
Enabling Adaptive Time-based Web Applications with
SMIL State

Jack Jansen and Dick C. A. Bulterman
CWI: Centrum voor Wiskunde en Informatica

Kruislaan 413
1098 SJ Amsterdam, the Netherlands

+31 20 5924300
{Jack.Jansen,Dick.Bulterman}@cwi.nl

ABSTRACT
In this paper we examine adaptive time-based web applications
(or presentations). These are interactive presentations where time
dictates the major structure, and that require interactivity and
other dynamic adaptation. We investigate the current technologies
available to create such presentations and their shortcomings, and
suggest a mechanism for addressing these shortcomings. This
mechanism, SMIL State, can be used to add user-defined state to
declarative time-based languages such as SMIL or SVG
animation, thereby enabling the author to create control flows that
are difficult to realize within the temporal containment model of
the host languages. In addition, SMIL State can be used as a
bridging mechanism between languages, enabling easy integration
of external components into the web application.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Specialized application
languages; I.7.2 [Document and Text Processing] Document
Preparation - Languages and systems.

General Terms
Design, Experimentation, Standardization, Languages.

Keywords
Declarative languages, SMIL, Multimedia web applications,
Delayed ad viewing.

1. INTRODUCTION

This paper examines technology to create adaptive time-based
web applications. These are applications that use time as a major
structuring paradigm, and need to adapt to changes at runtime.
Such adaptation can be in the form of user interaction, but also
other environmental changes such as location information or a
change in available bandwidth. We want these applications to be
good web citizens: searchable, accessible, structured, reusable,
etc.

Traditionally, the web has preferred structured declarative
solutions over imperative ones: HTML, CSS, SMIL, SVG and
many other web standards are all mainly declarative languages.
The advantage of declarative languages in a web setting is that
they facilitates reuse, accessibility and device independence [11].
However, at a lower level, imperative languages (mainly
JavaScript) are often required to enable time-dependent rendering,
interactivity or glueing components together. This is a problem if
we want to create adaptive time-based web applications, as these
applications indeed require timing and interactivity and often the
help of external components. The introduction of scripting into a
webpage is a powerful tool, but therefore also a dangerous one:
maintaining the advantages of the structured declarative model is
not automatic, and may sometimes be impossible.
The alternative to structured declarative solutions is to use a
technology like Flash. This is a proprietary binary format,
however, and in its distribution form it has no easily parseable
structure. This forestalls search and (third-party) reuse. Moreover,
adaptivity and accessibility have to be explicitly catered for by the
document author.
If we examine again the structured declarative languages that have
an execution model (SMIL, SVG Animation) one piece of missing
functionality is a user defined data model. Adding such a data
model would allow a larger problem domain to be addressed
without the need for a scripting language.
This paper introduces SMIL State, a technology that combines
temporal web languages like SMIL or SVG with an external data
model. This enables the use of free variables, thereby allowing the
author to escape the temporal containment model in a controlled
fashion. The data model is externalized, allowing it to be shared
with other components and effectively enabling its use as an API
between components of a web application.
The paper is structured as follows. In section 2 we sketch the type
of applications we want to enable, and describe an example of
such an application. We then outline the requirements of these
applications. In section 3 we look at existing technology, and
investigate how well it matches our requirements. In section 4 we
describe our solution and the motivation behind it. In section 5 we
report on our initial implementation. In section 6 we describe two
example presentations and their architecture. We conclude with
determining how well our solution matches our requirements, and
some ideas about future work.

2. SCENARIO
In this paper we will concentrate on presentations which have
time as their major structuring mechanism and user interaction/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng ‘08, September 16-19, São Paulo.Brazil.
Copyright 2008 ACM 978-1-60558-081-4/08/09…$5.00.

© ACM, 2008. This is the author's version of the work. It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was published in DocEng ʻ08, http://doi.acm.org/10.1145/
nnnnnn.nnnnnn

http://doi.acm.org/10.1145/nnnnnn.nnnnnn
http://doi.acm.org/10.1145/nnnnnn.nnnnnn
http://doi.acm.org/10.1145/nnnnnn.nnnnnn
http://doi.acm.org/10.1145/nnnnnn.nnnnnn

selection as the secondary mechanism. To set the stage, let us start
with an example of the type of presentations we want to enable.
The application shown in figure 1 is a web-based guided tour
through Amsterdam. The backbone of the application is a video,
with the tour guide showing some highlights of the city, with
additional information on hotels, shopping opportunities,
entertainment and nightlife. The application allows viewers to
select which topics they are interested in: for example, if a viewer
is staying with friends and prefers to be in bed right after dinner
he can chose to skip the hotel and nightlife entertainment
information. The user should be able to change the content
selection while viewing the presentation: if it turns out the cultural
information is too detailed for his taste he should have the option
to disable it on the fly.
The video presentation itself is rather fast-paced: the presenter
races through the streets on his bicycle as only an Amsterdammer
can and gives only terse information on the various subjects.
However, for each item described the viewer is given the option of
getting more information from external resources: when a
museum is described the link to the museum website is also given,
and the end user can temporarily pause the video to visit the
museum website to find out about opening hours, etc. The

presentation also includes a standard map, such as from Google
Maps, that shows where in the city the presentation currently is.
This allows the end user to bookmark a place that interests her, or
again pause the presentation to search for other interesting place
in the vicinity. Dynamic adwords, which bring up sponsored links
relevant to the material currently presented, is another possible
feature.
All these are examples of the use of timed metadata (annotations)
in the presentation. The time logic of the presentation need only
know which metadata pertains to which (timed) sections of the
presentation. The actual presentation of the metadata is handed off
to other components for rendering.
This application is similar in scope to the personalized multimedia
tourist guide described by Scherp and Boll in [16], but where they
generate personalized applications on the server, our solution
allows client-side personalization. This not only distributes
workload from the server to the clients, but has the added
advantage that viewers can adapt their preferences during
playback. Another form of adaptability that we aim for is device
independence: depending on characteristics of the device on
which the presentation is viewed (bandwidth, screen size) some
content may be replaced by items more applicable to the situation.

Figure 1. Screen shot of guided tour webapp

If this could be done dynamically, so session transfer becomes
possible, that would be an advantage: transferring the presentation
to another device would then only require moving the presentation
over to that other device as-is, the presentation itself would adapt
to the new hardware characteristics.
Another important feature for presentation authors is reusability:
if a general structure can be set up that handles multiple related
presentations (such as bicycle tours for other cities, in our
example) that is a time-saver. It also eases serving such
presentations from a content management system. A related form
of reuse is third party enrichment, which requires that it is
possible to refer to portions of the presentation, either in-context
or out-of-context. Such reuse is increasingly important on the
web, and handled well for non-temporal media through wikis and
blog syndication. We want to enable this form of reuse for
multimedia presentations as well.
Finally, we feel accessibility is important. Not only does this
enable the use of assistive technology, but it also allows search
engines to index the content inside the presentation. This is
another step in enabling third party reuse: to enable someone to
refer to our content they must be able to find it first.

2.1 Requirements
To enable the type of applications sketched in the previous section
we have a number of requirements on the technology we use. Let
us outline our major requirements, so we can then determine how
applicable various technologies are to our problem space.
The solution should be structured. Declarative structured
languages have proven themselves to be facilitate reuse,
accessibility, device independence and transformability.
Time based structuring is required, because time is a major
structuring paradigm for the types of applications we envision.
Having time as a first class citizen allows easier presentation
creation and deep-linking. Time based structuring also enables
close coupling of annotations with the media fragments they refer
to, ensuring they stay together in the face of edits or deep linking.
Fragment support on original media items is required. If there are
multiple possible timelines through the presentation, lack of
fragmenting original media would require the author to statically
create multiple edits for each of the different timelines, or a large
collection of small media snippets. Fragmenting support on the
final presentation is also needed, again to enable third-party
annotation.
Variables are required to enable presentations to adapt to user
input, especially if this adaptation is to happen at a different point
in time than the input itself. Variables also enable interaction
patterns not foreseen by the designers of the language.
Language bridging is related to variables, but with a different
scope. It is needed to enable integration of multiple components.
Enabling multiple components allows the use of the best tool
available for the sub-problem at hand. Language bridging and
variables should also enable two-way communication between
components, which increases the richness of the presentations
possible.
Adaptability is needed to enable platform independence, among
other things. Built-in adaptability eases the burden on the author.
Accessibility enables the use of assistive devices. Accessibility
together with structuring enables search engines to index the
content of the presentation.

Reusability also eases the burden on authors, by allowing parts
common to multiple presentations to be implemented only once.
Content management systems and other dynamic methods of
creating presentations benefit from it too, as only a single instance
of common items needs to be stored. Third party modification and
enrichment of existing presentation also requires reusability to be
feasible without copying.

3. EXISTING TECHNOLOGY
Given the requirements of the previous section we will examine
existing technology. We will start with languages that aim at
solving the whole problem, or at least a large subset of it. Then we
will look at emerging partial solutions that may be used to
augment those solutions and other related work. We will then see
how well all of these match our requirements.

3.1 Multimedia on the Web
For interactive multimedia on the web there are currently two
solutions in widespread use: Flash [1], and JavaScript combined
with a plugin to handle media playback (such as RealPlayer or,
again, Flash). SMIL, which we will examine more in-depth in the
next section, is not currently a serious contender in this market.
The first solution is by far the most common, and used by
websites like YouTube and Asterpix. All interaction is
programmed explicitly in ActionScript, requiring specialized
skills and tools. Moreover, due to the binary nature of Flash, the
content is no longer easily accessible from outside. This is a
problem for screen readers and other assistive technology, but also
for web crawlers (content inside Flash does not show up in a
search engine) and deep linking (no syndication or mashups).
Interactive multimedia presentations can also be created using
standard technology: HTML, JavaScript and CSS. For audio or
video playback this requires either the proposed HTML5 video
extensions, or a plugin to render the continuous media. While it is
usually possible to control the media playback engine from
JavaScript, for example starting and stopping video playback in
response to user interaction, the reverse is usually not true: having
the JavaScript react to events in the video (such as specific
timecodes) is not easy. In practice this means that using JavaScript
is currently usually limited to presentations using predominantly
static media: if time is the primary structuring paradigm of the
presentation Flash is a better solution. A prime example of doing
multimedia presentations with only standard technology is the
W3C Slidy tool [15], which can be used to create interactive
accessible slideshows.

3.2 Declarative Alternatives to Scripting
Both technologies sketched so far share the property that the logic
is expressed in a procedural language (JavaScript or
ActionScript). If it were possible to express the logic in a
declarative way that would be more suited to the trend in web
languages towards declarative structuring to enable
transformability, reuse and accessibility. An example of this trend
is XForms [2], which uses a wholly declarative logic to specify
not only the forms themselves but also the way these forms are
connected to the underlying data store. In the context of this paper
we are not so much interested in the model-view-controller
paradigm of XForms or the high-level definition of the controls
themselves (which allows reuse of an XForm designed for a
desktop web browser to be reused on a mobile browser or even a
voice browser [8]). We are however interested in the declarative
nature in which constraints on input values can be specified, such
as “weekday must be an integer between 0 and 6 inclusive”. This
feature means that old-style HTML forms that used procedural

logic in JavaScript to check value constraints can be replaced by a
declarative XForm.
XForms uses an XML document as its data model, and addresses
the data items in this model through XPath expressions. XForms
1.0 does not have an execution model, but it does not really need
one for its application area. It does include a spreadsheet-like
functional programming construct that allows variables to be
computed on the basis of other variables, and that is good enough
for its domain.
While it would probably be possible to create a complete
interactive multimedia presentation using the technologies
outlined in this section it would suffer from the fact that none of
these languages have an inherent concept of time. Hence, all
temporal relations would have to be explicitly coded an a
language that isn’t primarily meant for it.

3.3 SMIL
SMIL 2.1, the Synchronous Multimedia Integration Language [3,
4] is the W3C standard for presenting multimedia on the web. It is
primarily an integration language: it contains references to media
items, not the media data itself, and instructions on how those
media items should be combined spatially and temporally.
SMIL is a declarative language: relations between media objects
(and substructures) are described, and the computation of the
timeline follows from this. The main temporal composition
operators available are parallel composition, sequential
composition and selection of optional content. Composition is
hierarchical: nodes cannot become active unless all of their
ancestors are active. The declarative containment model has one
large advantage: SMIL presentations can adapt automatically to
varying bandwidth conditions and alternate content with different
durations. The hierarchical temporal composition model is also a
nice container for timed metadata, and allows structure-based
deep linking into the content.
There are a number of mechanisms in SMIL that allow the
presentation to react to user input (events) and to modify the
behavior of other sections of the presentation (SMIL Animation)
but none of these break the basic containment model, they only
modify behavior within those constraints.
The containment model has one serious drawback, though: there
is no way in which the path taken through the presentation can be
used to influence future behavior of the presentation. Or, more
informally: there are no variables. In addition, with events being
the only communication channel a SMIL presentation can not
exchange structured data with the outside world. This is a problem
SMIL shares with many declarative languages. For example,
functional languages have had to add constructs like effect classes
[6] or monads [12, 18] to enable side-effects and input/output.
Without these, their application domain would have been severely
limited.

3.4 Other Related Work
The technology described in sections 3.1 and 3.3 aim at
addressing a large subsection of our problem space, but all have
some shortcomings. In this section we will examine some ways to
address those shortcomings and some solutions that address
related problem areas, from which we may learn something.
XBL [7] is a language that allows an author to declaratively add
behavior to an otherwise static HTML or XHTML document. It
can modify the target document in-place, for example setting
attributes on one element based on values obtained from another
element. These actions can occur statically, somewhat similar to

how XSLT would operate on a document during load time, or
dynamically, reacting to DOM events. XBL has no notion of time
or control flow, so using it to create self-paced multimedia
presentations would be difficult.
XConnector [13] is an extension to XLink that has some overlap
with XBL in application area. It also allows the specification of
relations between different elements and attributes within an
XML document. Some of these relations allow similar constructs
as in XBL, like changing an attribute value to match an attribute
value elsewhere in the document. XConnector does have a notion
of time, allowing the author to specify that something should start
when something else stops, for example. The accompanying
language XTemplate [14] allows an author to declare templates
for such relationships, thereby enabling, among other things, the
definition of temporal and spatial constraints on items in an
HTML page in a way that facilitates reuse. XConnector and
XTemplate together with HTML should enable creation of rich
multimedia applications for the web fairly easily.
XHTML+SMIL [3] is similar to XConnector plus XTemplate, but
more limited in scope (and the same is true for the current state of
the work happening on SMIL Timesheets): they allow the
application of SMIL timing constructs to static HTML (or other
XML) documents, thereby adding timing to an otherwise static
format.
Another approach is taken by King, Schmitz and Thompson in [9]
(unfortunately for reference purposes, no name is given for their
work, so we will call it “KST” in this paper): adding rich
transformations and expressions to a language that already has an
execution model, such as SMIL or SVG animation. Where SMIL
and SVG animation allow only a predefined number of operations
on attribute values, determined by the language designers, this
paper adds spreadsheet-like expressions and conditions through a
functional “little language”. The temporal constraints of SMIL
animation are still in place, however.
Those temporal constraints are lifted by the same authors in [17],
which adds a <value> element that can be used to store free
variables. (It also adds an templating mechanism, but that is
outside the scope of this paper). This leads to a solution that has
comparable application area and power as SMIL State within a
single document, but the externalized data model of SMIL State
allows communication with the outside world too.

3.5 Comparison
Table 1 summarizes how existing technology matches the
requirements from section 2.1. The first two columns show the
main problems with the most popular current solutions: a finished
presentation is a monolithic unstructured blob. This results in
problems for deep-linking into a presentation, but also for
accessibility, which also requires access to the internals of a
presentation.
SMIL 2.1 does fairly well on the structuring front, but falls short
in practical issues like rich interactivity and integration with other
components. Embedding XForms islands into a SMIL
presentation does not help: it enables the end user to fill in forms
that can be transmitted back to a server, but no extra interactivity
is added. SMIL+XBL looks better, but here the generality of what
XBL allows would break some of the basic assumptions of SMIL,
such as timegraph consistency. Incidentally, SMIL+JavaScript,
which is not in the comparison table, would have the same
problem.

KST is aimed at a different problem, but it still fits our
requirements pretty well, with the exception of enabling
communication with other components, which is outside its scope.
Interestingly enough, KST use different solutions in a number of
areas where they were facing the same design decisions as us:

• both solutions allow for rich data structures in the data model,
but where we opted for XML for easy sharing, they feel a richer
and more compact representation is needed;

• we think static strong typing is generally not needed for most
applications, and can easily be added when needed through
XSchema (following the model of XForms), their solution has
static strong typing;

• their solution uses an expression language based on JavaScript
expressions, ours uses XPath expressions, for standards
compliance.

These different choices are partially dictated by different
application areas, but probably partially by personal taste as well.
We agree that XPath is not a very nice language to express
complex expressions in, the corresponding expression in KST is
definitely more readable. XPath expressions, however, are richer
in the handling of complex data structures. In the case of static
typing or not this is probably more a matter of personal
preference.
XConnector and XTemplate are the best fit of the existing
technologies, but it shares the XBL problem that they provide so
much freedom that an author has to be careful not to lose the
structuring advantages of the declarative model. The same is true
for temporal structuring: this can be done by an author, but the
language does not enforce it. We are also not sure whether
XConnector provides any help with language bridging, the
literature does not mention this.
XHTML+SMIL has similar advantages and shortcomings as
SMIL 2.1, which is to be expected given their common heritage.
We will explain how SMIL plus SMIL State matches the
requirements in a later section.

4. DESIGN AND ARCHITECTURE
Addition of variables and communication would enable SMIL to
be used in a number of application areas that are currently out of
reach for it.

Courseware is an important application area for multimedia
software. One of the great advantages of using computers for
instructional material is that the path through the material can
adapt itself to the student. This takes the form of providing more
in-depth material based on user interaction, either a “tell me
more” button or the answer to a question being correct or not.
Courseware also benefits from the ability to interact with problem
domain specific components, to enable hands-on interaction or
non-standard rendering capabilities. SMIL 2.1 has no standard
way to interact with external components, and no way to base
decisions on user input that occurred earlier during the
presentation.
Quizzes are somewhat related, but here we also want to tally
results, requiring computation. Moreover, quizzes are much more
fun if your personal results can be compared to those of others,
requiring communication of such dynamically computed scores to
some central agent.
Games are even more interactive, and require things like a ball to
move in a direction determined by the mouse position when it hit
a paddle, some time in the past. And a game needs more author-
defined state, to determine when the aliens have all been
destroyed. As with quizzes, destroying aliens becomes much more
fun if your high score is transmitted to a server.
In addition, variables would allow an author to have more control
over selectively rendered content. SMIL 2.1 provides custom tests,
which allow end-user control over whether optional content is
rendered or not, but the mechanism for presenting these options to
the user is determined by the rendering user agent, not the author.
Moreover, custom tests may be statically evaluated at presentation
startup.
A separate, but related, issue with SMIL 2.1 is that it is impossible
to communicate presentation state to the outside world. This
problem becomes more acute once variables are added: if the
SMIL presentation represents an interactive multiple-choice exam
it is probably important to communicate the results to a server
after the whole exam has been taken. If it represents a game we
may want to keep high-scores at a central location.
A final design guideline was that the solution should be as simple
as possible but be easily extensible if required for certain
application areas.

4.1 SMIL State Elements
SMIL State was designed using a two-tiered approach:

Flash Javascript
+DOM

SMIL 2.1 SMIL +
XForms

XBL KST XConnector
+ XTemplate

XHTML +
SMIL

SMIL +
SMIL State

Structured
Time based

Fragment
support
Variables

Language
Bridging
Adaptability
Accessibility
Reusability

- - + + n/a + +/- +/- +

+ - + + - + +/- + +

- - + + n/a + + + +

+ + - - + + + - +

- + - - + - unknown - +

+/- - + + + + + + +
- +/- + + n/a + unknown + +
- - +/- +/- +/- +/- + +/- +

Table 1. Technology comparison

• hooks in the SMIL language to enable inclusion of a data
model and expression language;

• selection of a default language for the data model and
expression language.

This layered approach has the advantage that if the default
expression language is not the best choice for a given application
it is possible to use another expression language that is more
suitable without modifying the semantics on the SMIL level. The
ability to use an expression language other than the default choice
of XML and XPath, however, is not relevant to this paper, with
the exception of the fact that it allows for extending the data
model to the richer model supported by XForms.
The hooks in SMIL are:

• a <state> element in the head section of the document, used
to declare the data model;

• an expr attribute that can be used on any timed element to
conditionally skip the element;

• new timed elements <setvalue>, <newvalue> and
<delvalue> which allow changing the data model;

• a head element <submission> and a timed element <send>
that allow sending and receiving parts of the data model;

• an attribute value template construct, {expression}, that
can be used in selected attributes to interpolate data model
values into attribute values.

All of these hooks are modeled after existing SMIL constructs:
expr behaves similar to system tests and custom tests, the timed
elements behave like normal media items or SMIL animation
elements. The attribute value template, which was modeled after
the same construct in XSLT, fits in nicely with the way SMIL
defines how SMIL animation and DOM access are allowed to
modify attribute values in a running SMIL presentation (the so-
called “sandwich model”). Attribute value templates are only
allowed in attributes where they cannot modify the timegraph of a
running presentation, similar to what is defined for SMIL
animation.

For the default data model and expression language we have
selected XML as the data model and XPath as the expression
language. We specifically allow XPath nodeset expressions: the
data model is the XML document on which XPath operates, not
the XPath variable bindings. XPath variables are used as the data
model in some other standards such as DISelect [10], but this data
model allows only simple unstructured scalar variables. Using the
XML document as the data model allows structured values such as
lists and associative arrays. To allow maintaining data model
consistency, updates (by a single element) are atomic, and
<setvalue> allows copying of subtrees.

The data model XML document may be embedded inside the
SMIL document, but it is logically a separate document: the
XPath expressions cannot refer to random items in the SMIL
document.
Figure 2 shows an example of the use of SMIL State. The data
model XML document is declared in the <state> element in the
head section, it consists of a data root element with one child,
wantAd, initially empty. The data and wantAd elements are not
part of the SMIL language, this is really a separate XML
document included inline for convenience only, hence the use of
the xmlns attribute.

When the presentation starts the match.mp4 video starts
playing. After 10 seconds, the banner.png image is displayed
for 5 seconds. If the user clicks on this image while it is active the
value of the wantAd element in the data model is changed to
commercial.mp4. The match.mp4 video continues playing
until its end, whether or not the user clicks the image. After the
video has finished the second video element get scheduled.
Whether it plays or not depends on the wantAd data model item:
if it is true (or non-empty and non-zero) it does play. Which video
it plays depends on the value of the wantAd data model element,
interpreted as a URL string.

4.2 SHARED DATA MODEL
The data model of SMIL State is external to the SMIL document
itself. As stated in the previous section, this forestalls random
changes to the SMIL document, thereby maintaining its timegraph
and its structural consistency. This has the effect that we do not
lose the ability to do transformation and adaptation on the
document, one of the key advantages of a declarative model.
The external data model has another advantage, however: it can be
shared. In its simplest form this sharing can be between runs of
the same presentation: an author can create a long-running
presentation that stores data when a section has been finished. A
later run of the presentation can pick this up, and start the
presentation at the given spot, in stead of at the beginning.
Sharing of the data model can also be applied to multiple
components running at the same time. Using a shared data model
as the communication paradigm between components decouples
dependencies between these components: they only depend on a
common understanding of the data model. This decoupling
facilitates reuse, adaptability and retargeting: if a multimedia
presentation wants to show locations on a map it only needs to
define that it will store the location in /location/latitude
and /location/longitude. The map applet can now listen
for changes to these variables and modify the map view. Reuse is
facilitated because another multimedia presentation only needs to
be aware of this “data model API” to use mapping services. Same
for adaptability and retargeting: if the map applet is replaced by a
different one this does not affect the multimedia presentation. And

<smil>
 <head>
 <state>
 <data xmlns="">
 <wantAd></wantAd>
 </data>
 </state>
 </head>
 <body>
 <seq>
 <par>
 <video src=”match.mp4”/>
 <img xml:id=”banner” begin=”10s”
 end=”15s” src=”banner.png”/>
 <setvalue begin=”banner.activateEvent”
 ref=”wantAd” value=”commercial.mp4”/>
 </par>
 <video expr=”wantAd” src=”{wantAd}”/>
 </seq>
 </body>
</smil>

Figure 2. Sample SMIL State document

even if the map applet is completely missing, for example because
the presentation is viewed on a mobile device with not enough
screen space to show both the presentation and the map, the
multimedia presentation need not be aware of this.

5. IMPLEMENTATION
We have implemented SMIL State in our open source Ambulant
SMIL player, both in standalone mode and as a plugin for web
browsers. This implementation was used to experiment with our
sample applications. It turned out that the implementation of
SMIL State in an existing standalone SMIL player was fairly
straightforward and posed few problems.
Integration with the browser and its JavaScript implementation
was more interesting, and proved more challenging. We did the
initial implementation in the WebKit-based Safari browser. There
was a practical reason for this: Safari exports a full API in
Objective-C, Ambulant exports a full API to Python, and Python
and Objective-C can be transparently bridged. All in all, 300 lines
of Python code did the job of implementing SMIL State (in
addition to 200 lines of Objective-C to implement the Ambulant
WekKit plugin). The SMIL State design matched the platform
nicely, and clean separation of components was almost automatic.
The only link between the WebKit world and the Ambulant world
is DOM access and XML Events, between the WebKit DOM and
the Ambulant SMIL State plugin. The relevant components in this
implementation are shown in figure 3.
We have also started implementing browser integration through
the standard NSAPI plugin API, to facilitate using SMIL State in
Firefox or IE.

6. APPLICATIONS
In this section we examine two applications that address the two
different aspects of using SMIL state. We start with a full-blown
web app as outlined in section 2 and continue with a much more
lightweight presentation that enables ad insertion into video
presentation without the end-user annoyance that it currently often
evokes.
These applications were created using our Ambulant SMIL
playback engine, with support for SMIL State added. In case of
the first application Ambulant was hosted in the Safari web
browser, together with the FormFaces XForms implementation
and the Google map applet. The second presentation runs in a
standalone Ambulant player.

6.1 Guided Tour Webapp
We now revisit the example presentation sketched in section 2,
and show how it was designed.

The general control flow of the application is driven by SMIL,
and consists of a linear sequence of video clips, with optional
subtitles. Some clips, such as the introduction, are played
unconditionally, others are played or skipped depending on user
preferences set through the XForms controls. For each clip, the
lattitude and longitude information are stored in the data model.
The location is picked up by glue on the webpage and
communicated to the map applet. Additionally, references to
relevant external websites, adwords and search terms are put in
the data model. This information is picked up by glue code in the
webpage and displayed.
Because multiple components are involved (SMIL for media
playback and timing control, XForms for interaction, map applet)
HTML is used as the outermost container format, as well as for
displaying additional content such as background links, etc. The
global structure of the presentation is shown in figure 4: the
HTML document embeds the XForms form and the applet, and it

HTML SMIL

XForms

data model

map applet

Glue

Figure 4. Guided tour document model

Rendering JavaScript

HTML
DOM and

XML events

Google
Maps

FormFaces
XForms
engine

Glue

WebKit
Plugins

Scheduler
SMIL
DOM

SMIL State Rendering

Safari Ambulant WebKit Plugin

Figure 3. Browser plugin implementation

XForms formSMIL plugin

Mapping appletCustomized content

Figure 5. Components

has a reference to the SMIL presentation. SMIL (through SMIL
State) and XForms both refer to the shared data model, and can
both read and modify it. The map applet and HTML page itself
only read values from the data model, through a bit of glue. How
this architecture matches to the visual representation on the web
page is shown in figure 5.
This glue needs a bit more explanation: as only XForms and
SMIL have direct access to the data model, in the prototype the
glue is implemented with a bit of Javascript, triggered by DOM
events when the data model changes. This glue could be
implemented using XBL, XConnector or another declarative
form, but unfortunately none of these were available in a browser
that could also host our SMIL plugin.
Figures 6 and 7 show the relevant parts of the HTML and SMIL
documents, respectively. The HTML document has the embedded
data model (in the XForms namespace). It consists of sections
optionalContent, for content selection, subtitles, for
subt i t le se lec t ion , and gps , backgroundLinks ,
backgroundSearch and adWords, for communicating timed
metadata. The XForms form enables the viewer to select, for
example, whether to display the hotel information or not.

In the SMIL code, the whole section is played only if
optionalContent/hotels is true. The multimedia data for
that section consists of a subsection of the video clip and some
subtitles. The metadata is stored in the data model at the time the
media start. Some of this metadata is scalar (such as longitude,
lattitude and adWords), some is structured (background search
items). In the latter case a new sub-item named hotel is added
to the backgroundSearch container.
Note that, despite the similarity to SMIL Animation constructs
like <set>, these <setvalue> and <newvalue> elements
are not automatically reverted when their timeline ends. In that
way, they form the procedural escape hatch for the temporal
containment model, while still keeping that containment model
intact in the general case.

6.2 Delayed Ad Selection
The standard way to do advertisements in video streams, whether
over the internet or through traditional channels, is ad insertion.
This can be static or dynamic, but the dynamism is generally
server-based: depending on data the server knows it selects
specific ads to insert. This selection process may be based on a
user profile the server keeps, but there is no direct user
interaction. Ad insertion done dynamically at client side, based on
user interaction, such as discussed in [5], has a different problem:
it hinges on the fact that the viewer is so interested in the product
that she actually clicks the link, disrupting her viewing
experience. We feel this may be a bit of a long shot.
For static media on the internet the situation is wholly different.
Inserted advertisements, which require the user to first read the ad
before being able to get at the content they are looking for, are
generally frowned upon, and nowadays most major browsers
contain features that actively try to forestall popups and other
disruptive advertisements to show up. In stead of the forced
consumption of ads webpages tend to work with the voluntary
model: the user has the option of clicking a banner ad. While
some people think even this goes too far the model has a much
larger acceptance than forced ads.
For multimedia it would be good to transport the voluntary banner
ad method to the realm of multimedia. However, if the user is in

<head>
 <form:model ...>
 <form:instance id="jacksinstance">
 <data xmlns="">
 <optionalContent>
 <hotels>false</hotels>
 <culture>true</culture>
 <shopping>false</shopping>
 <entertainment>false</entertainment>
 </optionalContent>
 <subtitles>none</subtitles>
 <gps>
 <long></long>
 <lat></lat>
 </gps>
 <backgroundLinks/>
 <backgroundSearch/>
 <adWords/>
 </data>
 </form:instance>
 ...
 </form:model>
 ...
</head>
<body>
 ...
 <form:select
 ref="optionalContent/hotels" ...>
 <form:label>Hotel Information
 </form:label>
 <form:item>
 <form:label></form:label>
 <form:value>true</form:value>
 </form:item>
 </form:select>
 ...
</body>

Figure 6. HTML and XForms code

<par expr="optionalContent/hotels">
 <video src="biketour.mp4"
 clipBegin="26s" clipEnd="53s" .../>
 <smilText expr="subtitles = 'nl'" ...>
 Als je een hotel zoekt kun je
 bijvoorbeeld ...
 <clear begin="6s"/>
 ...
 </smilText>
 <setvalue ref="gps/long"
 value="52.3776"/>
 <setvalue ref="gps/lat"
 value="4.89868"/>
 <setvalue ref="adWords"
 value="'hotel amsterdam'"/>
 <newvalue ref="backgroundSearch"
 name="hotel"
 value="'hotel amsterdam'"/>
 ...
</par>

Figure 7. SMIL code

the mindset of watching a video she is unlikely to click an
advertisement to watch that in stead.
To cure this we have come up with a technique we call delayed ad
viewing. A video program has pre-determined advertisement slots,
and during such a slot an advertisement always plays. However,
through interaction with the presentation before the advertisement
slot the user can influence which ads will be played.
The sample presentation consists of a (non-live) football program.
Included in the presentation are a number of commercial videos,
with a default playout order. At various times, usually when a
billboard is in plain view in the video footage, a banner for a
specific brand will show up in the lower-right corner of the screen
for a couple of seconds. Figure 8 shows how this looks during
playback. If the user clicks during this period the corresponding
ad will be moved to the front of the playout list. When it is time
for a commercial break the main video is paused and the head of
the advertisement playout list is shown. after an advertisement has
been viewed its banner will no longer show.
Figure 9 shows the timelines of three different playbacks of the
same document. User 1 did nothing and got the default ad playout
order of a soap advertisement and a beer advertisement. User 2
clicked the “Ford” banner, and got that advertisement first
followed by the default soap ad. User 3 requested the Amstel and

Ford banners, and was spared the Lux ad. At least, during the first
commercial break.
At the end of the presentation the state variables contain
information on which ads have been watched. This information
could be transmitted back to a central server for monetization,
along the lines of pay-per-click ads on static webpages.
Alternatively, this data could be gathered by the media server
when the request to serve the ad stream comes in.
Note that the use of delayed ad selection does not preclude other
current standard ad-insertion methods. The SMIL presentation can
be generated on demand by the server for a specific user. Wether
the user has complete freedom to select advertisements or only
limited options is a choice at the discretion of the content
provider. Different advertisement selections, choices and
commercial break frequencies can be served to different users by
serving only different SMIL documents: the underlying media
items can all be static.
The structure of the presentation is rather simple, and figure 2
gives the general idea. A problem that was encountered is that the
XPath expression language is primarily meant for manipulating
general XML documents and not for the more spreadsheet-like
operations we are using it for. Hence, functions like max(),
which would have made the ad reordering a lot simpler, are
missing and the logic needs to be written out.

7. CONCLUSIONS AND FUTURE WORK
Based on the example applications we have created we can match
our solution to the requirements (see table 1). SMIL State does not
interfere with any of the advantages of SMIL 2.1, so we only need
to look at the three requirements where SMIL 2.1 is lacking.
Variable support works nicely in SMIL State, and simple use
cases have simple solutions. XPath as the expression language
could have used a little boost, though, as XForms did by
introducing a number of convenience functions into the XPath
function namespace.
Language bridging works fine. Here the problem is on the other
side of the bridge: as only SMIL State and XForms currently share
this data model, the integration into other languages requires some
glue code.
Reusability works fine. Whether you want to replace components
or refer to fragments inside the presentation, we have not
encountered any problems.
SMIL State has been proposed to the SYMM working group, and
has been accepted as a part of the standard for SMIL 3.0, which is
in Candidate Recommendation status as of this writing.
We intend to pursue and extend this model in the context of the
W3C Rich Web Application Backplane Incubator Group. There
we will also try and address the shortcomings sketched in this
section.

8. ACKNOWLEDGEMENTS
The work reported in this paper has benefited from suggestions
offered by members of the W3C backplane activity and members
of the W3C Synchronized Multimedia working group. Sjoerd
Mullender, Julien Quint and Daniel Weck have provided
comments on earlier versions of this research. We are grateful to
Steven Pemberton for introducing us to the philosophy behind
XForms, which seeded the design of our solution. This work has
been funded by the NWO BRICKS PDC3 project, and by the FP7
IST project TA2. Development of the open source Ambulant

User 1 (default) timeline

10 min Football match
Lux

ad

Amstel

ad
More football

User 2 timeline

10 min Football match
Ford

ad

Lux

ad
More football

User 3 timeline

10 min Football match
Ford

ad

Amstel

ad
More football

Figure 9. Different playout orders

Figure 8. Video with delayed ad banner

Player and CWI’s participation in the SMIL standardization effort
have been funded by the NLnet foundation. We gratefully
acknowledge this support.

9. REFERENCES
[1] http://www.macromedia.com/software/flash/about/
[2] Boyer, J. 2007 XForms 1.0 (Third Edition). W3C.

URL=http://www.w3.org/TR/xforms/ .
[3] Bulterman, D. and Rutledge, L. 2004 SMIL 2.0: Interactive

Multimedia for Web and Mobile Devices. Springer-Verlag,
Heidelberg, Germany, ISBN: 3-540-20234-X.

[4] Bulterman, D. et al. 2005 Synchronized Multimedia
Integration Language (SMIL 2.1). W3C. URL=http://
www.w3.org/TR/SMIL/ .

[5] Costa, R. et al. 2006 Live editing of hypermedia documents.
DocEng '06: Proceedings of the 2006 ACM symposium on
Document engineering. ACM, New York, NY, 165-172.
DOI=http://doi.acm.org/10.1145/1166160.1166202 .

[6] Gifford, D. and Lucassen, J. 1986 Integrating functional and
imperative programming. ACM conference on LISP and
functional programming. DOI=http://doi.acm.org/
10.1145/319838.319848 .

[7] Hickson, I. 2007 XML Binding Language (XBL) 2.0. W3C.
URL=http://www.w3.org/TR/xbl/ .

[8] Honkala, M. and Pohja, M. 2006 Multimodal interaction with
xforms. ICWE '06: Proceedings of the 6th international
conference on Web engineering. ACM, New York, NY,
201-208. DOI=http://doi.acm.org/
10.1145/1145581.1145624 .

[9] King, P., Schmitz, P. and Thompson, S. 2004 Behavioral
reactivity and real time programming in XML: functional
programming meets SMIL animation. DocEng '04:
Proceedings of the 2004 ACM symposium on Document
engineering (2004). DOI=http://doi.acm.org/
10.1145/1030397.1030411 .

[10] Lewis, R. et al. 2007 Content Selection for Device
Independence (DISelect) 1.0. W3C. URL=http://
www.w3.org/TR/cselection/ .

[11] Lie, H. and Saarela, J. 1999 Multipurpose Web publishing
using HTML, XML, and CSS. Communications of the ACM,
Vol. 42, Issue 10. ACM, New York, NY, 95-101. DOI=http://
doi.acm.org/10.1145/317665.317681 .

[12] Moggi, E. 1988 Computational Lambda-calculus and
monads. In proceedings 4th Annual Symposium on Logic in
Computer Science. IEEE Computer Society Press,
Washington, DC.

[13] Muchaluat-Saade, D., Rodrigues, R. and Soares, L. 2002
XConnector: extending XLink to provide multimedia
synchronization. Proceedings of the 2002 ACM symposium
on Document Engineering . ACM, New York, NY, USA.
DOI=http://doi.acm.org/10.1145/585058.585069 .

[14] Muchaluat-Saade, D.. and Soares, L. 2003 XConnector and
XTemplate: improving the expressiveness and reuse in web
authoring languages. The New Review of Hypermedia and
Multimedia. Taylor&Francis, Bristol, PA, USA. DOI=http://
dx.doi.org/10.1080/13614560208914739 .

[15] Raggett, D. 2006 Slidy - a web based alternative to Microsoft
PowerPoint. XTech (Amsterdam, May 16-19 2006). URL=
http://www.w3.org/2006/05/Slidy-XTech/slidy-xtech06-
dsr.pdf .

[16] Scherp, A. and Boll, S. 2004 Generic support for
personalized mobile multimedia tourist applications.
MULTIMEDIA '04: Proceedings of the 12th annual ACM
international conference on Multimedia (2004). DOI=http://
doi.acm.org/10.1145/1027527.1027566 .

[17] Thompson, S., King, P. and Schmitz, P. 2007 Declarative
extensions of XML languages. DocEng '07: Proceedings of
the 2007 ACM symposium on Document engineering (2007).
DOI=http://doi.acm.org/10.1145/1284420.1284442 .

[18] Wadler, P. 1990 Comprehending Monads. In Proceedings of
the 1990 ACM Conference on Lisp and Functional
Programming, pages 61--77, Nice, France, 1990.

http://www.macromedia.com/software/flash/about/
http://www.macromedia.com/software/flash/about/
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/SMIL/
http://www.w3.org/TR/SMIL/
http://www.w3.org/TR/SMIL/
http://www.w3.org/TR/SMIL/
http://doi.acm.org/10.1145/1166160.1166202
http://doi.acm.org/10.1145/1166160.1166202
http://doi.acm.org/10.1145/319838.319848
http://doi.acm.org/10.1145/319838.319848
http://doi.acm.org/10.1145/319838.319848
http://doi.acm.org/10.1145/319838.319848
http://www.w3.org/TR/xbl/
http://www.w3.org/TR/xbl/
http://doi.acm.org/10.1145/1145581.1145624
http://doi.acm.org/10.1145/1145581.1145624
http://doi.acm.org/10.1145/1145581.1145624
http://doi.acm.org/10.1145/1145581.1145624
http://doi.acm.org/10.1145/1030397.1030411
http://doi.acm.org/10.1145/1030397.1030411
http://doi.acm.org/10.1145/1030397.1030411
http://doi.acm.org/10.1145/1030397.1030411
http://www.w3.org/TR/cselection/
http://www.w3.org/TR/cselection/
http://www.w3.org/TR/cselection/
http://www.w3.org/TR/cselection/
http://doi.acm.org/10.1145/317665.317681
http://doi.acm.org/10.1145/317665.317681
http://doi.acm.org/10.1145/317665.317681
http://doi.acm.org/10.1145/317665.317681
http://doi.acm.org/10.1145/585058.585069
http://doi.acm.org/10.1145/585058.585069
http://dx.doi.org/10.1080/13614560208914739
http://dx.doi.org/10.1080/13614560208914739
http://dx.doi.org/10.1080/13614560208914739
http://dx.doi.org/10.1080/13614560208914739
http://www.w3.org/2006/05/Slidy-XTech/slidy-xtech06-dsr.pdf
http://www.w3.org/2006/05/Slidy-XTech/slidy-xtech06-dsr.pdf
http://www.w3.org/2006/05/Slidy-XTech/slidy-xtech06-dsr.pdf
http://www.w3.org/2006/05/Slidy-XTech/slidy-xtech06-dsr.pdf
http://doi.acm.org/10.1145/1027527.1027566
http://doi.acm.org/10.1145/1027527.1027566
http://doi.acm.org/10.1145/1027527.1027566
http://doi.acm.org/10.1145/1027527.1027566
http://doi.acm.org/10.1145/1284420.1284442
http://doi.acm.org/10.1145/1284420.1284442

