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Abstract. Ontology matching is a task that has attracted considerable
attention in recent years. With very few exceptions, however, research in
ontology matching has focussed primarily on the development of mono-
lingual matching algorithms. As more and more resources become avail-
able in more than one language, novel algorithms are required which are
capable of matching ontologies which share more than one language, or
ontologies which are multilingual but do not share any languages. In this
paper, we discuss several approaches to learning a matching function
between two ontologies using a small set of manually aligned concepts,
and evaluate them on different pairs of financial accounting standards,
showing that multilingual information can indeed improve the matching
quality, even in cross-lingual scenarios. In addition to this, as current
research on ontology matching does not make a satisfactory distinction
between multilingual and cross-lingual ontology matching, we provide
precise definitions of these terms in relation to monolingual ontology
matching, and quantify their effects on different matching algorithms.
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1 Introduction

Ontology matching is a discipline that has matured considerably over the last
years, which is shown by the fact that many ontology matching algorithms have
been successfully implemented and evaluated.® However, while these algorithms
generally focus on using information in a single language that is shared by two
ontologies, multilingual and cross-lingual aspects of ontology matching are —
with the notable exception of [3,10] — still largely understudied. Assuming that
more and more ontological resources will become available on the Semantic Web
in more than one language, it is necessary to develop novel algorithms which
are able to leverage multilingual information in case it is available, as well as
capable of bridging the gap in case two ontological resources which do not share
any languages need to be matched.

3 See e.g. http://oaei.ontologymatching.org/.



In this paper, we present a new approach that relies on machine learning
techniques in order to match concepts in two ontologies using both multilingual
and cross-lingual information. As a very challenging use case, we have chosen fi-
nancial accounting standards (FAS) such as the United States Generally Accepted
Accounting Principles (US-GAAP) or the German Grundsdtze ordnungsmdajSiger
Buchfiihrung (GoB) — not only because they represent a type of taxonomic re-
source that raises a number of methodological issues, but also because the lack
of interoperability of financial information across jurisdictional barriers is one
of the most central problems in the business domain.* On the one hand, this is
because companies from different countries are required to report their financial
statements against different FAS. As these use different financial concepts with
different interpretations, financial data reported against e.g. US-GAAP cannot be
compared to financial data based on GoB, as the concepts need to be matched
before any meaningful data integration can take place. On the other hand, FAS
are frequently multilingual (i.e. annotated with more than one language) and
have more than one label per language, which raises the question as to how to
match financial concepts from ontologies sharing more than one language, or
concepts from ontologies which are multilingual but do not share any languages.
FAS thus represent one of the primary obstacles to achieving interoperability,
and the impact of an approach that helps to solve this problem is expected to
be considerably high.

This paper addresses the afore-mentioned issues in several respects. Firstly,
we will give precise definitions of multilingual and cross-lingual ontology match-
ing in relation to monolingual ontology matching, and discuss general research
questions arising in such settings (Section 2). Moreover, we discuss several ap-
proaches which leverage multilingual and cross-lingual information in order to
learn a matching function between two ontologies, using a small set of manually
aligned financial concepts as training data. In contrast to the predominant view
of ontology matching as a classification problem (as e.g. in [4,9]), we understand
it as a ranking problem, similar to relevance ranking in information retrieval.
In particular, we describe a novel approach that trains a ranking support vec-
tor machine (see [5]) on relative preference constraints between a concept in a
source ontology and all possible concepts in a target ontology, with the goal of
ranking good matches higher than bad matches. The approach is described in
detail in Section 3 and evaluated on different pairs of FAS in different scenarios,
in order to quantify the impact of multilingual and cross-lingual information on
the performance of ontology matching algorithms (see Section 4).

2 Background and preliminaries

2.1 Monolingual, multilingual and cross-lingual ontology matching

Current research on ontology matching does not make a consistent distinction
between multilingual and cross-lingual ontology matching (see e.g. [3,6,10]). In

* See http://www.xbrl.org/2010TechDiscussion/2010TechDiscussion. pdf.



the following, we will define these notions, based on the general definition of
ontology matching as “the process of finding relationships or correspondences
between entities of different ontologies” (cf. [2]). As the definitions focus on
those aspects of ontology matching which are relevant to multilingual and cross-
lingual scenarios, specific strategies — such as structure-based or instance-based
matching — will be ignored. Given a source ontology S and a target ontology T,
the sets S(I) and T'(I) of labels of S and T in a language [, and the sets Lg and
Ly of languages in S and T respectively, these notions can be defined as follows.

Definition 1. Monolingual ontology matching is the process of matching
entities in S and T by comparing the labels in S(1) and T (1) in a single language
le LsN L.

Definition 2. Multilingual ontology matching is the process of matching
entities in S and T by comparing the labels in S(I;) and T(l;) in at least two
languages l; € Lg N Ly, with |Lg N Lp| > 2.

Definition 3. Cross-lingual ontology matching is the process of matching
entities in S and T either

a. by translating the labels in S(l) to at least one language I’ € L and com-
paring the labels in S(I') with those in T(I'), or

b. by translating the labels in T(l) to at least one language I' € Lgs and com-
paring the labels in S(I') with those in T(I'), or

c. by translating the labels S(I) and the labels T(I') to at least one language
1" ¢ Ls ULt and comparing the labels in S(I") with those in T(1").

For example, given a source ontology S with labels in English, German and
Italian, monolingual ontology matching is a process that matches entities in S
to entities in a target ontology 77 with English labels by comparing the English
labels in S with those of T7. Multilingual ontology matching is a process that
matches entities in S with entities in a target ontology 7o with English and
German labels by considering the labels in English and German. Cross-lingual
ontology matching is a process that matches entities in S to entities in a target
ontology T3 with French labels either by translating the labels of S to French
(Definition 3a.), by translating the labels of the T3 to one of the languages in
Lg (Definition 3b.), or by translating the labels of S and T to a third language
(Definition 3c.). We believe that e.g. what Fu et al. [3] refer to as “multilingual
ontologies” can thus be described more accurately as a cross-lingual matching
scenario involving two (or more) monolingual ontologies.

2.2 Financial accounting standards and XBRL

As was mentioned in the introduction, financial accounting standards (Fas) dif-
fer between countries, and thus inhibit interoperability of financial information.
However, there have been important developments towards solving this problem
in recent years. From a technological perspective, the eXtensible Business Re-
porting Language (XBRL; [11]) solves the syntactic aspects of this interoperability



issue by providing a common XML-based framework for expressing financial in-
formation. In XBRL, a FAS is commonly referred to as a taronomy, as it specifies —
among others — a hierachical structure according to which financial concepts ap-
pear in a financial statement (called presentation hierarchy in XBRL). In addition
to this, for financial concepts which determine monetary values, such taxonomies
specify how the value in question is to be calculated (e.g. “Assets” is the sum
of “Current assets” and “Non-current assets”). Similar to the hierarchical pre-
sentation structure, these calculations are recursive (e.g. “Non-current assets”
is, in turn, the sum of “Property, plant and equipment”, “Investment property
etc.). This means that a monetary concept has a number of calculation items,
each of which may itself be calculated on the basis of further calculation items.
As such, we can distinguish between the direct calculation items of a monetary
concept ( “Current assets” and “Non-current assets” for “Assets”), as well as the
elementary calculation items (e.g. “Investment property”), and likewise between
direct and elementary children in the case of the presentation hierarchy. Finally,
a concept can have more than one calculation, and more than one presentation.

While the move towards XBRL has been a crucial development towards achiev-
ing interoperability, it constitutes only a first step. In particular, it does not solve
the conceptual aspects of the problem, as companies from different countries still
use different vocabularies to file their financial reports. As a result, the semantics
of individual pieces of information is still not interchangeable. The XBRL Europe
Business Registers Working Group (XEBR WG) has tried to approach this prob-
lem from a conceptual perspective, by defining a set of core financial concepts
which are believed to be shared by most FAS. The main idea behind this activity
is that if the taxonomy of core financial concepts defines exact and close matches
to the different national FAS, financial information reported against each individ-
ual FAS becomes interoperable through these mappings. While the work of the
XEBR WG is still ongoing, first manual matches between the XEBR core taxonomy
and several national FAS have already been produced, and can thus be leveraged
for the approach described in this paper. Moreover, a very beneficial side-effect
of the resource created by the XEBR WG is that it is possible to define matches
between the individual taxonomies as well, based on the manual matches to the
core taxonomy. Since — as was mentioned in the introduction — these taxonomies
are frequently annotated in more than one language, the XEBR WG has created
a valuable resource for the investigation and evaluation of different multilingual
and cross-lingual matching strategies.

2

2.3 Open research questions in ontology matching

Trojahn et al. [10] mention that multilingual and cross-lingual ontology match-
ing is an open research issue. In this section, we try to explicate some of the
research questions arising in such scenarios, with a particular focus on the ma-
chine learning aspect.

Impact of machine translation in cross-lingual scenarios. Fu et al. [3] have argued
that the matching quality in cross-lingual scenarios strongly depends on the



translation quality of label translations generated by machine translation (MT)
tools. This certainly holds for the present study as well, since the choice of
the MT system determines e.g. whether the Italian term “Conto economico” is
translated as “Income statement”® or as “I count economical”®. The conclusion
of Fu et al. [3] is that good translation quality is a prerequisite for achieving good
quality cross-lingual ontology matches. While we do believe that this is true when
comparing cross-lingual ontology matching to monolingual ontology matching
with high-quality labels, it is worth investigating the possibility of translating
the labels of both ontologies to a third language, as it may be the case that the
quality difference between the labels can thus be reduced. In addition to this, in
a machine learning scenario, a learning algorithm may weight structure-based
similarity features higher in case string-based ones are found to be less predictive
or even unpredictive, thus reducing the importance of high-quality translations.

Impact of structural information in ontology matching. Previous work has al-
ready shown the importance of structural information in ontology matching (see
e.g. [2]). However, while it seems to be intuitively the case that algorithms capa-
ble of leveraging structural information should perform better than those which
do not have this kind of information available, the question in a machine learning
scenario is whether a learning algorithm which does not have access to structural
information can still learn a reasonably predictive matching function. Therefore,
a direct comparison between an algorithm using structural information with one
not using structural information is necessary in order to answer this question.

Aggregation of scores in multilingual scenarios. Matching concepts with annota-
tions in several languages, as well as several annotations within a single language,
raises a number of further questions. One of these is the question how the sim-
ilarity scores across different annotations should be aggregated within a single
language (intralingual aggregation) as well as between languages (interlingual
aggregation; cf. “composition” in [6]). For example, should the fact that one la-
bel of a concept Cg in a language [ is very similar to one label of a concept Crp
in language [ suffice to say that C's and C'r are good matching candidates? Or
is the average over all labels within a language — averaged over all languages —
a better indicator? To illustrate the importance of the treatment of multilingual
information in ontology matching, consider the following example. The XBRL
taxonomy of the International Financial Reporting Standards 2009 specifies a
label “Total property, plant and equipment, gross” for the respective concept
PropertyPlantAndEquipment. In the Italian GAAP, the corresponding concept
is called “Total tangible fixed assets”. Comparing only these two labels in a single
language would yield a very low similarity score, as the only overlap consists in
the word “total”. However, both taxonomies specify labels in Italian and French.
While the overlap in the Italian labels is still only marginally higher than in the
English ones (“Immobili, impianti e macchinari” vs. “Immobilizzazioni materi-
ali”), the French set of labels assures that the two concepts are in fact equivalent

5 Using Microsoft’s MT system Bing; http://www.microsofttranslator.com/.
S Using SDL FreeTranslation; http://www.freetranslation.com/.



20 string-based features 22 structural features

Fig. 1. Vector containing 42 features measuring the similarity between two concepts

(“Immobilisations corporelles” vs. “II Immobilisations corporelles”). This exam-
ple not only shows how vital multilingual information is for ontology matching,
but also that different strategies for intralingual and interlingual matching need
to be defined. In the following section, we present the main ideas of our approach,
as well as the features implementing the different strategies.

3 Machine learning approach to ontology matching

As was mentioned above, the general idea of our approach is to apply machine
learning techniques to ontology matching, based on the notion of ranking SvMs
as defined by Joachims [5]. In order to be able to apply this methodology, we are
in need of a set of manually matched concepts to train on, as well as features
representing the characteristics of each possible match. For the first issue, we
can resort to the work of the XBRL Furope Business Registers Working Group
(XEBR WG), which is currently in the process of matching different FAS to a set
of core concepts. For the second issue, we define an appropriate set of features
such that each combination of a source concept C's with a target concept Crp
can be represented as a feature vector, as in Figure 1. As each of these specifies
the similarity between C's and Cr, the value of each feature is between 0 and 1.

In total, we have thus defined 42 different features, comprising 20 string-
based features, as well as 22 structure-based ones. These will be discussed in
more detail below, before describing how the algorithm can be applied to the
resulting similarity vectors.

3.1 Definition of feature set

String-based features. Similar to most other approaches in the field, we make
use of a number of different string-based comparisons in order to measure the
similarity between to concepts. In particular, we use five different measures, each
of which represents a feature in the vector in Figure 1. Two similarity features
are based on the Levenshtein edit distance measure [2, 8], where one is applied to
the labels of Cs and Cr, and the other one to the labels after their tokens have
been sorted. This is to cover cases like “Current assets” vs. “Assets, current”,
where the plain (unsorted) Levenshtein distance would be very high although
the labels are in fact very similar. Two further features use a bag-of-words cosine
similarity measure, one on the original labels and the other one after punctuation
has been removed. The fifth string-based measure uses the following substring
distance as implemented by Euzenat and Shvaiko [2]".

" See [2] also for a more detailed description of the different measures
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(1) simsupstr(labely, labely) =

As mentioned in the previous section, we distinguish between different ways
of aggregating the scores within a language, as well as between languages. In
particular, we consider the best and average scores of all labels within a language,
as well as the best and average scores across all shared languages. Thus, in
order to cover these different intra- and interlingual matching strategies, we
have implemented four different aggregations for each of the above measures.
For example, the intralingual string similarity between the sets of labels of Cg
and Cr in a language k (i.e. Cs(k) and Cr(k)) using the Levenshtein measure
is calculated on the basis of both (2) for the average score simk,, .. over all
labels and (3) for the best score sim?,,,, . of all labels.

m

@) sty (Cslh).Crlh) = e 35 85 simc 1, 12,
(3) szmmthr(Cs(k) Cr(k)) = (szmlev(lcs,léT),...,simlw(lgs,lg?T))

Each of these is then aggregated to yield the interlingual similarity scores.
For example, the interlingual score sim;pier~/~ between two concepts Cs and
Cr is calculated by taking the average similarity of the average intralingual
similarity scores over all n languages shared by S and T (i.e. |Ls N Ly| = n),
as in (4), while the interlingual score $impser/~ takes the best similarity score
of all average intralingual scores. The scores simjpier~ 4 and simipiery /4 are
calculated analogously.

ﬂ'M:

,_.

s

(4) Siminterfw/fv (CS? CT) =

(5) Siminter—i—/N (037 CT)
ma’x(SZmzntraw (CS( )7 CT(l)) Slmzntraw (CS(TL), CT(”)))

% ‘%mzntraN(CS( ) CT( ))

=1

This way, we have arrived at a total of 20 different string-based features, i.e.
five measures times four possible aggregations.

Structural features. In addition to the string-based features, we have defined a
set of 22 features representing the structural similarity between two concepts. As
we cannot describe all of these features in depth, we limit ourselves to describing
the calculation of two types of features to which most of the other structural
features belong. In particular, we discuss the use of calculation information in S
and T by considering the sets of direct and elementary items in calculations of Cg
and Cr (i.e. Cald" X Cald“" and Calgg X Calgé;). The scores using presentation
information by conmdermg direct and elementary children in the presentation
hierarchy are calculated analogously.

The scores for the first type of features are rather straightforward to calculate,
in that the average number® of direct (or elementary) items in calculations of

8 Recall from Section 2.2 that a concept can have more than one calculation and
presentation.



‘itemlc itemZ item%s itemg
item¢,. | 0.1 03 04 02
itemg,.| 04 07 03 05

Table 1. Matrix of string similarities between items of calculations of C's and Cr

a concept Cyg is compared with the corresponding number in calculations of
Cr. For example, if C's has five direct calculation items and Cr has three, then
sim‘ié’l"#(CS, Cr) =1- 522 = 0.6. Similar calculations are done for the minimal
and maximal number of elementary and direct calculation items. The second type
of structural feature combines structural information with string-based similarity
measures. In particular, we compare not the number of direct or elementary items
of the calculations of Cs and Cyp, but their similarities in all languages under
consideration®. The motivation for this is that concepts whose components have
similar labels are expected to be similar, even if e.g. their own labels are very
different. Consider the similarity matrix of calculation items of Cg and Cr in
Table 1, which shows the pairwise string similarities between all calculation items
of Cs and C7p. In order to calculate a similarity value between Cg and Cr, we
apply a best-first algorithm to the matrix, which yields that item%s is aligned
with itemg, (0.7) and item$, with item¢,  (0.4). As two calculation items have
not been aligned, we consider both as having 0.0 similarity with items in Cr.
In other words, we divide the sum of the scores by max(|Cal&i|,|Caldr|). This
results in an overall similarity of sim®7 (Cs,Cr) = 2704 = 0.275 for this
example. The scores for elementary calculation items are calculated similarly, as
well as the scores for children in the presentation hierarchy. As was mentioned
above, we have thus defined 22 structural features, arriving at a total of 42
features on which the ranking svM algorithm can be trained.

3.2 Learning the matching function

On the basis of the features just discussed, we can now represent all combinations
of concepts in S with concepts in T in terms of their similarity scores. Moreover,
since we want to apply the ranking SVM algorithm as developed by [5] in order
to learn the matching function, we need to specify relative relevance preferences
between the possible matches. As the XEBR WG has defined exact matches as well
as broad and narrow matches, we can state preferences such that exact matches
of a concept Cg should be ranked higher than broad and narrow matches, which
are in turn to be ranked higher than all other possible combinations of Cg
with concepts in T'. Therefore, we assign a target value of 3 to exact matches,
2 to broad and narrow matches, and 1 to all other combinations.'® Given the

9 We have used the Levenshtein score of the pair of labels which matched best overall.
10 This means that we consider both broad and narrow matches as “close”
matches, since it did not seem reasonable to assume that narrow matches
should generally be ranked higher than broad matches or vice versa. See



features and similarity vectors as presented above, we can apply the ranking svMm
algorithm described by Joachims [5], which produces an svM model predicting
scores for each input similarity vector. The matches can then be ranked such
that those for which the model predicts higher scores are ranked above those
with lower scores. In the experiments described in this paper, we have limited
ourselves to learning an SVM with a linear kernel, which produces a single support
vector.!!

4 Evaluation

In order to make the impact of multilingual and cross-lingual information evi-
dent, we have defined several scenarios differing as to the type of language in-
formation they have available. As defined in Section 2, we differentiate between
monolingual matching (using one overlapping language), multilingual matching
(using at least two overlapping languages), and cross-lingual matching (involv-
ing the translation of at least one of the ontologies into at least one additional
language). In the latter case, we further distinguish between monolingual and
multilingual cross-lingual ontology matching. In addition to this, we investigate
a cross-lingual transfer scenario in which the algorithm is trained on two pairs of
taxonomies and evaluated on a third pair. The different scenarios are described
in Section 4.2. In order to be able to quantify the contribution of other types of
information to the matching process, such as the impact of structural features
and the availability of close matches, we have further defined different evaluation
settings differing with respect to the amount of information they can leverage.
These settings are described in 4.3. Sections 4.4 and 4.5 present and analyse the
results of the evaluation.

4.1 Data

Thanks to the fact that the XBRL Europe Business Registers Working Group
(XEBR WG) has begun to manually match national financial accounting standards
to their taxonomy of core financial concepts, we are able to evaluate our matching
algorithms on the data produced by the XEBR WG. In particular, we have used
version 5 of the XEBR core taxonomy (XEBR), the Italian Tassonomia relativa ai
Principi Contabili Italiani of 2011 (also called ITaliaCodiceCivile; 1TCC), and the
GAAP taxonomy of the German Handelsgesetzbuch of 2011 (HGB). Table 2 lists
the sizes of the taxonomies and the languages available, as well as the matches
between them as defined by the XEBR WG.

Between XEBR and ITCC, the XEBR WG has defined 61 exact and 77 close
matches, with 70 XEBR concepts having at least one exact or close ITCC match.

http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html for implemen-
tational details of the tool used to train the ranking svM.

1 Pirst experiments involving a radial basis function kernel have yielded significantly
worse results. For this reason, and due to the efficiency drawbacks compared to linear
kernels, they have been discarded so far.



Taxonomy|Languages ‘Concepts ‘ XEBR ITCC HGB

XEBR EN 269 XEBR X 61 (77) 64 (475)
ITCC EN, FR, DE, IT 444 rec| 61 (77) X 29 (38)
HGB EN, DE 3,146 HGB | 64 (475) 29 (38) X

Table 2. Taxonomies used in the evaluation, with number of exact (and close) matches

For XEBR and HGB, 64 exact and 475 close matches were defined, with 67 XEBR
concepts having at least one exact or close HGB match. Matches between 1TCC
and HGB were not explicitly created by the XEBR wWG. However, given that there
are matches from each of these taxonomies to XEBR, we have applied a simple
heuristic in order to arrive at a mapping between the two. If an ITCC concept
and a HGB concept were marked as an exact match of the same XEBR concept,
we defined them as exact matches. If an ITCC concept was marked as a close
match of an XEBR concept, and this concept had an exact HGB concept match,
we marked them as close matches, and vice versa. After applying this heuristic,
we arrived at 29 exact and 38 close matches between ITCC and HGB, all of which
were manually inspected and verified.

Regarding the structural content of the taxonomies, it needs to be said that
the XEBR taxonomy does not define calculation information, but only provides
presentation information. This means that structural information in the XEBR
/ 1TCC and XEBR / HGB pairs is limited to leveraging presentation informa-
tion, while in the ITCC / HGB both presentation and calculation information is
available. Finally, we have used an RDF conversion of the XBRL format in which
financial concepts are represented as RDF classes.

4.2 Matching scenarios

Monolingual scenario. In the monolingual matching scenario, matching is done
on the basis of one overlapping language. As English is the only language present
in all taxonomies, we have used it for the monolingual matching scenario.

Multilingual scenario. As 1TCC and HGB are the only taxonomies in the data set
sharing more than one language, the multilingual scenario could only be applied
to this pair of taxonomies, using English and German labels.

Cross-lingual scenario, S translated (monolingual). As was mentioned above,
we distinguish different cross-lingual scenarios. In this first scenario, we have
removed the labels in S and T such that each contained labels only in one non-
overlapping language, in order to simulate a cross-lingual matching problem.
For the XEBR to ITCC pair, we isolated the Italian labels in 7" and translated
the English labels in S to Italian.'? For the pair XEBR and HGB, we isolated the
German labels in 7" and translated the English labels in S to German, and for
the pair ITCC to HGB, we translated the Italian labels in S to English.

12° All translations were done with the Microsoft MT system Bing.



Cross-lingual scenario, S and T translated (monolingual). This second cross-
lingual scenario is similar to the previous one, except for the fact that we do
not translate the labels in S to a language in T, but instead translate the labels
of both S and T to a pivot language. The motivation behind this is to find out
whether the translation quality issues in cross-lingual scenarios can be mitigated
to some extent if the quality between both sets of labels is (at least assumed to
be) more similar. In this scenario, we have translated the English labels in XEBR
as well as the Italian labels in 1TCC to German, and performed monolingual
matching. Similarly, for XEBR to HGB, we have translated the English source
labels as well as the German target labels to Italian, and for the ITCC to HGB
case the Italian source labels as well as the German target labels to English.

Cross-lingual scenario, S translated (multilingual). In the third cross-lingual sce-
nario, we have translated the labels in S to at least one other language existing
in T, and performed multilingual matching. In the XEBR to ITCC case, we have
translated the English labels in S to German and Italian, and performed multi-
lingual matching on English, German and Italian®. For XEBR to HGB, we have
translated the English source labels to German and matched in English and Ger-
man. For the third pair, we first removed the English, French and German labels
from 1TCC, translated the remaining Italian labels to English and German, and
performed multilingual matching with the English and German labels in HGB.

Cross-lingual transfer learning scenario, S translated (multilingual). In the final
cross-lingual scenario, we wanted to investigate whether the matching function
learned on two pairs of taxonomies can be transferred to a third pair of tax-
onomies, using the similarity scores calculated in the previous scenario (cross-
lingual multilingual). In particular, for the XEBR to ITCC pair we trained the
ranking SVM on the similarity scores between concepts in XEBR and HGB, as well
as between ITCC and HGB, and tested it on the scores for XEBR and ITCC. Simi-
larly, the XEBR to HGB pair was trained on XEBR to ITCC and ITCC to HGB, and
the ITCC to HGB pair was trained on XEBR to ITCC and XEBR to HGB respectively.

4.3 Settings

In each of the scenarios just described, we have evaluated three different learning
settings as well as one baseline setting.*

AllInfo. In this setting, a matching function is trained and tested on all avail-
able information. In particular, it uses the similarity scores of exact and close
matches, as well as all structural features (i.e. similarity scores based on presen-
tation and calculation similarity). The matches in the test set are then ranked
according to the score assigned by the learned matching function.

13 Note that five entities in ITCC needed to be translated as well, as they lacked either
an English or a German label. We assume this does not distort the results too much.

14" As the baseline setting does not involve learning, the baseline for the transfer scenario
is given by the score it yields in the cross-lingual multilingual setting.



NoClose. This setting is similar to AllInfo except for the fact that it does not
use close matches for training and testing.

NoStruc. This setting is similar to AllInfo except for the fact that it does not
use structural information for training and testing. As was mentioned in Section
4.1, in the case of XEBR/ITCC and XEBR/HGB this means that presentation infor-
mation is ignored, and in the case of ITCC/HGB that presentation and calculation
information is ignored.

EgqWeights. This is a baseline setting where the matching function is not
learned, but instead all features are assigned the same weight. In other words, the
matches are ranked simply according to their average score across all features.

4.4 Results

The results presented in this section are based on the following configuration.
For each of the matching settings AllInfo, NoClose and NoStruc, we have
carried out a four-fold cross-validation (i.e. training on three folds and testing
on one fold). Each source concept in the training folds contained 20 similarity
vectors representing exact, close and random bad matches with concepts in the
target ontology, and they are the same 20 matches for all scenarios within one
pair of ontologies. In contrast to this, for each source concept in the test folds
the similarity vectors for all combinations with concepts in the target ontology
T is given. This means, for example, that for the taxonomy pair XEBR and HGB
— with matches defined to 67 of 3,146 HGB concepts —, each validation iteration
is based on roughly 51 * 20 training examples, and evaluated on roughly 16 *
3,146 test examples (cf. Section 4.1 above).

As was mentioned in Section 3, we have used the algorithm developed by
Joachims [5] to train a ranking svM with a linear kernel. The developer of the
corresponding tool SVM™"F gives a default value for the regularisation parameter
C (i.e. the trade-off between training error and margin) of 0.01 for “normal”
svMs, and defines Cy.qpnr = C *n (where n is the number of queries, i.e. concepts
in S) for ranking svMs. Due to this dependence on the number of concepts in the
source ontology, and as the number of matches provided by the XEBR WG — and
thus the number of source concepts that can be used for evaluation — differs for
each pair of taxonomies, C).q.1 is different for each pair of taxonomies. However,
it should be noted that we have neither tried to optimize C for a given pair of
taxonomies, nor tried to find the optimal set of training samples. The results are
thus all based on the default value 0.01 for C, using a simple uniform random
sampling method that produces acceptable results for all taxonomy pairs. We
believe that this should make the results comparable.

Table 3 shows the results for the different matching settings. The column en-
titled “1” indicates the cases in which the matcher has ranked the exact match
at rank 1 (i.e. precision), “5” indicates that the times in which the exact match
was among the first 5 ranks, and analogously for column “10”. As was men-
tioned above, the baseline for each scenario is given by a matcher that uses the



Scenario Setting XEBR / ITCC XEBR / HGB ITCC / HGB
1 | 5 | 10 1 | 5 | 10 1 | 5 | 10
AllInfo, 51.67|76.67|81.67]| 45.90 | 73.77|78.69 [ 44.83] 65.52 | 68.97
. NoClosey 51.67| 73.33 | 80.00 || 52.46 | 73.77 | 78.69 || 41.38 | 65.52 | 68.97
Monolingual
NoStrucy 46.67 | 66.67 | 76.67 || 50.82 | 72.13 |78.69 || 41.38 | 55.17 | 58.62
EqWeights, || 41.67 | 63.33 | 78.33 || 52.46 68.85 | 78.69 || 41.38 [ 68.97 | 72.41
AllInfo, - - - - - — [s1.72] 68.97 [ 68.97
. NoClosey, - — — - — — 51.72| 68.97 | 72.41
Multilingual
NoStrucy, - - - - - — || 44.83 | 55.17 | 65.52
EqWeightsy, - - - - - - 44.83 |72.41|75.86
AllInfoST 38.33(63.33[75.00(] 29.51 [45.90[52.46]] 37.93 [ 62.07 [ 65.52
gri’fj{%{lg“alv NoClose3T || 35.00 | 56.67 | 75.00|| 32.79|45.90 | 52.46 || 41.38 | 55.17 | 65.52
translated NoStrucST 20.00 | 48.33 | 56.67 || 29.51 | 45.90 | 52.46 || 34.48 | 44.83 | 48.28
EqWeightsST || 30.00 | 48.33 | 66.67 || 27.87 | 45.90 | 52.46 || 34.48 | 55.17 | 62.07
S B -
Cross-lingual, | AlLInfoj 35.00 | 56.67 | 63.33 || 27.87 [42.62[47.54]] 34.48 | 65.52 [ 68.97
S translated | NoClose? 38.33| 53.33 |66.67 || 29.51| 39.34 | 44.26 || 34.48 | 68.97 | 68.97
to one NoStrucd 28.33 | 53.33 | 53.33 || 29.51 | 40.98 |47.54||41.38 | 51.72 | 55.17
language EqWeightsS || 30.00 | 53.33 | 58.33 || 24.59 | 39.34 | 42.62 || 41.38] 65.52 | 68.97
S
Cross-lingual, | AllInfo;, 56.67 | 78.33[86.67[[ 49.18 [70.49] 75.41 [[ 44.83 | 65.52 [ 72.41
S translated | NoCloseS 58.33 | 76.67 | 83.33 || 54.10| 68.85 |77.05 || 48.28 | 68.97 | 68.97
to several NoStrucS 46.67 | 70.00 | 81.67 || 44.26 | 68.85 | 75.41 || 48.28 | 58.62 | 65.52
languages EqWeightsS || 40.00 | 71.67 | 81.67 || 47.54 | 70.49 | 73.77 || 48.28] 65.52 | 68.97
AllInfoStr 45.67 | 76.67 | 85.00 |[ 39.34 | 67.21 | 72.13 [[ 41.38 | 62.07 [ 75.86
Cross-lingual, | NoCloseStr || 53.33|80.00 |88.33||47.54(70.49 | 75.41 || 51.72 | 72.41 | 72.41
transfer NoStrucStr 23.33 | 60.00 | 73.33 || 37.70 | 57.38 | 68.85 || 31.03 | 58.62 | 65.52
EqWeightsS || 40.00 | 71.67 | 81.67 ||47.54]70.49] 73.77 || 51.72] 65.52 | 65.52
[AROMA [[as33] — [ - 492 - | - [[345] - | -

Table 3. Results for monolingual, multilingual and cross-lingual matching scenarios

average score over all similarity features (EqWeights). In addition to this, we
have aligned each pair of taxonomies with the state-of-the-art ontology aligner
AROM A [1], as it has been among the participants of the OAEI workshop series
in the past years, and as it was available for download. In order to provide a level
playing field for comparing the results, we have transformed all statements using
custom label types to rdfs:1label statements, and the hierarchical presentation
information to rdfs:subClass0f (i.e. if x should appear above y in a financial
statement, then y rdfs:subClass0f x) before applying AROM A.

4.5 Discussion

Impact of multilingual and cross-lingual labels. The results clearly indicate that
the performance goes up for almost all matchers if multilingual information is
available. This means that matching algorithms should be capable of leveraging
information in all overlapping languages in .S and 7. Interestingly, this also seems
to hold in cross-lingual scenarios, as the best results have been obtained in cross-



lingual multilingual scenarios. This is further supported by the very high scores
obtained in the cross-lingual transfer scenario.

Impact of structural features. In almost all scenarios, the setting which did
not contain any structural information (NoStruc) performed considerably worse
than the settings which used structural information. This is as such an expected
result, as previous research has already shown the importance of structural in-
formation in ontology matching (see chapter 4.3 of Euzenat and Shvaiko [2]).

Impact of close matches. The settings ignoring close matches (NoClose) have
performed consistently better than the AllInfo setting in almost all scenarios.
While this may seem counter-intuitive at first sight, there is a reasonable ex-
planation for this. As close matches were also excluded from the test sets, the
probability of assigning rank 1 to the exact match seems to be higher, as there
are fewer candidates with high scores in the test set. As such, it seems reasonable
to assume that the close matches occupy some of the higher ranks in the AllInfo
settings, which would need to be verified in future experiments. Moreover, man-
ual analysis has revealed that close matches may even be less similar to a source
concept than bad matches. For example, combinations of the ITCC source concept
TotaleAttivoCircolante (“total current assets”) with HGB target concepts
show that the similarity scores for the bad match bs.ass.fixAss (“Fixed as-
sets”) are higher than those for the close match bs.ass.other.comment (“Other
assets, disclosures”). While this may in principle be true for some combinations
of concepts, it may as well be an undesired side-effect of the fact that the map-
ping work of the XEBR WG has not been completed yet, and that some of the bad
matches are in fact close (or even exact) matches which have not yet been classi-
fied as such. On the one hand, this assumption can be verified by comparing the
results of future experiments with the ones presented here. More importantly,
however, the (supposedly) bad matches which have been ranked higher than
exact or close matches can be used to speed up the work of the XEBR WG, by
suggesting potential candidates not considered until now.

Comparison to baselines. Table 3 shows that the best setting in each taxonomy
pair clearly outperforms AROM A. In the cases of XEBR/HGB and ITCC/HGB,
AROM A has performed extraordinarily low, which is surprising given the fact
that the comparably reasonable score of 38.33% for XEBR/ITCC was obtained
using exactly the same default configuration. A possible explanation for this is
that the association rules approach followed by AROM A does not work well for
repetitive labels such as the ones found in FAS. The results of the naive baseline
EqWeights are surprising as well, though in the opposite respect. While the
best setting outperforms the baseline in most scenarios, it is in some scenarios
as good as the best setting or better. A possible explanation is that we have not
attempted to optimise the learning parameters nor the training samples, and in
fact, the baseline can be outperformed by adjusting the parameters.

Summing up these findings, it seems best to translate the labels in the source
ontology to all languages available in the target ontology when trying to match



a monolingual source ontology to a multilingual target ontology. Moreover, in
most cases the settings in which both S and T have been translated perform
better than the settings in which only S has been translated. This suggests
that issues with translation quality as mentioned by Fu et al. [3] can to some
extent be mitigated by translating to a pivot language. However, this claim
still needs to be supported by further evidence from several language pairs, as
the translation quality of MT systems varies greatly depending on the pair of
languages considered (cf. [7]).

5 Related work

There have been a number of machine learning approaches to ontology matching,
such as the ones by Ichise [4] and Nezhadi et al. [9]. In particular, Ichise also
follows an svM-based approach, and Nezhadi et al. evaluate different learned
classifiers. In contrast to this, we approach the matching problem by assuming
that good matches should be ranked higher than bad ones, instead of attempting
to classify a specific pair of concepts as being either a match or no match.
Concerning multilingual and cross-lingual ontology matching, the socom
framework (Semantic-oriented cross-lingual ontology mapping; [3]) has presented
an approach to cross-lingual ontology matching. Similar to what has been dis-
cussed in this paper, they first translate the source ontology to the language of
the target ontology, and then apply monolingual matching strategies, which cor-
responds to cross-lingual ontology matching as defined in Definition 3a. above.
However, we are not aware of any attempts to combine this with multilingual
matching strategies (in the sense of Definitions 2 and 3c.), nor of an evaluation
of different cross-lingual matching scenarios at a scale presented in this paper.

6 Conclusion and future work

In this paper, we have presented a novel approach to ontology matching that
uses a ranking svM to learn a matching function that ranks good matches be-
tween two ontologies higher than bad matches. In addition to this, we have
provided a precise definition of multilingual and cross-lingual ontology match-
ing in relation to monolingual matching, and tried to quantify their effects on
the performance of different matching strategies. Our approach was evaluated
on different pairs of financial accounting standards in different languages, sim-
ulating both monolingual, multilingual and cross-lingual scenarios. The results
have shown that multilingual information can indeed improve the performance
of ontology matching algorithms, even in cross-lingual scenarios.

As was mentioned above, further work should go into optimising the learn-
ing parameters of the ranking svM, in order to arrive at an estimate for the
optimal performance of the svM-based approach. This optimsation could then
be attempted for non-linear kernels as well, in order to be able to compare the
results obtained with each kernel. In addition to this, we have tried to use a
uniform sampling approach for all pairs of financial standards, although we have



observed that the performance of some pairs of taxonomies can be improved
when choosing different sampling strategies. As such, it seems reasonable to try
to identify the characteristics of the set of training samples that produces opti-
mal results for a given pair of ontologies, in order to improve the composition of
the training set. Finally, we have so far neglected deeper linguistic information
in the set of features. Here, it should be interesting to investigate the effects of
including similarity measures which leverage e.g. the terminological or morpho-
logical structure of the labels.
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