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Abstract. It is shown that for any subspace V ⊆ Fn×···×n
p of

d-tensors, if dim(V ) ≥ tnd−1, then there is subspace W ⊆ V
of dimension t/(dr) − 1 whose nonzero elements all have analytic
rank Ωd,p(r). As an application, we generalize a result of Altman
on Szemerédi’s theorem with random differences.

1. Introduction

In [Mes85], Meshulam proved the following result.

Theorem 1.1 (Meshulam). Let F be a field and let V ⊆ Mn(F) be a
subspace of n× n matrices. If dim(V ) > rn, then V contains a matrix
of rank at least r + 1.

Here we prove a version of this result for tensors over finite fields.
Identify a d-linear form T : Fn × · · · × Fn → F with the order-d tensor
with (i1, . . . , id)-coordinate T (ei1 , . . . , eid), where ei is the ith standard
basis vector in Fn. A tensor of order d will be referred to as a d-
tensor. The notion of rank for tensors we consider is the analytic rank,
introduced by Gowers and Wolf in [GW11].

Definition 1.2 (Bias and analytic rank). Let d ≥ 2 and n ≥ 1 be
integers. Let F be a finite field and let χ : F → C be a nontrivial
additive character. Let T ∈ Fn×···×n be a d-tensor. Then, the bias of T
is defined by1

bias(T ) = Ex1,...,xd∈Fnχ
(
T (x1, . . . , xd)

)
,

and the analytic rank of T is defined by

arank(T ) = − log|F| bias(T ).

The author is supported by the Gravitation grant NETWORKS-024.002.003
from the Dutch Research Council (NWO).

1Here and elsewhere, for a finite set X, we denote Ex1,...,xk∈Xf(x1, . . . , xk) =
|X|−k

∑
x1∈X · · ·

∑
xk∈X f(x1, . . . , xk) and Prx1,...,xk∈X denotes the probability

with respect to independent uniformly distributed elements x1, . . . , xk ∈ X.
1
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The bias is well-defined, since its value is independent of the choice of
nontrivial additive character and it is not hard to see that it is real and
nonnegative. Moreover, for any d ≥ 2, the analytic rank is at most n
and for matrices (d = 2), the analytic rank is the ordinary matrix rank.

Our version of Theorem 1.1 is then as follows.

Theorem 1.3. For every finite field F and integer d ≥ 2, there is a
c ∈ (0, 1] such that the following holds. Let n ≥ t ≥ r ≥ 1 be integers
and V ⊆ Fn×···×n be a subspace of d-tensors. If dim(V ) ≥ tnd−1, then
there is a subspace W ⊆ V of dimension at least t

dr
− 1 such that every

nonzero element in W has analytic rank at least cr.

Theorem 1.3 gives an analogue of Theorem 1.1 asserting that if V
has dimension at least rnd−1, then it contains a tensor of analytic rank
at least ΩF,d(r). The same statement holds for another notion of tensor
rank, namely the partition rank, which originated in [Nas17].

Definition 1.4 (Partition rank). Let d ≥ 2 and n ≥ 1 be integers. A
d-linear form T : Fn × · · · × Fn → F has partition rank 1 if there
exist integers 1 ≤ e, f ≤ d − 1 such that e + f = d, a partition
{i1, . . . , ie}, {j1, . . . , jf} of [d] and e- and f -linear forms T1, T2 (respec-
tively) such that for any x1, . . . , xd ∈ Fn,

T (x1, . . . , xd) = T1
(
xi1 , . . . , xie

)
T2
(
xj1 , . . . , xjf

)
.

The partition rank of T is the smallest r such that T = T1 + · · ·+ Tr,
where each Ti has partition rank 1.

Partition rank is always at most n and for matrices is also equal
to the usual rank. Independently, Kazhdan and Ziegler [KZ18] and
Lovett [Lov19] proved that prank(T ) ≥ arank(T ) and so Theorem 1.3
holds for the partition rank as well. This implies that the parameters of
Theorem 1.3 are close to optimal. Indeed, if U ⊆ Fn is a t-dimensional
subspace and V = Fn×···×n is the set of (d− 1)-tensors, then U ⊗ V is
a (tnd−1)-dimensional subspace of d-tensors containing only tensors of
partition rank (and so analytic rank) at most t. In the other direction,
partition and analytic rank are polynomially related. Independently,
Milićević in [Mil19] and Janzer in [Jan19] proved that

(1) prank(T ) ≤ O|F|,d
(

arank(T )D
)

for some D ≤ 22d
O(1)

. We refer to these papers for further information
on bounds for specific values of d.
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1.1. Szemerédi’s theorem with random differences. We apply
Theorem 1.3 to a probabilistic version of Szemerédi’s theorem [Sze75].
For ε ∈ (0, 1] and integer k ≥ 3, Szemerédi’s theorem asserts that any
set A ⊆ Z/NZ of size at least εN contains a proper k-term arithmetic
progression (k-AP), provided N is large enough in terms of ε and k.
The setup for the probabilistic version is as follows. Given a finite
abelian group G of order N and positive integer m, let S ⊆ G be a
random subset formed by sampling m elements from G independently
and uniformly at random. A general open problem is to determine the
smallest m such that with high probability over S, any set A ⊆ G of size
at least εN contains a proper k-AP with common difference in S. For
k = 3, it was shown by Christ [Chr11] and Frantzikinakis, Lesigne and

Wierdl [FLW12] that m ≥ ω(
√
N logN) suffices and for k ≥ 3, it was

shown by Gopi and the author in [BG18] that m ≥ ω(N1− 1
dk/2e logN)

does; see also [BDG19]. In [FLW16] the authors conjecture that in
the group Z/NZ, for all fixed k ≥ 3, already m ≥ ω(logN) would
do. However, in [Alt19] Altman showed that in the finite field case,
where G = Fnp with p an odd prime, the analogous conjecture is false

for 3-APs and that m ≥ Ωp(n
2) is necessary (we refer to this paper for

more information). Using Theorem 1.3, we generalize Altman’s result
to arbitrarily long APs.

Theorem 1.5. For every integer k ≥ 3 and prime p ≥ k there is a
constant C such that the following holds. If S ⊆ Fnp is a set formed

by selecting at most
(
n+k−2
k−1

)
− C(logp n)2nk−2 elements independently

and uniformly at random, then with probability 1 − o(1) there is a set
A ⊆ Fnp of size |A| ≥ Ωk,p(p

n) that contains no proper k-term arithmetic
progression with common difference in S.

In particular, for N = pn at least Ω((logpN)k−1) elements must
be sampled for Szemerédi’s theorem with random differences and k-
APs over Fnp . Showing (much) stronger lower bounds, possibly over
other groups (including non-abelian groups), is of interest for coding
theory [BDG19]. In [Alt19], the case k = 3 of Theorem 1.5 is proved
without squaring the logarithmic factor. The proof given there uses
both the analytic and algebraic characterization of matrix rank and can
be generalized using the relations between analytic and partition rank.
But the best-known relations (1) cause the exponent of the logarithmic
factor to blow up substantially and currently require fairly intricate
proofs. Theorem 1.3 allows one to avoid the use of partition rank
altogether gives a proof based more easily-established results.
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2. Proof of Theorem 1.3

We use some results of Lovett [Lov19] and corollaries thereof. Let F
be a finite field. For a d-tensor T ∈ Fn×···×n and set S ⊆ [n] :=
{1, . . . , n}, denote by T|S the principal sub-tensor obtained by restrict-
ing T to S × · · · × S. It will be convenient to slightly extend the def-
initions of bias and analytic rank. For finite sets S1, . . . , Sd, d-tensor
T ∈ FS1×···×Sd and non-trivial additive character χ : F→ C, define

bias(T ) = E(x1,...,xd)∈FS1×···×FSdχ
(
T (x1, . . . , xd)

)
and define arank(T ) as before.

Lemma 2.1 (Lovett). Let T ∈ Fn×···×n be a d-tensor and S ⊆ [n].
Then,

arank(T ) ≥ arank
(
T|S
)
.

Corollary 2.2. Let T ∈ Fn×···×n be a d-tensor, let S1, . . . , Sd ⊆ [n]
be sets of equal size and let T ′ ∈ FS1×···×Sd be the restriction of T to
S1 × · · · × Sd. Then,

arank(T ) ≥ arank(T ′).

Proof: Let π2, . . . , πd : [n]→ [n] be permutations such that πi(Si) = S1.
Let Q be the d-tensor obtained by permuting the ith leg of T according
to πi. Then, since analytic rank is invariant under such permutations,
it follows from Lemma 2.1 that

arank(T ) = arank(Q) ≥ arank
(
Q|S1

)
= arank(T ′),

where the second equality follows since Q|S1 is a permutation of T ′. 2

Lemma 2.3 (Lovett). Let χ : F → C be a nontrivial additive char-
acter. Let T ∈ Fn×···×n be a d-tensor and let Fn = U ⊕ V for two
subspaces U, V . Then, for any v1, . . . , vd ∈ V ,∣∣∣Eu1,...,ud∈Uχ(T (u1 + v1, . . . , ud + vd)

)∣∣∣ ≤ Eu1,...,ud∈Uχ
(
T (u1, . . . , ud)

)
.

Corollary 2.4. Let T ∈ Fn×···×n be a d-tensor and En = en⊗· · ·⊗en be
the d-tensor with a 1 at its last coordinate and zeros elsewhere. Then,
there exists a λ ∈ F such that

arank(T + λEn) ≥ arank
(
T|[n−1]

)
+ cF,d,

where

(2) cF,d = − log|F|

(
1−

( |F| − 1

|F|

)d)
.
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Proof: Let U = Span(e1, . . . , en−1) and V be the line spanned by en.
We consider the average bias of the tensor T+λEn, where λ is uniformly
distributed over F. This average equals

Eλ∈FEu1,...,ud∈UEv1,...,vn∈V χ
(
(T + λEn)(u1 + v1, . . . , ud + vd)

)
.

The character expression factors as

χ
(
T (u1 + v1, . . . , ud + vd)

)
χ(λEn(u1 + v1, . . . , ud + vd)

)
.

Writing vi = aien, then the second factor simplifies to χ(λa1 · · · ad).
Hence, the average bias of T + λEn equals

Ea∈Fd
(
Eu1,...,un∈Uχ

(
T (u1 + a1en, . . . , ud + aden)

))(
Eλχ(λa1 · · · ad)

)
.

The expectation over λ equals 1[a1 · · · ad = 0]. Hence, by Hölder’s
inequality, the average bias is at most

max
v1,...,vd∈V

∣∣∣Eu1,...,un∈Uχ(T (u1 + v1, . . . , ud + vd)
)∣∣∣Pra1,...,ad∈F[a1 · · · ad = 0].

The result now follows from Lemma 2.3. 2

We now prove Theorem 1.3 following similar lines as Meshulam’s
proof of Theorem 1.1.

Proof of Theorem 1.3: Order [n]d lexicographically. For a d-tensor T ∈
Fn×···×n, let ρ(T ) denote its first nonzero coordinate. Let T1, . . . , Tdim(V )

be a basis for V . By Gaussian elimination (viewing the Ti as vectors

in Fnd), we can assume that the coordinates ρ(Ti) are pairwise distinct.
Cover [n]d by the “diagonal matchings” given by{

(0, n1, . . . , nd−1) + (i, . . . , i) : i ∈ [n− max
l∈[d−1]

nl]
}

{
(n1, 0, . . . , nd−1) + (i, . . . , i) : i ∈ [n− max

l∈[d−1]
nl]
}

...{
(n1, . . . , nd−1, 0) + (i, . . . , i) : i ∈ [n− max

l∈[d−1]
nl]
}
,

for n1, . . . , nd−1 ∈ {0, . . . , n − 1}. This is a cover since the coordi-
nate (i1, . . . , id) with j = min{i1, . . . , id} − 1 lies in the matching
whose smallest element (with respect to the product order) is (i1 −
j, . . . , ij − j). Since there are at most dnd−1 such matchings and
dim(V ) ≥ tnd−1, one of these matchings contains at least t/d of the
coordinates ρ(T1), . . . , ρ(Tdim(V )). Let s = bt/drc, so that rs ≤ t/d.
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Relabelling if necessary, we can assume that ρ(T1), . . . , ρ(Trs) lie in
the same matching and that they are listed increasingly according to
the product order, so that

(3) ρ(Ti) = (n1, . . . , nd) + (f(i), . . . , f(i))

for some n1, . . . , nd ∈ {0, . . . , n − 1} and strictly increasing function
f : [rs]→ [n]. For each i ∈ [rs], let Qi ∈ Frs×···×rs be tensor given by

Qi(i1, . . . , id) = Ti
(
(n1, . . . , nd) + (f(i1), . . . , f(id))

)
.

Then, Qi is a sub-tensor of Ti obtained from its restriction to the
rectangle (n1, . . . , nd) + (im(f))d. Moreover, it follows from (3) that
ρ(Qi) = (i, . . . , i), which in turn implies that the restriction (Qi)|[i] is
nonzero only on coordinate (i, . . . , i).

Partition [rs] into s consecutive intervals I1, . . . , Is of length r each.
We claim that for each j ∈ [s], there is an Rj ∈ Span(Qi : i ∈ Ij) such
arank

(
(Rj)|Ij

)
≥ cF,dr, for cF,d as in (2). We prove the claim for j = 1.

To this end, we show by induction on i ∈ [r] that Span(Q1, . . . , Qi)
contains a tensor R whose restriction R|[i] to [i]× · · · × [i] has analytic
rank at least icF,d. For i = 1, the claim follows since Q1(1, . . . , 1) = a
for some a ∈ F∗ and the bias of the 1× · · · × 1 tensor a equals

Ex1,...,xd∈Fχ(ax1 · · ·xd) = Prx2,...,xd∈F[x2 · · ·xn = 0]

= 1−
( |F| − 1

|F|

)d−1
≤ |F|−cF,d .

Assume the claim for i ∈ [r− 1] and let R ∈ Span(Q1, . . . , Qi) be such
that arank(R|[i]) ≥ icF,d. Since the restriction of (Qi+1)|[i+1] is nonzero
only on coordinate (i + 1, . . . , i + 1), it is a nonzero multiple of Ei+1.
Hence, by Corollary 2.4, there is a λ ∈ F such that

arank
(
(R + λQi+1)|[i+1]

)
≥ arank(R|[i]) + cF,d ≥ (i+ 1)cF,d,

which proves the claim. For j > 1 the claim is proved similarly, using
induction on i ∈ [r] to show that Span(Qjr+1, . . . , Qjr+i) contains a
tensor R such that arank(R|{jr+1,...,jr+i}) ≥ icF,d.

For j ∈ [s], let T ∗j ∈ Span(Ti : i ∈ Ij) be the tensor whose restriction

to (n1, . . . , nd) + (im(f))d equals Rj. Let W = Span(T ∗1 , . . . , T
∗
s ). We

claim that the space W meets the criteria of Theorem 1.3. Since the
sets Ij are pairwise disjoint and the tensors T1, . . . , Tdim(V ) linearly in-
dependent, it follows that dim(W ) ≥ s ≥ t

dr
− 1. Let λ ∈ Fs \ {0} and

let j ∈ [s] be its first nonzero coordinate. It follows from Corollary 2.2
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and Lemma 2.1 that

arank(λ1T
∗
1 + · · ·+ λsT

∗
s ) ≥ arank(λ1R1 + · · ·+ λsRs)

≥ arank
(
(λ1R1 + · · ·+ λsRs)|Ij

)
= arank

(
λj(Rj)|Ij

)
≥ cF,dr,

where in the third line we used that λk = 0 for all k ∈ [j − 1] and
(Rk)|Ij = 0 for all k ∈ {j + 1, . . . , s}, which holds since the restriction
of Qi to Ij is the zero tensor for all i > j. Hence, every nonzero element
of W has analytic rank at least cF,dr. 2

3. Proof of Theorem 1.5

For positive integer d and x ∈ Fn, denote ϕd(x) = x ⊗ · · · ⊗ x
(d times). Then, for any d-tensor T ∈ Fn×···×n, we have T (x, . . . , x) =
〈T, ϕd(x)〉, where 〈·, ·〉 is the standard inner product. Theorem 1.5
follows from the following two lemmas, the first of which is proved
in [Alt19] and the second of which we prove below.

Lemma 3.1 (Altman). Let k ≥ 3 be an integer and p ≥ k be a prime
number. Let S ⊆ Fnp be such that the set ϕk−1(S) is linearly indepen-
dent. Then, there exists a nonzero (k − 1)-tensor T ∈ Fn×···×np such
that the set {x ∈ Fnp : 〈T, ϕk−1(x)〉 = 0} contains no k-term arithmetic
progressions with common difference in S.

Lemma 3.2. For every integer d ≥ 2 and prime p ≥ d+ 1, there is
a C ∈ (0,∞) such that the following holds. Let m =

(
n+d−1

d

)
and

let s ≤ m − C(logpm)2nd−1 be an integer. Let x1, . . . , xs be inde-
pendent and uniformly distributed random vectors from Fnp . Then,
ϕd(x1), . . . , ϕd(xs) are linearly independent with probability 1− o(1).

Theorem 1.5 now follows from Lemma 3.2 with d = k − 1 and the
Chevalley–Warning theorem [LN97, Chapter 6], which implies that the
set from Lemma 3.1 has size Ωk,p(p

n).
Lemma 3.2 follows from the following proposition, which in turn fol-

lows from Theorem 1.3. A d-tensor is symmetric if it is invariant under
permutations of its legs. Let Symn

d(Fp) be the
(
n+d−1

d

)
-dimensional

subspace of symmetric d-tensors. Note that if p > d, then 〈·, ·〉 is non-
degenerate on Symn

d(Fp) since if T is an element of this space with a
nonzero (i1, . . . , id)-coordinate, then by symmetry of T and the fact
that d! 6≡ 0 (mod p), we have〈
T,
∑
π∈Sd

eiπ(1)⊗· · ·⊗eiπ(d)
〉

=
∑
π∈Sd

〈T, eiπ(1)⊗· · ·⊗eiπ(d)〉 = d!Ti1,...,id 6= 0.
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Proposition 3.3. For every integer d ≥ 2 and prime p ≥ d + 1,
there is a C ∈ (0,∞) such that the following holds. Let t > 0 and
U ⊆ Symn

d(Fp) be a subspace of co-dimension at least C4dt2nd−1. Then,

Prx∈Fnp [ϕd(x) ∈ U ] ≤ 2

p2t
.

Proof: Let V = U⊥ ⊆ Symn
d(Fp). Then, since 〈·, ·〉 is non-degenerate,

U = V ⊥ and dim(V ) ≥ C4dt2nd−1. Moreover, if C is large enough
in terms of d and p, then it follows from Theorem 1.3 that there is a
subspace W ⊆ V of dimension m ≥ 2dt such that each nonzero element
of W has analytic rank at least r ≥ 2dt. Hence, for ω = e2πi/p, we have

Prx∈Fnp [ϕd(x) ∈ U ] = Prx∈Fnp [ϕd(x) ∈ V ⊥]

≤ Prx∈Fnp [ϕd(x) ∈ W⊥]

= Ex∈FnpET∈Wω
〈ϕ(x),T 〉

≤
(
ET∈W bias(T )

) 1

2d−1

≤
( 1

pm
+
pm − 1

pm
1

pr

) 1

2d−1

≤ 2

p2t
,

where the third line follows from [Alt19, Lemma 3.5] and the fourth
line follows from [GW11, Lemma 3.2] and Jensen’s inequality. 2

A similar inequality to the one stated in Proposition 3.3 was proved
in [BHH+18] over Fn2 . There, the full space of tensors is considered
and the random element is of the form x1 ⊗ · · · ⊗ xd, where the xi are
independent and uniformly distributed. Similar to [Alt19, Lemma 3.4]
we can now prove Lemma 3.2 .

Proof of Lemma 3.2: The probability that ϕd(x1), . . . , ϕd(xs) are lin-
early independent is at least

Pr[x1 6= 0]
s∏
i=2

Pr
[
ϕd(xi) 6∈ Span

(
ϕd(x1), . . . , ϕd(xi−1)

)]
≥
(

1− max
U⊆Symnd (Fp)

Prx∈Fnp [ϕd(x) ∈ U ]
)s
,

where the maximum is taken over (s− 1)-dimensional subspaces. Set-
ting t = logpm and using that s ≤ m, Proposition 3.3 then shows that

this bounded from below by (1− 2
m2 )s ≥ 1−O(1/m) ≥ 1− o(1). 2
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[BDG19] J. Briët, Z. Dvir, and S. Gopi. Outlaw distributions and locally decod-
able codes. Theory of Computing, 15(12):1–24, 2019. doi:10.4086/toc.
2019.v015a012. Preliminary version in ITCS’17.
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Szemerédi’s theorem and related results. J. Anal. Math., 130:91–133,
2016. doi:10.1007/s11854-016-0030-z.

[GW11] W. T. Gowers and J. Wolf. Linear forms and higher-degree uniformity
for functions on Fn

p . Geom. Funct. Anal., 21(1):36–69, 2011. doi:10.1007/
s00039-010-0106-3.

[Jan19] O. Janzer. Polynomial bound for the partition rank vs the analytic rank
of tensors, 2019. ArXiv:1902.11207.

[KZ18] D. Kazhdan and T. Ziegler. Approximate cohomology. Selecta Math.
(N.S.), 24(1):499–509, 2018. doi:10.1007/s00029-017-0335-5.

[LN97] R. Lidl and H. Niederreiter. Finite Fields, volume 20 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cam-
bridge, second edition, 1997. With a foreword by P. M. Cohn.

[Lov19] S. Lovett. The analytic rank of tensors and its applications. Discrete
Anal., pages 1–10, 2019. doi:10.19086/da.8654. Paper No. 7.

[Mes85] R. Meshulam. On the maximal rank in a subspace of matrices. The
Quarterly Journal of Mathematics, 36(2):225–229, 1985. doi:10.1093/
qmath/36.2.225.
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