A Device Independent XML User Agent for Multimedia Terminals

Mikko Honkala, Pablo Cesar, and Petri Vuorimaa
{honkkis, pcesar, pv} @tml.hut.fi
Telecommunications Software and Multimedia Laboratory
Helsinki University of Technology
Finland

Outline

• Introduction/ Problem
• Background
 – SMIL / XForms
 – Digital Television
• Overview of the Paper
• Requirements
 – Language Profile
 – UI Compatibility
• XML User Agent Implementation
• Case Study
 – Screenshots
 – Evaluation
• Conclusion & Future Work
Introduction

• “Interacting in Chaos” (1999, by Olsen):
 – Device chaos: “variability of future interactive devices”
• “Past, present, and future of user interface tools” (1999, Myers et. al):
 – “We are at the dawn of an era where user interfaces are about to
 break out the “desktop” box”
• In conclusion
 – Not so long ago, desktop computer the only multimedia platform
 – Today, the number of interactive devices is growing (e.g., mobile
 phones, digital television receiver)
 – So, Interactive Multimedia Software running on different devices
 will be a consumer expectation in the near future

Problem

• Development of Cross-Platform Interactive Multimedia Applications
 – Multimedia Objects: audio, video, images, fonts
 – User Interaction
 – Temporal Dimension (synchronisation of objects)
• Distribution of multimedia applications using higher abstraction languages: XML based
• XML user Agent: Java most interoperable option available
• Still, Java has different APIs depending on the platform: Component Factory is needed
A Device Independent XML User Agent
for Multimedia Terminals

Background: SMIL and XForms

- XML based languages: easy to write, like HTML
- Recommendations by World Wide Web Consortium

SMIL
- Language intended for multimedia presentations
- Defines spatial dimension of the document (layout)
- Defines temporal dimensions of the document (synchronisation)
- User input included as links
- Does not define media formats, only integrates them

XForms
- Next generation of web forms
- Not intended as a self-standing document type
- Needs of a host language to provide the document layout (e.g., XHTML, SMIL)
- User input includes: text input, select one, select many, submit
- User input can be validated in the client-side

Background: Platforms

- In this paper, we consider three different platforms:
 - PC: Java 2 Standard Edition (J2SE)
 - Handheld device: Java 2 Micro Edition (J2ME)
 - High End: Connected Device Configuration (CDC) (personal Java) e.g., Nokia Communicator
 - Low End: Connected, Limited Device Configuration (CLDC), mobile phones
 - Digital Television Receivers: (J2ME, CDC)

<table>
<thead>
<tr>
<th></th>
<th>PC</th>
<th>Handheld</th>
<th>Handheld</th>
<th>DTV Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>High End</td>
<td>Low End</td>
<td></td>
</tr>
<tr>
<td>UI Library</td>
<td>Swing</td>
<td>AWT</td>
<td>MIDP</td>
<td>HAVi</td>
</tr>
<tr>
<td>Input</td>
<td>Keyboard, Mouse</td>
<td>Keypad, stylus</td>
<td>Keypad</td>
<td>Remote control</td>
</tr>
<tr>
<td>Output</td>
<td>1800x1440</td>
<td>240x320</td>
<td>176x192</td>
<td>640x496</td>
</tr>
</tbody>
</table>

pcesar@tml.hut.fi
December 13th 2004
Background: Platforms (DTV)

Analog tv:
1 television program in a 6 or 8 MHz channel
Little choices
Receiver: only Television set

Digital tv:
Audiovisual signal is compressed and transported by digital means (MPEG-2 stream).
Spectrum efficiency. Multiple programs in 6 or 8 MHz.
Interactive Services: VoD, banking, games...
Receiver: TV set + decoder.

• Each Broadcaster decides how to use its own bit-rate:
 – Only television programs
 – Only interactive applications
 – Television program(s) plus interactive application(s)
• Flexible quality of video and audio signals
 – 3 Mbps is enough for satisfactory video quality.
• Interactive Applications as value added services
 – Java Xlets and XHTML documents
 – Internet access (e-mail, web, ...)

pcesar@tml.hut.fi
December 13th 2004
Background: Platforms (DTV)

- Standards = Horizontal Market
 - Applications and decoders can be developed by different developers and manufacturers.
- DVB Standards (Digital Video Broadcasting)
 - Specifies the transmission in different mediums: DVB-S (Satellite), DVB-C (Cable), DVB-T (Terrestrial)
- MHP (Multimedia Home Platform)
 - Platform independent middleware between applications and receivers
 - Every DTV receiver include them
 - Defines to languages: DVB-J and DVB-HTML
 - DVB-J includes different packages: Home/Audio Video Interoperability (HAVi) is the GUI library

Overview of The Paper

- Application Layer:
 - XML languages used for implementing interactive multimedia applications
- Platform Layer:
 - User Agent supports the language profile
 - UI Compatibility Layer (Component Factory)
 - Specific Device configuration
Requirements: Language Profile

- Temporal Dimension
- Spatial Layout
- Multimedia Objects Support
 - Continuous
 - Discrete
- User Interaction
 - Links
 - Validated Entry
 - Submission (server-side)

Requirements: UI Compatibility

- Platform uses Java
- Most platform independent option
- The actual APIs for user interface development differ between multimedia terminals:
 - Digital TV: HAVi
 - PC: Swing
 - Handheld: MIDP
Requirements: Summary (XML Profile)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal Dimension</td>
<td>SMIL</td>
</tr>
<tr>
<td>Spatial Layout</td>
<td>SMIL (no flow layout)</td>
</tr>
<tr>
<td>Multimedia Object Support</td>
<td></td>
</tr>
<tr>
<td>Continuous Media</td>
<td>SMIL</td>
</tr>
<tr>
<td>Discrete Media</td>
<td>SMIL</td>
</tr>
<tr>
<td>User Interaction</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td>SMIL</td>
</tr>
<tr>
<td>Validated Entry</td>
<td>XForms</td>
</tr>
<tr>
<td>Submission</td>
<td>XForms</td>
</tr>
</tbody>
</table>

Requirements: Summary (Platform)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different Libraries</td>
<td>Java + UI Compatibility Layer</td>
</tr>
<tr>
<td>Different Input Mechanisms</td>
<td>Java + UI Compatibility Layer</td>
</tr>
<tr>
<td>Different Output Devices</td>
<td>CSS, XSL transformations, or automated content adaptation</td>
</tr>
<tr>
<td>Different Capabilities</td>
<td>CSS, XSL transformations, or automated content adaptation</td>
</tr>
</tbody>
</table>
Implementation: SMIL

SMIL player divided into three layers:
- Core Logic handles timing, layout, hyperlinks, etc.
 - GUI independent
- Viewer Layer draws the user interface
 - Swing, AWT, HAVi GUI versions
- Media Players play media files
 - text, images have custom players, audio, video by JMF
- SMIL Player also integrated into X-Smiles
 - Download it at: www.xsmiles.org
A Device Independent XML User Agent for Multimedia Terminals

Implementation: XForms

XForms engine divided into three layers

- **XForms model:**
 - XML parsers (Xalan, Xerces), validation and calculation engine

- **Meta UI:**
 - Implementation of repeating user interface constructs and switching parts dynamically

- **User Interface:** Implementation of form controls
 - High Level: logic implementation, not aware of the actual details
 - Low Level: actual implementation (using a component factory)

- **XForms also integrated into X-Smiles**
 - Download it at: www.xsmiles.org

Diagram:

```
User interface
  Swing  AWT  Havi
  ComponentFactory

Meta UI
  Form Controls  Adaptive Controls
  Actions  Switch  Repeat

XForms model
  Calculation Engine  Validation
  Xalan Xpath  Xerces Schema
```

pcesar@tml.hut.fi
December 13th 2004
Implementation: Component Factory

- Generic user interface API
 - Defines abstract widgets (e.g., XInput)
 - Maps those widgets with its actual implementation depending on the device at hand
- Currently three back-ends: AWT (Personal Java), Swing (PC), and HAVi (Digital TV Receiver)
- Benefits:
 - Application is not aware of the specific user interface library in used
 - Developing new back-ends is easy
Implementation: Component Factory

<table>
<thead>
<tr>
<th>XForms Control</th>
<th>AWT Widget</th>
<th>Swing Widget</th>
<th>HAVi Widget</th>
</tr>
</thead>
<tbody>
<tr>
<td>select1 & select</td>
<td>List</td>
<td>JList</td>
<td>HListGroup</td>
</tr>
<tr>
<td>trigger</td>
<td>Button</td>
<td>JButton</td>
<td>HTToggleButton</td>
</tr>
<tr>
<td>submit</td>
<td>Button</td>
<td>JButton</td>
<td>HTToggleButton</td>
</tr>
<tr>
<td>label</td>
<td>TextField</td>
<td>JTextField</td>
<td>HStaticText</td>
</tr>
<tr>
<td>textarea</td>
<td>TextArea</td>
<td>JTextArea</td>
<td>HText</td>
</tr>
<tr>
<td>input + xsd:string</td>
<td>TextField</td>
<td>JTextField</td>
<td>HSingleLineEntry</td>
</tr>
<tr>
<td>input + xsd:date</td>
<td>TextField</td>
<td>JCalendar</td>
<td>HSingleLineEntry</td>
</tr>
<tr>
<td>input + xsd:boolean</td>
<td>CheckBox</td>
<td>JCheckBox</td>
<td>HToggleButton</td>
</tr>
</tbody>
</table>

Implementation: Platform - Ubik

- **Platform Layer (Ubik)**
 - XForms + SMIL Support
 - Component Factory
 - HAVi (FTV)
 - Basic AWT
 - Underlying Software

- **XML User Agent**
 - MHP

- **Application Layer**
 - Application 1
 - Doc
 - Objects
 - Application 2
 - Doc
 - Objects

- **Platform Layer**
 - XML User Agent
 - XML Language Profile Implementation
 - UI Compatibility Layer
 - Digital TV configuration
 - HAVi
 - Basic AWT
 - Underlying Software
 - PC configuration
 - Swing
 - AWT
 - Underlying Software
 - Handheld configuration
 - MIDP
 - Underlying Software
Implementation: Platform - Ubik

- A Linux based prototype system for configurable digital television receivers
- Based on MHP standard, hence it allows us the study of new ideas for interactive television
- Study how different programming languages should be used for different purposes:
 - Native: 3D graphics demanding applications
 - Java: complex services
 - XML: information services + simple multimedia applications

Implementation: Platform – Ubik (HAVi)

- All widgets are visible, in addition they could be:
 - Navigable: navigated using the remote control
 - Actionable: launch functionality (buttons)
 - Selectable: selection of an item or set of items (Lists)
- Each widget has associated a Look class (i.e., view)
Case Study: Distance Education Portal

- Author
 - Non-programmer
 - Very easy to produce the content
- User
 - Student accessing from a remote terminal
- Content
 - Attractive multimedia content
- Synchronisation:
 - Internal: video content of the lectures
 - External: slides changing as the lecturer talks
- User Interaction:
 - Navigation: Normal links
 - Exam: submission and validation controls

Case Study: Screenshots

- MITA
 - Please Select a topic:
 - Web Services
 - Quality of Service

- Mid-Term Exam
 - 10 secs
 - Options:
 - Which is the correct VLAN protocol?
 - 1. 802.1g
 - 2. 802.11
 - 3. 802.11b
 - 4. 802.11a
 - Wi-Fi
 - What is the range of a Wi-Fi network?
Case Study: Evaluation

- Includes synchronisation mechanism
 - Cannot be achieved using only HTML
- Includes validation and calculation mechanisms of user input
 - Cannot be achieved using only SMIL
- Application completely developed using declarative languages (SMIL+XForms)
 - Easy to author: no scripting is used
 - Quick to author: number of lines for the whole application is around 256

Conclusions

- Device Independent XML based user interface model
 - Presentation (SMIL): separates the synchronisation logic from user interface
 - User Interaction (XForms): separates the widgets from their look and feel
 - Component Factory: cross-platform user interface support
- Case Study shows the benefit of the approach
 - easy and fast to develop interactive multimedia applications
- Ubik Environment: prototype of configurable digital television receivers
 - DTV stream: audio, video, composite graphics (transparencies)
 - 3D Graphics support (OpenGL, Java OpenGL): games, basic 3D applications
 - MHP support: services such as Teletext or Navigator
 - X-smiles: support for XML based languages such as XHTML 2.0, SMIL, XForms
- X-smiles have been ported to commercial device:
 - Nokia communicators as a high end handheld device

pcesar@tml.hut.fi
December 13th 2004
Future Work

- SMIL; temporal dimension can be included using Timesheets
 - Similar to CSS, but time
 - Easier to implement
 - Less troublesome
 - Separated time from layout (could use flow layout)
 - Embedded into XHTML
- Some XForms functionality could not be implemented (e.g., switch and repeat)
- In depth study of how the system should react against:
 - Different capabilities (J. V. Ossenbruggen et al.)
 - Different output (J. Smith et al.)
- Study of MIDP (too different from AWT!!)

Questions

Thank you very much!

Questions?

Comments?