Schemes for Other 2-Party Cooperation Problems

In the above description of QOT and its analysis it is assumed that the quantum chan-
nel is noise-free, so that whenever Θi = C then Xi = Yi with probability 1. As men-
tioned in Sect. 4.5, current technology does not allow for noise-free quantum com-
munication. By doing error correction on the strings X0 and X1 by means of the same
technique as in EPR-QKD and BB84-QKD, it is rather straightforward to make QOT
robust against noisy quantum communication. The error-correction information then
has to be taken into account in the security analysis, leading to a smaller bound on
dishonest Bob’s quantum memory.

Another imperfection that occurs with real-life implementations is multi-qubit
emissions, meaning that when the qubit source is triggered to produce a qubit in a
certain state, it may actually produces two (or more) qubits in the prescribed state. As
mentioned in footnote 26, this renders protocol QOT insecure, whereas the version of
QOT in which the quantum communication goes from Alice to Bob remains secure
(with an appropriate adaption of the parameters).

In additional work by Damgård et al. (see [23–26] for the complete line of re-
search), secure quantum-cryptographic schemes in the bounded-quantum-storage
model for a sequence of additional 2PC tasks have been proposed and analyzed:
for Rabin’s OT, one-out-of-many OT, bit and string commitment, identification, and
QKD with implicit identification.

In another line of work [54, 59], Schaffner, Terhal and Wehner analyzed and
proved-secure QOT in a slightly different model. Instead of assuming a strict bound
on the size of dishonest Bob’s quantum memory, they allow Bob to store all the qubits
but assume the storage to be noisy.
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8 Conclusions

Quantum cryptography is an active research area with the goal to construct cryp-
tographic schemes with provably strong security guarantees. It combines “crypto-
graphic thinking” with elements of quantum mechanics. Designing and analyzing
quantum cryptographic schemes often leads to interesting new questions in quantum
information theory, whose answers may find other applications as well.

Current research activities include the design of new QKD schemes that require
less trust in the devices used to prepare and measure the involved quantum states,
or whose security relies on fewer properties from quantum mechanics, for instance
only on the non-signaling property. Another current research activity is the design
of quantum 2PC schemes relying on other reasonable technological assumptions on
the adversary than bounding his quantum memory, like the noisy-quantum-storage
model mentioned. On the implementational side, great effort is put into the problem
that over long distances, quantum communication currently is too noisy for QKD to
work.

With further advances in theory and practice, quantum cryptography could very
well be the first real application of quantum mechanics at the single-quantum level.
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