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Abstract. In Rothvoß [2012] it was shown that there exists a 0/1 poly-
tope (a polytope whose vertices are in {0, 1}n) such that any higher-
dimensional polytope projecting to it must have 2Ω(n) facets, i.e., its
linear extension complexity is exponential. The question whether there
exists a 0/1 polytope with high PSD extension complexity was left open.
We answer this question in the affirmative by showing that there is a
0/1 polytope such that any spectrahedron projecting to it must be the
intersection of a semidefinite cone of dimension 2Ω(n) and an affine space.
Our proof relies on a new technique to rescale semidefinite factorizations.

1 Introduction

The subject of lower bounds on the size of extended formulations has recently
regained a lot of attention. This is due to several reasons. First of all, essen-
tially all NP-Hard problems in combinatorial optimization can be expressed as
linear optimization over an appropriate convex hull of integer points. Indeed,
many past (erroneous) approaches for proving that P=NP have proceeded by
attempting to give polynomial sized linear extended formulations for hard convex
hulls (convex hull of TSP tours, indicators of cuts in a graph, etc.). Recent break-
throughs Fiorini et al. [2012a], Braun et al. [2012] have unconditionally ruled out
such approaches for the TSP and Correlation polytope, complementing the clas-
sic result of Yannakakis [1991] which gave lower bounds for symmetric extended
formulations. Furthermore, even for polytopes over which optimization is in P, it
is very natural to ask what the “optimal” representation of the polytope is. From
this perspective, the smallest extended formulation represents the “description
complexity” of the polytope in terms of a linear or semidefinite program.

A (linear) extension of a polytope P ⊆ Rn is another polytope Q ⊆ Rd, so
that there exists a linear projection π with π(Q) = P . The extension complexity
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of a polytope is the minimum number of facets in any of its extensions. The
linear extension complexity of P can be thought of as the inherent complexity
of expressing P with linear inequalities. Note that in many cases it is possible
to save an exponential number of inequalities by writing the polytope in higher-
dimensional space. Well-known examples include the regular polygon, see Ben-
Tal and Nemirovski [2001] and Fiorini et al. [2012b] or the permutahedron, see
Goemans [2009]. A (linear) extended formulation is simply a normalized way
of expressing an extension as an intersection of the nonnegative cone with an
affine space; in fact we will use these notions in an interchangeable fashion. In
the seminal work of Yannakakis [1988] a fundamental link between the extension
complexity of a polytope and the nonnegative rank of an associated matrix, the
so called slack matrix, was established and it is precisely this link that provided
all known strong lower bounds. It states that the nonnegative rank of any slack
matrix is equal to the extension complexity of the polytope.

As shown in Fiorini et al. [2012a] and Gouveia et al. [2011] the above readily
generalizes to semidefinite extended formulations. Let P ⊆ Rn be a polytope.
Then a semidefinite extension of P is a spectrahedron Q ⊆ Rd so that there
exists a linear map π with π(Q) = P . While the projection of a polyhedron
is polyhedral, it is open which convex sets can be obtained as projections of
spectrahedra. We can again normalize the representation by considering Q as
the intersection of an affine space with the cone of positive semidefinite (PSD)
matrices. The semidefinite extension complexity is then defined as the smallest
r for which there exists an affine space such that its intersection with the cone
of r× r PSD matrices projects to P . We thus ask for the smallest representation
of P as a projection of a spectrahedron. In both the linear and the semidefinite
case, one can think of the extension complexity as the minimum size of the cone
needed to represent P . Yannakakis’s theorem can be generalized to this case, as
was done in Fiorini et al. [2012a] and Gouveia et al. [2011], and it asserts that
the semidefinite extension complexity of a polytope is equal to the semidefinite
rank (see Definition 3) of any of its slack matrices.

An important fact in the study of extended formulations is that the encoding
length of the coefficients is disregarded, i.e., we only measure the dimension of
the required cone. Furthermore, a lower bound on the extension complexity of
a polytope does not imply that building a separation oracle for the polytope
is computationally hard. Indeed the perfect matching polytope is conjectured
to have super polynomial extension complexity, while the associated separation
problem (which allows us to compute min-cost perfect matchings) is in P. Thus
standard complexity theoretic assumptions and limitations do not apply. In fact
one of the main features of extended formulations is that they unconditionally
provide lower bounds for the size of linear and semidefinite programs independent
of P vs. NP.

The first natural class of polytopes with high linear extension complexity
come from the work of Rothvoß [2012]. Rothvoss showed that “random” 0/1
polytopes have exponential linear extension complexity via an elegant counting
argument. Given that SDP relaxations are often far more powerful than LP
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relaxations, an important open question is whether random 0/1 polytopes also
have high PSD extension complexity.

1.1 Related work

The basis for the study of linear and semidefinite extended formulations is the
work of Yannakakis (see Yannakakis [1988] and Yannakakis [1991]). The exis-
tence of a 0/1 polytope with exponential extension complexity was shown in
Rothvoß [2012] which in turn was inspired by Shannon [1949]. The first explicit
example, answering a long standing open problem of Yannakakis, was provided
in Fiorini et al. [2012a] which, together with Gouveia et al. [2011], also lay the
foundation for the study of extended formulations over general closed convex
cones. In Fiorini et al. [2012a] it was also shown that there exist matrices with
large nonnegative rank but small semidefinite rank, indicating that semidefinite
extended formulations can be exponentially stronger than linear ones, however
falling short of giving an explicit proof. They thereby separated the expressive
power of linear programs from those of semidefinite programs and raised the
question:

Does every 0/1 polytope have an efficient semidefinite lift?

Other related work includes Braun et al. [2012], where the authors study
approximate extended formulations and provide examples of spectrahedra that
cannot be approximated well by linear programs with a polynomial number of
inequalities as well as improvements thereof by Braverman and Moitra [2012].
Faenza et al. [2012] proved equivalence of extended formulations to communi-
cation complexity. Recently there has been also significant progress in terms of
lower bounding the linear extension complexity of polytopes by means of infor-
mation theory, see Braverman and Moitra [2012] and Braun and Pokutta [2013].
Similar techniques are not known for the semidefinite case.

1.2 Contribution

We answer the above question in the negative, i.e., we show the existence of a 0/1
polytope with exponential semidefinite extension complexity. In particular, we
show that the counting argument of Rothvoß [2012] extends to the PSD setting.

The main challenge when moving to the PSD setting, is that the largest value
occurring in the slack matrix does not easily translate to a bound on the largest
values occurring in the factorizations. Obtaining such a bound is crucial for the
counting argument to carry over.

Our main technical contribution is a new rescaling technique for semidefinite
factorizations of slack matrices. In particular, we show that any rank r semidefi-
nite factorization of a slack matrix with maximum entry size ∆ can be “rescaled”
to a semidefinite factorization where each factor has operator norm at most

√
r∆

(see Theorem 6). Here our proof proceeds by a variational argument and relies
on John’s theorem on ellipsoidal approximation of convex bodies John [1948].
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We note that in the linear case proving such a result is far simpler, here the
only required observation is that after independent nonnegative scalings of the
coordinates a nonnegative vector remains nonnegative. However, one cannot in
general independently scale the entries of a PSD matrix while maintaining the
PSD property.

Using our rescaling lemma, the existence proof of the 0/1 polytopes with
high semidefinite extension complexity follows in a similar fashion to the linear
case as presented in Rothvoß [2012]. In addition to our main result, we show
the existence of a polygon with d integral vertices and semidefinite extension
complexity Ω(( d

log d )
1
4 ). The argument follows similarly to Fiorini et al. [2012b]

adapting Rothvoß [2012].

1.3 Outline

In Section 2 we provide basic results and notions. We then present the rescaling
technique in Section 3 which is at the core of our existence proof. In Section 4
we establish the existence of 0/1 polytopes with subexponential semidefinite
extension complexity and we conclude with some final remarks in Section 6.

2 Preliminaries

Let [n] := {1, . . . , n}. In the following we will consider semidefinite extended
formulations. We refer the interested reader to Fiorini et al. [2012a] and Braun
et al. [2012] for a broader overview and proofs.

Let Bn
2 ⊆ Rn denote the n-dimensional euclidean ball, and let Sn−1 = ∂Bn

2

denote the euclidean sphere in Rn. We denote by Sn+ the set of n × n PSD
matrices which form a (non-polyhedral) convex cone. Note that M ∈ Sn+ if and
only if M is symmetric (MT = M) and

xTMx ≥ 0 ∀x ∈ Rn.

Equivalently, M ∈ Sn+ iff M is symmetric and has nonnegative eigenvalues. For
a matrix A ∈ Rn×n, we denote its trace by Tr[A] =

∑n
i=1Aii. For a pair of

equally-sized matrices A,B we let 〈A,B〉 = Tr[ATB] denote their trace inner
product and let ‖A‖F =

√
〈A,A〉 denote the Frobenius norm of A. We denote

the operator norm of a matrix M ∈ Rm×n by

‖M‖ = sup
‖x‖2=1

‖Mx‖2 .

If M is square and symmetric (MT = M), then ‖M‖ = sup‖x‖2=1 |xTMx|, in
which case ‖M‖ denotes the largest eigenvalue of M in absolute value. Lastly, if
M ∈ Sn+ then ‖M‖ = sup‖x‖2=1 x

TMx by nonnegativity of the inner expression.
For every positive integer ` and any `-tuple of matrices M = (M1, . . . ,M`)

we define
‖M‖∞ = max{‖Mi‖

∣∣ i ∈ [`]}.
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Definition 1 (Semidefinite extended formulation) Let K ⊆ Rn be a con-
vex set. A semidefinite extended formulation (semidefinite EF) of K is a system
consisting of a positive integer r, an index set I and a set of triples (ai, Ui, bi)i∈I ⊆
Rn × Sr+ × R such that

K = {x ∈ Rn
∣∣∃Y ∈ Sr+ : aTi x+ 〈Ui, Y 〉 = bi ∀i ∈ I}.

The size of a semidefinite EF is the size r of the positive semidefinite matrices Ui.
The semidefinite extension complexity of K, denoted xcSDP(K), is the minimum
size of a semidefinite EF of K.

In order to characterize the semidefinite extension complexity of a polytope
P ⊆ [0, 1]n we will need the concept of a slack matrix.

Definition 2 (Slack matrix) Let P ⊆ [0, 1]n be a polytope, I, J be finite sets,
A = (ai, bi)i∈I ⊆ Rn × R be a set of pairs and let X = (xj)j∈J ⊆ Rn be a set of
points, such that

P = {x ∈ Rn
∣∣ aTi x ≤ bi ∀i ∈ I} = conv (X ) .

Then, the slack matrix of P associated with (A,X ) is given by Sij = bi − aTi xj.

Finally, the definition of a semidefinite factorization is as follows.

Definition 3 (Semidefinite factorization) Let I, J be finite sets, S ∈ RI×J
+

be a nonnegative matrix and r be a positive integer. Then, a rank-r semidefinite
factorization of S is a set of pairs (Ui, V

j)(i,j)∈I×J ⊆ Sr+ × Sr+ such that

Sij = 〈Ui, V
j〉

for every (i, j) ∈ I × J . The semidefinite rank of S, denoted rankPSD(S), is the
minimum r such that there exists a rank r semidefinite factorization of S.

Using the above notions the semidefinite extension complexity of a polytope
can be characterized by the semidefinite rank of any of its slack matrices, which
is a generalization of Yannakakis’s factorization theorem (Yannakakis [1988] and
Yannakakis [1991]) established in Fiorini et al. [2012a] and Gouveia et al. [2011].

Theorem 4 (Yannakakis’s Factorization Theorem for SDPs). Let P ⊆
[0, 1]n be a polytope and A = (ai, bi)i∈I and X = (xj)j∈J be as in Definition 2.
Let S be the slack matrix of P associated with (A,X ). Then, S has a rank-r
semidefinite factorization if and only if P has a semidefinite EF of size r. That
is, rankPSD(S) = xcSDP(P ).

Moreover, if (Ui, V
j)(i,j)∈I×J ⊆ Sr+ × Sr+ is a factorization of S, then

P = {x ∈ Rn
∣∣∃Y ∈ Sr+ : aTi x+ 〈Ui, Y 〉 = bi ∀i ∈ I}

and the pairs (xj , V
j)j∈J satisfy aTi xj + 〈Ui, V

j〉 = bi for every i ∈ I.
In particular, the extension complexity is independent of the choice of the

slack matrix and the semidefinite rank of all slack matrices of P is identical.
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The following well-known theorem due to John [1948] lies at the core of our
rescaling argument. We state a version that is suitable for the later application.
Recall that Bn

2 denotes the n-dimensional euclidean unit ball. A probability vector
is a vector p ∈ Rn

+ such that p(1)+p(2)+· · ·+p(n) = 1. For a convex setK ⊆ Rn,
we let aff(K) denote the affine hull of K, the smallest affine space containing
K. We let dim(K) denote the linear dimension of the affine hull of K. Last, we
let relbd(K) denote the relative boundary of K, i.e., the topological boundary
of K with respect to its affine hull aff(K).

Theorem 5 (John [1948]). Let K ⊆ Rn be a centrally symmetric convex set
with dim(K) = k. Let T ∈ Rn×k be such that E = T · Bk

2 = {Tx
∣∣ ‖x‖ ≤ 1}

is the smallest volume ellipsoid containing K. Then, there exist a finite set of
points Z ⊆ relbd(K) ∩ relbd(E) and a probability vector p ∈ RZ+ such that∑

z∈Z
p(z) zzT =

1

k
TTT.

We will need the following lemma.

Lemma 1. Let r be a positive integer, X ∈ Sr+ be a non-zero positive semidefi-
nite matrix. Let λ1 = ‖X‖,W denote the λ1-eigenspace of X. Then for Z ∈ Rr×r

symmetric,
d

dε
‖X + εZ‖

∣∣∣∣
ε=0

= max
w∈W
‖w‖=1

wTZw

Proof: It suffices to show that

‖X + εZ‖ = ‖X‖+ ε max
w∈W
‖w‖=1

wTZw ±O(ε2). (1)

Since X and Z are symmetric note that

‖X + εZ‖ = max
‖x‖2=1

|xT(X + εZ)x|.

Given that X ∈ Sr+, we see that

min
‖x‖2=1

xT(X + εZ)x ≥ ε min
‖x‖2=1

xTZx ≥ −ε‖Z‖

and
max
‖x‖2=1

xT(X + εZ)x ≥ λ1 − ε‖Z‖.

Since λ1 > 0 (since X 6= 0), for ε small enough λ1 − ε‖Z‖ > ε‖Z‖, we get

‖X + εZ‖ = max
‖x‖2=1

|xT(X + εZ)x| = max
‖x‖2=1

xT(X + εZ)x.

Since W is the top eigenspace of X, we get that

‖X + εZ‖ ≥ max
w∈W
‖w‖=1

wT(X + εZ)w = λ1 + ε max
w∈W
‖w‖=1

wTZw. (2)
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From the above, it remains to prove that for any unit vector x

xT(X + εZ)x ≤ λ1 + ε max
w∈W
‖w‖2=1

wTZw +O(ε2). (3)

We may write x = xW + xW⊥ where xW ∈ W and xW⊥ ∈ W⊥ (orthogonal
complement of W ). Note that if x⊥W = 0, inequality (3) holds without any error
term, hence we may assume that x⊥W 6= 0. Let λ2 denote the second largest
eigenvalue of X. From the spectral decomposition of X, we have that

xTW⊥XxW⊥ ≤ λ2 ‖xW⊥‖
2
2 .

Let δ2 = ‖xW⊥‖
2
2. Since ‖xW ‖

2
2 = 1− δ2, we have that

xT(X + εZ)x = (xW + xW⊥)T(X + εZ)(xW + xW⊥)

≤ xTW (X + εZ)xW + xTW⊥(X + εZ)xW⊥ + 2xTW (X + εZ)xW⊥

≤ (1− δ2)(λ1 + ε max
w∈W
‖w‖2=1

wTZw) + δ2(λ2 + ε ‖Z‖) + 2xW (X + εZ)xW⊥ .

Since xW and x⊥W are orthogonal, and xW is a λ1-eigenvector of X, we have that

xT(X + εZ)x = (1− δ2)(λ1 + ε max
w∈W
‖w‖2=1

wTZw) + δ2(λ2 + ε ‖Z‖) + 2ελ1x
T
WxW⊥ + 2εxTWZxW⊥

= (1− δ2)(λ1 + ε max
w∈W
‖w‖2=1

wTZw) + δ2(λ2 + ε ‖Z‖) + 2εxTWZxW⊥

≤ (1− δ2)(λ1 + ε max
w∈W
‖w‖2=1

wTZw) + δ2(λ2 + ε ‖Z‖) + 2ε
√
δ2(1− δ2) ‖Z‖

≤ (1− δ2)(λ1 + ε max
w∈W
‖w‖2=1

wTZw) + δ2(λ2 + ε ‖Z‖) + 2δε ‖Z‖

We shall now maximize the right hand side as a function of δ, for δ ∈ R (which
clearly yields an upper bound). Combining the δ-terms the above expression
gives

−δ2(λ1 − λ2 + ε( max
w∈W
‖w‖2=1

wTZw − ‖Z‖)) + 2δε ‖Z‖+

λ1 + ε max
w∈W
‖w‖2=1

wTZw


Let

Mε
1 = λ1 − λ2 + ε( max

w∈W
‖w‖2=1

wTZw − ‖Z‖) and Mε
2 = ε ‖Z‖ .

From here, it suffices to show that for the maximizing value of δ, the error term

−δ2Mε
1 + 2δMε

2 = O(ε2)
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Clearly Mε
2 ≥ 0. Furthemore since λ1 > λ2, Mε

1 ≥ 1
2 (λ1 − λ2) > 0 for ε small

enough. Hence for ε small enough, the above function is concave is δ. We may
therefore restrict our attention to the unique local optima. Setting the derivative
to zero, we get

−2Mε
1 δ + 2Mε

2 = 0⇒ δ =
Mε

2

Mε
1

≥ 0

The maximum value of the error term is therefore

−
(
Mε

2

Mε
1

)2

Mε
1 + 2

(
Mε

2

Mε
1

)
Mε

2 =
(Mε

2 )2

Mε
1

≤ 2
‖Z‖2

λ1 − λ2
ε2 = O(ε2)

as needed. �

We record the following corollary of Lemma 1 for later use. Recall that for a
square matrix X, its exponential is given by

eX =

∞∑
k=0

1

k!
Xk = I +X +

1

2
X2 + · · · .

Corollary 1. Let r be a positive integer, X ∈ Sr+ be a non-zero positive semidef-
inite matrices. Let λ1 = ‖X‖, W denote the λ1-eigenspace of X. Then for
Z ∈ Rr×r symmetric,

d

dε

∥∥eεZXeεZ∥∥∣∣∣∣
ε=0

= 2λ1 max
w∈W
‖w‖2=1

wTZw

Proof: Let us write eεZ =
∑∞

k=0
εkZk

k! = I+εZ+ε2Rε, where Rε =
∑∞

k=2
εk−2Zk

k! .
For ε < 1/(2 ‖Z‖), by the triangle inequality

‖Rε‖ ≤
∞∑
k=2

εk−2 ‖Z‖k

k!
≤ ‖Z‖

2

2

∞∑
k=0

(ε ‖Z‖)k =
‖Z‖2

2(1− ε ‖Z‖)
≤ ‖Z‖2

From here we see that

eεZXeεZ = (I+εZ+ε2Rε)X(I+εZ+ε2Rε) = X+ε(ZX+XZ)+ε2(ZXRε+RεXZ+RεXRε)

Let R′ε = ZXRε + RεXZ + RεXRε. Again by the triangle inequality, we have
that

‖R′ε‖ ≤ 2 ‖Z‖ ‖X‖ ‖Rε‖+ ‖Rε‖2 ‖X‖ ≤ 2 ‖Z‖3 ‖X‖+ ‖Z‖4 ‖X‖ = O(1),

for ε small enough. Therefore, we have that∥∥eεZXeεZ∥∥ =
∥∥X + ε(XZ + ZX) + ε2R′ε

∥∥ = ‖X + ε(XZ + ZX)‖ ±O(ε2 ‖R′ε‖)
= ‖X + ε(XZ + ZX)‖ ±O(ε2).
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Since XZ + ZX is symmetric and X ∈ Sr+ and non-zero, by Lemma 1 we have
that

‖X + ε(XZ + ZX)‖ = λ1 + ε( max
w∈W
‖w‖2=1

wT(XZ + ZX)w)±O(ε2)

= λ1 + ελ1( max
w∈W
‖w‖2=1

wT(Z + Z)w)±O(ε2)

= λ1 + 2λ1ε( max
w∈W
‖w‖2=1

wTZw)±O(ε2)

Putting it all together, we get that∥∥eεZXeεZ∥∥ = ‖X + ε(XZ + ZX)‖+O(ε2) = λ1 + 2λ1ε( max
w∈W
‖w‖2=1

wTZw)±O(ε2)

as needed. �

3 Rescaling semidefinite factorizations

A crucial point will be the rescaling of a semidefinite factorization of a nonneg-
ative matrix M . In the case of linear extended formulations an upper bound
of ∆ on the largest entry of a slack matrix S implies the existence of a mini-
mal nonnegative factorization S = UV where the entries of U, V are bounded
by
√
∆. This ensures that the approximation of the extended formulation can

be captured by means of a polynomial-size (in ∆) grid. In the linear case, we
note that any factorization S = UV can be rescaled by a nonnegative diago-
nal matrix D where S = (UD)(D−1U) and the factorization (UD,D−1V ) has
entries bounded by

√
∆. However, such a rescaling relies crucially on the fact

that after independent nonnegative scalings of the coordinates a nonnegative
vector remains nonnegative. However, in the PSD setting, it is not true that the
PSD property is preserved after independent nonnegative scalings of the matrix
entries. We circumvent this issue by showing that a restricted class of transfor-
mations, i.e. the symmetries of the semidefinite cone, suffice to rescale any PSD
factorization such that the largest eigenvalue occurring in the factorization is
bounded in terms of the maximum entry in M and the rank of the factorization.

Theorem 6 (Rescaling semidefinite factorizations). Let ∆ be a positive
real number, I, J be finite sets, M ∈ [0, ∆]I×J be a nonnegative matrix and
r := rankPSDM . Then, there exists a semidefinite factorization (Ui, V

j)(i,j)∈I×J
of M (i.e., Mij = 〈Ui, V

j〉 and Ui, Vj ∈ Sr+) such that maxi∈I ‖Ui‖ ≤
√
r∆ and

maxj∈J
∥∥V j

∥∥ ≤ √r∆.

Proof: Let us denote by ErM the set of rank-r semidefinite factorizations (U,V)
of M , where U = (Ui)i∈I and V = (V j)j∈J . We study the potential func-
tion ΦM : ErM → R defined by

ΦM (U,V) = ‖U‖∞ · ‖V‖∞ .
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In particular, we analyze how this function behaves under small perturbations
of its minimizers (i.e., a factorization of M at which ΦM attains its minimum).

To begin, we first argue that there exists a minimizer of ΦM that satisfies
‖U‖∞ = ‖V‖∞. For an invertible matrix A ∈ Rr×r and semidefinite factoriza-
tion (U,V) ∈ ErM , notice that the tuple

(U′,V′) =
(
(ATUiA)mi=1, (A

−1V jA−T)nj=1

)
is also a semidefinite factorization of M . To see this observe that by invariance
of the trace function under similarity transformations (Tr[BWB−1] = Tr [W ]),

〈ATUiA,A
−1V jA−T〉 = 〈Ui, V

j〉 = Mij .

For A := (‖V‖∞ / ‖U‖∞)1/4 · I it is then easy to see that we obtain a fac-
torization (U′,V′) of M such that

‖U′‖∞ = ‖V′‖∞ = ‖U‖1/2∞ ‖V‖
1/2
∞ .

It follows that

ΦM (U′,V′) = ‖U‖∞ · ‖V‖∞ = ΦM (U,V).

By this fact and a standard compactness argument the function ΦM has a min-
imizer (U,V) such that ‖U‖∞ = ‖V‖∞ as claimed. Let us fix such a factoriza-
tion (Ũ, Ṽ) and let

µ = ‖Ũ‖∞ = ‖Ṽ‖∞ = ΦM (Ũ, Ṽ)1/2.

Our goal is to obtain a contradiction by assuming that µ2 > ∆r + τ for
some τ > 0. To this end we bound the value of ΦM at infinitesimal perturbations
of the point (Ũ, Ṽ). For a symmetric matrix Z and parameter ε > 0 the type of
perturbations we consider are those defined by the invertible matrix e−εZ , which
will take the role of the matrix A above. Notice that if Z is symmetric, then so
is e−εZ . We show that there exists a matrix Z such that for every U ∈ {Ũi

∣∣ i ∈ I}
such that ‖U‖ = µ, we have∥∥e−εZUe−εZ∥∥ ≤ µ− 2µ

r
ε+O(ε2), (4)

while at the same time for every V ∈ {Ṽ j
∣∣ j ∈ J} such that ‖V ‖ = µ, we have∥∥eεZV eεZ∥∥ ≤ µ+
2∆

µ
ε+O(ε2). (5)

This implies that there is a point (U′,V′) in the neighborhood of the mini-
mizer (Ũ, Ṽ) where

ΦM (U′,V′) ≤
(
µ− 2µ

r
ε+O(ε2)

)
·
(
µ+

2∆

µ
ε+O(ε2)

)
= µ2 − 2

(µ2

r
−∆

)
ε+O(ε2)

< µ2 − 2τ

r
ε+O(ε2),
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where the last inequality follows from our assumption that µ2 > ∆r+τ . Thus, for
small enough ε > 0, we have ΦM (U′,V′) < µ2, a contradiction to the minimality
of µ. It suffices to consider the factorization matrices with the largest eigenvalues
as small perturbations cannot change the eigenvalue structure. Hence, to prove
the theorem we need to show the existence of such a matrix Z.

Let Z ⊆ Sr−1 be a finite set of unit vectors such that every z ∈ Z is a
µ-eigenvector of at least one of the matrices Ũi for i ∈ I. Let p ∈ RZ+ be a
probability vector (i.e.,

∑
z∈Z p(z) = 1) and define the symmetric matrix

Z =
∑
z∈Z

p(z) zzT. (6)

Claim. Let V ∈ {Ṽ j
∣∣ j ∈ J} be one of the factorization matrices such that

‖V ‖ = µ. Then,
d

dε

∥∥eεZV eεZ∥∥∣∣∣∣
ε=0

≤ 2∆

µ
. (7)

Proof of claim: Let V ⊆ Sr−1 be the set of eigenvectors of V that have
eigenvalue µ. Then, Corollary 1 gives

d

dε

∥∥eεZV eεZ∥∥∣∣∣∣
ε=0

= 2µmax
v∈V

vTZv = 2µmax
v∈V

∑
z∈Z

p(z)(zTv)2 (8)

Fix z ∈ Z and v ∈ V. Let U ∈ {Ũ1, . . . , Ũm} be such that z is a µ-eigenvector
of U . Let U =

∑
k∈[r] λkuku

T
k and V =

∑
`∈[r] γ`v`v

T
` be spectral decompositions

of U and V , respectively, and recall that the uk are pairwise orthogonal as are
the v`. Note that since z is an eigen vector of U and v is an eigen vector of V ,
we may choose spectral decompositions of U and V such that u1 = z and v1 = v
respectively. Then, by our assumed bounds on the maximum entry-size of the
matrixM and the fact that λk and γ` are nonnegative (since U and V are PSD),

∆ ≥ Tr
[
UTV

]
=
∑

k,`∈[r]

λkγ`(u
T
kv`)

2 ≥ λ1γ1(uT1 v1)2 = µ2(zTv)2

Putting it all together, we get that

2µmax
v∈V

∑
z∈Z

p(z)(zTv)2 ≤ 2µmax
v∈V

∑
z∈Z

p(z)
∆

µ2
= 2µmax

v∈V

∆

µ2
=

2∆

µ
as needed.

�

Claim. There exists a choice of unit vectors Z and probabilities p such that the
following holds. Let I ′ = {i ∈ I

∣∣ ‖Ũi‖ = µ}. Then, for Z as in (6) we have

d

dε

∥∥∥e−εZŨie
−εZ

∥∥∥∣∣∣∣
ε=0

≤ −2µ

r
∀i ∈ I ′. (9)

11



Proof of claim: For every i ∈ I ′, let Ui ⊆ Rr be the vector space spanned
by the µ-eigenvectors of Ũi. Define the convex set K = conv

(⋃
i∈I′(Ui ∩Br

2)
)
.

Notice that K is centrally symmetric. Let k = dim(K), and let T ∈ Rr×k denote
a linear transformation such that that E = TBk

2 is the smallest volume ellipsoid
containing K. By John’s Theorem, there exists a finite set Z ⊆ relbd(K) ∩
relbd(E) and a probability vector p ∈ RZ+ such that

Z =
∑
z∈Z

p(z) zzT =
1

k
TTT. (10)

Notice that each z ∈ Z must be an extreme point of K (as it is one for E) and
the set of extreme points of K is exactly

⋃
i∈I′(Ui ∩Sr−1). Hence, each z ∈ Z is

a unit vector and at the same time a µ-eigenvector of some Ũi, i ∈ I ′.
For i ∈ I ′, by Corollary 1 and (10) we have that

d

dε

∥∥∥e−εZŨie
−εZ

∥∥∥∣∣∣∣
ε=0

= 2µmax{uT(−Z)u
∣∣u ∈ Ui ∩ Sr−1}

= −2µmin{uTZu
∣∣u ∈ Ui ∩ Sr−1}

= −2µ

k
min{uTTTTu

∣∣u ∈ Ui ∩ Sr−1}

≤ −2µ

r
min{

∥∥TTu
∥∥2
2

∣∣u ∈ Ui ∩ Sr−1}.

Since E ⊇ K ⊇ (Ui ∩ Sr−1), for any u ∈ Ui ∩ Sr−1, we have∥∥TTu
∥∥
2

= sup
x∈E

xTu ≥ sup
y∈K

yTu ≥ uTu = 1 as needed.

�

Notice that the first claim implies (5) and the second claim implies (4). Hence,
our assumption µ2 > ∆r+ τ contradicts that µ is the minimum value of ΦM . �

4 0/1 polytopes with high semidefinite xc

The lower bound estimation will crucially rely on the fact that any 0/1 polytope
in the n-dimensional unit cube can be written as a linear system of inequalities
Ax ≤ b with integral coefficients where the largest coefficient is bounded by
(
√
n+ 1)n+1 ≤ 2n log(n), see e.g., [Ziegler, 2000, Corollary 26]. Using Theorem 6

the proof follows along the lines of Rothvoß [2012]; for simplicity and exposition
we chose a compatible notation. We use different estimation however and we
need to invoke Theorem 6. In the following let Sr+(α) =

{
X ∈ Sr+ | ‖X‖ ≤ α

}
.

Lemma 2 (Rounding lemma). For a positive integer n set ∆ := (n+1)(n+1)/2.
Let X ⊆ {0, 1}n be a nonempty set, let r := xcSDP(conv (X )) and let δ ≤(
16r3(n+ r2)

)−1. Then, for every i ∈ [n+ r2] there exist:

12



1. an integer vector ai ∈ Zn such that ‖ai‖∞ ≤ ∆,
2. an integer bi such that |bi| ≤ ∆,
3. a matrix Ui ∈ Sr+(

√
r∆) whose entries are integer multiples of δ/∆ and have

absolute value at most 8r3/2∆, such that

X =
{
x ∈ {0, 1}n

∣∣ ∃Y ∈ Sr+(
√
r∆) :

∣∣bi−aTi x−〈Y, Ui〉
∣∣ ≤ 1

4(n+ r2)
∀i ∈ [n+r2]

}
.

Proof: For some index set I let A = (ai, bi)i∈I ⊆ Zn × Z be a non-redundant
description of conv (X ) (i.e., |I| is minimal) such that for every i ∈ I, we have
‖ai‖∞ ≤ ∆ and |bi| ≤ ∆. Let J be an index set for X = (xj)j∈J and let S ∈ ZI×J

≥0
be the slack matrix of conv (X ) associated with the pair (A,X ). The largest entry
of the slack matrix is at most ∆. By Yannakakis’s Theorem (Theorem 4) there
exists a semidefinite factorization (Ui, V

j)(i,j)∈I×J ⊆ Sr+ × Sr+ of S such that

conv (X ) = {x ∈ Rn
∣∣∃Y ∈ Sr+ : aTi x+ 〈Ui, Y 〉 = bi ∀i ∈ I}.

By Theorem 6 we may assume that ‖Ui‖ ≤
√
r∆ for every i ∈ I and

∥∥V j
∥∥ ≤√

r∆ for every j ∈ J . We will now pick a subsystem of maximum volume. For
a linearly independent set of vectors x1, . . . , xk ∈ Rn, we let vol ({x1, . . . , xk})
denote the k-dimensional parallelepiped volume

vol

(
k∑

i=1

aixi
∣∣ a1, . . . , ak ∈ [0, 1]

)
= det((xTi xj)ij)

1
2 .

If the vectors are dependent, then by convention the volume is zero. Let W =
span

{
(ai, Ui)

∣∣ i ∈ I} and let I ′ ⊆ I be a subset of size |I ′| = dim(W) such that
vol
(
{(ai, Ui)

∣∣ i ∈ I ′}) is maximized. Note that |I ′| ≤ n+ r2.
For any positive semidefinite matrix U ∈ Sr+ with spectral decomposition

U =
∑
k∈[r]

λk uku
T
k , we let Ū =

∑
k∈[r]

λ̄k ūkū
T
k

be the matrix where for every k ∈ [r], the value of λ̄k is the nearest integer
multiple of δ/∆ to λk and ūk is the vector we get by rounding each of the
entries of uk to the nearest integer multiple of δ/∆. Since each uk is a unit
vector, the matrices ukuTk have entries in [−1, 1] and it follows that U has entries
in r ‖U‖ [−1, 1]. Similarly, since each ūk has entries in (1 + δ/∆)[−1, 1] each of
the matrices ūkūTk has entries in (1 + δ/∆)2[−1, 1], and it follows that Ū has
entries in r(‖U‖ + δ/∆)(1 + δ/∆)2[−1, 1]. In particular, for every i ∈ I ′, the
entries of Ūi are bounded in absolute value by

r
(
‖Ui‖+ δ/∆

)
(1 + δ/∆)2 ≤ r(

√
r∆+ δ/∆)(1 + δ/∆)2 ≤ 8r3/2

√
∆.

We use the following simple claim.

Claim. Let U and Ū be as above. Then, ‖Ū − U‖2 ≤ 4δr2/
√
∆

13



Proof of claim: By the triangle inequality we have

∥∥Ū − U∥∥
F

=

∥∥∥∥∥∥
∑
k∈[r]

λ̄k ūkū
T
k − λk ukuTk

∥∥∥∥∥∥
F

≤ rmax
k∈[r]

∥∥λ̄k ūkūTk − λk ukuTk∥∥F
= rmax

k∈[r]

∥∥(λ̄k − λk) ūkū
T
k − λk(uku

T
k − ūkūTk )

∥∥
F

≤ rmax
k∈[r]

δ

∆

∥∥ūkūTk∥∥F +
√
r∆
∥∥ukuTk − ūkūTk∥∥F

= rmax
k∈[r]

δ

∆
ūTk ūk +

√
r∆
∥∥(uk − ūk)uTk − ūk(ūTk − uTk )

∥∥
F

≤ rmax
k∈[r]

δ

∆

(
1 +

δ

∆

√
r
)2

+
√
r∆
(
‖uk − ūk‖F + ‖ūk‖F ‖uk − ūk‖F

)
≤ r δ

∆

(
1 +

δ

∆

√
r
)2

+ r
√
r∆
( δ
∆

√
r +

(
1 +

δ

∆

√
r
) δ
∆

√
r
)

≤ r · 4δr/
√
∆.

The claim now follows from the fact that δ
√
r/∆ < 1. �

Define the set

X̄ =
{
x ∈ {0, 1}n

∣∣ ∃Y ∈ Sr+(
√
r∆) :

∣∣bi − aTi x− 〈Ūi, Y 〉
∣∣ ≤ 1

4(n+ r2)
∀i ∈ I ′

}
.

We claim that X̄ = X , which will complete the proof.
We will first show that X ⊆ X̄ . To this end, fix an index j ∈ J . By Theorem 4

we can pick Y = V j ∈ Sr+ such that aTi xj+〈Ui, Y 〉 = bi for every i ∈ I ′. Moreover,
‖Y ‖ =

∥∥V j
∥∥ ≤ √r∆. This implies that for every i ∈ I ′, we have∣∣bi − aTi xj − 〈Ūi, Y 〉

∣∣ =
∣∣ bi − aTi xj − 〈Ui, Y 〉︸ ︷︷ ︸

0

+〈Ūi − Ui, Y 〉
∣∣

≤
∥∥Ūi − Ui

∥∥
F
‖Y ‖F ≤ 4δr3,

where the second line follows from the Cauchy-Schwarz inequality, the above
claim, and ‖Y ‖F ≤

√
r ‖Y ‖ ≤ r

√
∆. Now, since 4δr3 ≤ 4r3/(16r3(n + r2)) =

1/(4(n+ r2)) we conclude that xj ∈ X̄ and hence X ⊆ X̄ .
It remains to show that X̄ ⊆ X . For this we show that whenever x ∈ {0, 1}n

is such that x /∈ X it follows that x /∈ X̄ . To this end, fix an x ∈ {0, 1}n such
that x 6∈ X . Clearly x /∈ conv (X ) and hence, there must be an i∗ ∈ I such that
aTi∗x > bi∗ . Since x, ai∗ and bi∗ are integral we must in fact have aTi∗x ≥ bi∗ + 1.
We express this violation in terms of the above selected subsystem corresponding
to the set I ′.

There exist unique multipliers ν ∈ RI′ such that
(
ai∗ , Ui∗

)
=
∑

i∈I′ νi(ai, Ui).
Observe that this implies that

∑
i∈I′ νibi = bi∗ ; otherwise it would be impossible
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for aTi x + 〈Ui, Y 〉 = bi to hold for every i ∈ I and hence we would have X = ∅
(which we assumed is not the case).

Using the fact that the chosen subsystem I ′ is volume maximizing and using
Cramer’s rule,

|νi| =
vol ({(at, Ut) | t ∈ I ′ \ {i} ∪ {i∗}})

vol ({(at, Ut) | t ∈ I ′})
≤ 1.

For any Y ∈ Sr+(
√
r∆) using 〈Ui∗ , Y 〉 ≥ 0 it follows thus

1 ≤
∣∣aTi∗x− bi∗ + 〈Ui∗ , Y 〉

∣∣ =

∣∣∣∣∣∑
i∈I′

νi(a
T
i x− bi + 〈Ui, Y 〉)

∣∣∣∣∣
≤
∑
i∈I′
|νi|
∣∣aTi x− bi + 〈Ui, Y 〉

∣∣ ≤ (n+ r2) max
i∈I′

∣∣aTi x− bi + 〈Ui, Y 〉
∣∣ .

Using a similar estimation as above, for every i ∈ I ′, we have∣∣aTi x− bi + 〈Ui, Y 〉
∣∣ = |aTi x− bi + 〈Ūi, Y 〉+ 〈Ui − Ūi, Y 〉|
≤ |aTi x− bi + 〈Ūi, Y 〉|+ |〈Ui − Ūi, Y 〉|

≤ |aTi x− bi + 〈Ūi, Y 〉|+
1

4(n+ r2)
.

Combining this with 1 ≤ (n+ r2) maxi∈I′
∣∣aTi x− bi + 〈Ui, Y 〉

∣∣ we obtain

1

2(n+ r2)
≤ 1

n+ r2
− 1

4(n+ r2)
≤ max

i∈I′

∣∣aTi x− bi + 〈Ūi, Y 〉
∣∣ ,

and so x /∈ Y .
Via padding with empty rows we can ensure that |I ′| = n+ r2 as claimed. �

Using Lemma 2 we can establish the existence of 0/1 polytopes that do
not admit any small semidefinite extended formulation following the proof of
[Rothvoß, 2012, Theorem 4].

Theorem 7. For any n ∈ N there exists X ⊆ {0, 1}n such that

xcSDP(conv (X )) = Ω

(
2n/4

(n log n)1/4

)
.

Proof: LetR := R(n) := maxX⊆{0,1}n xcSDP(conv (X )) and suppose thatR(n) ≤
2n; otherwise the statement is trivial. The construction of Lemma 2 induces an
injective map from X ⊆ {0, 1}n to systems (ai, Ui, bi)i∈[n+r2] as the set X can
be reconstructed from the system. Also, adding zero rows and columns to A,U
and zero rows to b does not affect this property. Thus without loss of generality
we assume that A is a (n+R2)× n matrix, U is a (n+R2)×R2 matrix (using
R(R+1)

2 ≤ R2). Furthermore, by Lemma 2, every value in U has absolute value at
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most ∆ and can be chosen to be a multiple of (16R3(n+R2))−1∆−1. Thus each
entry can take at most 3(16R3(n + R2))∆ · ∆ = ∆2+o(1) values, since R ≤ 2n

and ∆ ≥ nn/2. Furthermore, the entries of A, b are integral and have absolute
value at most ∆, and hence each entry can take at most 3∆ ≤ ∆2+o(1) different
values.

We shall now assume that R ≥ n (this will be justified by the lower bound
on R later). By injectivity we cannot have more sets than distinct systems, i.e.

22
n

− 1 ≤ ∆(2+o(1))(n+R2+1)(n+R2) = ∆(2+o(1))R4

= 2(2+o(1))n lognR4

.

Hence for n large enough, R ≥ 2n/4

(3n logn)1/4
as needed. �

5 On the semidefinite xc of polygons

In an analog fashion to Fiorini et al. [2012b] we can use a slightly adapted version
of Theorem 2 to show the existence of a polygon with d integral vertices with
semidefinite extension complexity Ω(( d

log d )
1
4 ). For this we change Theorem 2

to work for arbitrary polytopes with bounded vertex coordinates; the proof is
almost identical to Theorem 2 and follows with the analog changes as in Fiorini
et al. [2012b].

Lemma 3 (Generalized rounding lemma). Let n,N ≥ 2 be a positive in-
teger and set ∆ := ((n + 1)N)2n. Let V ⊆ Zn ∩ [−N,N ]n be a nonempty and
convex independent set and X := conv (V)∩Zn. With r := xcSDP(conv (X )) and
δ ≤

(
16r3(n+ r2)

)−1, for every i ∈ [n+ r2] there exist:

1. an integer vector ai ∈ Zn such that ‖ai‖∞ ≤ ∆,
2. an integer bi such that |bi| ≤ ∆,
3. a matrix Ui ∈ Sr+(

√
r∆) whose entries are integer multiples of δ/∆ and have

absolute value at most 8r3/2∆, such that

X =
{
x ∈ Zn

∣∣∃Y ∈ Sr+(
√
r∆) :

∣∣bi − aTi x− 〈Y,Ui〉
∣∣ ≤ 1

4(n+ r2)
∀i ∈ [n+ r2]

}
.

Proof: By, e.g., [Hindry and Silverman, 2000, Lemma D.4.1] it follows that P has
a non-redundant description with integral coefficients of largest absolute value
of at most ((n + 1)N)n. Thus the maximal entry occuring in the slack matrix
is ((n+ 1)N)2n = ∆. The proof follows now with a similar argumentation as in
Theorem 2. �

We are ready to prove the existence of a polygon with d vertices, with integral
coefficients, so that its semidefinite extension complexity is Ω(( d

log d )
1
4 ).

Theorem 8 (Integral polygon with high semidefinite xc). For every d ≥
3, there exists a d-gon P with vertices in [2d]×[4d2] and xcSDP(P ) = Ω(( d

log d )
1
4 ).
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Proof: The proof is identical to the one is Fiorini et al. [2012b] except for adjust-
ing parameters as follows. The set Z :=

{
(z, z2) | z ∈ [2d]

}
is convex indepen-

dent, thus every subset X ⊆ Z of size |X| = d yields a different convex d-gon.
Let R := max {xcSDP conv (X) | X ⊆ Z, |X| = d}.

As in the proof of Theorem 7, we need to count the number of systems (which
the above set of polygons map to in an injective manner). Using ∆ = (12d2)2,
n = 2, N = 4d2 by Lemma 3 it follows easily that each entry in the system
can take at most cd14 different values. Without loss of generality, by padding
with zeros, we assume that the system given by Lemma 3 has the following
dimensions: the A, b part from (1.) and (2.), where A is formed by the rows ai,
is a (3 +R2)× 3 matrix and U from (3.), formed by the Ui read as rows vectors,
is a (3 +R2)×R2 matrix. We estimate

2d ≤ (cd14)(3+R2)2 ≤ 2c
′·R4·log d

and hence R ≥ c′( d
log d )

1
4 for some constant c′ > 0 follows. �

6 Final remarks

Most of the questions and complexity theoretic considerations in Rothvoß [2012]
as well as the approximation theorem carry over immediately to our setting and
the proofs follow similarly. For example, in analogy to [Rothvoß, 2012, Theorem
6], an approximation theorem for 0/1 polytopes can be derived showing that
every semidefinite extended formulation for a 0/1 polytope can be approximated
arbitrarily well by one with coefficients of bounded size.

The following important problems remain open:

Problem 1. Does the CUT polytope have high semidefinite extension complexity.
We highly suspect that the answer is in the affirmative, similar to the linear case.
However the partial slack matrix analyzed in Fiorini et al. [2012a] to establish
the lower bound for linear EFs has an efficient semidefinite factorization. In fact,
it was precisely this fact that established the separation between semidefinite
EFs and linear EFs in Braun et al. [2012].

Problem 2. Is there an information theoretic framework for lower bounding semidef-
inite rank similar to the framework laid out in Braverman and Moitra [2012],
Braun and Pokutta [2013] for nonnegative rank?

Problem 3. As asked in Fiorini et al. [2012b], we can ask similarly for semidefinite
EFs: is the provided lower bound for the semidefinite extension complexity of
polygons tight?
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