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Abstract. An important application of semantic web technology is recognizing
human-defined concepts in text. Query transformation is a strategy often used in
search engines to derive queries that are able to return more useful search results
than the original query and most popular search engines provide facilities that let
users complete, specify, or reformulate their queries. We study the problem of
semantic query suggestion, a special type of query transformation based on iden-
tifying semantic concepts contained in user queries. We use a feature-based ap-
proach in conjunction with supervised machine learning, augmenting term-based
features with search history-based and concept-specific features. We apply our
method to the task of linking queries from real-world query logs (the transaction
logs of the Netherlands Institute for Sound and Vision) to the DBpedia knowledge
base. We evaluate the utility of different machine learning algorithms, features,
and feature types in identifying semantic concepts using a manually developed
test bed and show significant improvements over an already high baseline. The re-
sources developed for this paper, i.e., queries, human assessments, and extracted
features, are available for download.

1 Introduction
Human-defined concepts are fundamental building blocks of the semantic web. When
used as annotations for documents or text fragments they can provide explicit anchor-
ing in background knowledge and enable intelligent search and browsing facilities. As
such, an important application of ontological knowledge is augmenting unstructured
text with links to relevant, human-defined concepts. For the author or reader of the text,
this augmentation may supply useful pointers, for example to the concepts themselves
or to other concepts related to the ones found. For ontology learning applications, such
links may be used to learn new concepts or relations between them [34]. Recently,
data-driven methods have been proposed to generate links between phrases appearing
in full-text documents and a set of ontological concepts known a priori. Mihalcea and
Csomai [24] propose the use of several linguistic features in a machine learning frame-
work to link phrases in full-text documents to Wikipedia articles and this approach is
further improved upon by Milne and Witten [25]. Because of the connection between
Wikipedia and DBpedia, such data-driven linking methods help us establish links be-
tween textual documents and Linked Open Data [2, 3, 9, 33].

Another, more challenging instantiation of linking text to human-defined concepts
in a knowledge source is semantic query suggestion. Query suggestion is a strategy to



derive terms that are able to return more relevant results than the initial query. Com-
monly used approaches to query suggestion (sometimes referred to as a form of query
expansion) are highly data-driven and based mostly on term frequencies [21, Chapter
9]. Semantic query suggestion, in contrast, tries to understand (or learn) which concepts
the user used in her query or, phrased alternatively, the concepts she is interested in and
wants to find.1 Moreover, the properties of each concept, and any other resources asso-
ciated with it, could serve as additional, useful information for the user. In our current
work, we use DBpedia as our target ontology. As an example of our task, consider the
query “obama white house”. A semantic query suggestion algorithm should return sug-
gestions in the form of the (DBpedia) instances labeled “Barack Obama” and “White
House”. Identifying such semantic suggestions serves multiple purposes: it can (i) help
the user acquire contextual information, (ii) suggest related concepts or associated terms
that may be used for search, and (iii) provide valuable navigational suggestions.

In this paper we address the semantic query suggestion task and automatically link
queries to DBpedia concepts. We propose a novel method that leverages the textual rep-
resentation of each concept as well as query-based and concept-based features. Working
with user queries, which are typically quite short [31], implies that we cannot use pre-
viously established approaches that rely on textual context such as shallow parsing or
part-of-speech tagging [24]. One interesting aspect of working with user queries is that
we have history-based information available ( from the session or the user) that can
potentially be used to help address the semantic query suggestion task.

Our approach proceeds as follows. First, we use language modeling for information
retrieval (IR) techniques to retrieve the most relevant concepts for the full query and for
each n-gram (i.e., contiguous sequence of n words) in the query. Second, we use su-
pervised machine learning methods to decide which of the retrieved concepts should be
kept and which should be discarded. In order to train the machine learner, we examined
close to 1000 queries from a search engine for a digital multimedia archive and manu-
ally linked over 600 of these to relevant concepts in DBpedia.2 The research questions
we address are the following.

– Can we cast semantic query suggestion as a ranking problem?
– What is the best way of handling the terms in the input query?
– Can we use features pertaining to the query terms, concepts, and history to improve

upon a basic retrieval based approach?
– Which type of the feature helps most? Which separate feature is most informative?

Our main contribution is threefold: we introduce the problem of semantic query sug-
gestion, provide a very effective approach to the problem plus an analysis of the con-
tributions of the features used, and we make available resources to enable future work
on the problem. The remainder of this paper is structured as follows. In Section 2 we
discuss related work. Sections 3 and 4 detail the semantic query suggestion task and our
approach. Our experimental setup is described in Section 5 and our results are presented
in Section 6. We end with a concluding section.

1 We use “ontology” to refer to the full spectrum of conceptualizations, ranging from glossaries
to formal ontologies [22]. We refer to an instance in DBpedia as “concept” [33].

2 The queries, human assessments, and extracted features are publicly available for download at
http://ilps.science.uva.nl/resources/iswc09_annotations.

http://ilps.science.uva.nl/resources/iswc09_annotations


2 Related Work
Linking terms or phrases to ontologies is related to several areas of research. These
include semantic web areas such as ontology matching and semantic annotation, but
also areas from language technology and information retrieval.

In ontology matching relations between concepts from different ontologies are found.
These relations are based on a comparison of instances, concept labels, semantic struc-
ture, or ontological features such as constraints or properties, sometimes exploiting aux-
iliary external resources such as the lexical resource WordNet or the upper ontology
DOLCE [30]. E.g., Wang et al. [36] develop a machine learning technique to learn the
relationship between the similarity of instances and the validity of mappings between
concepts. Other approaches are designed for lexical comparison of concept labels in the
source and target ontology and do not use semantic structure nor instances (e.g. [32]).
This type of matching is sometimes referred to as ‘lexical matching’ and is used in cases
where the ontologies do not have any instances or structure; e.g., in Aleksovski et al.
[1] lexical comparison of labels is used to map both the source and the target ontology
to a semantically rich external source of background knowledge.

Lexical matching is very similar to our task at hand, as we do not have any semantic
structure in the queries. Since 2008, the Ontology Alignment Evaluation Initiative has
contained a task similar to ours, where participants link a largely unstructured thesaurus,
the GTAA, to DBpedia [10]. Our approach is different, however, in two ways. First, we
use the interaction history with the system in the form of user sessions to obtain a
certain amount of contextual information. Second, the fact that the source terms that we
are trying to link are natural language captured in user queries instead of standardized
concept labels makes the task intrinsically harder.

A lot of work has been done on semantic annotation: the process of relating doc-
uments to concepts from ontologies or other sources of structured knowledge, such as
Wikipedia. Many restricted forms of the problem have been addressed. The detection
of named entities in pieces of text is an important sub-problem of semantic annota-
tion. For example, Kiryakov et al. [20] create links between named entities in text and
concepts from a light-weight ontology. Bhole et al. [8] propose an interesting exam-
ple of semantic document analysis, where named entities are related over time using
Wikipedia. Chemudugunta et al. [11] do not restrict themselves to named entities, but
instead link all words in a document to ontological concepts. They use latent topic mod-
els to learn links between words and concepts. Other sub-problems of semantic annota-
tion include sense tagging and word sense disambiguation [13]. Some of the techniques
developed there have fed into automatic link generation between full-text documents
and Wikipedia. For example, Milne and Witten [25] depend heavily on contextual in-
formation (terms and phrases) around the source text to determine the best Wikipedia
articles to link to (like typical named entity recognition and sense tagging methods).
This work was based on earlier work by Mihalcea and Csomai [24]. Similarly, we also
consider a two-step approach to linking text to Wikipedia/DBpedia; first keyword ex-
traction is performedi, and next, each extracted keyword is linked to a Wikipedia article.
The authors apply part-of-speech tagging and develop several ranking procedures for
candidate Wikipedia articles. Our approach differs in that we do not limit ourselves to
exact matches with the query terms. Another distinct difference between our approach



and those mentioned above is that while they work with full-text documents, we utilize
much sparser data in the form of user queries. As such we can not easily use techniques
such as part-of-speech tagging or lean too heavily on context words for disambiguation.
As will be detailed below, our approach uses session history and n-grams in the queries
to obtain contextual information instead.

Turning to semantic query analysis (as opposed to semantic analysis of full doc-
uments), Guo et al. [14] perform named entity recognition in queries; they recognize
a single entity in each query and subsequently classify it into one of a small set of
predefined classes such as “movie” or “video game”. We do not impose the restriction
of having a single concept per query and, furthermore, our list of candidate concepts is
much larger, i.e., all articles in Wikipedia. Several other approaches have been proposed
that link queries to a limited set of categories. Mishne and de Rijke [26] use online prod-
uct search engines to link queries to product categories; Beitzel et al. [5] link millions
of queries to 17 topical categories based on a list of manually pre-categorized queries;
Jansen et al. [16] use commonly occurring multimedia terms to categorize audio, video,
and image queries.

As to related work on query suggestions, some approaches use query logs to deter-
mine which queries or which rewrites occur frequently [17]. Others perform query anal-
ysis and try to identify the most relevant terms [6], to predict the query’s performance
a priori [40], or combine the two [7]. Bendersky and Croft [6] use part-of-speech tag-
ging and a supervised machine learning technique to identify the “key noun phrases” in
natural language queries. Key noun phrases are phrases which convey the most informa-
tion in a query and contribute most to the resulting retrieval performance; we evaluate
several of the features proposed by these authors.

3 The Task
The semantic query suggestion task we address in this paper is the following. Given a
query that is submitted to a search engine, identify the relevant concepts that the user
entered in her query where the concepts are taken from an existing knowledge base
or ontology. We address our task in the setting of a digital archive, specifically of the
Netherlands Institute for Sound and Vision (“Sound and Vision”). Sound and Vision
maintains a large digital audiovisual collection, currently containing over a million ob-
jects and daily updated with new broadcasts. Users of the archive consist primarily of
media professionals who use an online search interface to locate audiovisual items to
be used in new programs such as documentaries and news reviews.

Sound and Vision is in the process of linking all its digital resources to a variety
of structured knowledge sources. Because of its central role in the Linked Open Data
initiative, our knowledge source of choice for semantic query suggestion is DBpedia.
Thus, in practical terms, the task we are facing is: given a query (within a session, for
a given user), produce a ranked list of concepts from DBpedia that are mentioned or
meant in the query. These concepts could then be used to suggest relevant multimedia
items associated with each concept or to suggest contextual information, such as text
snippets from the Wikipedia article.



4 Approach
Our approach to suggesting DBpedia concepts for user queries consists of two stages.
In the first stage, a ranked list of possible concepts for the query is generated using
a language modeling framework (cf. Section 4.1). To create this ranking we consider
two approaches; one approach is to extract all n-grams in the query and generate a
ranking for each. The other approach is to use the entire query to create a single concept
ranking. We use various textual representations of each DBpedia concept, including
the accompanying Wikipedia article text, its label, and the text used in the hyperlinks
pointing to it. An example of the first stage of ranking concepts is provided in Table 1
for the query “obama white house”. From the example it is clear why we consider these
two approaches. Should we simply use the full query on its own (first row), we would
miss the relevant concept “Barack Obama”. However, as can be seen from the last two
rows, considering all n-grams also introduces noise.

Table 1. An example of generating n-grams for the query “obama white house” and
retrieved candidate concepts, ranked by retrieval score. Correct concepts in boldface.

N-gram (Q) Candidate concepts

obama white house White House; White House Station; President Coolidge; Sensation White
obama white Michelle Obama; Barack Obama; Democratic Pre-elections 2008; January 17
white house White House; White House Station; Sensation; President Coolidge
obama Barack Obama; Michelle Obama; Presidential Elections 2008; Hillary Clinton
white Colonel White; Edward White; White County; White Plains Road Line
house House; Royal Opera House; Sydney Opera House; Full House

In the second stage supervised machine learning is used to decide which of the can-
didate concepts in the ranked lists should be kept as viable concepts for the query in
question. In order to train these machine learning algorithms, we asked annotators to
assess queries submitted to Sound and Vision and manually link them to relevant DB-
pedia concepts. More details with respect to the test collection and the manual anno-
tations are listed in Section 5. The machine learning algorithms we consider are Naive
Bayes, Decision Trees, and Support Vector Machines [35, 37] and are introduced in
Section 4.2. As input to the machine learning algorithms we extract a set of features
related to the query n-gram, concept, and the session in which the query appears as
detailed in Section 4.3.

4.1 Ranking Concepts
We base our concept ranking framework within the language modeling paradigm, as it
is a theoretically transparent retrieval approach that is competitive in terms of retrieval
effectiveness [15, 28, 39]. Here, a query is viewed as having been generated from an
underlying document language model, where some words are more probable to occur
than others. At retrieval time each document is scored according to the estimated like-
lihood that the words in the query were generated by a random sample of the language
model underlying the document. These word probabilities are generally estimated from
the document itself (using maximum likelihood estimation) and combined with back-



ground collection statistics to overcome zero probability and data sparsity issues; a
process known as smoothing.

For the n-gram based re-ranking, we extract all n-grams from each query Q (where
1 ≤ n ≤ |Q|) and create a ranked list of concepts for each individual n-gram, Q. For
the full-query based reranking approach, we use the same method but add the additional
constraint that n = |Q|. The problem of ranking DBpedia concepts given an n-gram
can then be formulated as follows. Each concept c should be ranked according to the
probability that it was generated by the n-gram P (c|Q), which can be rewritten using
Bayes’ rule as:

P (c|Q) =
P (Q|c)P (c)

P (Q)
.

Here, the term P (Q) is the same for all concepts and be ignored for ranking purposes.
The term P (c) indicates the prior probability of selecting a concept, which we assume
to be uniform. Assuming independence between the individual terms q ∈ Q, as is
common in the field of information retrieval [4], we obtain

P (c|Q) ∝ P (c)
∏
q∈Q

P (q|c)n(q,Q), (1)

where n(q,Q) indicates the count of term q in n-gram Q. The probability P (q|c) is
smoothed using Bayes smoothing with a Dirichlet prior [39], which is formulated as:

P (q|c) =
n(q, c) + µP (q)∑

q n(q, c) + µ
, (2)

where P (q) indicates the probability of observing q in a large background collection
and µ is a hyperparameter that controls the influence of the background corpus.

Since each DBpedia concept is linked to its Wikipedia counterpart, we can use the
textual representations of the associated wikipedia pages for retrieval. In particular, we
perform retrieval using the title of the article, the content, and the text used for the
hyperlinks pointing to it from other Wikipedia articles.

4.2 Learning to Rerank Concepts
Once we have obtained a ranked list of possible concepts for each n-gram in the query,
we turn to concept selection. In this stage we need to decide which of the candidate
concepts are most viable. We use a supervised machine learning approach, which takes
as input a set of labeled examples (query to concept mappings) and several features of
these examples (detailed below). We choose to compare a Naive Bayes (NB) classifier,
with a Support Vector Machine (SVM) classifier and a decision tree classifier (J48)—a
set representative of the state-of-the-art in classification. We experiment with multiple
classifiers in order to confirm that our results are generally valid, i.e., not dependent on
any machine learning algorithm.

4.3 Features Used
We employ several types of features, each associated with either the current query n-
gram, the current concept, their combination, or the current search history. Unless indi-
cated otherwise, we consider Q to be a phrase when determining the features.



Table 2. Features used, grouped by type.

N-gram features

LEN (Q) = |Q| Number of terms in the phrase Q
IDF (Q) Inverse document frequency of Q
WIG(Q) Weighted information gain using top-5 retrieved concepts
QE(Q) Number of times Q appeared as whole query in query log
QP(Q) Number of times Q appeared as partial query in query log
QEQP(Q) Ratio between QE and QP
SNIL(Q) Does a sub-n-gram of Q fully match with any concept label?
SNCL(Q) Is a sub-n-gram of Q contained in any concept label?

Concept features

INLINKS(c) The number of concepts linking to c
OUTLINKS(c) The number of concepts linking from c
GEN (c) Function of depth of c in SKOS category hierarchy [25]
CAT (c) Number of associated categories
REDIRECT (c) Number of redirect pages linking to c

N-gram + concept features

TF (c,Q) =
n(Q, c)

|c|
Relative phrase frequency of Q in c, normalized by length of c

TF f (c,Q) =
n(Q, c, f)

|f |
Relative phrase frequency of Q in representation f of c,
normalized by length of f

POSn(c,Q) = posn(Q)/|c| Position of nth occurrence of Q in c, normalized by length of c
SPR(c,Q) Spread (distance between the last and first occurrences of Q in c)
TF · IDF (c,Q) The importance of Q for c
RIDF (c,Q) Residual IDF (difference between expected and observed IDF)
χ2(c,Q) χ2 test of independence between Q in c and in collection Coll
QCT (c,Q) Does q contain the label of c?
TCQ(c,Q) Does label of c contain q?
TEQ(c,Q) Does label of c equal q?
SCORE(c,Q) Retrieval score of c w.r.t Q
RANK(c,Q) Retrieval rank of c w.r.t Q

History features

CCIH(c) Number of occurrences of label of c appears as query in history
CCCH(c) Number of occurrences of label of c appears in any query in history
CIHH(c) Number of times c is retrieved as result for any query in history
CCIHH(c) Number of times label of c equals title of any result for any query in history
CCCHH(c) Number of times title of any result for any query in history contains label of c
QCIHH(Q) Number of times title of any result for any query in history equals Q
QCCHH(Q) Number of times title of any result for any query in history contains Q
QCIH(Q) Number of times Q appears as query in history
QCCH(Q) Number of times Q appears in any query in history



N-gram Features These features are based on information from an n-gram and are
listed in Table 2 (first group). IDF (Q) indicates the relative number of concepts in
which Q occurs, which is defined as IDF (Q) = log (|Coll|/df (Q)), where |Coll| in-
dicates the number of documents in the collection and df (Q) the number of documents
in which Q occurs [4]. WIG(Q) indicates the weighted information gain, that was pro-
posed by Zhou and Croft [40] as a predictor of the retrieval performance of Q. It is the
only feature which uses the set of all candidate concepts retrieved for this n-gram, CQ,
and determines the relative probability of Q occurring in these documents as compared
to the collection. Formally:

WIG(Q) =
1
|CQ|

∑
c∈CQ

log(P (Q|c))− log(P (Q))

logP (Q)
.

QE (Q) and QP(Q) indicate the number of times this n-gram appears in the entire
query logs as a whole or partial query respectively.

Concept Features Table 2 (second group) lists the features related to a DBpedia con-
cept. This set of features is related to the knowledge we have of the current candidate
concept, such as the number of other concepts linking to or from it, the number of
associated categories (the count of the DBpedia property skos:subject), and the
number of redirect pages pointing to it (the DBpedia property dbpprop:redirect).

N-gram + Concept Features This set of features considers an n-gram and a concept
(Table 2, third group). We consider the relative frequency of occurrence of the n-gram
as a phrase in the corresponding Wikipedia article, in the separate document representa-
tions (title, content, anchor texts, first sentence, and first paragraph of the Wikipedia arti-
cle), the position of the first occurrence of the n-gram, the distance between the first and
last occurrence, and various IR-based measures. Of these, RIDF [12] is the difference
between expected and observed IDF for a concept, which is defined as RIDF (c,Q) =
log (|Coll|/df (Q)) + log (1− exp(−n(Q,Coll)/|Coll|)). We also consider whether
the label of the concept, i.e. the Wikipedia article title, matches Q and we include the
current retrieval information.

History Features Finally, we consider features based on the previous queries that
were issued in the same session (Table 2, fourth group). These features look at either
the current candidate concept or current n-gram and see whether they occur (partially)
in the previous queries or in the retrieved candidate concepts.
Below, we compare the effectiveness of the features listed above for our semantic query
suggestion task.

5 Experimental Setup
We introduce the experimental environment and the experiments that we perform to an-
swer the research questions from Section 1. We also introduce our evaluation measures
and describe our manual assessments, but start with detailing our data sets.

5.1 Data
Two main types of data are needed for our experiments: queries and DBpedia concepts.
We have access to a set of 264,503 queries issued between 18 November 2008 to 15



May 2009 to Sound and Vision. Sound and Vision logs the actions of users on the
site, generating session identifiers and time stamps. This allows a series of consecutive
queries to be linked to a single search session, where a session is identified using a
session cookie. A session is terminated once the user closes the browser. An example
is given in Table 3. All queries were Dutch language queries; however, nothing in our
semantic query suggestion approach is language dependent. As the “history” of a query,
we took all queries previously issued in the same user session.

Table 3. An example of queries issued in a (partial) session, translated to English.

Session ID Query ID Query (Q)

jyq4navmztg 715681456 santa claus canada
jyq4navmztg 715681569 santa claus emigrants
jyq4navmztg 715681598 santa claus australia
jyq4navmztg 715681633 christmas sun
jyq4navmztg 715681789 christmas australia
jyq4navmztg 715681896 christmas new zealand
jyq4navmztg 715681952 christmas overseas

The DBpedia version we use is the most recent Dutch version (3.2). We downloaded the
Wikipedia dump from which this DBpedia version was created (dump date 20080609);
this dump is used for all our text-based processing steps and features.

5.2 Training Data
For training and testing purposes, four assessors were asked to manually link 998
queries to DBpedia concepts. The assessors were presented with a list of sessions and
the queries in them. Once a session had been selected, they were asked to find the most
relevant DBpedia concepts given each query and its preceding session history if any.
Our assessors were able to search through Wikipedia using the fields described in Sec-
tion 4.1. Besides indicating relevant concepts, the assessors could also indicate whether
a query was ambiguous, contained a typographical error, or whether they were unable
to find any relevant concept. For our experiments, we removed all the assessed queries
in these “anomalous” categories and were left with a total of 629 assessed queries in
193 sessions.3 In this sample the average query length is 2.14 terms per query. Each
query has 1.34 concepts annotated on average.

5.3 Parameters
As to retrieval, we use the entire Wikipedia document collection as background corpus
and set µ to the average length of a Wikipedia article [39], i.e., µ = 315 (cf. Eq. 2).
For classification we use the following three machine learning algorithms in our experi-
ments: J48, Naive Bayes and Support Vector Machines. The implementations are taken
from the Weka machine learning toolkit [37]. J48 is a decision tree algorithm and the
Weka implementation of C4.5 [29]. The Naive Bayes classifier uses the training data to
estimate the probability that an instance belongs to the target class, given the presence

3 We focus on evaluating the actual semantic query suggestions and discard queries which the
assessors deemed too anomalous to confidently link to any concept.



of each feature. By assuming independence between the features these probabilities can
be combined to calculate the probability of the target class given all features [19]. SVM
uses a sequential minimal optimization algorithm for training with polynomial kernels
as described in [27]. The training instances are represented as n-dimensional vectors
and two decision hyperplanes are created that best separate the instances of the target
classes. The distance between the hyperplanes is called the margin and by maximizing
this distance the generalization error of the classifier is minimized. For all algorithms
we do not perform extensive optimization of the parameter settings and use the de-
fault weka parameters.4 Whether fine-grained parameter tuning is beneficial and, thus,
whether our choice negatively influences the experimental outcomes is a topic for future
work.

5.4 Testing and Evaluation
We define semantic query suggestion as a ranking problem. In this paper, the system
has to return five concepts for a given input query; the assessments described above
are used to determine the relevance of these five concepts. We employ several measures
which are well-known in the field of information retrieval [4], namely precision@1 (P1;
how many relevant concepts are retrieved at rank 1), r-precision (R-prec; precision@r
where r equals the size of the set of known relevant concepts for this query), recall
(which percentage of relevant concepts were retrieved?), mean reciprocal rank (MRR;
the reciprocal of the rank of the first correct concept), and the success rate @5 (SR; a
binary measure that indicates whether at least one correct concept has been returned in
the top-5).

To verify the generality of the machine learning algorithms, we perform 10-fold
cross validation [37], which reduces the possibility of errors being caused by artifacts
in the data. The reported scores are averaged over all folds and all evaluation measures
are averaged over the queries used for testing. For determining the statistical signifi-
cance of the observed differences between the various runs we use one-way ANOVA to
determine if there is a significant difference (α ≤ 0.05). We then use the Tukey-Kramer
test to determine which of the individual pairs are significantly different. We designate
the best result in each table in bold face.

6 Results
In this section we report on the experimental results which answer the research ques-
tions from Section 1. We compare three approaches to the semantic query suggestion
task:
(i) a baseline which retrieves concepts based solely on their textual representation in

the form of the associated Wikipedia article,
(ii) n-gram based reranking which extracts all n-grams from the query and uses ma-

chine learning to identify the best concepts, and
(iii) full-query based reranking which does not extract n-grams, but calculates feature

values based on the full query.

After we have described the results for each approach, we zoom in on the most infor-
mative features and the specific feature types.

4 See http://weka.sourceforge.net/doc.

http://weka.sourceforge.net/doc


6.1 Baseline
As our baseline, we take the entire query as issued by the user and employ Eq. 1 to rank
DBpedia concepts based solely on their textual representation (this techniques is similar
to using a search engine to perform a search within the Dutch Wikipedia). We consider
two forms of textual representation: “content” and “full text”. The former consists of
the textual content of a Wikipedia article corresponding to a DBpedia concept, the latter
adds to this the title of the article and the anchor texts of hypertext links in Wikipedia
that point to the article at hand.

Table 4. Results of ranking concepts based on using the entire query Q and either the
content of the Wikipedia article or the full text associated with each DBpedia concept.

P1 R-prec Recall MRR SR

full text 0.5636 0.5216 0.6768 0.6400 0.7535
content 0.5510 0.5134 0.6632 0.6252 0.7363

Table 4 shows the results of the baseline. From this table we observe that including the
title and anchor texts of the incoming links results in improved retrieval performance
overall. Notice that this is a strong baseline; on average, over 65% of the relevant con-
cepts are correctly identified in the top-5 and, further, over 55% of the relevant concepts
are retrieved at rank 1. The success rate indicates that for 75% of the queries at least
one relevant concept is retrieved in the top-5.

Table 5. An example of baseline results for the n-grams in the query “challenger wubbo
ockels”, ranked by retrieval score. Concepts labeled as correct in boldface.

N-gram Candidate concepts

challenger Space Shuttle Challenger; Challenger; Bombardier Challenger; STS-61-A
wubbo Wubbo Ockels; Spacelab; Canon of Groningen; Superbus; André Kuipers
ockels Wubbo Ockels; Spacelab; Superbus; Canon of Groningen; André Kuipers
challenger wubbo Wubbo Ockels; STS-61-A; Space Shuttle Challenger; Spacelab; STS-9
wubbo ockels Wubbo Ockels; Spacelab; Superbus; Canon of Groningen; Andr Kuipers
challenger wubbo ockels Wubbo Ockels; STS-61-A; Spacelab; Space Shuttle Challenger

6.2 N-gram based reranking
Table 5 shows the result for the baseline (last row) and the query “challenger wubbo
ockels”. As is clear from this example, the two relevant concepts are retrieved at ranks
1 and 4. When we look at the same results for the n-grams in the query, however, one
of the relevant concepts is retrieved at the first position for each n-gram. This example
and the one in Table 1 suggest that it will be beneficial to consider all possible n-grams
in the query. In this section we report on the results of extracting n-grams from the
query, generating features for each, and subsequently applying the machine learning
algorithms to decide which of the suggested concepts to keep. The features used here
are described in Section 4.2.
Table 6 shows the results of applying the machine learning algorithms on the extracted
n-gram features. We note that J48 and SVM are able to improve upon the baseline re-



Table 6. Results for n-gram based reranking. N H and ◦ indicate that a score is signifi-
cantly better, worse or statistically indistinguishable respectively. The leftmost symbol
represents the difference with the baseline, the next with the J48 run, and the rightmost
with the NB run.

Machine learner P1 R-prec Recall MRR SR

baseline 0.5636 0.5216 0.6768 0.6400 0.7535
J48 0.6510N 0.5604◦ 0.7245◦ 0.7441N 0.7958◦

NB 0.4665H◦ 0.4344HH 0.6984◦◦ 0.7100◦◦ 0.7614◦◦

SVM 0.8388NNN 0.7170◦◦N 0.7852◦◦◦ 0.8500N◦N 0.8548◦◦◦

sults from the previous section, according to all metrics. The Naive Bayes classifier per-
forms worse than the baseline in terms of P1 and R-precision. SVM clearly outperforms
the other algorithms and is able to obtain very high scores; significantly better than the
baseline on all metrics. Interestingly, we see that the use of n-gram based reranking has
both a precision enhancing effect for J48 and SVM (the P1 and MRR scores go up) and
a recall-enhancing effect.

Table 7. Results of removing specific feature types from the training data for the SVM
classifier and n-gram based reranking. H and ◦ indicate that a score is significantly worse
or statistically indistinguishable. The leftmost symbol represents the difference with the
all features run, the next with the without history features run, and the rightmost symbol
the without concept features run.

P1 R-prec Recall MRR SR

All features 0.8388 0.7170 0.7852 0.8500 0.8548
Without history 0.7867 ◦ 0.4687H 0.6272◦ 0.8009◦ 0.8041◦

Without concept 0.5826H◦ 0.3282H◦ 0.4554H◦ 0.5826◦◦ 0.5826H◦

Without history and concept 0.1929HHH 0.1429HH◦ 0.1679HHH 0.1929HHH 0.1929HHH

In Section 4.3 we identified several groups of features, relating to the n-gram, con-
cept, their combination, or the session history. We will now zoom in on the performance
of these groups. Table 7 shows the results when several of these groups are removed
from the training data for the SVM classifier. It turns out that both the n-gram specific
and n-gram + concept specific features are needed for classification. When these groups
are removed, none of the relevant concepts are identified. From Table 7 we observe that
removing the history features results in a drop in performance, albeit a small one. When
the concept features are removed, the resulting performance drops even further and their
combined removal yields very low scores. Classification without the concept based fea-
tures results in performance that is statistically indistinguishable from the baseline.

Next we turn to a comparison of n-gram based reranking and full query reranking.
Table 8 shows the results when we omit the n-grams and only the full query is used
to generate features. We again observe that SVM significantly outperforms J48, NB, as
well as the baseline. We further note that these scores are the highest obtained so far and
this approach is able to return almost 90% of all relevant concepts. This result is very



Table 8. Results for full query-based reranking. N H and ◦ indicate that a score is
significantly better, worse or statistically indistinguishable respectively. The leftmost
symbol represents the difference with the baseline, the next with the J48 run, and the
rightmost with the NB run.

Machine learner P1 R-prec Recall MRR SR

baseline 0.5636 0.5216 0.6768 0.6400 0.7535
J48 0.7055N 0.5907◦ 0.6664◦ 0.6768◦ 0.7314◦

NB 0.7110N◦ 0.6004◦◦ 0.7173◦◦ 0.7121◦◦ 0.7889◦◦

SVM 0.8908NNN 0.8604NNN 0.8890NNN 0.8173N◦N 0.8963NNN

encouraging and shows that the approach taken handles semantic query suggestions
extremely well.

6.3 Feature Selection
Several methods exist with which to automatically determine the most informative fea-
tures given training instances and their class labels (in our case the class label indicates
whether the current concept is selected by the assessors). In this section we report on
using the information gain based algorithm for feature selection [38].

Table 9. Results of calculating the information gain with respect to the class label for
all features (truncated after 7 features). The higher this score, the more informative a
feature is.

N-grams Full-queries

0.119 RANK(c,Q) 0.190 RANK(c,Q)
0.107 DOCID 0.108 TEQ(c,Q)
0.052 INLINKS(c) 0.080 INLINKS(c)
0.040 TFanchor(c,Q) 0.056 DOCID
0.038 OUTLINKS(c) 0.041 OUTLINKS(c)
0.037 TF title(c,Q) 0.033 SCORE(c,Q)
0.031 TEQ(c,Q) 0.025 REDIRECT (c)

Table 9 shows the features with the highest information gain scores for both n-gram
and full-query based reranking. From this table we observe that the rank at which the
retrieval framework puts a concept with respect to an n-gram is most informative. Also
the number of in- and outlinks, and whether the n-gram matches the concept’s label
are informative. DOCID is the internal identifier of each concept and not a feature that
we explicitly implemented. However, it turns out that some DBpedia concepts have a
higher a priori probability of getting selected. Indeed, in the assessments there were a
total of 854 concepts identified, of which 505 are unique. Some of these repetitions are
caused because of a coherent information need in the user sessions; when a user rewrites
her query by adding or changing part of the query, the remaining concepts remain the
same and were annotated as such. As to n-gram based reranking, the term frequency in
the title and anchor texts are strong indicators of relevance for given phrase and concept.



7 Conclusion and Future Work

We have introduced the task of semantic query suggestion and presented a method
that uses supervised machine learning methods to learn which concepts are used in a
query. The concepts are obtained from an ontology and may be used to provide search
or navigation suggestions to the user, or as an entry point into the Linked Open Data
cloud. Our method extracts query, document, and history specific features from manual
annotations and learns how to best rank candidate concepts given an input query.

Our results were obtained using the Dutch version of DBpedia and queries from
a log of the Netherlands Institute for Sound and Vision. Although these resources are
in Dutch, the framework we have presented is language-independent. Moreover, the
approach is also generic in that several of the employed features could be used with
ontologies other than DBpedia. However, as became clear from Table 7 and 9, DBpedia
related features such as inlinks and redirects were especially helpful. Using Support
Vector Machines and features extracted from the full input queries yields optimal re-
sults. The best performing run is able to locate almost 90% of the relevant concepts on
average. Moreover, this particular run achieves a precision@1 of 89% which means that
for this percentage of queries a relevant concept is returned as the first suggestion.5

In sum, we have shown that the semantic query suggestion problem can be success-
fully cast as a ranking problem. The best way of handling query terms is not as separate
n-grams, but as a single unit—a finding also interesting from an efficiency viewpoint,
since the number of n-grams is quadratic with respect to the length of the query. All
types of feature were found to be helpful and, besides document and term features, we
found that concept features were also important in achieving our best performance.

As to future work, we will look into expanding the list of features, for example by in-
cluding more structural features such as ones pertaining to the structure of the ontology.
Another question that should be answered is how much training data is needed in order
to arrive at a reasonable level of performance. We also intend to go beyond suggest-
ing concepts and look at which part of the query should be linked. Finally, we believe
that there might be room for further improvement by using session history in other
ways. One option would be a more fine-grained notion of session changes, for example
using query overlap [18], or a wider one which considers user history over multiple
sessions. Finally, our current approach is trained to find matches between (parts of) the
user query and DBpedia concepts, comparable to finding skos:exactMatch or even
owl:equivalentClass relations in an ontology matching task. However, seman-
tic query suggestion can also be interpreted in a broader sense, where not only exact
matches but also semantically related concepts are suggested [23]. We believe that our
approach can be easily adapted to incorporate such semantically related suggestions.

5 Our high numbers can be partially explained by the fact that we have decided to focus on
the quality of the suggested concepts and as such removed “anomalous” queries from the
evaluation, i.e., queries with typos or that were too ambiguous for human assessors to be able
to assign a concept to. The influence of this selection on the end-to-end results remains a topic
for future work.
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